Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
6, N
o
. 3
,
Sep
t
em
b
e
r
2015
, pp
. 57
6
~
58
5
I
S
SN
: 208
8-8
6
9
4
5
76
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Faults Diagnosis in Five-L
evel Three-Phase Shunt Active
Power F
ilter
L. Beny
etto
u
*
, T. Benslimane
*
, O.
Ab
delk
halek
**
, T.
Ab
delkrim
***
, K.
Bent
at
a
*
*Laborator
y
of
Electrical Eng
i
n
eering
,
Univ
ersity
of M’sila, Alg
e
ria
**Departm
ent
of
El
ectr
i
c
a
l
Engin
eering
,
Univ
ers
i
t
y
of Bé
char
, Alg
e
ria
***Unit of App
lied
Resear
ch on
Renewble
Ener
gies of Gh
ardaia, Alger
i
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Ja
n 12, 2015
Rev
i
sed
Ju
l 10
,
20
15
Accepte
d
J
u
l 25, 2015
In this p
a
per
,
c
h
arac
terist
ics of
open
transistor
faul
ts in
casc
a
d
ed H-bridg
e
five-l
evel thr
e
e-phase PWM
controll
ed shunt act
ive power
filter ar
e
determ
ined
. P
h
a
s
e currents
can’
t
be trus
ted as
fault ind
i
ca
tor s
i
nce th
eir
waveforms are slightly
changed
in the
presen
ce
of open transisto
r
fault.
The
proposed method uses H bridg
e
s output
voltages to determin
e the fau
lty
phase,
the fau
l
ty bridge and
more pr
ec
is
el
y,
th
e o
p
en fau
l
t
trans
i
s
t
or.
Keyword:
Diagn
o
stic
Mean Values
Mu
ltilev
e
l in
v
e
rter
Ope
n
t
r
ansist
or fa
ult
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Lo
ut
fi
B
e
ny
et
t
o
u
,
Laboratory of Electrical
Engi
neeri
n
g,
Un
i
v
ersity o
f
M’sila, Alg
e
ria,
BP-
111
, Riad
M’
Sila, 280
00
, A
l
g
e
r
i
a.
Em
a
il: b
e
n
y
ett
o
u_
letfi@yah
o
o
.
fr
1.
INTRODUCTION
Mu
ltilev
e
l in
verter offers in
t
e
restin
g
adv
a
ntag
es su
ch
as
p
o
s
sib
ility o
f
o
p
e
ration
in
med
i
u
m
, h
i
gh
vol
t
a
ge
an
d
hi
gh
p
o
w
er a
p
pl
i
cat
i
ons,
p
r
o
v
i
d
i
ng a
bet
t
e
r
v
o
l
t
age wa
ve
fo
rm
wi
t
h
l
o
w
t
o
t
a
l
ha
rm
oni
c di
st
ort
i
o
n
for electric
m
a
ch
in
es app
licatio
n
s
, o
u
t
p
u
t
filter eli
m
in
atio
n, d
v
/
d
t
tran
sien
t redu
ction
du
ri
n
g
co
mm
u
t
atio
n
,
l
o
w EM
I em
i
ssi
ons
by
o
v
er
vol
t
a
ge
s an
d p
o
we
r l
o
ss
re
d
u
ct
i
on
[
1
]
.
Di
ode
-cl
a
m
p
ed,
cascade
d
-
b
ri
dg
es and
flyin
g
cap
acitors are t
h
e m
o
st u
s
ed
m
u
ltilev
e
l in
v
e
rters in
in
du
stry
[2
],
[3
]
.
However, th
e nu
m
b
er
o
f
swi
t
ch
es
n
eed
ed in
t
h
e t
o
po
log
y
i
n
creases with th
e num
b
e
r o
f
lev
e
ls
an
d, althou
gh
t
h
e switch
e
s m
a
y b
e
h
i
gh
ly reli
ab
le,
a syste
m
's fau
lt p
r
o
b
a
b
ility will b
eco
m
e
in
creased
[4
], [5
]). An
un
b
a
lan
c
ed
vo
ltag
e
is
g
e
n
e
rated
wh
en
a fau
lt
o
ccurs
wh
ich
can
p
r
od
u
c
e p
e
rman
en
t d
a
m
a
ge to
th
e lo
ad
o
r
co
m
p
lete syste
m
failu
re
[6
],
[7
].
Stu
d
i
es ab
ou
t fau
lt d
e
tectio
n in
m
u
lti
lev
e
l
in
v
e
rter
and
ev
en
fau
lt-to
leran
t
m
u
ltilev
e
l
in
v
e
rter h
a
ve
been focused on
power system
s
'
fault analysis ([
8]
, [
9
]
an
d [
1
0]
) as fi
rs
t
step to c
o
nceive differe
n
t techniques
for ob
tain
ing
a th
ree-ph
ase
b
a
lan
c
ed
ou
tpu
t
vo
ltag
e
([
4]
, [5]
,
[1
1]
an
d
[1
2]
).
Xiaom
i
n analyzed a
flying
capaci
t
o
r
-
b
ase
d
f
o
ur
-l
evel
i
n
vert
er
usi
ng t
h
e
m
a
t
e
ri
al
redu
nda
ncy
t
ech
ni
q
u
e (
u
si
n
g
e
x
t
r
a
com
pone
nt
s)
[
13]
.
A
cascad
ed
H-b
r
i
d
g
e
m
u
lti
lev
e
l in
v
e
rter
with
an
ad
d
ition
a
l leg
an
d
red
und
an
cy techn
i
qu
e
reg
a
rd
i
n
g ch
ang
e
o
f
pul
se
wi
dt
h m
o
d
u
l
a
t
i
o
n
(
P
WM
) w
h
e
n
a
fa
ul
t
occ
u
rs
has
al
so
been
de
sc
ri
be
d [
7
]
.
Ot
h
e
rs
([
4]
, [
5
]
a
n
d
[6]
)
h
a
v
e
sh
own
toleran
t
co
n
t
ro
l
fo
r an asymmet
r
ic cascad
e
m
u
ltilev
e
l in
v
e
rter
u
s
ing
m
a
teria
l
redun
d
a
n
c
y.
Oth
e
r
works ha
ve a
n
alyzed a thre
e-level diode
cla
m
ped m
u
l
tilevel inverte
r
and als
o
use
d
extra com
p
onents to
t
o
l
e
rat
e
faul
t
s
[14]
. S
o
m
e
o
f
t
h
ese st
udi
es
used p
r
ot
ect
i
on f
u
nct
i
o
ns [
15]
, e.
g. pa
ssi
ve pr
ot
ect
i
o
n coul
d
becom
e
activa
t
ed according to
fault tim
e
duration [16]. Seve
ral pape
rs
([17] and [18])
have prese
n
ted a
cascade m
u
l
t
ilevel
i
nve
rt
er and fa
ul
t
-
t
o
l
e
ra
nt
t
echni
q
u
e u
s
ed t
o
cha
nge
P
W
M
m
odul
at
i
on i
n
sem
i
conduct
o
r
po
we
r
devi
ces
.
Ot
h
e
rs
w
o
r
k
s
([
1
9
]
)
ha
ve
d
eal
t
wi
t
h
a
fa
ult-tolerant syst
e
m
for electric
a
l m
achines, s
u
ch as
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
57
6 – 585
57
7
i
n
d
u
ct
i
on m
o
t
o
r [
2
0]
, besi
de
s foc
u
si
n
g
o
n
Aer
o
s
p
at
i
a
l
e
appl
i
cat
i
o
ns an
d el
ect
ri
c vehi
cl
e appl
i
cat
i
o
n
s
[2
1]
.
Ot
he
rs co
nsi
d
e
r
ed t
h
e m
o
st
com
m
on faul
t
s
i
n
st
at
i
c
con
v
e
r
t
e
rs (s
ho
rt
an
d
ope
n ci
rc
ui
t
t
r
a
n
si
st
o
r
s)
[2
2]
.
In t
h
e
sam
e
di
rect
i
on,
D.
Kast
ha a
n
d
B
.
K
.
B
o
se c
o
nsi
d
e
r
ed
va
ri
o
u
s
faul
t
m
odes
of a
t
w
o l
e
vel
vol
t
a
ge
s
o
u
r
ce
P
W
M
inve
rter sy
ste
m
for ind
u
cti
o
n
m
o
tor d
r
iv
e [2
3]
. T
h
ey
h
a
v
e
stud
ied
rectifier d
i
od
e
sh
ort circu
it, in
v
e
rter
tran
sistor
b
a
se driv
er op
en
an
d inv
e
rter tran
sistor sh
ort-ci
rcu
it co
nd
itio
ns. Howev
e
r, they d
o
no
t
p
r
opo
se t
o
reco
nfi
g
u
r
e t
h
e
i
nve
rt
er t
o
p
o
l
ogy
.
De
Arau
jo
Ri
b
e
iro
R. L. et
al. inv
e
stig
at
ed
fa
ul
t
det
ect
i
on
of
o
p
e
n
-s
wi
t
c
h
dam
a
ge i
n
t
w
o l
e
vel
v
o
ltag
e
source PW
M m
o
to
r
d
r
i
v
e system
s
[24
]
. Th
ey m
a
in
ly fo
cu
sed
on
d
e
tection
and
id
en
tification
of th
e
po
we
r swi
t
c
h i
n
w
h
i
c
h t
h
e fa
ul
t
has occ
u
rre
d. I
n
a
not
her
p
a
per
,
t
h
ey
i
nve
st
i
g
at
ed t
h
e ut
i
l
i
zat
i
on of a t
w
o
-
l
e
g
b
a
sed
to
po
logy w
h
en
o
n
e
of
th
e in
v
e
r
t
er
leg
s
is lo
st. Th
en
th
e m
ach
in
e op
er
ates
with
o
n
l
y tw
o
stato
r
wi
n
d
i
n
gs [
2
5]
.
They
p
r
o
p
o
se
d t
o
m
odi
fy
P
W
M
co
nt
r
o
l
t
o
al
l
o
w c
ont
i
n
u
ous
f
r
ee o
p
er
at
i
on
of t
h
e d
r
i
v
e. E. R
.
C. Da Silv
a et
al. h
a
v
e
stud
ied
fau
lt to
leran
t
activ
e
po
wer filter system
[26
]
. Th
ey p
r
op
o
s
ed
t
o
reco
nfigu
r
e
po
we
r co
nv
ert
e
r an
d P
W
M
c
ont
rol
a
nd e
x
a
m
i
n
ed a fa
ul
t
id
en
tification
alg
o
rith
m
.
T. Ben
s
lim
an
e u
s
ed
activ
e
filter ou
tpu
t
cu
rren
ts m
ean
v
a
lu
es po
larities to
d
e
tect
and
localize op
en
switch
fau
lts in
shu
n
t
active th
ree-
p
h
a
se filter
b
a
sed
o
n
two
lev
e
l v
o
ltag
e
so
urce in
v
e
rter
con
t
ro
lled
b
y
cu
rrent Hysteresis con
t
ro
llers [27
]
.
Su
ri
n
Kh
om
foi
use
d
art
i
f
i
c
i
a
l
neura
l
net
w
o
r
ks f
o
r
t
h
e di
ag
n
o
st
i
c
of
o
p
en l
o
o
p
P
W
M
co
nt
r
o
l
l
e
d casca
ded
h-
b
r
i
d
g
e
m
u
ltilevel inverter drives.
He
used inve
rter out
put vo
ltage
s FFT analysis to extract pri
n
ciple com
pone
nt as
faul
t
i
n
di
cat
o
r
s
f
o
r
si
m
u
l
t
a
neous
t
r
a
n
si
st
o
r
and
di
od
e
ope
n s
w
i
t
c
h
fa
ul
t
[2
8]
.
Kari
m
i
S. an
d
Po
u
r
ea P
.
et
al
.
p
u
t
in
to
p
r
actice an
FPGA (Fi
e
ld
Programmab
l
e Gate Arra
y
)-ba
s
ed o
n
l
i
n
e faul
t
t
o
l
e
rant
cont
r
o
l
t
echni
que
of
p
a
rallel activ
e
p
o
wer filter
b
a
sed
o
n
t
w
o level th
ree-ph
as
e v
o
ltag
e
source
in
v
e
rter with
redun
d
a
n
t
leg
[29
]
,
[3
0]
.
Mo
st of m
e
n
t
i
o
n
e
d
work
s abo
u
t
m
u
ltilev
e
l
in
v
e
rter fau
lts
d
e
tectio
n
are related
to
electrical
m
ach
in
e
d
r
i
v
es ap
p
licatio
n
s
. The few
o
f
t
h
em
, wh
ich
are
related
t
o
static app
li
catio
n
s
su
ch
as activ
e po
wer
filters,
co
nsid
ered
on
ly
two-lev
e
l v
o
l
tag
e
so
ur
ce inver
t
er
.
Th
is presen
t pap
e
r
d
eals
with o
p
e
n
tran
sistor fau
lts
cha
r
acterization in cas
caded H-bridge five
-level
th
ree-ph
ase PWM con
t
ro
lled
shun
t activ
e p
o
wer filter. Ph
as
e curren
t
s can
’
t b
e
t
r
u
s
ted
as fau
lt ind
i
cato
r
si
n
c
e
t
h
ei
r wav
e
f
o
r
m
s are sl
i
ght
l
y
chan
ged i
n
t
h
e prese
n
ce of
ope
n t
r
an
si
st
or
faul
t
.
The p
r
o
pos
ed m
e
t
hod uses H
-
bri
dges
o
u
t
p
ut
vol
t
a
ge
s t
o
de
t
e
rm
i
n
e t
h
e fa
ul
t
y
phase
, t
h
e
faul
t
y
bri
dge
and m
o
re p
r
ec
i
s
el
y
,
t
h
e ope
n
faul
t
y
transistor.
2.
ACTI
V
E P
O
WER FILTE
R
DESC
RIPT
ION
Fig
u
re
1
presen
ts th
e cascaded
H-b
r
i
d
g
e
fi
v
e
-lev
el th
ree-p
h
a
se shun
t activ
e po
wer filter conn
ected
to
b
a
lan
c
ed
pow
er
g
r
id
(
v
si fo
r
i = {1
, 2, 3})
po
w
e
r
i
ng a three phase pa
rallel-conn
ected
two
d
i
od
e rectifiers
feed
i
n
g
v
a
riab
le series (R, L) lo
ad
s. Th
e act
iv
e filter is com
p
o
s
ed
, in
each
ph
ase,
o
f
t
w
o
vo
ltag
e
so
urce H-
bri
dge i
nve
rt
er
s (Hi
j
, i
=
1,
2
,
3,
j =
1,
2
)
wi
t
h
4
bi
di
rect
i
o
nal
swi
t
c
he
s (t
ransi
s
t
o
r +
di
o
d
e)
f
o
r eac
h
on
e. Th
e
filter is con
n
e
cted
to
th
e power
grid
t
h
rou
gh in
du
ctiv
e
filter L
f
for each phase.
The
output curre
nts
of
shunt
active filter are controlle
d to
provi
de a si
m
i
lar wa
ve
form
of identifi
e
d reacti
v
e and
harm
onic c
u
rrent
s
g
e
n
e
rated b
y
t
h
e
n
on-lin
ear l
o
ad (d
iod
e
rect
ifiers).
3.
HARMONIC CURRENT
IDENTIFICATION
Fi
gu
re
2 p
r
ese
n
t
s
a bl
ock
di
agram
of t
h
e
pr
o
pose
d
c
ont
r
o
l
sy
st
em
. Th
e
m
a
jor a
d
van
t
age o
f
t
h
i
s
co
n
t
ro
l prin
ci
ple is its si
m
p
lic
ity an
d
easin
ess to
b
e
im
p
l
e
m
en
ted
.
Th
e task
of th
is con
t
ro
l is to
d
e
term
i
n
e th
e
cu
rren
t
h
a
rm
o
n
i
c referen
c
es to b
e
g
e
n
e
rated
by th
e activ
e
filter [31
]
.
They
are de
fi
ned
usi
n
g cl
assi
cal
act
i
v
e and react
i
v
e p
o
w
er m
e
t
hod p
r
o
p
o
sed
by
A
k
agi
[
3
2]
. B
y
su
ppo
sing
th
at
th
e m
a
in
p
o
wer supp
ly v
o
ltages are sinu
so
idal, cu
rren
t
h
a
rm
o
n
i
c referen
c
es will b
e
calcu
lated
like indicated
in [33], [34]. The (
α
,
β
) voltage com
p
onents at conne
xion point of
active filter (v
α
, v
β
)
and
currents
(i
α
, i
β
) are
de
fi
ne
d
b
y
t
h
e cl
assi
cal
C
onc
or
di
a t
r
a
n
sfo
r
m
a
t
i
on:
1
11
/
2
1
/
2
2
2
3
03
/
2
3
/
2
3
x
x
x
x
x
(1
)
Whe
r
e
x =
{v,
vs, i
,
i
L
}
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Fau
lts D
i
agn
osis
in
Five-Level Th
ree-Ph
a
s
e
Sh
un
t Active
Po
wer Filter
(Lo
u
tfi Ben
yetto
u)
57
8
Fi
gu
re
1.
C
a
sc
aded
H
-
bri
d
ge Five-le
v
el
thre
e-phase
sh
un
t activ
e power filter topo
lo
g
y
Fi
gu
re
2.
B
l
oc
k
di
ag
ram
of t
h
e ha
rm
oni
c cu
r
r
ent
s
id
en
tificatio
n
The i
n
st
ant
a
ne
ous
real
a
n
d i
m
agi
n
a
r
y
p
o
w
ers
,
n
o
t
e
d
by
p a
n
d
q, a
r
e cal
c
u
l
a
t
e
d by
:
i
i
v
v
v
v
q
p
(2
)
Th
ese
p
o
wers
are th
en
filtered
b
y
h
i
gh
-p
ass filters,
wh
ich
g
i
v
e
s
p
h
and
qh
and
th
e
h
a
rm
o
n
i
c co
m
p
o
n
en
ts of
th
e curren
t
s
wi
ll b
e
:
1
2
22
3
10
1
1/
2
3
/
2
1/
2
3
/
2
h
h
h
h
h
iv
v
p
i
vv
iv
v
q
(3
)
4.
COMPARISON
OF FAUL
T DETECTI
ON
IN STATIC CONVE
RT
ERS
Recently, static conve
r
ters
behavi
or
during an occ
u
re
nce
of
faults in a
static powe
r
s
w
itch or i
n
dri
v
ers as
we
l
l
as i
n
t
o
p
o
l
ogi
es
k
n
o
w
n
as faul
t
t
o
l
e
r
a
nt
ha
ve
bee
n
su
bject
t
o
n
u
m
e
rous
wo
r
k
s an
d
pu
bl
i
cat
i
ons
. E
a
rl
y
i
n
19
94
, K
a
st
ha et
B
o
se h
a
ve p
r
esent
e
d
a sy
st
em
at
i
c
study
o
n
t
h
e co
n
s
eq
uences
of
v
o
l
t
a
ge
sou
r
ce i
nve
rt
rs
defa
ul
t
s
fee
d
i
n
g
an i
n
d
u
ct
i
o
n m
o
t
o
r [
3
5]
.
Ho
we
ver t
h
ey
di
d
n
o
t
p
r
esent
a m
e
t
hod
al
l
o
wi
n t
h
e
detection
of these fa
ults. Pe
uget et al ha
ve
presente
d
a m
e
t
h
od
allowing
fau
lt d
e
tection
b
a
sed
on
t
h
e traj
ectory
p
a
th
o
f
t
h
e
p
h
ase curren
t
v
e
cto
r
[35
]
. Act
u
ally, in
n
o
rm
al
co
nd
itio
n (with
ou
t fau
lts), ph
ase cu
rren
t
vecto
r
i
n
fram
e
h
a
s a circle t
r
aj
ecto
ry
p
a
th
.
Wh
en an
o
p
e
n
ci
rcu
it
fau
lt
o
c
cu
rs, cau
s
ed
b
y
th
e
failu
re
o
f
a static
p
o
wer switch
re
m
a
in
in
g
in op
en state, wh
ith
in
on
e leg
of the inverte
r
, t
h
e tra
j
ectory path bec
o
m
e
s a semi-
circle. The pos
ition of t
h
e semi-circle in
fram
e
can
b
e
in
form
ativ
e o
n
th
e fau
lty p
o
wer switch
.
M
e
n
d
e
s et
C
a
rd
os
oha
ve p
r
p
o
se
d t
o
use t
h
e p
h
ase cu
rre
nt
m
ean val
u
e
i
n
t
h
e st
at
i
onary
par
k
fram
e
i
n
orde
r t
o
i
d
ent
i
f
y
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
57
6 – 585
57
9
faul
t
s
o
f
op
en
ci
rcui
t
t
y
pe [3
6]
. The
m
e
t
hods
pr
o
pose
d
abo
v
e ha
ve be
en o
n
l
y
appl
i
e
d t
o
i
nve
rt
ers f
eedi
n
g
in
du
ctio
n m
o
to
rs an
d requ
ire
at least o
n
e
p
e
rio
d
of th
e ph
as
e curre
nt funda
mental to detec
t
faulty operation.
Also
, m
o
re recen
tly, redu
ction
o
f
the requ
ired
ti
m
e
to
d
e
tect
m
a
lfu
n
c
tion (d
elay b
e
tween
fau
lt ap
p
r
ition
and
its d
e
tectio
n
)
h
a
s b
e
en
inv
e
stig
ated
in
sev
e
ral re
sea
r
c
h
pape
rs. R
i
be
i
r
o et
al
. Ha
ve p
r
o
p
o
se
d t
o
use
sup
p
l
e
m
e
nt
ary
vol
t
a
ge
sens
o
r
s t
o
det
ect
o
p
e
n
ci
rc
ui
t
and
s
h
o
r
t
ci
rcui
t
fa
u
l
t
s
[37]
a
nd
[3
8]
. They
hav
e
sho
w
n
t
h
at
usi
n
g t
h
e
m
easurem
ent
of t
h
e t
h
ree v
o
l
t
a
ges b
e
t
w
ee
n e
ach i
n
vert
er
’s
pha
se an
d t
h
e
vol
t
a
ge at
m
i
dpoi
nt
o
f
teh capacitors divide
r of the DC source a
n
d their com
p
ariso
n
with
th
e est
i
m
a
ted
v
o
ltag
e
s, fau
lt can
th
en
be
det
ect
ed i
n
q
u
a
rt
e of t
h
e pe
r
i
od of t
h
e p
h
a
se curre
nt
s.
Yu et
al
., Sha
m
si
-Nej
had et
al
. Have use
d
vol
t
a
ge
measurem
ents
of the s
w
itch term
inals
at the bottom
of each leg to dete
ct
faults, [39] and
[40]. The
y
also
showe
d
that from
these
m
eas
ure
d
voltages a
nd t
h
eir c
o
m
p
ar
ison
with
a t
h
resho
l
d, th
e
fau
lt can
b
e
d
e
tected
in
a peri
o
d
o
f
t
h
e
fun
d
am
ent
a
l
phase cu
rre
nt
s.
Tabl
e 1 com
p
ares t
h
e m
e
t
hod
s
m
e
nt
i
oned p
r
evi
o
usl
y
i
n
t
e
rm
s of
l
i
m
i
t
s
of a
p
pl
i
cat
i
on,
det
ect
i
o
n t
i
m
e and t
h
e
num
ber
of
ad
di
t
i
onal
re
q
u
i
r
e
d
sens
ors
.
Tabl
e
1. C
o
m
p
ari
s
o
n
of
de
fec
t
det
ect
i
o
n
m
e
tho
d
s
at
t
h
e
p
o
w
er
sem
i
condu
ct
ors
(f
un
dam
e
nt
al
freq
u
e
n
cy
o
f
50
Hz
)
Method Pri
n
ciple
Application Li
m
i
t
Detec
t
ion Ti
m
e
Nu
m
b
er.
sensors
addit
i
onal
Tracking the traj
ec
tory of
the phase
cur
r
e
nt vector
[35]
m
a
chines
Power
> 20
m
s
-
Average value of
the phase cu
rren
t
s i
n
th
e ref
e
ren
ce f
r
a
m
e
Par
k
[36]
m
a
chines
Power
> 20
m
s
-
Voltage
m
easurem
ent "
pole voltage"
conver
t
er
[37]
-
> 5
m
s
3
M
easur
ing the voltages acr
oss the switches [39]
-
> 5
m
s
3
In t
h
e
prese
n
t
wo
rk
, a
n
ovel
fast
fa
ul
t
det
e
c
t
i
on m
e
t
hod
o
f
p
o
we
r s
w
i
t
c
he
s o
r
dri
v
e
r
s
us
ed i
n
a t
h
ree
pha
se v
o
l
t
a
ge sou
r
ce i
n
vert
e
r
. The p
r
p
o
se
d
m
e
t
hod al
l
o
ws
a consi
d
e
r
a
b
l
e
red
u
ct
i
on
of
det
ect
i
on t
i
m
e
.
W
e
show t
h
at a fa
ult can be
detected less tha
n
10us
by us
i
n
g a
n
al
go
ri
t
h
m
based o
n
t
e
m
p
rel
cr
i
t
e
ri
um
and vol
t
a
ge
cri
t
u
ri
um
. Thu
s
, i
t
i
s
all
o
we
d
from
one ha
n
d
t
o
det
ect
fa
ul
t
s
rapi
dl
y
(
vol
t
a
ge t
e
st
), an
d
on t
h
e ha
nd a
v
oi
di
n
g
err
one
o
u
s
det
e
ct
i
on t
h
at
f
o
l
l
o
w st
at
e c
h
an
ge
of
p
o
w
e
r s
w
i
t
c
hes
(t
em
poral
t
e
st
)
5.
ACTIVE FIL
TER FAULT
D
I
AGNOSIS M
ETHOD
Seve
ral faulty cases can occ
u
r: power tra
n
sistor or
powe
r
transist
or
dri
v
er ca
n be
faulty. In each
case, it resu
lts
in
th
e
fo
llo
wi
ng
m
o
d
e
ls:
- A
t
r
a
n
si
st
or
i
s
cl
ose
d
i
n
st
ea
d
of
bei
n
g
n
o
r
m
al
ly
ope
n.
It
resul
t
s
i
n
a s
h
o
r
t
-
ci
rc
ui
t
of
t
h
e DC
vol
t
a
ge
s
o
u
r
ce
.
To
iso
l
ate th
e
fau
lty switch
as fast
as
possi
ble, one ca
n
use
fuses
.
- A transisto
r
is o
p
e
n
in
stead
of b
e
ing
no
rmall
y
clo
s
ed
. Th
e filter m
a
y
co
n
tinu
e
inj
e
ctin
g
curren
t
s to
the
po
we
r s
u
p
p
l
y
.
These c
u
rre
nt
s
do
n'
t
cause a
n
y
p
r
om
pt
ri
sk
be
cause t
h
ey are
at the sam
e
range level
as the
case
o
f
n
o
-fau
lt con
d
ition
.
Howev
e
r, th
e filter, in
th
is
case,
may p
o
llu
te m
o
re th
e p
o
wer supp
ly in
stead
of
el
im
i
n
at
i
on of
harm
oni
c
c
u
r
r
e
n
t
s
of n
o
n
-
l
i
n
e
a
r
l
o
ad
. Th
is case is con
s
i
d
ered
in th
is
p
a
p
e
r.
Th
is section
presen
ts sim
u
latio
n
resu
lts obtain
e
d
wit
h
P
S
IM
sim
u
lator fo
r P
W
M
co
ntr
o
lled casca
ded
H
-
b
r
i
d
g
e
fiv
e
-level
th
ree-p
h
ase sh
un
t
activ
e po
wer
filter.
Horizon
t
ally sh
ifted
carriers PWM co
n
t
ro
l techn
i
qu
e
i
s
consi
d
e
r
e
d
whe
r
e re
fere
nc
e si
gnal
s
are com
p
ared t
o
4
carri
ers s
h
i
f
t
e
d
by
90°
one t
o
anot
he
r t
o
ge
nerat
e
tran
sistors con
t
ro
l si
g
n
a
l. Simu
latio
n
p
a
ram
e
ters are:
-
Main
sour
ce
g
r
id
: 22
0V
, 50
Hz;
-
Non
-
li
n
ear l
o
ad
: R1 =
1
0
Ohm
fo
r t
ϵ
[0
,0
.7
sec],
R1
=
5
O
h
m
f
o
r
t
ϵ
[
0
.
7
,1
.5
sec],
L1 =
0
.
00
5
H,
R2
=
10
0
0
Ohm
fo
r t
ϵ
[0
,1
.1
sec],
R2
=
5
Oh
m
f
o
r
t
ϵ
[1
.1
, 1.5
s
ec], L2
= 0.01
H
,
Ls =
0
.
00
15 H
;
-
Activ
e filter:
Vd
c =
30
0
V,
Lf = 0.004
H,
fp
=
50
00
Hz (PW
M
carriers
freq
u
e
n
c
y), Pro
portio
n
a
l-i
n
teg
r
al
(
P
I)
r
e
gu
lator
s
: G
a
in kp
= 0.5, ti
m
e
co
n
s
tan
t
Ti = 0.001
.
These
param
e
ters are c
h
ose
n
to re
duce
THD of m
a
in
so
urce curren
t
s
b
e
lo
w
5
%
.
It is n
o
ticed th
at
filter o
u
t
pu
t cu
rren
ts are su
perim
p
o
s
ed
to
t
h
eir
h
a
rm
o
n
i
c
id
en
tified
referen
ce curren
t
s
an
d
t
h
at grid
so
urce
currents a
r
e alm
o
st sinusoidal (Figure
3
.
b
,
Fi
gu
re 3.c
)
.
I
t
i
s
al
so rem
a
rke
d
t
h
at
PI
o
u
t
p
ut
si
gnal
s
(
P
W
M
refe
rence si
gna
l
s
:
Vref
1,
Vre
f
2,
Vre
f
3
)
are s
y
m
m
e
t
r
i
c
(Fi
gure
4.
d)
w
h
i
c
h
pr
o
duce sy
m
m
e
t
r
i
c
out
put
vo
l
t
a
ges
Va1 a
n
d Va
2
(V
b1
, V
b
2,
V
c
1,
Vc2
wi
t
h
a,b et
c as p
h
a
se i
ndi
cat
o
r
s)
wi
t
h
sm
all
m
ean val
u
es Va
1m
ean,
Va2m
ean, Vb1mean,
Vba
2
m
e
an, Vc
1m
ean,
Vc
2m
ean (
F
i
g
ure
4
.
e,
Fi
g
u
re
4.
f).
Fau
lty ph
ase,
fau
lty bridg
e
an
d m
o
re precisely,
ope
n
fa
ul
t
y
t
r
ansi
st
o
r
det
ect
i
o
n i
s
base
d
on
t
h
e
cal
cul
a
t
i
on o
f
zero
harm
oni
c
com
pone
nt
(m
ean val
u
e,
dc
of
fset
) i
n
cl
ude
d i
n
H
b
r
i
d
ges
out
put
vol
t
a
ge
s. Thi
s
is do
n
e
b
y
u
s
ing
a
second
-o
rder low-p
a
ss filter
with
cu
t-off freq
u
e
n
c
y o
f
5 Hz
an
d
d
a
m
p
ing
ratio
o
f
0
.
7
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Fau
lts D
i
agn
osis
in
Five-Level Th
ree-Ph
a
s
e
Sh
un
t Active
Po
wer Filter
(Lo
u
tfi Ben
yetto
u)
58
0
Wh
en
a transisto
r
is in
op
en
fau
lt co
nd
itio
n, th
e PI
regu
lators will o
u
t
p
u
t
a PW
M reference sig
n
a
l in
a way to
co
m
p
en
sate the error du
e t
o
th
at fau
lty transisto
r
.
In
th
is
case, PWM referen
ce
si
g
n
a
ls will b
e
asymmetric
making H
bri
dge
s out
put voltages asymmetric too with
signi
ficant mean values s
p
ecific to each faulty
tr
an
sistor
(
F
igur
e 5
)
.
A c
h
an
ge i
n
H b
r
i
d
ges
o
u
t
put
v
o
l
t
a
ges
wave
f
o
rm
s i
s
defi
ned a
s
t
h
e
i
n
st
ant
at
wh
i
c
h a s
u
d
d
e
n
i
n
crease
or
de
crease i
s
obse
r
ved
i
n
t
h
e
DC
of
fset
c
o
m
ponent
of
t
h
ese
vol
t
a
ge
s.
A c
h
ange
i
s
co
nsi
d
ered
t
o
have
occ
u
rred
in the H
bri
d
ges out
put voltages m
ean
values whe
n
they e
x
ceeds or falls
below a gi
ven ba
nd
(Fig
ure
5
.
c)
.
Ph
ase 1 is link
e
d to th
e first leg
o
f
inv
e
rt
er
wh
i
c
h i
s
co
m
posed
of
u
p
p
er
b
r
i
d
ge
H
1
1 a
n
d l
o
we
r
b
r
i
d
g
e
H12
.
If
th
e o
p
en
circu
i
t fau
lty tran
sisto
r
b
e
lon
g
s
t
o
leg
1
,
on
e o
f
its b
r
idg
e
s
o
u
t
p
u
t
v
o
ltag
e
s
will h
a
v
e
the m
a
xim
u
m
mean value (Va1m
ean = ± 60 V or
Va
2m
ea
n
= ± 60
V).
If th
e fau
lty transisto
r
b
e
l
o
ng
s
to
th
e
u
p
p
e
r bridg
e
H11
(T1
1
, T12
,
T13
,
T14
)
,
th
is latter’s
o
u
tp
u
t
v
o
ltag
e
will h
a
v
e
th
e max
i
m
u
m
mean
v
a
lue
(Va
1
m
ean = ±
60
V) (
f
i
g
ure
4
)
. If t
h
e
faul
t
y
t
r
ansi
st
or bel
o
n
g
s t
o
t
h
e l
o
we
r
bri
d
ge H
12
(T
15
, T1
6, T
1
7
,
T1
8),
th
is latter’s ou
tp
u
t
v
o
ltag
e
will h
a
v
e
th
e m
a
x
i
m
u
m
mean
v
a
lu
e (Va2
m
ean
= ± 60
V) (Figu
r
e
6
)
. If on
e
of the
tran
sistors T11 an
d
T12
of the u
p
p
e
r bridg
e
H11
is th
e
faulty o
n
e
, th
is b
r
id
g
e
’s ou
tpu
t
vo
ltag
e
will h
a
ve th
e
max
i
m
u
m
mea
n
v
a
lu
e with
neg
a
tiv
e po
larity (Va1
m
ean
=
- 60 V) (
f
i
g
u
r
e 4.c). I
f
o
n
e of the transistors T13
an
d
T14
of th
e u
p
p
e
r
bridg
e
H11
is th
e fau
l
ty o
n
e
, th
is
b
r
i
d
g
e
’s
o
u
t
p
u
t
vo
ltag
e
will h
a
ve th
e m
a
x
i
m
u
m
m
ean
v
a
lu
e with
p
o
s
itiv
e p
o
l
arity (Va1
m
ean
= +
6
0
V). If on
e
o
f
th
e tran
sistors T15
and
T16
o
f
th
e lower
b
r
i
d
ge
H12
is
th
e fau
lty
o
n
e
,
th
is brid
g
e
’s ou
tpu
t
vo
ltag
e
w
ill h
a
ve th
e m
a
x
i
m
u
m
mean
v
a
lu
e
with
n
e
g
a
ti
v
e
p
o
l
arity
(Va
2
m
ean = -
60
V
)
(Fig
u
r
e
6)
.
a. Non linea
r l
o
ad phase
currents
b
.
Activ
e filter p
h
a
se
cu
rren
ts an
d
th
eir
referen
ces
c.
Powe
r gri
d
phase
c
u
rre
n
ts
Fig
u
re
3
.
Sim
u
latio
n
resu
lts
of H-b
r
i
d
g
e
fiv
e
-lev
el
three-phase shun
t active po
wer
filter in
n
o
rm
al o
p
e
ratin
g
co
nd
itio
n (results 1
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
57
6 – 585
58
1
a. P
W
M
re
fere
nce si
gnals a
n
d
carrie
r
s
b. B
r
i
d
ge
H1
1
and
p
h
ase
1
o
u
t
put
vol
t
a
g
e
s
c. Bridg
e
s ou
tpu
t
vo
ltag
e
s m
e
an
v
a
lu
es
Fig
u
re
4
.
Sim
u
latio
n
resu
lts
of H-b
r
i
d
g
e
fiv
e
-lev
el
three-phase shun
t active po
wer
filter in
n
o
rm
al o
p
e
ratin
g
co
nd
itio
n (results 2
)
Th
e first ph
ase
th
ree b
r
idg
e
s o
p
e
n
transisto
r
fau
lts
ch
a
r
acte
r
istics are class
i
fied in Ta
ble
2.
This
table
coul
d be i
m
plem
ent
e
d pract
i
cal
l
y
usi
ng si
m
p
l
e
co
m
p
arat
ors wi
t
h
pre
d
e
f
i
n
e
d
t
h
res
hol
d
of H B
r
i
d
ges out
put
vol
t
a
ge
s m
ean val
u
es
.
Tab
l
e
2
.
H
B
r
id
g
e
s
o
u
t
p
u
t
voltag
e
s m
ean
v
a
lu
es co
rr
espond
ing
to f
a
u
lty op
en cir
c
u
it tr
ansisto
r
s
o
f
p
h
a
se 1
Faulty
bridge
Open faulty transis
t
or
Faulty
phase
1,
2,
3
or
(
a
, b,
c)
H Br
idges output v
o
ltages
m
ean values
Va1mean (V)
Va2mean (V)
Vb1m
ean (
V
)
Vb2m
ean (
V
)
Vc1mean (V)
Vc2mean (V)
H11
T
11 or
T
12
1 or
(
a
)
-
60
+30
-
15
-
15
-
16
-
14
T
13 or
T
14
1 or
(
a
)
+60
-
30
+15
+15
+16
+14
H12
T
15 or
T
16
1 or
(
a
)
+30
-
60
-
15
-
15
-
14
-
16
T
17 or
T
18
1 or
(
a
)
-
30
+60
+15
+15
+14
+16
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Fau
lts D
i
agn
osis
in
Five-Level Th
ree-Ph
a
s
e
Sh
un
t Active
Po
wer Filter
(Lo
u
tfi Ben
yetto
u)
58
2
a.
P
W
M
refe
renc
e
sig
n
als
c. Bridg
e
s ou
tpu
t
vo
ltag
e
s m
e
an
v
a
lu
es
b. B
r
i
d
ges
o
u
t
p
ut
v
o
l
t
a
ges
Fig
u
re
5
.
Sim
u
latio
n
resu
lts
of H-b
r
i
d
g
e
fiv
e
-lev
el
three-phase shun
t active po
wer
filter in
T11
o
p
e
n
fault
co
nd
itio
n
Fig
u
re
6
.
Sim
u
latio
n
resu
lts
of H-b
r
i
d
g
e
fiv
e
-lev
el
three-phase shun
t active po
wer
filter in
T15
o
p
e
n
fault
co
nd
itio
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
57
6 – 585
58
3
6.
CO
NCL
USI
O
N
Th
is
p
a
p
e
r
p
r
esen
ts a
sim
p
le,
reliab
l
e an
d efficien
t
op
en tran
sistor fau
lts
d
e
tectio
n and
l
o
calizatio
n
tech
n
i
qu
e in
sh
un
t activ
e th
ree-ph
ase filter
b
a
sed
on
H-bri
d
g
e
fiv
e
-lev
el th
ree-
ph
ase PWM-co
n
t
ro
lled
shun
t
activ
e power fi
lter. H
b
r
idg
e
s ou
tpu
t
v
o
ltages m
ean
v
a
lu
es
a
r
e u
s
ed to
ch
a
r
a
c
t
e
r
iz
e d
i
ff
e
r
en
t
o
p
e
n
tr
an
s
i
s
t
or
fau
lts lead
i
n
g
t
o
th
e con
c
ep
tio
n of
d
i
agno
stic tech
n
i
q
u
e perm
et
tin
g
th
e
determin
atio
n
of fau
lty ph
ase,
fau
lty
b
r
i
d
g
e
and
m
o
re precisely th
e
fau
lty transistor.
Si
m
u
latio
n
resu
lts d
e
m
o
n
s
trate th
at wh
en
o
p
tim
isin
g
activ
e filter p
a
rameters, th
e zero
h
a
rm
o
n
i
c
com
pone
nt
st
r
a
t
e
gy
can
be
u
s
ed
wi
t
h
r
o
bu
s
t
ness t
o
det
ect
and
l
o
cal
i
ze t
h
e o
p
en
fa
ul
t
y
swi
t
c
h i
n
act
i
v
e
p
o
we
r
filter.
REFERE
NC
ES
[1]
C.A. Cortés, W. Deprez, J. Driesen,
J.J. Pér
ez,“
Determinación
de pérdid
as
eléctricas en mo
tores de inducción
modelados electromagné
ticamente
con el método de
los elementos finitos., Ing
e
niería e Investig
ación
”,
Universidad Nacional d
e
Colomb
ia
, Bogo
tá, Colo
mbia. Vol. 28
, N
ú
m. 3, d
i
ciembre, 2008
, pp
. 64-7
4
.
[2]
W. Bin,“ High
Power Converters
a
nd AC
Drives”, Wiley
Inter-Science
,
Toronto
C
a
nada, 2006
, pp
. 80-87.
[3]
L. Jae-Chu
,
K.
Tae-Jin
,
K. Dae-
W
ook, H. Dong-Seok, “A Control Method fo
r Improvement of Reliability
in Fault
Toler
a
nt NPC Inverter S
y
s
t
em”, Power Electron
i
cs Specia
lists C
onference, PES
C
'
06, Jeju, Korea. June 2006, pp
.
1304-1308.
[4]
M. Ming
y
a
o,
H. Lei, C
.
Alian, “Reconf
igur
ation of C
a
rrier
-Based
Modulation Strateg
y
fo
r Fault To
ler
a
n
t
Multilev
e
l
Invert
ers”, IEE
E
Trans
act
ions on Power
El
ectron
i
cs, vo
l. 22
, No
. 5
,
Sep
.
2007, pp 2050-
2060.
[5]
H. Lei, M. Min
g
y
ao
, C. Alian
,
H.
Xiangning, “ Reconfiguratio
n of Carrie
r-bas
ed Modulation
Strateg
y
for Fau
l
t
Toler
a
nt Multilevel Inverters”, 31t
h Annual
Conference of
IEEE Industr
ial Electron
i
cs Co
nference, IECO
N.
Carolin
a, USA. Nov.
2005, pp. 1
048-1053.
[6]
P. Barriuso, J. Dixon, P. Flores, L.
Morán, “Fault toler
a
nt r
econfigur
ation s
y
stem
for as
y
m
m
e
tric m
u
ltilev
e
l
converters using
bi -directional p
o
wer
switches”,
IEEE Trans
.
Ind
.
Electron,
vol.
56, no. 4, pp. 13
00-1306, March
2009.
[7]
B. Franco
is, J.P.
Hautier
,
“
D
esig
n of a f
a
ult
tol
e
r
a
nt co
n
t
rol s
y
ste
m
for a NPC m
u
ltil
evel
inv
e
rter
”
,
Volum
e
4,
No.
8-11. 28th Annual Confer
ence
of IEEE Industr
ial E
l
e
c
troni
cs Conferenc
e
(IE
CON). Sevilla
,
Spain. Novem
b
e
r
2002, pp
. 1075-
1080.
[8]
J. Aguay
o
, A. C
l
audio
,
L.G.
Vela, S. Gen
tile, “
A
survey
of f
a
u
lt di
agnosis methods for induction motors drives
under inv
e
rter f
a
ult conditions”, Intern
ational Conference
of
El
ectrical and
Electronics
Eng
i
neer
ing, (ICEEE).
Acapulco
Guerr
e
ro, M
é
xico
. Jun
e
2004, pp. 367
– 372.
[9]
L. P
é
rez Hern
á
ndez, J
.
M
o
ra
F
l
órez, J
.
Be
do
y
a
Ceb
a
yos
,
“
A
linear app
r
oach to det
e
r
m
ining an S
V
M-
basedfaul
tloc
a
to
r'soptim
alp
a
ram
e
ters.
,
Ing
e
niería e Investig
ació
n”, Univ
ersidad
Nacion
al d
e
C
o
lombia, Bogo
tá,
Colombia Vol. 2
9
, Núm.
1
,
ab
ril, 2009, pp. 76-8.
[10]
J.E. Quiroga, “Detección de co
rtocir
cuito
en
el devanado de un
motor sincr
ónico de imanes permanentes usando
corrien
te d
e
s
e
cu
enci
a neg
a
tiv
a
e
n
dom
inio ti
em
po”, Ing
e
ni
ería
e I
nves
tiga
c
ión,Uni
v
ers
i
dad Na
cion
al d
e
Colom
b
ia
,
Bogotá, Colombia. Vol. 29, Núm. 2
,
agosto
, 2009
, pp
. 48-52
.
[11]
L. Shengming,
X. Long
y
a
, “ Strateg
i
es
of Fault
Toler
a
nt Operation for Th
ree-L
e
vel P
W
M
Inverters
”
, IE
EE Tr
an
s
.
Power Electron
ics, Vol. 21
,
No.
4, July
2006
, pp
. 933-940.
[12]
W
.
Sanm
in, W
.
Bin, S.
Riz
z
o,
N. Zarg
ari
,
“
C
om
paris
on of co
ntrol schem
e
s f
o
r m
u
ltilev
e
l
in
verter
with f
a
ult
y
cel
ls”, 30th
Annual Confer
enc
e
of IEEE Industr
i
a
l E
l
ec
troni
cs C
onferenc
e
, I
E
C
ON. Busan, Korea. Volum
e
1
,
No
2-6 Nov. 2004
, p
p
. 1817
– 1822
.
[13]
K. Xiaom
i
n, K.A. Corzine, Y.
L. Fa
m
ilian
,
“
A
Unique Fault-Toler
a
nt Design
for Fly
i
ng Cap
aci
tor Multilev
e
l
Inverter
”,
IE
EE
Trans
.
P
o
wer
El
ectron
i
cs
,
Vo
l. 1
9
, No. 4, July
20
04, pp
. 979
-984
.
[14]
P. Gun-Tae, K.
Tae-Jin
,
K. Dae-
W
ook, H. Dong-Seok, “Control Method of NP
C
Inverter for Continuous Operatio
n
Under One Phase Fault Conditio
n
”, Power Electr
onics Speci
alists
Conference, PESC'
04,
Aach
en,
German
y
.
June
2004, pp
. 2188-
2193.
[15]
F.W. Fuchs, “Some Diagnosis
Methods for Voltag
e
Source In
verters In
Variable Speed Drives with Inductio
n
Machines A Sur
v
ey
”, 29th Annu
al Conf
erence of
IEEE
Industrial
Electronics Conf
erence(IECON). Virginia, USA.
Volume 2, Nov.
2003, pp
. 1378
-
1385.
[16]
Z.
Sun,
J.
Wang,
D.
Howe,
G. Jewell,
“
A
nal
y
t
i
ca
l predi
c
tion o
f
short-circu
it c
u
rrent in f
a
ult-
t
o
leran
t
perm
ane
n
t
magnet mach
ines”, IEEE Tr
ans.
Ind. El
ectron., v
o
l. 57
, no
. 99
, pp
. 1-1
,
2010
.
[17]
W. Sanm
in, W. Bin, L
.
Fahai
,
S.
Xudong, “Control Method for C
a
scade H-Bridg
e
Multilev
e
l Inverter with Faul
t
y
Power Cells”
,
A
pplied Power
El
ectron
i
cs Confer
ence
and
Exposi
tion, APEC
. Mia
m
i Beach
, Frori
d
a, USA. Vol. 1,
No 9-13 Feb. 20
03, pp
. 261
– 26
7.
[18]
S. Khom
foi, L.M. Tolbert
,
“A Reconfigur
atio
n Tec
hniqu
e for
Multilev
e
l Inv
e
rters Incorpor
ating a Diagnost
i
c
S
y
stem Based on Neural Networ
k”, Computers in Power
Electro
nics, COMP
EL. Tro
y
, Ne
w York,
USA.
July
2006,
pp. 317-323
.
[19]
L.
De Lil
l
o, L. Em
pringham
,
P.W.
Wheeler
, S.
Khwan-On, C.
Gerada, M.N.
O
t
hm
an, H. Xi
ao
y
a
n
,
“Multiph
a
se
power converter
drive for fault
-
toler
a
nt m
achi
n
e deve
lopm
ent
in aerospace a
pplic
ation
”
, IE
EE Trans. Ind.
Electron., vo
l. 5
7
, no
. 2
,
pp
. 575
-583, Feb
.
2010
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Fau
lts D
i
agn
osis
in
Five-Level Th
ree-Ph
a
s
e
Sh
un
t Active
Po
wer Filter
(Lo
u
tfi Ben
yetto
u)
58
4
[20]
C. Th
ybo
,
“
F
ault-tol
e
ran
t
con
t
r
o
l of indu
ction
m
o
tor dr
ive app
lications”, Proceedings
of th
e Am
erican Cont
ro
l
Conference, 20
01. Vol. 4
.
25-2
7
June 2001
. P.
2621–2622.
[21]
Y. Xiong, X. Ch
eng, Z.
J. Shen
,
M. Chunting, W
.
Hongjie, V.K.
Ga
rg, “Prognostic and Warning S
y
stem for Power
-
Ele
c
troni
c
Modu
les
in Ele
c
tr
ic”
,
H
y
brid El
ectr
i
c
,
and
Fuel-C
ell V
e
hic
l
es
.
,
IE
EE
T
r
ans
.
Ind. Electr
on., vo
l. 55
, no
.
6, pp
. 2268
-227
6, June 2008.
[22]
B. Lu, S. Sharm
a
, “A literature r
e
view of IGBT fault di
agnostic
and protect
ion m
e
thods for power invert
ers”, IE
EE
Trans.
Ind. Appl., vol. 45, no.
5,
pp. 1770
- 1777
. Sep./Oct. 2009.
[23]
D. Kastha, B.K.
Bose, “Investigation of
fault mo
des of voltage-f
ed inverter
s
y
stem for induction motor drive”,
IEEE Tr
ansactio
ns on
Industr
y
A
pplications. Vol. 30,
Issue 4, July-August 1994. p
p
. 10281038
.
[24]
R.L. De Ar
aujo
Ribeiro
,
C
.
B. J
a
cobina,
E.R
.
C. d
a
Silv
a,
A.M
.
N.
Lim
a
, “
F
aul
t
de
t
ect
ion of
open-s
w
itch d
a
mage
in
voltag
e
-fed PW
M m
o
tor drive s
y
stem
s”,
IEE
E
Transac
tions
on
Power Electronics. Vol. 18
, Issue 2. March
200
3
.
pp. 587–593
.
[25]
M. Beltrao de R
o
ssiter Correa,
C. Brandao Jaco
bina, E.
R. Cabr
al da Silva, A.M.
Nogueira Lima, “An induction
motor drive s
y
s
t
em with improved fau
lt
toler
a
nce”, IEEE
Transactions on Indus
tr
y
Applications.
Vol. 37, Issue 3
.
May
-
June 2001.
pp. 873–879
.
[26]
C.B. Jacobin
a
,
M.B.R. Correa,
R.F. Pinheiro, A
.
M.N. Lima
, E.R.C. da Silva, “Improve
d fault t
o
leran
ce of ac
ti
ve
power filter s
y
stem”, I
EEE 32nd
Annual Power
Electroni
cs Specialists Conf
eren
ce
PESC 2001
.
Vol. 3. – 17–2
1
June 2001.
[27]
T. B
e
nslim
ane
,
“
O
pen Switch Faults De
tec
tion
and Lo
cal
iz
ation
Algorithm
for
Three
Phases Sh
unt Act
i
ve
Power
Filter Based on
Two Level Volt
age Source Inve
rter”
,
El
ektr
onik
a
ir Elek
trote
c
hn
ika, Signa
l te
chn
o
log
y
, No. 2(74)
,
2007 - pp
. 21-
2
4
.
[28]
S. Khomfoi, “Fa
u
lt diagnostic s
y
stem fo
r cascad
ed h-bridge multilevel inver
t
er
dr
ives based on artificial in
telligen
t
approach
es in
cor
porating
a recon
f
igur
ation techn
i
que”, Doctor
ate thesis,
Univ
ersity
of
Tennessee, USA,
2007.
[29]
P. Pourea, P. Weberb, D. Theilliol, S.
Saadate, “Fault toler
a
nt co
ntrol of a
three-
phase three-wir
e
shunt active filter
s
y
stem based
on
reliability
an
aly
s
is”,
Electr
i
c Power S
y
s
t
em
s Research 79
,2009
, p
p
. 325–334
.
[30]
S. Ahmed, G. Madjid, M. Youcef,
T.
H
a
mza, “Real Time C
ontrol of an
A
c
tive Power Filter under Distorted
Voltage Condition”,
Internation
a
l Journal of Power Elec
tronics and Drive Systems
(
I
JPEDS)
.
2
012; 4(2): pp 424-
433
[31]
S. Karimi, “Con
tinuité d
e
service de
s convertisseurs
triph
a
sés
d
e
puissance et p
r
ototy
p
ag
e "FPGA in the loop"
:
application au
filtre actif
p
a
rallè
le”, Do
ctorate thes
is, 2009, Henri P
o
incar
é Univ
ersity
, Nan
c
y
-I, France.
[32]
H. Akagi, Y
.
Ka
nazawa
,
A. Nab
ae, “
G
ene
r
al
ized
theor
y
of
the
in
s
t
antan
e
ous
rea
c
tive power
fil
t
er
”, P
r
oc
eedings
o
f
International po
wer electr
onics
conference, Tok
yo, Japan
,
19
83. p
p
. 1375–1386
.
[33]
B. Mansour,
B. Abselkader, B
.
Said, “Sliding
mode Control
using 3D-SVM f
o
r Three-ph
ase
Four-Leg Shunt
Active
Filt
er”
,
I
n
ternational Jou
r
nal of
Power
El
ectronics and Dr
ive Systems (
I
JPEDS)
. 2013; 3(2
)
: pp 147-145
.
[34]
T. Benslimane,
K. Alioua
n
e
,
“A new optimized
SVPWM Tech
nique
Contro
l f
o
r Autonomous Parallel Active
Filter”
, 11th
Inte
rnation
a
l Confe
r
ence on
Harm
onics and Qu
a
lit
y
of Power, New
York
, USA, IE
EE Xplore
, IE
E
E
Transactions on
Automatic Con
t
r
o
l. Sep
t
. 2004, p
p
. 112–116
.
[35]
R. Peuget, S. Courtine, J.
Rognon, "Fault detection and isolation
on a
PWM inverter b
y
knowledg
e-based model",
IEEE Transactio
ns on I
ndustry Applications,
vo
l.
34, pp
. 1318-13
25, 1998
.
[36]
A.M.S. Mendes, A.
J.M. Cardoso
,
"Fault diagnosis in
a rectif
ier –
inverter
s
y
stem used in variable
speed AC drive,
b
y
the
av
erag
e c
u
rrent P
a
rk’s
ve
ctor
approa
ch",
European Pow
e
r Electronics Con
f
erence,
Laus
an
ne, pp
. 1-9
,
1999
.
[37]
R.L.A
.
Ribeiro
,
C.B. Jacobin
a
,
E.R.C
.
da Silva, A.M.N. Lima, "A fault to
leran
t
induction motor drive s
y
stem
b
y
using a compensation strateg
y
on
the PWM-
VSI
topolog
y
"
IEEE Power Electronics Specialists C
onference
, vol. 2,
pp. 1191-1196
,
2001.
[38]
R.L.A
.
Ribeiro,
F. Profumo, C.B. Jac
obin
a
, G.
Griva, E
.
R.C
.
d
a
Silva
,
"Two fault to
ler
a
nt con
t
rol strat
e
gi
es for
shunt active pow
er filter
s
y
s
t
ems",
IEEE International
Conference on I
ndustrial Electronics
, pp
.79
2
– 797
, 2002
.
[39]
L. Ying; N. Ertu
grul, "An observer-bas
ed thre
e-p
h
as
e current re
c
ons
truction
usin
g DC link
measurement in PMA
C
mot
o
rs",
Interna
tional Power Electronics
and
Mo
tion Control Co
nference
, vol. 1
,
pp. 1-5
,
Aug. 20
06.
[40]
M.A. Shamsi-Nejad
, B
.
Nah
i
d-
Mobarake
h, S.
Pierfeder
i
ci, F.
Meibod
y
Taba
r
,
"Fault
tolerant
and minimum loss
control
of doub
le-star
s
y
n
c
hron
ous m
achines u
nder open
phas
e
cond
itions",
I
EEE Transactions on Industrial
Electronics,
vol. 55, no. 5, pp.
19
56- 1965, May
2
008.
BIOGRAP
HI
ES OF
AUTH
ORS
Beny
ettou Loutfi
was born in M’sila, Algeri
a
in 1979. He receiv
e
d his Engi
neer degr
ee in
Electronics and
Magister d
e
gree in industr
ial
co
ntrol from M’sila University
in
2002 and 2006
respectively
.
He was recruited in
2009 as electro
n
ics assistant pr
ofessor in University
of M
'
sila.
His scient
ific
in
terests
are
power qua
lit
y
cond
i
tioning, DSP an
d digital
contro
l, con
t
rol and
diagnostic.
He
i
s
m
e
m
b
er of several
resear
ch p
r
ojec
ts at Univ
e
r
sit
y
of Msila
a
nd Ele
c
tr
ica
l
Engineering
Lab
o
rator
y
of
Msila
University
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
57
6 – 585
58
5
Ben
s
liman
e Tarak
rec
e
ived
th
e El
ec
tric
al
Eng
i
neer
ing degr
ee
from
the Univer
s
i
t
y
Cent
er of
Bechar
(Algeri
a
) in June 2001
and the Mag
i
ster
degree in
el
ectr
i
cal eng
i
neer
ing
from
Militar
y
Poly
technic Sch
ool (EMP) in
Februar
y
2004
o
f
Algiers, Alger
i
a. He
r
e
ceived
his Ph.D. in
electrical eng
i
neering from Bou
m
erdes University
, Alg
e
ria,
in 2
009. Since 2009
he h
a
s held
a
teaching and r
e
search position in
the Departmen
t
of
Elec
tri
cal
En
gineer
ing of M
'
s
ila Univers
i
t
y
,
Algeria a
nd he i
s
still part of l
e
cturing staff
as
Associate Professor. His scientifi
c
inter
e
sts are
power quality
conditioning
, po
wer electronics, el
ectr
i
cal dr
ives control and d
i
agnostic, f
a
ult
toler
a
nt contro
l and
ren
e
wa
ble energies applications.
Abde
lkhale
k O
t
hmane
was bo
rn in 1976 in Taghit, Bech
ar (
A
lgeria)
.
He obtained Eng
i
neer
degree
in Electr
ical Engin
eer
ing
in 2001 from Univ
ersity
of B
echar
in Alger
i
a. He obtained
res
p
ect
ivel
y M
a
gis
t
er and P
h
D Degrees
in El
ect
rica
l Engin
eerin
g from
Univers
i
t
y
of S
i
di-B
el-
Abbès (Algeria)
in 2004
and
University
of B
ech
ar
in 2010
.
Currently
, he is
an Associate
P
r
ofes
s
o
r in Univers
i
t
y
of Bec
h
ar. His
res
earc
h
interes
t
s
inc
l
u
d
e power qualit
y and con
t
rol
intel
ligen
t tec
hni
ques.
Ab
d
e
lk
rim Th
ameu
r
was born
in 1978 in
Algiers. He ob
tain
ed
Engin
eer d
e
gree in
Electr
i
cal
Engineering in
2001 from
University
of Bou
m
er
des in Algeria. He
obtained respectiv
ely
Magister
and PhD Degrees in
Electr
ical En
g
i
neering
from
Militar
y
Po
l
y
technic School
of
Algiers in 2004
and National Poly
technic Scho
ol of Algiers in
2010. Since 20
05, he is with
Applied Resear
ch Unit on Ren
e
wable
Energies in
Ghardaïa
, Algeri
a. He is
S
e
nior Res
ear
ch
As
s
o
ciate
in E
l
e
c
tri
cal
Engin
eer
i
ng. His
res
e
arch
inte
res
t
s
ar
e
in
power e
l
e
c
troni
cs
, e
l
e
c
tri
cal
drives
and
ren
e
wable
energ
i
es
.
Bentata Khadidja
was born
in 1989
in
Msila,
Alg
e
ria.
She
obtain
e
d h
e
r
license d
e
gree in
Electromech
anics in 2009 from University
of M
s
ila
in
Algeria.
She obtain
e
d her Master degr
ee
in Engin
eer
ing
of Electromech
anical S
y
stems in
2012 from University
of Msila. Her r
e
sear
ch
inter
e
s
t
s
inc
l
ude
renewabl
e ener
g
i
es
, el
ectr
i
c
a
l
dr
i
v
es
contro
l and power
el
ec
tronic
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.