Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol
.
5
,
No
. 2, Oct
o
ber
2
0
1
4
,
pp
. 25
2~
26
0
I
S
SN
: 208
8-8
6
9
4
2
52
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Model
of
Pulsed Electri
c
al Di
scharge Machining (EDM) using
RL Ci
rcuit
Ade E
r
aw
an
Mi
nh
at
*,
N
o
r
Hi
sham
H
j
K
h
ami
s
**
,
Az
l
i
Ya
hy
a
*
,
Tria
s
Andro
m
eda*
, Ka
rt
iko
N
u
g
r
oho**
*
* Department of
Electronic
and C
o
mputer
Engin
e
ering, Universi
ti Teknologi
Malay
s
ia
** Departmen
t
o
f
Communicatio
n Engin
eer
ing
,
Universiti
Tekno
logi Ma
la
ysia
*** Departmen
t
of Biotechnolog
y
and Med
i
cal Engineer
ing, Un
iv
ersiti Tekno
logi
Malay
s
ia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
May 30, 2014
Rev
i
sed
Au
g
29
, 20
14
Accepted
Sep 15, 2014
This
arti
cle pr
e
s
ents
a m
odel of pul
se
d E
l
ec
tri
c
al
Di
sc
ha
rge Ma
c
h
i
n
i
n
g
(EDM
) us
ing RL cir
c
uit
.
Ther
e
are s
e
v
e
ral
m
a
th
em
atic
al m
odels
have b
een
successfully
d
e
v
e
loped b
a
sed on
the
init
ial,
ignition and d
i
scharg
e phase of
current
and voltage gap
.
Accord
ing to
these m
o
d
e
ls, th
e cir
c
uit s
c
hem
a
ti
c of
transistor pulse power generator
has b
een designed using electr
i
cal model in
Matlab Sim
u
lin
k software to
i
d
entif
y
the prof
ile of
voltage
and curren
t
during m
achinin
g proces
s
.
Th
en
, the
s
i
m
u
lation
res
u
lts
ar
e com
p
ared wit
h
the experim
e
n
t
al
res
u
lts
.
Keyword:
Electrical Discharge Machini
n
g
Pu
lse Wid
t
h
M
o
du
latio
n
Gap
cu
rre
nt
G
a
p vo
ltag
e
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
A
d
e E
r
aw
an
Min
h
a
t,
Depa
rt
m
e
nt
of
El
ect
roni
c
an
d
C
o
m
put
er E
ngi
neeri
n
g
,
Facu
lty of Electrical Eng
i
n
eeri
n
g
,
Un
iv
ersitiTek
no
log
i
Malaysia,
8
131
0, Joh
o
r
B
a
h
r
u
,
Joho
r.
Em
a
il: ad
eerawan@g
m
a
i
l
.co
m
1.
INTRODUCTION
Electrical Disch
a
rg
e Mach
i
n
in
g
(EDM
) is a
m
ach
in
in
g
pro
cess th
at enab
les no
n
c
on
tact d
r
ill v
i
a
electrochem
ica
l
effects irres
p
ective of the
hardness
of
the
workpiece (see
Figure 1). In
EDM proces
s,
pulse
po
we
r g
e
ne
rat
o
r i
s
re
qui
red
i
n
or
der
t
o
o
b
t
a
i
n
t
h
e
di
sc
har
g
e spa
r
k
.
T
h
e e
f
fi
ci
ency
o
f
pr
o
duct
i
o
n i
s
de
pe
ndi
n
g
on t
h
e pe
rformance of t
h
e
pulse
powe
r generat
o
r. C
o
nt
rol se
rvo is us
ed to c
ont
rol t
h
e s
p
ace ga
p
betwee
n
electrode
a
nd workpiece. In
creating the
spark disc
harge, a curren
t fl
ow
from
the
electrode through a
dielectric fluid due t
o
the
ga
p distan
ce
between electrode a
nd
workpiece is
reduce
d to a
very sm
all clea
rance
app
r
oxi
m
a
t
e
ly
10
t
o
50
m
i
crons [
1
,
2].
Electrical energy from
the spark i
s
conve
rted i
n
t
o
heat ene
r
gy,
then
builds up the
workpiece temperat
ure a
nd melts the area on its surface. T
h
e worki
ng
puls
e
power
generator is
an im
portant role in affecting the m
a
terial re
m
oval ra
te (MRR) and the
prope
rties
of the
machined s
u
rface [3,
4
]
. Th
e
filtratio
n system
is u
s
ed
t
o
m
a
in
tai
n
th
e
d
i
elect
ric flu
i
d
an
d fl
u
s
h
o
u
t
th
e ero
d
ed
g
a
p
p
a
rticles. Th
is
article p
r
esen
ts th
e pu
lse ph
ase in
th
e EDM p
r
o
cess
du
e to
i
m
p
r
ov
e in
m
a
ch
in
ing
p
a
ram
e
ter. In
ord
e
r t
o
pro
v
e
th
e th
eo
retical
m
o
re clearly is d
e
term
in
e b
y
p
e
rform
i
n
g
th
e sim
u
lat
i
o
n
and
ex
p
e
rim
e
n
t
al
stud
ies.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Mo
del
of
P
u
l
s
e
d
El
ect
ri
cal
Di
sch
a
rge
M
a
chi
n
i
n
g (
E
D
M
)
usi
ng
RL C
i
rc (
A
de Er
aw
an
Mi
nh
at
)
25
3
Fi
gu
re
1.
EDM
Sy
st
em
2.
EDM
POWE
R GE
NER
A
T
O
R
Gene
ral
l
y
, ED
M
powe
r
ge
ne
rat
o
r i
s
co
nfi
g
ure
d
by
t
w
o i
m
port
a
nt
part
s
kn
ow
n as po
wer s
u
p
p
l
y
and
pul
se
ge
ne
rat
o
r i
s
s
h
ow
n i
n
F
i
gu
re
2
[5]
.
Th
ere ar
e se
veral
of
p
o
w
er
su
p
p
l
y
can
be
use
d
,
suc
h
as l
i
near
po
we
r
sup
p
l
y
an
d swi
t
c
hi
n
g
m
ode po
wer s
u
p
p
l
y
(SM
PS). B
a
se on t
h
e
po
wer c
ons
um
pt
i
on co
st
i
ssue,
hi
ghe
r
material re
m
o
val rate and
good surface
finish in EDM
parameter, the study is focu
sed
on the switching
power
sup
p
l
y
[
6
]
.
B
y
usi
n
g t
h
e
SM
PS t
o
pol
ogy
, t
h
e co
n
f
i
g
urat
i
on
has a
hi
g
h
effi
ci
ency
a
nd
hi
g
h
pe
rf
o
r
m
a
nce [
1
]
,
[
7
]-[
8
]
.
Fi
gu
re 2.
B
l
oc
k di
ag
ram
for EDM
P
o
wer G
e
nerat
o
r
Pul
s
e ge
nerat
o
r i
s
di
vi
de
d i
n
t
o
t
w
o t
y
pes.
There a
r
e rel
a
xat
i
on (
r
esi
s
t
a
nce-ca
paci
t
a
nc
e) gene
rat
o
r
and t
r
a
n
si
st
o
r
pul
se
gene
rat
o
r. T
h
e rel
a
xat
i
on ci
rc
ui
t
t
y
pe of E
D
M
p
u
l
se po
wer
gen
e
rat
o
r c
r
eat
e pul
se
s
t
h
r
o
u
g
h
t
h
e ca
paci
t
o
r c
h
a
r
ge
and
di
sc
har
g
e
beha
vi
o
r
.
Di
sc
harge e
n
ergy is
determ
ined by
the used ca
pac
itance
and
by the stra
y capacitance that ex
ists between electrode
and
workpiece
. The electri
cal sparks are created
from
the releas
ed c
h
arges
of c
a
pacitor.
The t
r
a
n
si
st
o
r
pul
se
gen
e
rat
o
r i
s
wi
del
y
use
d
i
n
c
o
n
v
e
n
t
i
o
nal
EDM
a
nd
pr
o
v
i
d
es a
hi
g
h
er M
R
R
d
u
e
t
o
i
t
s
hi
g
h
di
s
c
har
g
e e
n
e
r
gy
[9]
-
[
1
1
]
.
M
o
re
ove
r,
t
h
e
p
u
l
s
e
d
u
rat
i
o
n
an
d
di
scha
rge
c
u
r
r
e
nt
ca
n
be a
r
b
i
t
r
ari
l
y
chan
ge
d
depe
ndi
ng
o
n
t
h
e
req
u
i
r
e
d
m
achi
n
i
n
g
cha
r
act
e
r
i
s
t
i
c
s. The t
r
a
n
si
st
o
r
p
u
l
s
e
gene
rat
o
r
gene
rat
e
s a
rectang
u
l
ar p
u
l
se
d
i
sch
a
rg
es b
y
con
t
ro
llin
g th
e
cu
rren
t
or
v
o
ltag
e
so
urce. By ch
an
g
i
n
g
t
h
e
d
u
t
y cycle,
p
u
l
se
wi
dt
h m
o
d
u
l
a
t
i
on i
s
used t
o
cont
rol
t
h
e t
r
ansi
st
o
r
st
at
es.
To e
n
su
re a
con
s
t
a
nt
p
r
oce
ssi
ng
, t
h
e M
O
SFET
tran
sistor is
u
s
ed
as a switch
t
o
co
n
t
ro
l t
h
e
ou
tpu
t
pu
lse
pow
er as sh
own
i
n
Fi
g
u
r
e
3
.
Fi
gu
re
3.
Tra
n
s
i
st
or t
y
pe
o
f
E
D
M
P
u
l
s
e P
o
w
e
r
Gene
rat
o
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
2
,
O
c
t
o
b
e
r 201
4 :
2
52 –
26
0
25
4
3.
MODELLING EDM
SYST
EM
In t
h
i
s
st
u
d
y
,
a
m
odel
o
f E
D
M
pul
se
p
o
we
r
gen
e
rat
o
r
was
dev
e
l
o
ped t
o
i
nve
st
i
g
at
e t
h
e
pul
se
p
r
o
f
i
l
e
du
ri
n
g
E
D
M
p
r
oces
s.B
a
se
d
o
n
Fi
gu
re
3,
t
h
e
schem
a
t
i
c
ci
rcui
t
o
f
E
D
M
p
u
l
s
e gene
rat
o
r has bee
n
devel
ope
d
and
t
h
e
m
a
t
h
em
at
i
cal
m
odel has
bee
n
p
r
o
v
ed
by
t
h
e
de
r
i
ved
eq
uat
i
o
n.I
n
t
h
i
s
sc
hem
a
ti
c desi
g
n
,
DC
po
we
r
source as a
n
i
n
put s
o
urce is
connecte
d
to resistor R
1
(l
oad
)
.
The
n
c
o
nnect
e
d
t
o
t
h
e
gap
m
odel
b
e
t
w
een
electrode and workpiece wh
i
c
h is c
onsisting of R
ig
, R
dis
a
nd
L
dis
. T
o
get
pul
se
si
g
n
al
a
t
t
h
e o
u
t
p
ut
si
de, i
t
i
s
co
nn
ected
to
t
h
e MOSFET.B
a
sically
th
ere are th
ree ph
as
es in
th
e p
u
l
se EDM is k
n
o
wn
as th
e in
itial
p
h
a
se,
th
e ign
itio
n phase and
d
i
sch
a
rg
e
p
h
a
se.
3.
1.
Ini
t
i
a
l
Ph
ase
As ca
n
been
s
een f
r
o
m
Fi
gu
re 4
,
t
h
e
sche
m
a
t
i
c
ci
rcui
t
o
f
EDM
pul
se
g
e
nerat
o
r a
n
d t
h
e
gap
m
odel
h
a
s b
e
en
d
e
si
gn
ed. In
th
e in
itial p
h
a
se o
f
EDM p
r
o
cess, th
e g
a
p
is in
o
p
e
n
circu
it state wh
ile switch S
1
is
o
f
f.In th
is cond
itio
n
,
t
h
e
o
u
tp
u
t
vo
ltag
e
is equ
a
l to V
gap
and c
u
rre
n
t gap is ze
ro.T
hi
s is
occur
when t
h
e
position
of the
electrode
and t
h
e
wor
kpiece
i
s
fa
r or non-discharge.
Fig
u
re
4
.
Th
e circu
it in
i
g
n
ition
p
h
a
se co
nd
itio
n
B
y
appl
y
i
ng
Ki
rc
hh
of
f’
s v
o
l
t
a
ge l
a
w
.
T
h
e v
o
l
t
a
ge
ga
p i
s
i
n
ope
n
ci
rcui
t
v
o
l
t
a
ge
st
at
e can be
expresse
d as
follows.
(
1
)
(
2
)
Whe
n
t
h
e ci
rc
u
i
t
i
s
not
fo
rm
ed i
n
a cl
ose
d
-l
oo
p
net
w
or
k,
t
h
e
n
no
cu
rre
nt
t
h
ro
u
g
h
i
n
t
h
e ci
r
c
ui
t
.
0
(
3
)
3.
2.
Ig
ni
ti
o
n
Phase
In t
h
e ignition
phase, a st
rong electric field i
s
established between
electro
de and
workpiece.Due to
the attractive force
of
the ele
c
tric field, there is created a
n
ioni
zat
i
o
n pat
h
t
h
ro
u
gh t
h
e
di
el
ect
ri
c. D
u
ri
ng t
h
e
p
r
o
cess, if ign
itio
n
d
e
lay time is too
l
o
ng
, t
h
is m
ean
s th
e
circu
it is in
o
p
en
circu
it an
d
if th
e ign
itio
n
d
e
lay
ti
m
e
is to
o
short, th
is m
ean
s th
e circu
it is a sho
r
t circ
uit.
Both cases
are
abnorm
al. It is im
porta
nt ke
ep the
i
gni
t
i
on
del
a
y
t
i
m
e
t
o
be a const
a
nt
. F
r
om
Fi
gu
re 5, t
h
e sw
i
t
c
h S
1
i
s
t
u
rn
on a
nd S
2
is tu
rn
off. Th
e circu
it is
form
ed
in
a cl
o
s
ed
lo
op
n
e
t
w
ork. Th
e
g
a
p
vo
ltag
e
is refers to
th
e
vo
ltag
e
th
rou
gh resisto
r
R
ig
wh
ich
is
becom
e
a v
o
l
t
a
ge
di
vi
de
r
bet
w
een
resi
st
ors
R
ig
and R
shunt
.
Fig
u
re
5
.
Th
e circu
it in
i
g
n
ition
p
h
a
se co
nd
itio
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Mo
del
of
P
u
l
s
e
d
El
ect
ri
cal
Di
sch
a
rge
M
a
chi
n
i
n
g (
E
D
M
)
usi
ng
RL C
i
rc (
A
de Er
aw
an
Mi
nh
at
)
25
5
Appl
y
i
ng Ki
rchh
off
’
s
cur
r
ent
l
a
w,
(
4
)
When
i
is
zero, cur
r
ent
gap
du
ri
ng
i
gni
t
i
on phase
can be ex
press
e
d as fol
l
o
ws
,
(
5
)
Accor
d
i
n
g
t
o
Fi
gure
5, t
h
ec
i
r
cui
t
i
s
form
ed i
n
a
cl
osed-
l
oop
net
w
o
r
k.
The
gap
v
o
l
t
a
ge i
s
t
h
e
difference bet
w
een
V
and v
o
l
t
a
ge across
R
. B
y
appl
yi
ng Ki
rchh
off
’
s vo
l
t
a
ge law, gap
vol
t
a
ge can be
expressed as follows,
(
6
)
(
7
)
(
8
)
Fro
m
Eq
u
a
tio
n
(8
), th
e g
a
p
v
o
ltag
e
can
b
e
ex
p
r
ess as the v
o
ltag
e
d
i
v
i
d
e
r ru
led
u
r
ing th
e ig
n
itio
n
phase,
(
9
)
3.
3.
Di
sc
har
g
e Ph
ase
During the discharge phase,
it
is initiated
by m
oving
the
electrode
very
closeto the workpiece. A
pl
asm
a
channe
l
has
been
f
o
r
m
due t
o
i
o
ni
zat
i
on
of
di
el
ect
ri
c. D
u
e t
o
t
h
e
spar
k
ga
p,
vol
t
a
ge
dr
op
s an
d
cur
r
en
t
rises a
b
ruptly
whic
h
form
s the crater
at
sp
ot
of
di
sc
har
g
e
o
n
t
h
e
w
o
rk
pi
ec
e.
As
e
v
i
d
e
n
t
i
n
Fi
gu
re 6, bot
h of
s
w
i
t
c
h S
1
and swi
t
c
h S
2
is tu
rn
ON.
Swit
ch
S
1
has
bee
n
use
d
d
u
e t
o
cont
rol
t
h
e m
a
in
pul
se
i
n
p
u
l
s
e ge
nerat
o
r
s
u
c
h
dut
y cycle, time ON and ti
me
OFF.
Whe
r
eas, s
w
itch
S
2
use
d
t
o
cont
rol
t
h
e t
r
an
si
ent
cu
rre
nt
a
n
d
vol
t
a
ge
d
r
o
p
d
u
ri
n
g
t
h
e
di
schar
g
e
p
h
ase.
In
o
r
der
t
o
get
cur
r
ent
ga
p
, it
is
obt
ai
ne
d
by
c
o
m
b
i
n
at
i
on bet
w
een
cu
rre
nt
t
h
r
o
ug
h
resi
st
o
r
an
d c
u
rre
nt
at
.
Refer to
t
h
e g
a
p
m
o
d
e
l in
Figu
re
6
,
it con
s
ist
an
ind
u
c
tan
ce
connected i
n
s
e
ries with a
res
i
stance
an
d
p
a
rallel with
resistan
ce
. The t
r
a
n
si
ent
t
i
m
e
of cur
r
e
n
t
and
v
o
l
t
a
ge d
u
r
i
n
g t
h
e di
sc
ha
rge
ph
ase i
s
det
e
rm
i
n
ed by
t
h
e rel
a
t
i
ons
hi
p
bet
w
ee
n t
h
e i
n
duct
a
nce
and the
res
i
stance
. The
fi
xed
val
u
e
resistance
an
d
lar
g
er th
e inductan
ce
, th
e slower
will b
e
th
e tran
sien
t ti
m
e
. Howev
e
r, for
a fix
e
d
v
a
lu
e
inductance
, by
increa
sing t
h
e
resistance
value
,
fast tran
sien
t tim
e an
d
th
erefo
r
e th
e ti
m
e
con
s
tan
t
of
th
e circu
it b
e
co
m
e
s sh
orter.
In
g
e
n
e
ral, t
h
e
v
o
ltag
e
will d
r
o
p
to
abo
u
t
20V-3
0V du
ri
n
g
d
i
sch
a
rg
e
tim
e
[12
]
.
Th
en
, th
e pro
c
ess will b
e
repeated
to
th
e ig
n
itio
n
ph
ase
wh
ich
is b
o
t
h
switch
S
1
and swi
t
ch S
2
is tu
rn
o
f
f. All
ph
ases will
b
e
rep
eated
u
n
til
th
e end
o
f
th
eEDM p
r
ocess.
Fi
gu
re
6.
The
c
i
rcui
t
i
n
di
sc
ha
rge
p
h
ase c
o
nd
i
t
i
on w
h
i
c
h
i
s
s
w
i
t
c
h
(S
1
)
an
d swi
t
c
h (S
2
) is tu
rn
O
N
In
m
a
t
h
em
at
i
c
al
m
odel
,
t
h
e
g
a
p
vol
t
a
ge
ca
n
be e
x
p
r
esse
d a
s
f
o
l
l
o
ws
.
(
1
0
)
0
(
1
1
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
2
,
O
c
t
o
b
e
r 201
4 :
2
52 –
26
0
25
6
(
1
2
)
After adju
sted,
(
1
3
)
In
teg
r
ating
bo
th
th
e equ
a
tion
s
,
(
1
4
)
(
1
5
)
B
y
usi
n
g ass
u
m
p
ti
on,
(
1
6
)
(
1
7
)
(
1
8
)
So,
can
be e
x
presse
d as
follows.
(
1
9
)
(
2
0
)
By u
s
ing
in
tegratio
n ru
le,
ln
(
2
1
)
The E
q
uation (20), can be
expresse
d as
follows,
l
n
(
2
2
)
l
n
(
2
3
)
Ap
pl
y
i
ng
l
i
m
i
ts,
can
be e
x
pr
essed a
s
f
o
l
l
o
w
s
,
l
n
l
n
(
2
4
)
l
n
(
2
5
)
Tak
i
ng
an
tilo
g
o
n
bo
th sid
e
s in
Equ
a
tio
n (2
5),
(
2
6
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Mo
del
of
P
u
l
s
e
d
El
ect
ri
cal
Di
sch
a
rge
M
a
chi
n
i
n
g (
E
D
M
)
usi
ng
RL C
i
rc (
A
de Er
aw
an
Mi
nh
at
)
25
7
(
2
7
)
The
c
u
rre
nt
i
flow through inductance
L
in
series to re
sistance,
R
can
be
expre
ssed a
s
fo
llows.
1
(
2
8
)
The
n
, t
h
e c
u
r
r
e
n
t
ga
p ca
n
be
o
b
t
a
i
n
ed
as
fol
l
ows
.
(
2
9
)
In u
s
i
n
g Eq
u
a
ti
o
n
(4
), th
e curren
t g
a
p
i
n
d
i
sch
a
rg
e con
d
ition
is,
1
(
3
0
)
1
(
3
1
)
Usin
g t
h
e
Kirc
hh
o
ff la
w a
g
ain,
V
can
be
det
e
r
m
i
n
ed by
,
(
3
2
)
In
th
is
p
h
a
se
V
V
,
t
h
e di
scha
rge
vol
t
a
ge
ca
n be rep
r
ese
n
t
e
d
as
bel
o
w,
(
3
3
)
As illu
strated
i
n
Fi
g
u
re
7
,
th
e th
ree ph
ases of
EDM p
u
l
ses h
a
s b
e
en
sho
w
n
in d
e
tails.
b
a
sed
on
the
ti
m
e
d
u
r
atio
n in
on
e
p
e
ri
o
d
, t
h
e in
itial p
h
a
se fro
m
0
u
n
til t
1
, fo
llo
wed
b
y
th
e ign
itio
n
ph
ase o
f
t
h
e t
1
to
t
2
and
t
h
e ne
xt
pha
se
of
t
h
e
di
scha
r
g
e o
f
t
h
e
t
2
to
t
3
.
Fi
gu
re
7.
The
pr
ofi
l
e
of
ED
M
pul
se
w
h
i
c
h
i
s
co
nsi
s
t
s
s
w
i
t
ch (
S
1
),
switch
(S
2
)
,
ga
p vol
t
a
ge (V
gap
) and
cu
rr
en
t
gap
(
I
gap
)
vers
u
s
o
f
tim
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
2
,
O
c
t
o
b
e
r 201
4 :
2
52 –
26
0
25
8
4.
SIM
U
LATI
O
N
AN
D
E
X
PE
RIME
NTAL
RESULTS
B
y
usi
n
g t
h
e
el
ect
ri
cal
m
o
del
i
n
M
a
t
l
a
b
Si
m
u
l
i
nk so
f
t
ware,
t
h
e
si
m
u
l
a
t
i
on
pr
oc
ess ha
s
been
conducted. As
can
be see
n
i
n
Figure
8, t
h
e
co
nfi
g
u
r
at
i
o
n
of t
h
e E
D
M
ci
rcui
t
was c
o
n
s
t
r
uct
e
d
base
d
on
t
h
e
math
e
m
atica
l
m
o
d
e
l d
e
r
i
ved.I
n
th
is
sim
u
lat
i
o
n, t
h
e
p
a
r
a
m
e
ter
s
h
a
v
e
b
e
en
set as th
e inpu
t vo
ltag
e
is 100V
,
50
perce
n
t
dut
y
c
y
cl
e and
1
0
0
m
i
croseco
nd
t
i
m
e peri
o
d
.
Di
spl
a
y
e
d i
n
Fi
g
u
re
9
(
a)
sh
o
w
s
t
h
e re
sul
t
s
ob
t
a
i
n
ed
fr
om
t
h
e sim
u
lat
i
on de
si
g
n
i
s
ope
n ci
rc
ui
t
v
o
l
t
a
ge,
V
oc
=1
0
0
V
,
di
sc
har
g
e
vol
t
a
ge
, V
dis
=
2
8V a
n
d cu
rre
nt
gap
,
I
gap
=2.8A.
In t
h
e ex
pe
ri
m
e
nt
al
, t
r
ansi
s
t
or t
y
pe
of E
D
M
p
u
l
s
e p
o
w
er
ge
nerat
o
r
i
s
used t
o
t
h
e desi
g
n
.
Th
e
fo
llowing
inp
u
t p
r
o
cess
p
a
rameters are u
s
ed
su
ch
as in
put v
o
ltag
e
, V
in
=
1
00V, loa
d
res
i
stance, R
load
=113
Ω
and copper m
a
terial for electrode
a
nd workpiece. As
can
be observe
d
i
n
Figure
9(b), t
h
e output re
sult
shows
t
h
e
ope
n ci
rcu
i
t
vol
t
a
ge
,
V
oc
=95
V
,
di
sc
ha
r
g
e vol
t
a
ge, V
di
s
=1
8V
and
cur
r
e
n
t
g
a
p(
cur
r
e
n
t
thr
oug
h th
e lo
ad
resistance), I
gap
=0
.8
A. Co
m
p
aring
th
e sim
u
l
a
tio
n
and
th
e ex
p
e
rim
e
n
t
al re
su
lts, it is ev
id
en
t th
at th
ese resu
lt
are in good agree
m
ent with t
h
e
m
a
t
h
em
at
i
cal m
odel
deri
ved
.
To a
n
alyze the
com
p
leted res
u
lt, surface
finish of
the e
x
pe
rim
e
ntal
mater
i
al were
viewe
d
under t
h
e
OM
A
X
M
i
cro
s
co
pe ab
out
10
0Xm
a
gni
fi
cat
i
on as s
h
o
w
n i
n
Fi
g
u
re 1
0
(
b
)
and Fi
g
u
re
10
(c). T
h
e res
u
l
t
sho
w
s
the diam
eter hole is about
1
mm with better surface
qua
lity. Usually, a small current
gap obtaine
d
the better
surface
finis
h
c
o
m
p
are with hi
ghe
r c
u
rre
n
t [13].
Fig
u
r
e
8
.
Th
e electr
i
cal
m
o
d
e
l of
ED
M pu
lse po
w
e
r
g
e
n
e
r
a
t
o
r and
t
h
e co
nfig
ur
atio
n of
ED
M pu
lses i
n
si
d
e
t
h
e bl
ock
di
a
g
r
a
m
(a)
(b
)
Fi
gu
re
9.
(a
)Th
e
si
m
u
l
a
ti
on
re
sul
t
s
sh
o
w
t
h
e
pul
se
wi
dt
h m
o
d
u
l
a
t
i
o
n
,
vol
t
a
ge a
n
d
cu
rre
n
t
i
n
t
h
e
ga
p.
(
b
)
T
he
gap
wa
ve
fo
rm
di
spl
a
y
e
d
f
r
om
t
h
e e
xpe
ri
m
e
nt
(C
h
1
:
Ga
p
V
o
l
t
a
ge, C
h
2:
G
a
p C
u
r
r
ent
)
Vi
n
v
+
-
Vg
a
p
Sc
o
p
e
R
_
s
hunt
Pu
l
s
e
Ge
n
e
ra
t
o
r
g
D
S
Mo
s
f
e
t
PW
M
i_
g
a
p
+V
i
n
-V
i
n
1
E
l
e
c
t
r
ic
a
l
Mo
d
e
l o
f
E
D
M w
a
v
e
f
o
r
m
1
i_
g
a
p
2
-V
i
n
1
1
+V
i
n
i
+
-
i g
a
p
1
v
+
-
V1
>=
R
e
l
a
t
i
onal
O
p
e
r
at
or
R_
i
g
n
i
t
i
o
n
R6
R1
PW
M
1
g
D
S
Mo
s
f
e
t
1
L1
Di
o
d
e
0.
6
C
o
n
s
t
ant
s
-
+
CV
S
C1
1
PW
M
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Mo
del
of
P
u
l
s
e
d
El
ect
ri
cal
Di
sch
a
rge
M
a
chi
n
i
n
g (
E
D
M
)
usi
ng
RL C
i
rc (
A
de Er
aw
an
Mi
nh
at
)
25
9
(a)
(b
)
(c)
Fi
gu
re
1
0
.
(a)
Spa
r
k
di
sc
har
g
e p
h
ase;
(
b
)
Ho
l
e
s fab
r
i
cat
ed
b
y
t
h
e t
r
a
n
si
st
or
p
u
l
s
e
gene
rat
o
r;
(c
) Z
oom
i
ng
i
n
t
o
the hole s
u
rfac
e at 100X m
a
gnification
5.
CO
NCL
USI
O
N
In conclusion, a
new m
a
thematical
m
odel of
E
D
M pulses
has
been presente
d
a
n
d
i
m
ple
m
ented
success
f
ully. Based on c
u
rrent
and
volta
ge ga
p, the
r
e ar
e t
h
ree
m
a
the
m
atic
al
m
odels has
been
de
velope
d suc
h
as in
itial, ig
n
itio
n
and
d
i
sch
a
rg
e ph
ase.
Referri
n
g
to
t
h
e equ
a
tio
ns d
e
scri
b
e
d
ab
ov
e, Eq
u
a
tion
(2) and
Equ
a
tio
n
(3) can
b
e
u
s
ed
in
an
in
itial p
h
a
se co
nd
itio
ns wh
ile Equ
a
tio
n
(5
) an
d
Equ
a
tion
(9
)
on
th
e ign
itio
n
pha
se an
d E
q
u
a
t
i
on (
3
1) a
nd
Eq
uat
i
on
(3
3
)
fo
r di
sc
har
g
e
p
h
ase. M
a
t
h
em
at
i
cal
m
odel
of
EDM
p
u
l
s
es a
s
t
h
e
ob
ject
i
v
e o
f
t
h
i
s
st
udy
has b
een achi
e
ve
d.
The m
odel
has been val
i
d
at
ed by
sim
u
l
a
t
i
on a
nd e
xpe
ri
m
e
nt
al
resul
t
.
T
h
e per
f
o
r
m
a
nce of t
h
e sim
u
l
a
t
i
on desi
gn
has bee
n
t
e
st
ed and gi
v
e
a goo
d res
u
l
t
com
p
ared wi
t
h
t
h
e
theoretical pul
se shape
.
Com
p
aring sim
u
lat
i
o
n
and
exp
e
rimen
t
al resu
lt, th
i
s
m
a
th
e
m
at
ical
m
o
d
e
l is ap
p
licab
le
to
o
t
h
e
r sim
u
la
tio
n
st
u
d
i
es
rel
a
tin
g
to th
e
EDM pu
lses.
T
h
is is great t
h
e
o
retical and pra
c
tical im
portance for
EDM
pr
ocess
.
AC
KN
OWLE
DG
MENTS
Th
e au
tho
r
s
wou
l
d lik
e to th
ank
t
h
e Un
iv
ersiti Tekno
log
i
Malaysia (UTM) and Min
i
stry of
Edu
catio
n
(M
o
E
) Malaysia fo
r fi
n
a
n
c
ial
su
pp
ort th
ro
u
g
h
Research Un
iv
ersity Gran
t (GUP) with
Vo
te
N
o
.05H
41
.
REFERE
NC
ES
[1]
A Yahy
a
, et a
l
.
Com
m
unicatio
n within hardw
a
re of E
l
ec
tr
ic
al Disc
ha
rge
Mac
h
ining (EDM) s
y
ste
m
.
Jurnal
Teknologi (
Special Ed
ition)
Scien
ces
&
Engineering
. 2011; 55(1):
201-212.
[2]
A Yahy
a. Digital control of an electro disch
a
rge
m
achining (ED
M
) sy
stem. Ph.D Thesis, Loughborough University
,
2005.
[3]
AE Minhat
, et al.
Power Generator of Electrical
Dis
c
harg
e M
achin
ing (EDM
) S
y
s
t
em
.
App
lied Mechanics and
Materials
. 2014; 554: 638-642
.
[4]
Y Tsai, C
Lu. I
n
fluence of curr
ent impulse
on
m
achining ch
ara
c
ter
i
stics in
EDM.
Journal of
Mechanical S
c
ien
ce
and Technolog
y.
2007; 21
: 1617-
1621.
[5]
AE Minhat
, et
al.
Model of Pulse Power Generator in Ele
c
tri
c
al Dis
c
harge M
achin
ing (EDM
) S
y
s
t
em
.
App
lie
d
Mechanics and
Materials
. 2014; 554: 613-617
.
[6]
A Yahy
a
, et
al.
Com
p
aris
on S
t
udies
of Elec
tri
cal
Dis
c
harge M
a
chining (EDM) Process Model for Low Gap Current.
Advanced Ma
ter
i
als Research
Jo
urnal
. 2012; 133
-440: 650-654.
[7]
Y Yang
, et al.
Design of pulse power for EDM based on DDS chip AD9851.
Mechanic Auto
mation and Control
Engineering (
M
ACE)
, 2010 In
te
rnational Conference on
. 2010: 3
302-3304.
[8]
AE Minhat
, et
al.
Contro
l Strateg
y
for Electrical Discharg
e M
achin
ing (EDM)
Pulse Power Generator.
Applied
Mechanics and
Materials
. 2014; 554: 643-647
.
[9]
T Andromeda
, e
t
al
.
Pr
edic
ting
m
a
teri
al
rem
oval r
a
te
of
El
ectr
i
ca
l Discharg
e
Machining
(ED
M
) using art
i
fic
i
a
l
neural network
f
o
r high Ig
ap
curr
ent. Kuantan, 20
11.
[10]
N Mahmud
, et
al.
Pulse Power Generator Design for M
achining Micro-pits on Hip I
m
plant.
Jurnal Teknolog
i
(
S
ciences
&
Engineer
ing)
. 2013
;
61: 33-38.
[11]
M Rahman. A
comparativ
e stud
y
of transistor
and RC
pulse
generators for micro-EDM of
tungsten carb
i
d
e
.
International Jo
urnal of
Precisi
o
n
Engin
eering
a
nd Manufacturin
g
. 2008; 9: 3-10.
[12]
W My
sinski. P
o
wer supply
un
it for an
electr
ic discharge machin
e.
Pow
e
r Electronics and
Motion Control
Conference, 200
8. EPE-
PEMC 2
008. 13th
, 2008
:
1321-1325.
[13]
M Gostim
irovic
, et al.
Eff
e
ct of
electrical pulse
parameters
on th
e machin
ing p
e
r
f
ormance in
ED
M.
Indian Journal
of Eng
i
neering
&
M
a
terials Sciences.
2012; 18:
411-415.
Spar
k
Diameter
Ho
le
=
1mm
Hole
surface
Fi
nish
Magnificat
ion, 100x
Spar
k
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
2
,
O
c
t
o
b
e
r 201
4 :
2
52 –
26
0
26
0
BIOGRAP
HI
ES OF
AUTH
ORS
Ade Erawan
is
a P
h
.D. c
a
ndida
te in
the E
l
e
c
tr
onic and Comp
uter Eng
i
neer
in
g Department,
Faculty
of
Electr
ical Engin
eer
in
g
,
Universiti Tekn
ologi Malay
s
ia
,
Skudai, Johor. He obtained h
i
s
bachelor and
m
a
ster’s degrees from
Universiti T
e
knologi
Malay
s
ia in 2
007 and 2011
respect
ivel
y
.
Hi
s recent r
e
sear
c
h
is about puls
e
power gen
e
ra
tor for El
ect
ric
a
l Discharg
e
Machining (ED
M
) sy
stem. He is interested
in
Switch Mode Power Supply
,
Analog/Digital
Circuit, MATLABSimulink and PSoC (Progra
mmable S
y
s
t
em-on-Chip) microco
n
troller.
Dr.
Nor Hisham Haji Khamis
is a senior lect
urer in the R
a
d
i
o Communication Engineering
Departm
e
nt (R
aCED), Facu
lt
y
of El
ectr
i
cal
E
ngineer
ing Dep
a
rtm
e
nt, Univer
siti T
e
knologi
Malay
s
ia, Skudai, Johor. H
e
rece
ived h
i
s B.Sc.E
.E. from
the Uni
v
ersit
y
of
Evans
v
ille, Ind
i
ana,
USA in 1988,
M.E.Sc.E.E. from the University
o
f
New South
Wales, Australia in 1
992, and PhD
from UTM in 2005. He
joined
UTM in 1989
and
curre
n
t
ly
is the
Head of R
a
dar
Laborator
y
.
He
is also th
e subject
coordinator f
o
r the Microw
ave Eng
i
neer
ing,
RF Microwave
Circuit Design,
and Radar cours
e
s
at the facul
t
y
.
He als
o
leads
the Sonar and Marine In
strumentation Research
Group (STAR). His research interest
includ
es an
tenn
a design
especially
micr
ostrip antenna,
microwave components, wireless tr
ansmission, a
nd propagation studi
es. He is a member of Eta
Kappa Nu (
E
lectrical Eng
i
neerin
g
Honor Society
,
USA) and IEEE.
Azli Yah
y
a
is
a
s
e
nior le
cturer
at
the F
acu
lt
y of E
l
ec
tric
al Eng
i
ne
e
r
ing, UTM
and a
tta
ched to
the
F
acult
y of He
al
th S
c
ienc
e and
Biom
edica
l
Eng
i
neer
ing, UTM
.
In facul
t
y
, he
is
a Head of
Department for
Postgra
duate Studies. He go
t his B.Eng (H
ons
) degre
e
in
El
ect
ro-M
echani
c
a
l
Power S
y
stem and M.Sc. d
e
gree in Electronic Pr
oduction f
r
om University
of
Glamorgan, Wales-
UK. In 2006, he
obtain
e
d his PhD degree in
Electr
onic/Electr
i
cal
Engineering fro
m University
of
Loughborough,
UK. His research ar
eas cover
Electr
i
cal Dischar
g
e Machin
ing S
y
stem, An
alog /
Digital Cir
c
ui
t,
Microcontro
ller
,
PSPICE, MA
TLAB, Switch Mode Power Supp
ly
, Biomedical
instrumentation.
Trias Andromeda is a lectur
er at Diponegoro
Un
iversity
, Semarang, Indonesia since 1999. He
has 8
y
e
ars prof
essional
experiences in
industr
ial contro
l
electro
n
ics
and Teleco
mmunications
field
.
He has done several proj
ects collabo
ration
with PJKA (
P
erusahaan Jawatan
Kereta Api),
LPP (Lembaga Pendidikan Perk
e
bunan) (LPP) Yog
y
ak
arta, PT Jasa Produksi, PLN (Perusahaan
Listrik Negara),
PT Lima
s, Nokia, Indosat
and Huawei in Indone
sia. He got his
Ma
ster degree at
Gadjah Mada un
iversity
in 2002.
In 1998, he gr
aduated from Electrical
Engineerin
g Department,
Engineering Faculty
,
Gadjah
Mada University
.
He is in
ter
e
sted in
industrial
and power
electroni
cs, cont
rol s
y
stem
, ar
tifi
c
ial intellig
ence
, power suppl
y
,
electri
cal d
i
scharge m
achinin
g
s
y
s
t
em
, m
i
crop
r
o
ces
s
o
r bas
e
d
s
y
s
t
em
and t
e
l
eco
m
m
unications
.
KartikoNugroho
is a Master
can
didate from Facu
lty
of Bioscien
ce and
Medical
Engineering in
Universiti
Tekn
ologi Mal
a
y
s
ia
.
His recen
t res
earch
is abou
t
Ele
c
tri
cal
Disch
a
rge Ma
chining
(EDM) for biomedical applicatio
n.
He obtain
e
d his bachelor degr
ee
in Electrical Engineer
ing of
GadjahMada Un
iversity
. His b
a
chelor
thes
is is
ab
out remotely
op
erated
robot.
Evaluation Warning : The document was created with Spire.PDF for Python.