I
nte
rna
t
io
na
l J
o
urna
l o
f
P
o
w
er
E
lect
ro
nics
a
nd
Driv
e
Sy
s
t
e
m
(
I
J
P
E
DS
)
Vo
l.
9
,
No
.
2
,
J
u
n
e
2
0
1
8
,
p
p
.
750
~
7
5
6
I
SS
N:
2
0
8
8
-
8
6
9
4
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
p
ed
s
.
v9
.
i
2
.
pp
7
5
0
-
756
750
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
co
r
e.
co
m/jo
u
r
n
a
ls
/in
d
ex
.
p
h
p
/
I
JP
E
DS
O
pti
m
a
l
Pow
er Sys
te
m
P
la
nning
w
ith
R
e
new
a
ble DG
s w
ith
Rea
ctive
P
o
w
er
C
o
nsidera
tion
H
a
nu
m
esh
1
,
S
ud
a
rs
ha
na
Reddy
H
.
R
2
1
De
p
a
rte
m
e
n
t
o
f
El
e
c
tri
c
a
l
a
n
d
El
e
c
tro
n
ics
En
g
in
e
e
rin
g
,
G
o
v
e
rn
m
e
n
t
P
o
ly
tec
h
n
ic,
Ku
sta
g
i,
Ka
rn
a
tak
a
,
In
d
ia
2
De
p
a
rte
m
e
n
t
o
f
El
e
c
tri
c
a
l
a
n
d
El
e
c
tro
n
ics
En
g
in
e
e
rin
g
,
U
n
iv
e
rsity
B.
D .
T
Co
ll
e
g
e
o
f
En
g
in
e
e
rin
g
,
Da
v
a
n
a
g
e
re
,
In
d
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Au
g
9
,
2
0
1
7
R
ev
i
s
ed
J
an
2
9
,
2
0
1
8
A
cc
ep
ted
Feb
1
4
,
2
0
1
8
T
h
is
p
a
p
e
r
a
n
a
ly
se
s
th
e
o
p
ti
m
a
l
p
o
w
e
r
s
y
ste
m
p
lan
n
in
g
w
it
h
DG
s
u
se
d
a
s
re
a
l
a
n
d
re
a
c
ti
v
e
p
o
w
e
r
c
o
m
p
e
n
sa
to
r.
Re
c
e
n
tl
y
p
lan
n
in
g
o
f
DG
p
lac
e
m
e
n
t
re
a
c
ti
v
e
p
o
w
e
r
c
o
m
p
e
n
sa
ti
o
n
a
re
th
e
m
a
jo
r
p
ro
b
lem
s
in
d
istri
b
u
ti
o
n
sy
ste
m
.
A
s
th
e
re
q
u
irem
e
n
t
in
t
h
e
p
o
w
e
r
is
m
o
re
th
e
D
G
p
lac
e
m
e
n
t
b
e
c
o
m
e
s
im
p
o
rtan
t.
W
h
e
n
p
lan
n
e
d
to
m
a
k
e
th
e
D
G
p
lac
e
m
e
n
t,
c
o
st
a
n
a
l
y
si
s
b
e
c
o
m
e
s
a
s
a
m
a
jo
r
c
o
n
c
e
rn
.
A
n
d
if
th
e
D
G
s
o
p
e
ra
te
a
s
re
a
c
ti
v
e
p
o
w
e
r
c
o
m
p
e
n
sa
to
r
it
is
m
o
st
h
e
lp
f
u
l
in
p
o
w
e
r
q
u
a
li
ty
m
a
in
ten
a
n
c
e
.
S
o
,
t
h
is
p
a
p
e
r
d
e
a
l
s
w
it
h
th
e
o
p
ti
m
a
l
p
o
w
e
r
s
y
ste
m
p
lan
n
in
g
w
it
h
re
n
e
wa
b
le
DG
s
w
h
ich
c
a
n
b
e
u
se
d
a
s
a
re
a
c
ti
v
e
p
o
w
e
r
c
o
m
p
e
n
sa
to
rs.
Th
e
p
ro
b
lem
is
f
o
rm
u
late
d
a
n
d
so
lv
e
d
u
sin
g
p
o
p
u
lar
m
e
ta
-
h
e
u
risti
c
tec
h
n
iq
u
e
s
c
a
ll
e
d
c
u
c
k
o
o
se
a
rc
h
a
l
g
o
rit
h
m
(
CS
A
)
a
n
d
p
a
rti
c
le sw
a
r
m
o
p
ti
m
iz
a
ti
o
n
(
P
S
O
).
th
e
c
o
m
p
a
ra
ti
v
e
re
su
lt
s are
p
re
se
n
ted
.
K
ey
w
o
r
d
:
C
u
c
k
o
o
s
ea
r
ch
al
g
o
r
ith
m
Dis
tr
ib
u
tio
n
g
e
n
er
atio
n
P
ar
ticle
s
w
ar
m
o
p
ti
m
izatio
n
P
o
w
er
s
y
s
te
m
p
la
n
n
i
n
g
Co
p
y
rig
h
t
©
2018
In
s
t
it
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Han
u
m
e
s
h
,
Dep
ar
te
m
en
t o
f
E
lectr
ical
an
d
E
lectr
o
n
ics E
n
g
i
n
ee
r
in
g
,
Go
v
er
n
m
en
t P
o
ly
tec
h
n
ic,
Ku
s
tag
i,
Kar
n
ata
k
a,
I
n
d
i
a
E
m
ail:
h
an
u
m
es
h
s
a
g
ar
1
3
8
@
g
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
E
x
p
an
s
io
n
p
lan
n
i
n
g
o
f
p
o
w
e
r
s
y
s
te
m
w
it
h
r
en
e
w
ab
le
r
e
s
o
u
r
ce
s
f
o
r
p
laci
n
g
DGs
i
n
f
u
tu
r
e
f
o
r
s
atis
f
y
in
g
th
e
i
n
cr
ea
s
e
i
n
d
e
m
an
d
is
p
r
o
p
o
s
ed
b
y
P
ar
th
a
k
a
y
al
in
2
0
1
4
w
i
th
m
u
l
ti
-
o
b
j
ec
tiv
e
co
n
s
id
er
atio
n
.
R
aj
Ku
m
ar
in
2
0
1
1
d
is
cu
s
s
ed
ab
o
u
t
th
e
m
u
lti
-
o
b
j
ec
tiv
e
b
ased
p
lan
n
in
g
o
f
DG
p
lace
m
e
n
t.
Us
in
g
i
m
p
ac
t
in
d
ice
s
d
o
es
th
is
.
T
h
e
b
u
s
w
h
ic
h
g
iv
e
m
o
r
e
i
m
p
ac
t
f
o
r
DG
p
lace
m
e
n
t
is
id
en
tifie
d
an
d
p
lace
d
th
er
e.
[
1
,
2
]
.
Gen
er
ato
r
d
is
p
atch
p
r
o
b
lem
s
ar
e
s
o
lv
e
d
w
it
h
m
u
lti
o
b
j
ec
tiv
e
in
[
3
].
P
lace
m
en
t
o
f
w
i
n
d
an
d
s
o
lar
alo
n
e
w
it
h
its
m
at
h
e
m
a
tical
s
tatic
m
o
d
el
is
i
m
p
le
m
en
ted
b
y
k
a
y
al
[
4
]
.
T
h
is
i
m
p
r
o
v
es
t
h
e
v
o
lta
g
e
s
tab
il
it
y
a
n
d
p
o
w
er
lo
s
s
m
i
n
i
m
izatio
n
.
T
h
e
E
v
o
l
u
tio
n
a
r
y
a
lg
o
r
it
h
m
s
p
la
y
s
a
n
i
m
p
o
r
tan
t
r
o
le
in
p
lace
m
e
n
t
p
r
o
b
lem
s
a
s
it
i
s
ea
s
y
to
co
n
s
id
er
m
o
r
e
co
n
s
tr
ai
n
ts
an
d
f
ast
s
o
l
u
tio
n
.
[
5
,
6
]
.
P
r
ev
io
u
s
w
o
r
k
s
d
ea
l
s
w
it
h
o
n
l
y
r
ea
l
p
o
w
er
[
7
]
.
I
n
t
h
is
p
ap
er
cu
ck
o
o
s
ea
r
ch
alg
o
r
ith
m
[
8
]
is
u
s
ed
f
o
r
th
e
f
ir
s
t
ti
m
e
i
n
o
p
ti
m
al
e
x
p
an
s
io
n
p
la
n
n
i
n
g
o
f
DG
s
w
it
h
r
en
e
w
ab
le
en
er
g
y
r
eso
u
r
ce
s
w
it
h
r
ea
cti
v
e
p
o
w
er
co
n
s
id
er
atio
n
.
A
n
d
t
h
e
p
r
o
b
le
m
o
f
t
h
e
m
in
i
m
i
za
tio
n
i
s
s
o
lv
ed
b
y
P
ar
th
a
k
a
y
al
[
1
]
is
m
o
d
i
f
ied
w
ith
s
o
l
v
i
n
g
m
et
h
o
d
b
y
u
s
i
n
g
C
S
A
a
n
d
P
SO
to
g
et
b
etter
v
o
ltag
e
p
r
o
f
ile
an
d
v
o
lta
g
e
s
tab
ilit
y
f
a
cto
r
an
d
r
ed
u
ce
d
lo
s
s
.
T
h
is
p
a
p
er
is
o
r
g
an
is
ed
as
f
o
llo
w
s
,
S
ec
tio
n
I
I
talk
s
ab
o
u
t
th
e
t
h
e
p
r
o
b
lem
f
o
r
m
u
latio
n
.
S
ec
tio
n
I
I
I
talk
s
ab
o
u
t
t
h
e
P
s
eu
d
o
co
d
e
an
d
Flo
w
c
h
ar
t,
Sectio
n
I
V
talk
s
ab
o
u
t
t
h
e
R
es
u
lts
a
n
d
Dis
c
u
s
s
io
n
,
f
o
llo
w
ed
b
y
t
h
e
C
o
n
c
lu
s
io
n
a
n
d
R
e
f
er
en
ce
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
P
o
w
E
lec
&
Dr
i
S
y
s
t
I
SS
N:
2
0
8
8
-
8
694
Op
tima
l P
o
w
er S
ystem
P
la
n
n
in
g
w
ith
R
en
ewa
b
le
DGs w
ith
R
ea
ctive
P
o
w
er C
o
n
s
id
era
tio
n
(
Ha
n
u
mesh
)
751
2.
P
RO
B
L
E
M
F
O
R
M
UL
AT
I
O
N
(
i)
T
o
tal
c
o
s
t o
f
r
en
e
w
ab
le
DGs d
u
e
to
in
s
tallat
io
n
,
o
p
er
atio
n
an
d
m
ai
n
te
n
a
n
ce
,
(
1
)
W
h
er
e
(
2
)
Her
e,
P
r
esen
t v
al
u
e
o
f
co
s
t
(
3
)
W
h
er
e,
(
ii)
T
o
tal
b
en
ef
it t
h
at
ca
n
b
e
ac
h
ie
v
ed
f
r
o
m
o
p
er
atio
n
o
f
d
is
tr
ib
u
tio
n
n
et
w
o
r
k
w
it
h
r
en
e
w
ab
le
DGs is
g
iv
e
n
b
y
,
(
4
)
B
en
ef
it to
co
s
t r
atio
(
5
)
DI
SC
O
b
en
e
f
ited
m
o
r
e
w
h
en
(
iii)
Vo
ltag
e
s
tab
ili
t
y
f
ac
to
r
Du
e
to
th
e
p
lace
m
en
t o
f
DGs i
n
p
o
w
er
s
y
s
te
m
c
h
an
g
es t
h
e
v
o
ltag
e
p
r
o
f
ile
s
o
th
er
e
is
a
n
ee
d
f
o
r
im
p
r
o
v
i
n
g
th
e
v
o
lta
g
e
p
r
o
f
ile,
th
e
b
elo
w
eq
u
atio
n
s
h
o
w
s
t
h
e
VS
F f
o
r
an
y
b
u
s
i+1
in
t
h
e
d
is
tr
ib
u
tio
n
n
et
w
o
r
k
,
(
6
)
Her
e,
+1
VSF f
o
r
t
h
e
en
tire
n
et
w
o
r
k
is
g
iv
e
n
b
y
(
7
)
(
iv
)
Net
w
o
r
k
s
ec
u
r
it
y
i
n
d
ex
Secu
r
it
y
o
f
t
h
e
n
et
w
o
r
k
a
ls
o
s
h
o
u
ld
b
e
co
n
s
id
er
ed
o
n
p
lace
m
en
t o
f
DG
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
I
n
t J
P
o
w
E
lec
&
Dr
i
S
y
s
t
,
Vo
l.
9
,
No
.
2
,
J
u
n
e
2
0
1
8
:
750
–
756
752
(
8
)
Net
w
o
r
k
s
ec
u
r
it
y
i
n
d
ex
ca
n
b
e
f
o
r
m
u
lated
as b
elo
w
(
9
)
L
o
w
v
al
u
e
is
b
etter
.
So
,
th
e
o
b
j
ec
tiv
e
f
u
n
ctio
n
i
s
r
ep
r
esen
ted
as
(
1
0
)
w
it
h
r
esp
ec
t to
eq
u
alit
y
co
n
s
tr
ain
ts
,
(
1
1
)
(
1
2
)
I
n
eq
u
alit
y
co
n
s
tr
ain
t
s
,
Gen
er
atio
n
li
m
i
t a
t b
u
s
i
(
1
3
)
Her
e
B
u
s
v
o
lta
g
e
to
ler
an
ce
co
n
s
tr
ai
n
t a
t b
u
s
i
(
1
4
)
L
i
n
e
ca
p
ac
it
y
co
n
s
tr
ain
t o
f
li
n
e
co
n
n
ec
ti
n
g
b
u
s
i a
n
d
b
u
s
j
(
1
5
)
W
h
er
e
S
ij
an
d
S
ij
m
ax
ar
e
ac
tu
al
an
d
m
a
x
i
m
u
m
li
n
e
p
o
w
er
f
lo
w
i
n
MV
A
B
o
th
P
ar
ticle
S
w
ar
m
Op
ti
m
iz
atio
n
an
d
t
h
e
C
u
ck
o
o
Ser
ch
A
lg
o
r
ith
m
s
ar
e
u
s
ed
f
o
r
t
h
e
s
o
lu
tio
n
w
h
ich
is
ex
p
lai
n
ed
in
t
h
e
f
o
r
m
o
f
f
lo
w
c
h
ar
t a
b
d
p
s
eu
d
o
co
d
e
in
th
e
f
o
llo
w
in
g
s
ec
tio
n
.
3.
P
SE
UDO
CO
D
E
AND
F
L
O
WCH
ART
T
h
e
P
SO
tech
n
iq
u
e
t
h
e
p
o
s
itio
n
o
f
ea
ch
p
ar
ticle
co
r
r
esp
o
n
d
s
to
th
e
s
o
l
u
tio
n
v
ar
iab
les
w
h
ic
h
g
e
t
u
p
d
ated
in
ea
c
h
p
ar
ticle
m
o
v
e
m
en
t.
A
co
m
p
r
eh
e
n
s
i
v
e
p
s
e
u
d
o
co
d
e
o
f
P
SO
b
ased
OP
F
is
g
iv
e
n
b
elo
w
,
Fo
r
ea
ch
p
ar
ticle
i =
1
.
.
.
.
.
.
S
a.
d
o
:
b.
I
n
itialize
t
h
e
p
ar
ticle
'
s
p
o
s
i
tio
n
w
it
h
a
u
n
i
f
o
r
m
l
y
d
i
s
tr
ib
u
ted
r
an
d
o
m
v
ec
to
r
:
x
i
~
U(
b
lo
,
b
u
p
)
,
w
h
er
e
b
lo
an
d
b
u
p
ar
e
th
e
lo
w
er
an
d
u
p
p
er
b
o
u
n
d
ar
ies o
f
th
e
s
ea
r
c
h
-
s
p
ac
e.
c.
I
n
itialize
t
h
e
p
ar
ticle
'
s
b
est
k
n
o
w
n
p
o
s
itio
n
to
its
i
n
itial p
o
s
it
io
n
: p
i ←
x
i.
d.
I
f
(
f
(
p
i)
<f
(
g
)
)
u
p
d
ate
th
e
s
w
ar
m
's b
est
k
n
o
w
n
p
o
s
itio
n
:g
←p
i.
e.
I
n
itialize
t
h
e
p
ar
ticle
'
s
v
e
lo
cit
y
: v
i ~
U(
-
|
b
u
p
-
b
lo
|
,
|
b
u
p
-
b
lo
|
)
.
f.
Un
til
a
ter
m
i
n
atio
n
cr
i
ter
io
n
i
s
m
et
(
e.
g
.
n
u
m
b
er
o
f
iter
atio
n
s
p
er
f
o
r
m
ed
,
o
r
a
s
o
lu
tio
n
w
it
h
ad
eq
u
a
te
o
b
j
ec
tiv
e
f
u
n
c
tio
n
v
alu
e
i
s
f
o
u
n
d
)
,
r
ep
ea
t:
g.
Fo
r
ea
ch
p
ar
ticle
i =
1
,
.
.
.
,
S
d
o
:
h.
Fo
r
ea
ch
d
i
m
en
s
io
n
d
=1
,
.
.
.
,
n
d
o
:
i.
P
ick
r
an
d
o
m
n
u
m
b
er
s
:
r
p
,
r
g
~U(
0
,
1
)
j.
Up
d
ate
th
e
p
ar
ticle'
s
v
elo
cit
y
:
v
i,d
←ω
v
i,d
+
φp
r
p
(
p
i,d
-
x
i,d
)
+
φg
r
g
(
g
d
x
i,d
)
k.
Up
d
ate
th
e
p
ar
ticle'
s
p
o
s
it
io
n
:
x
i←
x
i+
v
i
l.
I
f
(
f
(
x
i)
<
f
(
p
i)
)
d
o
:
m.
Up
d
ate
th
e
p
ar
ticle'
s
b
es
t k
n
o
w
n
p
o
s
itio
n
: p
i←
x
i.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
P
o
w
E
lec
&
Dr
i
S
y
s
t
I
SS
N:
2
0
8
8
-
8
694
Op
tima
l P
o
w
er S
ystem
P
la
n
n
in
g
w
ith
R
en
ewa
b
le
DGs w
ith
R
ea
ctive
P
o
w
er C
o
n
s
id
era
tio
n
(
Ha
n
u
mesh
)
753
n.
I
f
(
f
(
p
i)
<
f
(
g
)
)
u
p
d
ate
th
e
s
w
a
r
m
'
s
b
est
k
n
o
w
n
p
o
s
itio
n
:
g
←
p
i.
o.
No
w
g
h
o
ld
s
t
h
e
b
est f
o
u
n
d
s
o
lu
tio
n
.
p.
T
h
e
p
ar
am
eter
s
ω
,
φp
,
an
d
φg
ar
e
s
elec
ted
b
y
th
e
p
r
ac
titi
o
n
er
an
d
co
n
tr
o
l
th
e
b
eh
av
io
u
r
an
d
ef
f
icac
y
o
f
th
e
P
SO
m
e
th
o
d
,
Fo
r
s
i
m
p
licit
y
,
f
lo
w
c
h
ar
t o
f
P
SO a
lg
o
r
it
h
m
i
s
g
i
v
e
n
in
F
ig
u
r
e
1
Fig
u
r
e
1
.
Flo
w
c
h
ar
t
o
f
P
ar
ticle
S
w
ar
m
Op
ti
m
izatio
n
C
u
c
k
o
o
b
ir
d
lay
s
e
g
g
s
in
co
m
m
u
n
al
n
es
ts
.
I
f
th
e
h
o
s
t
b
ir
d
f
in
d
s
t
h
e
d
if
f
er
e
n
t
eg
g
s
in
its
n
est
it
m
a
y
p
u
s
h
d
o
w
n
t
h
e
e
g
g
s
o
r
it
m
a
y
ab
an
d
o
n
th
e
n
e
s
t a
n
d
b
u
ild
n
e
w
n
es
t.
T
h
e
cu
c
k
o
o
b
ir
d
s
elec
ts
th
e
n
e
s
t o
f
h
o
s
t to
la
y
e
g
g
s
w
it
h
s
i
m
i
lar
it
y
in
s
h
ap
e
an
d
co
lo
r
o
f
eg
g
s
to
th
a
t
o
f
h
o
s
t
eg
g
s
.
T
h
is
in
cr
ea
s
e
s
th
e
p
r
o
b
ab
ilit
y
o
f
h
atch
in
g
c
u
c
k
o
o
eg
g
s
.
An
d
a
ls
o
,
cu
c
k
o
o
b
ir
d
’
s
e
g
g
s
h
atc
h
es
f
a
s
ter
co
m
p
ar
ed
to
h
o
s
t
b
i
r
d
eg
g
s
.
A
n
d
a
ls
o
,
ch
ick
s
ca
n
m
i
m
ic
th
e
h
o
s
t
b
ir
d
s
o
u
n
d
f
o
r
g
ettin
g
f
o
o
d
f
r
o
m
it.
T
h
is
co
n
ce
p
t
is
m
ad
e
as
m
a
th
e
m
atica
l
eq
u
atio
n
an
d
t
h
e
co
n
ce
p
t
o
f
s
ea
r
ch
o
f
l
ev
y
f
lig
h
t
s
w
h
ic
h
m
a
k
e
9
0
d
e
g
r
ee
s
t
u
r
n
lead
i
n
g
to
s
ca
le
f
r
ee
s
ea
r
ch
m
a
k
e
s
t
h
is
alg
o
r
ith
m
m
o
r
e
r
eliab
le.
T
h
e
p
r
o
ce
d
u
r
e
o
f
C
u
ck
o
o
s
ea
r
ch
al
g
o
r
ith
m
i
s
s
h
o
w
n
as b
elo
w
.
Fo
r
s
i
m
p
licit
y
i
n
d
escr
ib
in
g
n
e
w
C
u
c
k
o
o
Sear
ch
,
w
e
n
o
w
u
s
e
th
e
f
o
llo
w
i
n
g
th
r
ee
id
ea
lized
r
u
les:
1
)
E
ac
h
cu
c
k
o
o
la
y
s
o
n
e
e
g
g
at
a
ti
m
e,
an
d
d
u
m
p
its
e
g
g
i
n
r
an
d
o
m
l
y
ch
o
s
en
n
est;
2
)
T
h
e
b
est n
ests
w
it
h
h
ig
h
q
u
al
it
y
o
f
eg
g
s
w
ill ca
r
r
y
o
v
er
to
th
e
n
ex
t
g
en
er
at
io
n
s
;
3
)
T
h
e
n
u
m
b
er
o
f
av
ai
lab
le
h
o
s
t
n
est
s
is
f
ix
ed
,
an
d
th
e
e
g
g
lai
d
b
y
a
cu
ck
o
o
is
d
is
co
v
er
ed
b
y
t
h
e
h
o
s
t
b
ir
d
w
it
h
a
p
r
o
b
ab
ilit
y
p
a
[
0
,
1
]
.
I
n
th
i
s
ca
s
e,
th
e
h
o
s
t
b
ir
d
ca
n
eith
er
th
r
o
w
th
e
e
g
g
a
w
a
y
o
r
ab
an
d
o
n
th
e
n
e
s
t,
an
d
b
u
ild
a
co
m
p
lete
l
y
n
e
w
n
e
s
t.
Fo
r
s
i
m
p
lici
t
y
,
t
h
is
last
ass
u
m
p
t
io
n
ca
n
b
e
ap
p
r
o
x
i
m
ated
b
y
t
h
e
f
r
ac
tio
n
p
a
o
f
th
e
n
n
est
s
ar
e
r
ep
lace
d
b
y
n
e
w
n
est
s
(
w
ith
n
e
w
r
an
d
o
m
s
o
lu
tio
n
s
T
h
e
p
s
eu
d
o
co
d
e
f
o
r
cu
ck
o
o
alg
o
r
ith
m
is
b
r
ie
f
l
y
g
i
v
en
b
elo
w
:
b
eg
in
Ob
j
ec
tiv
e
f
u
n
ctio
n
f
(
x
)
,
x
=
(
x
1
,
.
.
.
,
x
d
)
T
Gen
er
ate
in
itial p
o
p
u
latio
n
o
f
n
h
o
s
t
n
es
ts
x
i (
i =
1
,
2
,
.
.
.
,
n
)
w
h
ile
(
t <
Ma
x
Ge
n
er
atio
n
)
o
r
(
s
to
p
cr
iter
io
n
)
et
a
cu
ck
o
o
r
an
d
o
m
l
y
b
y
e
v
y
f
li
g
h
ts
ev
alu
a
te
its
q
u
a
lit
y
/f
itn
e
s
s
F
i
C
h
o
o
s
e
a
n
e
s
t a
m
o
n
g
n
(
s
a
y
,
j
)
r
an
d
o
m
l
y
if
(
Fi>Fj
)
,
r
ep
lace
j b
y
th
e
n
e
w
s
o
l
u
tio
n
;
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
I
n
t J
P
o
w
E
lec
&
Dr
i
S
y
s
t
,
Vo
l.
9
,
No
.
2
,
J
u
n
e
2
0
1
8
:
750
–
756
754
en
d
A
f
r
ac
tio
n
(
p
a)
o
f
w
o
r
s
e
n
est
s
ar
e
ab
an
d
o
n
ed
an
d
n
e
w
o
n
es a
r
e
b
u
ilt;
Kee
p
th
e
b
est s
o
lu
t
io
n
s
(
o
r
n
e
s
ts
w
it
h
q
u
ali
t
y
s
o
lu
tio
n
s
)
;
R
an
k
t
h
e
s
o
lu
t
io
n
s
a
n
d
f
i
n
d
th
e
cu
r
r
en
t b
est
en
d
w
h
ile
P
o
s
t p
r
o
ce
s
s
r
esu
lts
an
d
v
is
u
al
izatio
n
en
d
T
h
e
f
lo
w
c
h
ar
t c
u
c
k
o
o
alg
o
r
ith
m
i
s
g
iv
e
n
b
elo
w
:
Fig
u
r
e
2
.
Flo
w
c
h
ar
t
o
f
C
u
c
k
o
o
Sear
ch
A
l
g
o
r
ith
m
4.
RE
SU
L
T
S
A
ND
AN
AL
Y
SI
S
T
h
e
test
s
y
s
te
m
u
s
ed
h
er
e
is
I
n
d
ian
2
8
d
is
tr
ib
u
ted
b
u
s
s
y
s
te
m
[
2
]
(
ap
p
en
d
ix
I
I
)
.
T
h
e
m
i
n
i
m
izatio
n
o
f
E
q
u
atio
n
(
1
0
)
is
i
m
p
le
m
e
n
ted
w
ith
P
SO
alg
o
r
it
h
m
an
d
C
S
A
a
lg
o
r
it
h
m
.
T
h
e
n
u
m
b
er
o
f
DG
in
s
talled
i
s
ta
k
e
n
co
n
s
ta
n
t
(
N=
6
)
as
6
.
A
n
d
th
e
p
r
o
b
lem
is
s
o
l
v
ed
f
o
r
1
0
y
ea
r
s
(
y
r
)
d
u
r
atio
n
(
N
yr
=1
0
)
.
T
h
e
ty
p
es
o
f
DG
s
ar
e
ch
o
s
en
a
s
So
lar
,
W
in
d
an
d
b
i
o
m
a
s
s
.
Her
e
t
y
p
e
‘
1
’
is
s
o
lar
,
t
y
p
e
‘
2
’
is
w
i
n
d
an
d
t
y
p
e
‘
3
’
is
b
io
m
a
s
s
.
An
d
it
w
o
r
k
s
f
o
r
r
ea
ctiv
e
p
o
w
er
s
u
p
p
o
r
t
also
.
T
h
e
p
o
w
er
f
ac
to
r
co
n
s
id
er
ed
h
er
e
is
0
.
9
.
A
p
p
en
d
ix
1
s
h
o
w
s
t
h
e
p
ar
am
eter
s
u
s
ed
f
o
r
it [
1
]
.
Fig
u
r
e
3
.
C
o
n
v
er
g
en
ce
Gr
ap
h
o
f
C
S
A
a
n
d
P
SO
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
P
o
w
E
lec
&
Dr
i
S
y
s
t
I
SS
N:
2
0
8
8
-
8
694
Op
tima
l P
o
w
er S
ystem
P
la
n
n
in
g
w
ith
R
en
ewa
b
le
DGs w
ith
R
ea
ctive
P
o
w
er C
o
n
s
id
era
tio
n
(
Ha
n
u
mesh
)
755
Fig
u
r
e
4
s
h
o
w
s
th
e
co
n
v
er
g
e
n
ce
g
r
ap
h
o
f
C
S
A
an
d
P
SO
alg
o
r
ith
m
w
it
h
s
a
m
e
o
b
j
ec
tiv
e
f
u
n
ctio
n
.
Her
e
to
tal
n
u
m
b
er
o
f
p
o
p
u
lati
o
n
is
ta
k
en
as
6
0
an
d
iter
atio
n
co
u
n
t
a
s
1
0
0
f
o
r
b
o
th
t
h
e
al
g
o
r
ith
m
.
T
h
e
ab
o
v
e
g
r
ap
h
s
h
o
w
s
t
h
e
p
er
f
o
r
m
an
ce
o
f
C
S
A
i
n
r
ed
li
n
e
a
n
d
P
SO
in
b
lu
e
l
in
e.
Fo
r
1
0
0
iter
atio
n
C
S
A
g
i
v
e
s
b
etter
m
i
n
i
m
u
m
o
b
j
ec
tiv
e
f
u
n
ct
io
n
.
B
o
th
s
atis
f
ies t
h
e
co
n
s
tr
ain
ts
.
T
ab
le
1
.
R
esu
lts
o
f
P
SO
A
l
g
o
r
ith
m
B
u
s
n
o
s.
t
y
p
e
S
i
z
e
(
M
W
)
S
i
z
e
(
M
V
a
r
)
IC
i
n
R
s
OM
C
i
n
R
s
/
y
r
T
C
R
s/
y
r
26
6
3
1.2
0.6
7
8
9
7
4
2
.
3
8
3
1
1
2
1
0
6
7
.
5
0
7
3
9
1
0
8
0
9
.
8
9
0
4
3
4
2
0.5
0.2
1
5
9
0
8
1
.
0
3
9
5
2
5
0
8
3
.
8
9
8
3
1
8
4
1
6
4
.
9
3
7
8
9
3
3
0.6
0.3
1
9
7
4
3
5
.
5
9
5
8
3
0
2
6
6
.
8
7
6
8
3
2
2
7
7
0
2
.
4
7
2
6
15
5
3
1
0.5
5
4
8
4
3
2
.
2
1
0
5
8
4
0
7
4
.
6
5
7
8
7
6
3
2
5
0
6
.
8
6
8
4
24
3
2
0.37
5
0.2
8
9
4
8
3
.
0
8
4
7
1
4
1
0
9
.
6
9
2
8
1
0
3
5
9
2
.
7
7
7
5
25
4
3
0.8
0.4
3
5
0
9
9
6
.
6
1
4
7
5
3
8
0
7
.
7
8
1
0
3
4
0
4
8
0
4
.
3
9
5
7
T
o
t
a
l
4.47
5
2.2
2
1
3
5
1
7
0
.
9
2
8
3
2
8
4
1
0
.
4
1
4
2
2
4
6
3
5
8
1
.
3
4
2
T
ab
le
2
.
R
esu
lts
o
f
C
S
A
Alg
o
r
ith
m
B
u
s
n
o
s.
t
y
p
e
S
i
z
e
(
M
W
)
S
i
z
e
(
M
V
a
r
)
IC
i
n
R
s
OM
C
i
n
R
s
/
y
r
T
C
R
s/
y
r
14
5
3
1
0.5
5
4
8
4
3
2
.
2
1
0
5
8
4
0
7
4
.
6
5
7
8
7
6
3
2
5
0
6
.
8
6
8
4
20
3
2
0.37
5
0.2
8
9
4
8
3
.
0
8
4
7
1
4
1
0
9
.
6
9
2
8
1
0
3
5
9
2
.
7
7
7
5
19
4
3
0.8
0.4
3
5
0
9
9
6
.
6
1
4
7
5
3
8
0
7
.
7
8
1
0
3
4
0
4
8
0
4
.
3
9
5
7
26
6
3
1.2
0.6
7
8
9
7
4
2
.
3
8
3
1
1
2
1
0
6
7
.
5
0
7
3
9
1
0
8
0
9
.
8
9
0
4
13
5
3
1
0.5
5
4
8
4
3
2
.
2
1
0
5
8
4
0
7
4
.
6
5
7
8
7
6
3
2
5
0
6
.
8
6
8
4
7
6
2
0.75
0.4
3
5
7
9
3
2
.
3
3
8
8
5
6
4
3
8
.
7
7
1
1
8
4
1
4
3
7
1
.
1
1
T
o
t
a
l
5.12
5
2.5
2
6
8
5
0
1
8
.
8
4
2
4
1
3
5
7
3
.
0
6
8
1
3
0
9
8
5
9
1
.
9
1
T
ab
le
3
.
C
o
m
p
ar
is
o
n
w
i
th
P
S
O
Vs C
S
A
l
o
ss
i
n
M
W
B
C
R
V
S
F
N
S
I
Fi
n
a
l
o
b
j
T
i
m
e
i
n
se
c
T
C
i
n
R
s
.
C
S
A
0.05
52
0.11
4
0.99
96
0.17
11
-
0.94
24
721.
623
107
3
0
9
8
5
9
1
.
9
1
PSO
0.07
5
0.12
06
0.99
96
0.20
56
-
0.91
46
174.
759
907
2
4
6
3
5
8
1
.
3
4
2
C
o
n
v
e
n
t
i
o
n
a
l
m
e
t
h
o
d
[
1
]
0
.
0
4
4
0
.
1
3
8
3
0
.
9
5
8
9
0
.
4
0
2
4
-
-
-
T
ab
le
1
s
h
o
w
s
t
h
e
r
es
u
lt
s
o
f
P
SO
alg
o
r
ith
m
w
it
h
p
o
s
itio
n
,
n
u
m
b
er
s
,
t
y
p
e,
I
C
,
OM
C
an
d
T
C
.
T
ab
le
2
s
h
o
w
s
th
e
r
es
u
lt
s
o
f
C
S
A
al
g
o
r
ith
m
w
it
h
p
o
s
itio
n
,
n
u
m
b
er
s
,
t
y
p
e,
I
C
,
OM
C
a
n
d
T
C
.
T
ab
le
3
s
h
o
w
s
t
h
e
co
m
p
ar
ati
v
e
r
esu
lt
s
o
f
C
S
A
Vs
P
SO
w
it
h
T
C
(
T
o
tal
C
o
s
t)
,
T
im
e
ta
k
en
,
f
i
n
al
o
b
j
ec
tiv
e
v
al
u
e,
N
SI,
VSF,
B
C
F
a
n
d
L
o
s
s
i
n
MW
.
Fig
u
r
e
4
.
Vo
ltag
e
P
r
o
f
ile
o
f
I
n
d
ian
2
8
B
u
s
S
y
s
te
m
f
o
r
w
ith
R
en
e
w
ab
le
DG
P
lace
d
Op
ti
m
all
y
w
it
h
C
S
A
,
P
SO
an
d
W
ith
o
u
t
R
en
e
w
ab
le
DG
w
it
h
N
R
(
Ne
w
to
n
-
R
ap
h
s
o
n
)
Me
th
o
d
5.
CO
M
P
ARIS
O
N
WI
T
H
CO
NVEN
T
I
O
NA
L
M
E
T
H
O
D
F
RO
M
[
1
]
C
S
A
al
g
o
r
ith
m
g
iv
e
s
b
etter
v
o
ltag
e
p
r
o
f
ile,
NSI
,
VSF
a
n
d
B
C
R
v
al
u
e
co
m
p
ar
ed
to
P
SO
alg
o
r
ith
m
an
d
co
n
v
e
n
tio
n
al
m
et
h
o
d
u
s
e
d
in
[
1
]
.
A
n
d
v
o
tta
g
e
p
r
o
f
il
e
n
ea
r
s
th
e
v
alu
e
o
f
1
p
.
u
as
s
h
o
w
n
in
Fi
g
u
r
e
.
4
.
B
u
t
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
I
n
t J
P
o
w
E
lec
&
Dr
i
S
y
s
t
,
Vo
l.
9
,
No
.
2
,
J
u
n
e
2
0
1
8
:
750
–
756
756
P
SO
alg
o
r
ith
m
g
iv
e
s
les
s
er
co
s
t
an
d
less
er
ti
m
e
ta
k
e
n
f
o
r
s
o
lv
i
n
g
t
h
e
al
g
o
r
ith
m
.
So
,
t
h
e
to
tal
co
s
t
o
f
t
h
e
r
en
e
w
ab
le
Dg
s
p
er
y
ea
r
is
le
s
s
in
P
SO a
n
d
m
o
r
e
in
C
S
A
.
6.
CO
NCLU
SI
O
N
T
h
e
r
ea
l
an
d
r
ea
ctiv
e
p
o
w
er
s
u
p
p
lied
b
y
u
s
i
n
g
DG
p
lace
m
e
n
t.
Fo
r
I
n
d
ian
2
8
-
b
u
s
s
y
s
te
m
ex
p
an
s
io
n
p
lan
n
i
n
g
is
co
n
d
u
cted
f
o
r
1
0
-
y
ea
r
d
u
r
atio
n
to
id
en
ti
f
y
t
h
e
to
tal
co
s
t,
Net
w
o
r
k
s
ec
u
r
it
y
in
d
e
x
an
d
lo
s
s
r
ed
u
ctio
n
an
d
to
i
m
p
r
o
v
e
t
h
e
v
o
ltag
e
s
tab
ilit
y
f
ac
to
r
,
b
en
ef
it
co
s
t
r
atio
.
T
r
ad
i
tio
n
al
P
SO
alg
o
r
ith
m
a
n
d
cu
ck
o
o
s
ea
r
ch
alg
o
r
it
h
m
i
s
u
s
ed
to
s
o
lv
e
th
is
p
r
o
b
le
m
.
An
d
co
m
p
ar
ativ
e
l
y
C
S
A
g
i
v
es
b
etter
VSF,
NSI
an
d
v
o
ltag
e
p
r
o
f
ile
co
m
p
ar
ed
to
P
SO.
An
d
P
SO
g
iv
e
s
les
s
er
c
o
s
t
an
d
le
s
s
er
ti
m
e
to
s
o
lv
e
t
h
e
p
r
o
b
le
m
.
So
,
f
o
r
i
m
p
le
m
en
ta
tio
n
c
h
o
ice
o
f
alg
o
r
ith
m
ca
n
b
e
ch
o
s
e
n
b
ased
o
n
th
e
r
ea
l
-
t
i
m
e
r
eq
u
ir
e
m
e
n
t.
RE
F
E
R
E
NC
E
S
[1
]
P
a
rt
h
a
Ka
y
a
l,
T
a
n
u
sh
re
e
Bh
a
tt
a
c
h
a
rjee
&
Ch
a
n
d
a
n
Ku
m
a
r
Ch
a
n
d
a
,
“
P
la
n
n
i
n
g
o
f
re
n
e
w
a
b
le
D
s
fo
r
d
istr
ib
u
ti
o
n
n
e
tw
o
rk
c
o
n
sid
e
rin
g
lo
a
d
m
o
d
e
l:
a
m
u
lt
i
-
o
b
jec
ti
v
e
a
p
p
ro
a
c
h
”
,
E
n
e
r
g
y
Pro
c
e
d
ia
5
4
(
2
0
1
4
)
8
5
–
96
[2
]
RA
J
KU
M
A
R
S
IN
H
a
n
d
S
.
K.
OS
WA
M
I,
“
M
u
lt
i
-
o
b
jec
ti
v
e
O
p
ti
m
iza
ti
o
n
o
f
Distrib
u
ted
G
e
n
e
ra
ti
o
n
P
lan
n
in
g
Us
in
g
Im
p
a
c
t
In
d
ice
s an
d
T
ra
d
e
-
o
f
f
T
e
c
h
n
iq
u
e
”
El
e
c
tric P
o
we
r Co
mp
o
n
e
n
ts
a
n
d
S
y
ste
ms
,
3
9
:
1
1
7
5
–
1
1
9
0
,
2
0
1
1
[3
]
G
u
o
CX
,
Ba
i
YH
,
Z
h
e
n
g
X
,
Zh
a
n
J
P
,
W
u
QH
.
“
Op
ti
m
a
l
g
e
n
e
ra
ti
o
n
d
is
p
a
tch
w
it
h
re
n
e
w
a
b
le
e
n
e
rg
y
e
m
b
e
d
d
e
d
u
sin
g
m
u
lt
ip
le o
b
jec
ti
v
e
s”
.
In
t.
J
.
o
f
El
e
c
tr.
P
o
we
r E
n
e
rg
y
S
y
st
2
0
1
2
;
4
2
:
4
4
0
-
4
4
7
.
[4
]
Ka
y
a
l
P
,
C
h
a
n
d
a
CK.
“
P
lac
e
m
e
n
t
o
f
w
in
d
a
n
d
so
lar
b
a
se
d
D
s
in
d
istri
b
u
ti
o
n
sy
ste
m
f
o
r
p
o
w
e
r
lo
ss
m
in
i
m
iza
ti
o
n
a
n
d
v
o
lt
a
g
e
sta
b
il
it
y
im
p
ro
v
e
m
e
n
t”.
In
t.
J
.
o
f
El
e
c
tr.
P
o
we
r E
n
e
rg
y
S
y
st
2
0
1
3
;
5
3
:
7
9
5
-
8
0
9
.
[5
]
Ka
th
o
d
DK
,
P
a
n
t
V
,
S
h
a
rm
a
J.
Ev
o
lu
ti
o
n
a
ry
p
ro
g
ra
m
m
in
g
b
a
s
e
d
o
p
t
im
a
l
p
lac
e
m
e
n
t
o
f
re
n
e
wa
b
le
d
istri
b
u
te
d
g
e
n
e
ra
to
rs.
IEE
E
T
r
a
n
s.
o
n
Po
we
r S
y
st
2
0
1
3
;
2
8
:
6
8
3
-
6
9
5
.
[6
]
A
r
y
a
D,
Ko
sh
ti
A
,
Ch
o
u
b
e
S
C.
“
Distrib
u
te
d
g
e
n
e
ra
ti
o
n
p
la
n
n
i
n
g
u
sin
g
d
if
f
e
re
n
ti
a
l
e
v
o
lu
ti
o
n
a
c
c
o
u
n
ti
n
g
v
o
lt
a
g
e
sta
b
il
it
y
c
o
n
sid
e
ra
ti
o
n
”
.
In
t
.
J
.
o
f
El
e
c
tr.
Po
we
r E
n
e
rg
y
S
y
st
2
0
1
2
;
4
2
:
1
9
6
-
2
0
7
.
[7
]
S
in
g
a
re
su
S
.
Ra
o
,
“
E
n
g
in
e
e
rin
g
Op
ti
m
iza
ti
o
n
:
T
h
e
o
ry
a
n
d
p
ra
c
ti
c
e
”
,
F
o
u
th
e
d
it
i
o
n
,
Jo
h
n
W
il
e
y
&
S
o
n
s,
In
c
.
2
0
0
9
[8
]
X
in
-
S
h
e
Ya
n
g
,
“
Cu
c
k
o
o
S
e
a
rc
h
v
ia
ev
y
F
li
g
h
ts”
,
2
0
0
9
,
W
o
rld
Co
n
g
re
ss
o
n
Na
tu
re
&
Bo
i
lo
g
ica
ll
y
In
sp
ired
Co
m
p
u
ti
n
g
(Na
BIC)
.
AP
P
E
NDI
X
I
AP
P
E
NDI
X
I
I
Evaluation Warning : The document was created with Spire.PDF for Python.