Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
6, N
o
. 3
,
Sep
t
em
b
e
r
2015
, pp
. 47
7
~
48
5
I
S
SN
: 208
8-8
6
9
4
4
77
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Digital Implementation of DSVPWM Control for EV
fed through Impedance Source Inverter
Ananda Kum
a
r Akkar
a
paka, Dheere
ndr
a
Sing
Dept. of
E
l
ectri
c
al
and
Electroni
cs Engineering
,
B
i
rl
a Institu
te of T
echnolog
y
and
Scien
c
e, Pil
a
ni
, In
dia.
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Mar 14, 2015
Rev
i
sed
Ju
l 1
,
2
015
Accepte
d
J
u
l 21, 2015
In this paper,
a n
e
w space ve
ctor
m
odulation te
ch
nique is propose
d
for speed
control of Indu
ction Motor using Z-sour
ce inv
e
rt
e
r
powered b
y
a
l
o
w voltage
DC source. The
zero states of co
nventio
n
a
l space vector modulation are used
for boosting the DC-link voltag
e
to the requ
ired level. The pro
posed SVM
techn
i
que estim
ates the requir
e
d s
hoot through period of the Z-source
invert
er to m
a
intain the DC-link voltag
e
constant
at the desired le
vel throug
h
capacitor voltag
e
control. A 3
2
bit DSP (TMS320F28335)
is used to
im
plem
ent the
proposed space vector m
odu
lation m
e
thod
. The power
structure and
th
e modulation technique
is well suited fo
r electric v
e
hicle
application.
Keyword:
B
oost
i
n
g fact
o
r
Double s
p
ace
vector PWM
DS
VP
W
M
Mo
du
latio
n ind
e
x
Sh
oot
-t
hr
o
u
g
h
Z-s
o
urce inve
rter
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Ana
n
da Kum
a
r
A
kka
ra
paka
Dept
.
o
f
El
ect
r
i
cal
and
El
ect
r
oni
cs
En
gi
ne
er
i
ng,
Birla In
stitu
te
o
f
Techno
log
y
an
d Scien
c
e, Pi
lan
i
, Ind
i
a.
aak
@p
ilan
i
.b
its-p
ilan
i
.ac.in
1.
INTRODUCTION
Th
e
o
il b
ill has risen to app
r
ox
im
a
t
ely 1
0
times o
f
itself in th
e last
o
n
e
d
e
cad
e.
Strict enfo
rcem
en
t of
en
v
i
ron
m
en
tal laws an
d th
e ev
er in
creasing
fo
ssil
fu
el
pr
i
ces ha
ve l
e
d t
o
spo
u
t
i
n
r
e
sear
ch a
n
d
devel
o
pm
ent
of
Electric Ve
hicles. For boosting the l
o
w voltage fro
m
bat
t
e
ry
, t
h
e el
e
c
t
r
i
c
dri
v
e em
pl
oy
s a
DC
-
D
C
bo
os
t
con
v
e
r
t
e
r f
o
l
l
o
wed
by
a DC
-
A
C
po
we
r co
n
v
ert
e
r
[1]
-[
2]
. Seve
ral
ot
her
dom
est
i
c
and i
n
d
u
st
ri
al
ap
pl
i
cat
i
ons
work
on
th
e si
milar co
n
cep
t
[3
] -[4
]
. Th
ere
are so
m
e
o
p
e
ratio
n
a
l li
m
ita
tio
n
s
of th
e t
r
ad
it
io
n
a
l vo
ltag
e
so
urce
i
nve
rt
er (i
.e. t
h
e
out
put
v
o
l
t
a
ge i
s
al
way
s
l
o
we
r t
h
a
n
th
e DC link
vo
lt
ag
e). Th
erefore, to
g
e
t th
e
desired
bo
ost
e
d AC
v
o
l
t
a
ge, i
n
t
e
gra
t
i
on o
f
DC
-D
C
bo
ost
co
nv
ert
e
r bet
w
een
t
h
e DC
so
u
r
c
e
and t
h
e i
n
v
e
rt
er i
s
necessa
ry. The
additional boost conve
rter lowers the effici
ency and inc
r
e
a
ses the cost of the syste
m
. In orde
r
to
en
su
re op
eratio
n
o
f
the inv
e
rter to
b
e
safe, d
e
ad
tim
e h
a
s to
b
e
m
a
in
tai
n
ed, wh
ich
lead
s to
d
i
stortio
n in
the
o
u
t
p
u
t
v
o
ltag
e
w
a
v
e
fo
r
m
. Th
e V
S
I
f
e
d
d
r
i
v
e is d
r
iv
en
under
cur
r
e
n
t
r
e
gulatio
n
(
L
o
a
d
ch
ang
i
ng)
. If
the D
C
-
b
u
s
vo
ltag
e
dro
p
s
do
wn
,
t
h
e cu
rren
t regu
lato
r
can
satu
rate
. Fo
r in
ductio
n
m
o
tor u
n
d
er s
t
anda
rd
V/f c
o
ntr
o
l,
th
e VSI m
a
y n
o
t
be ab
le to su
pp
ly th
e requ
ired vo
ltag
e
to
th
e m
o
to
r at a
certain
sp
eed
i
f
th
e DC
-bu
s
vo
ltag
e
d
r
op
s
d
o
wn
[5
]. Th
er
ef
or
e, du
r
i
ng
a vo
l
t
ag
e dro
p
, cap
acito
r (D
C-bu
s) vo
ltag
e
need
s t
o
b
e
con
t
ro
lled
(re
gulator). T
h
e Im
pedance
or Z-s
o
urce i
n
verter is a
p
o
ssi
bl
e sol
u
t
i
on
fo
r suc
h
pr
obl
e
m
s [6]
.
The
n
eed o
f
ad
d
ition
a
l sw
it
ch
ing
d
e
v
i
ces
u
s
ed
fo
r
bo
ost D
C
-D
C conve
rter is elimin
ated
b
y
v
o
ltage b
o
o
s
ting
and th
ree
pha
se i
n
vert
e
r
,
t
hus
m
i
nim
i
sing
cost
a
n
d i
m
pr
o
v
i
n
g t
h
e
o
v
e
ral
l
effi
ci
ency
of
t
h
e
dri
v
e.
T
h
e
hi
g
h
per
f
o
r
m
a
nce
Di
gi
t
a
l
Si
g
n
al
Pr
ocess
o
r
s
(
D
SPs
) a
r
e
use
d
t
o
m
i
nim
i
ze co
nt
r
o
l
l
o
o
p
del
a
y
s
an
d
pe
rf
orm
hi
g
h
-
r
es
ol
ut
i
o
n
co
n
t
ro
l, m
u
lti
o
p
e
ration
s
[7
]. Hig
h
reliab
ilit
y an
d
im
p
r
o
v
e
d
d
y
n
a
m
i
c resp
on
se are add
itio
n
a
l features o
f
Z-
source i
nve
rters.
Thi
s
pape
r s
u
m
m
a
ri
zes t
h
e i
m
pl
em
ent
a
t
i
on of
a ne
w S
V
P
W
M
(
D
S
V
P
W
M
)
base
d ca
pa
ci
t
o
r v
o
l
t
a
ge
cont
rol
wi
t
h
I
F
OC
fo
r ZS
I fed
i
nduct
i
o
n m
o
t
o
r
dri
v
e
.
It
use
s
m
i
nim
u
m
nu
m
b
er of com
ponent
s a
nd em
pl
oy
s a
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
47
7 – 485
47
8
DSP
(TM
S
3
2
0
F
2
8
3
3
5
)
de
v
e
l
ope
d
by
Te
xas
Inst
rum
e
nt
s fo
r
p
o
we
r
el
ect
ro
ni
cs a
n
d
m
o
t
i
on c
ont
rol
ap
p
lication
s
.
(a)
Schem
a
t
i
c
of
a ZS
I
Fed
I
n
duct
i
o
n M
o
t
o
r
(b) Sim
p
lified
Equ
i
v
a
len
t
Circu
it of th
e ZSI
Fi
gu
re
1.
Z-
So
urce
I
nve
rt
er
2.
Z
-
SOUR
CE I
NVE
RTER
The Z
-
s
o
u
r
ce i
nve
rt
er
was
de
vel
o
ped
i
n
or
d
e
r t
o
deal
wi
t
h
pr
o
b
l
e
m
s
i
n
fu
nct
i
oni
ng
o
f
vo
l
t
a
ge so
urce
and c
u
rre
nt
so
urce i
nve
rt
ers.
A Z-
net
w
or
k i
s
i
n
ject
e
d
bet
w
een DC
s
o
urce
and
3-l
e
gs
of
i
nve
rt
er s
w
i
t
c
h
e
s as
shown in Figure 1(a). where
DC source
em
pl
oy
ed ca
n be
a bat
t
e
ry
, di
o
d
e
rec
tifier, o
r
fu
el cell etc. Fo
llo
wing
are the
attributes of a
Z-s
o
urc
e
syste
m
[8] :
Bein
g
a
filter o
f
second
ord
e
r, Z-n
e
twork
is m
o
re
effectiv
e th
an
cap
acito
r
filter in
su
pp
ressing th
e
vol
t
a
ge
ri
ppl
es
use
d
i
n
t
h
e
t
r
a
d
i
t
i
onal
P
W
M
i
nve
rt
ers.
The i
n
-
r
us
h c
u
rre
nt
an
d c
u
rre
nt
ha
rm
oni
cs i
s
l
i
m
i
t
e
d by
t
h
e
i
n
d
u
ct
o
r
.
Bo
o
s
ting
of
v
o
ltag
e
acro
ss t
h
e DC-link
is facilitated
b
y
th
e Z
n
e
two
r
k
.
Instea
d
of dam
a
ge to the
power circ
uit, the
s
h
oot-
t
h
rough st
ate facilitates boos
ti
ng in
output voltage.
Fi
gu
re 1
(
b
)
sh
ows t
h
e Z-s
o
u
r
ce i
nvert
e
r
t
o
p
o
l
o
gy
, w
h
i
c
h c
onsi
s
t
s
of t
w
o capaci
t
o
rs
(C
1
and C
2
) a
n
d
two inductors (L1 and L
2
) c
o
nnecte
d
in a cross s
h
ape
t
o
link t
h
e DC-AC
converte
r
to
th
e DC so
urce
v
o
ltag
e
.
The Z-
so
urce i
nve
rt
er ca
n m
a
ke a re
qui
re
d
AC
v
o
l
t
a
ge f
r
o
m
a l
o
w vol
t
a
g
e
DC
so
urce
. T
h
e ZS
I has
one
ext
r
a
sw
itch
i
ng
state is shoo
t-
thr
oug
h (
S
T)
state w
h
ich
is in add
itio
n
t
o
th
e eig
h
t
con
v
e
n
tional n
on-
shoo
t th
rough
states. Th
e sh
oo
t-throug
h state will sh
ort th
e top
an
d
b
o
ttom
switch
i
n
g
d
e
v
i
ce
o
f
an
y
phase leg of t
h
e i
n
v
e
rter
th
ro
ugh
lo
ad
ter
m
in
als. Th
e ZSI
h
a
s two
op
er
atin
g m
o
d
e
s: sh
oo
t-
t
h
rou
g
h
m
o
d
e
an
d non
sh
oo
t-
t
h
ro
ugh
m
o
d
e
,
as sho
w
n i
n
Fi
gu
re 2.
Du
ri
n
g
t
h
e sho
o
t
-
t
h
ro
ug
h swi
t
c
hi
ng
st
at
e, t
h
e i
nput
di
ode i
s
reve
r
s
e bi
ased;
t
h
e i
n
p
u
t
DC so
urce is cu
t off fro
m
th
e lo
ad,
a
n
d the t
w
o capacitors
energy
discha
rg
e to th
e i
n
du
cto
r
s and
to th
e
lo
ad.
D
u
r
i
ng
the non
shoo
t-
thro
ugh sw
itch
i
ng
states, th
e i
n
pu
t
dio
d
e
t
u
rn
s
ON, and
t
h
e
D
C
in
pu
t
v
o
ltag
e
so
ur
ce
p
l
u
s
th
e indu
ct
o
r
s is ch
arg
e
d
th
e cap
acito
rs an
d
sh
ift en
erg
y
to
th
e lo
ad, as a resu
lt th
e DC-bu
s
v
o
l
t
a
g
e
is
bo
ost
e
d.
3.
PWM TECHNIQUE
In inve
rters, t
h
ere are m
a
ny
PW
M techniques in
use. Si
n
u
soi
d
al
Pul
s
e
wi
dt
h m
o
d
u
l
a
t
i
on (
S
P
W
M
)
t
echni
q
u
e i
s
t
h
e m
o
st
basi
c t
echni
que
i
n
pr
act
i
cal
appl
i
cat
i
ons.
The
Spa
ce vect
o
r
P
u
l
s
e wi
dt
h m
odul
at
i
on
(SV
P
W
M
) i
s
an a
dva
nce
d
c
o
m
put
at
i
on-i
n
t
e
nsi
v
e
P
W
M
t
echni
que
,
pre
f
erre
d i
n
real
-t
i
m
e real
i
zat
i
on,
bei
n
g
wi
del
y
u
s
ed
i
n
vol
t
a
ge
s
o
u
r
ce
i
nve
rt
ers.
Thi
s
t
echni
q
u
e
ge
ne
rates re
fere
nce
three
phase si
gnals
by sha
r
ing the
space vect
or a
m
ong the active and zero vec
t
ors suc
h
th
at the harm
onic conte
n
t is optim
ized. The m
a
xim
u
m
in
v
e
rter lin
e-to-lin
e vo
ltag
e
gen
e
rated
b
y
the SVPW
M sc
h
e
m
e
i
s
15.5%
hi
g
h
er t
h
a
n
t
h
a
t
of t
h
e SP
W
M
for a
gi
ve
n DC
bus
vol
t
a
ge
.
In S
V
P
W
M
techni
que
fo
r V
S
I, eig
h
t swit
chin
g st
ates (s
ix active + two
zero/null) are realised.
During the six
active states, the s
u
pply
is con
n
ected
to th
e
lo
ad
and
d
u
ring
th
e two
zero
/
n
u
ll states, t
h
e lo
ad
termin
als are sh
orted
b
y
th
e switch
i
ng
d
e
v
i
ces. In
t
h
e ZS
I,
an extra state c
a
lled shoo
t-t
h
rough state is realised
du
ri
n
g
w
h
i
c
h
up
pe
r and l
o
w
e
r swi
t
c
hi
n
g
d
e
vi
ces of t
h
e s
a
m
e
l
e
g are t
u
rne
d
-
o
n. Thi
s
st
at
e i
s
forbi
d
den i
n
trad
itio
n
a
l
VSI as it lead
s t
o
su
pp
ly sh
ort-circu
it and
resu
lts in
h
i
gh
an
d d
e
v
i
ce d
a
m
a
g
i
ng
su
rg
e curren
t
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Dig
ita
l
Imp
l
emen
ta
tion
o
f
DSVPWM C
o
n
t
rol fo
r EV fe
d
t
h
ro
ugh
I
m
p
e
d
ance So
urce In
verter (An
and
a K
.
A.)
47
9
(a) N
o
n
S
h
o
o
t-
Thr
o
ug
h State
(b
) S
h
oot
-Th
r
o
u
g
h
State
Fi
gu
re
2.
Z-
So
urce
I
nve
rt
er C
i
rcui
t
f
o
r
Di
f
f
e
r
ent
M
ode
o
f
Ope
r
at
i
o
n
(a) DS
VP
WM
Pulses fo
r Phas
e
A
(b) Gen
e
rating
DSVPW
M
sh
oo
t-throug
h
in
l
e
g
A o
f
i
nve
rt
er
Fi
gu
re 3.
D
S
V
P
W
M
In
ZSI
,
t
h
e a
d
vant
a
g
e
of
ha
v
i
ng Z
-
net
w
or
k
bet
w
ee
n t
h
e
su
ppl
y
a
nd t
h
e i
n
vert
er
swi
t
c
h
e
s
i
s
t
h
at
t
h
e
rise in
th
e shoo
t-throug
h
stat
e cu
rren
t
is li
mited
b
y
th
e i
n
du
ctor
of
th
e Z-
n
e
twor
k.
In ad
d
itio
n
t
o
this, th
e
in
du
ctor
in
Z-netw
or
k
st
o
r
es en
erg
y
du
r
i
n
g
t
h
is state
to
bo
ost th
e cap
acito
r v
o
ltag
e
and
help
s in
regu
latin
g
it
.
Th
is shoo
t-thro
ugh
state someti
mes also
called
th
e th
i
r
d zer
o st
at
e i
s
gene
rat
e
d i
n
seve
n di
f
f
ere
n
t
way
s
:
sh
oo
t-
t
h
rou
g
h
v
i
a an
y ph
ase,
co
m
b
in
atio
n
s
o
f
an
y tw
o-
ph
a
s
e legs and all three phase legs. Its duration
can be
adj
u
st
e
d
/
c
o
n
t
r
ol
l
e
d f
o
r
di
ffe
rent
o
u
t
p
ut
v
o
l
t
a
ge gai
n
by
di
ffe
re
nt
m
e
t
hods
. Th
ere ar
e t
w
o sh
o
o
t
-
t
h
r
o
ug
h
m
e
t
hods
.
In the Sim
p
le Boost Control (SBC) m
e
thod, the re
sulting voltage stress ac
ross t
h
e switches is highe
r
as som
e
portion of tra
d
itional
zero states is
not utili
zed. T
h
e Constant Boost Co
ntrol (CBC)
m
e
thod, though
minimizes the
voltage
stres
s
acros
s the
s
w
itches, causes s
h
oo
t-t
h
ro
ugh
du
ty ratio
t
o
v
a
ry in
each
cycl
e, thu
s
increasing t
h
e
ripple cont
en
t i
n
indu
ctor
cu
rren
t
.
The Double
Space Vector
Pulse
W
i
dth M
o
dulation (D
SVPW
M
)
tec
h
nique
uses t
w
o
sets of t
h
re
e
pha
se signals a
s
refe
rence
signals and a hi
gh freq
ue
ncy
t
r
i
a
ng
ul
ar
wa
ve
as carri
er
si
g
n
a
l
.
Let
V
a1
,V
b1
,V
c1
be
t
h
e fi
rst
set
of refe
rence si
gnal
s
ge
ne
rat
e
d by
SVP
W
M
t
echni
q
u
e f
o
r
requi
red m
o
d
u
l
a
t
i
on 'm
'
of i
nput
v
o
ltag
e
. Let
V
a2
, V
b2
, V
c2
be
t
h
e sec
o
nd
se
t
of
re
fere
nce
si
gnal
s
ge
nerat
e
d
by
ad
di
n
g
a fi
ni
t
e
negat
i
ve
DC
of
fset
(
V
of
f
s
e
t
) t
o
th
e first set.
The
re
ference signals V
a1
and V
a2
will g
e
nerate pu
lse fo
r to
p
sw
itch
and
bo
tto
m
switch
of leg
'a'
resp
ectiv
ely as sho
w
n
in
Figu
re
3
(
a).
Th
e
o
f
fset resu
lts in
a sh
oo
t throu
g
h
tim
e
T
sha
per swi
t
c
hi
ng
p
e
ri
o
d
i
n
t
h
at
l
e
g. For
hi
gh s
w
i
t
c
hi
n
g
f
r
eq
ue
nci
e
s, t
h
e
refere
nce si
g
n
a
l
s
V
a1
and V
a2
can be approxim
a
t
ed as constant
during a
switc
hing cycle.
Th
e
relatio
n b
e
tween
t
h
e sho
o
t th
ro
ugh
tim
e
T
sha
and
V
off set
can
be est
a
bl
i
s
hed
as
fol
l
ows:
I
n
Fi
gu
r
e
3(
b)
, c
o
n
s
i
d
er
sim
i
l
a
r t
r
i
a
ngl
es '
x
y
z
'
and '
X
Y
Z
'
.
∗
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
47
7 – 485
48
0
2
1
1
∗
2
(1
)
Sh
oot
t
h
r
o
ug
h
t
i
m
e
of l
e
g
-
a,
∗
2
(2
)
Th
e shoo
t th
rou
g
h
ti
m
e
in
al
l
th
ree leg
s
of th
e i
nve
rter re
mains sa
m
e
w
h
ereas the instants at whic
h
t
h
ey
occ
u
r
d
u
ri
ng
a s
w
i
t
c
hi
n
g
peri
od
va
ry
. S
o
, t
h
e
sh
o
o
t
t
h
r
o
ug
h t
i
m
e i
n
l
e
g
b a
n
d c i
s
∗
2
⁄
Th
e t
o
tal shoo
t th
rou
g
h
tim
e
T
sh
p
e
r switch
i
n
g
p
e
riod
can
b
e
written
as
3
∗
3
∗
∗
2
(3
)
The s
h
oot
t
h
r
o
ug
h
d
u
t
y
rat
i
o
D
sh
can
be
de
fi
ned
as
3
∗
2
(4
)
The DS
VP
W
M
techni
que i
n
troduces
V
off set
to
ex
tend
t
h
e p
u
l
se
wid
t
h
of th
e
b
o
tto
m
switch
in
t
o
th
e
t
op s
w
i
t
c
h p
u
l
s
e wi
dt
h t
o
res
u
l
t
i
n
sho
o
t
-
t
h
r
o
u
g
h
t
i
m
e
. Wh
en t
h
e ZS
I i
s
ope
rat
e
d at
a SVP
W
M
m
odul
at
i
o
n
i
nde
x o
f
'm
'
,
t
h
e
m
i
nim
u
m
pul
se-wi
d
t
h
o
f
t
h
e t
op s
w
i
t
c
h i
s
(1 - m
)
* T/
2
and i
t
occ
u
r
s
i
n
a swi
t
c
hi
ng
peri
o
d
du
ri
n
g
t
h
e
ne
g
a
t
i
v
e hal
f
cy
cl
e of t
h
e f
u
nda
m
e
nt
al
wave.
The
bot
t
o
m
sw
i
t
c
h p
u
l
s
e wi
dt
h d
u
r
i
n
g t
h
i
s
s
w
i
t
c
hi
n
g
peri
od i
s
(
1
+ m
)
* T/
2 when
V
offset
is zero. As
V
offset
in
creases, th
e bo
ttom switch
pul
se
wi
dt
h i
n
c
r
ease
s
fr
om
(1 + m
)
* T/
2 t
o
a
m
a
xim
u
m
of T at
a
m
a
xim
u
m
offs
et
vol
t
a
ge
V
offset_max
. On further increase in
V
offset
,
SVP
W
M
o
p
er
at
i
on e
n
t
e
rs
o
v
er
-m
odul
at
i
o
n
regi
on
. S
o
,
t
h
e m
a
xim
u
m
l
i
m
i
t
V
offse
t
_ma
x
can
be
obtained as
fo
llows:
At
m
a
xim
u
m
of
fset
v
o
l
t
a
ge
V
offset_max
condi
t
i
on, i
f
T
sha_max
i
s
t
h
e
m
a
xim
u
m
shoot
t
h
ro
ug
h t
i
m
e of
leg
a,
_
1
∗
2
1
∗
2
(5
)
From
(2)
_
_
∗
2
(6
)
Sub
s
titu
tin
g in
(5),
_
∗
2
1
∗
2
(7
)
1
(8
)
From
(4
) a
n
d (
8
)
,
t
h
e
m
a
xim
u
m
shoot
-t
h
r
ou
g
h
dut
y
rat
i
o
D
sh_max
is
_
3
∗
1
2
(9
)
1
1
2
⁄
(1
0)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Dig
ita
l
Imp
l
emen
ta
tion
o
f
DSVPWM C
o
n
t
rol fo
r EV fe
d
t
h
ro
ugh
I
m
p
e
d
ance So
urce In
verter (An
and
a K
.
A.)
48
1
From
(9
) a
n
d (
1
0
)
,
t
h
e m
a
xim
u
m
boo
st
fact
o
r
B
max
is
1
3
2
(1
1)
For
SB
C
c
o
nt
r
o
l
m
e
t
hod, t
h
e
m
a
xim
u
m
bo
o
s
t
i
ng
fact
o
r
t
h
a
t
can
be
obt
ai
n
e
d i
s
_
1
2
1
(1
2)
A com
p
ari
s
o
n
am
ong SB
C
and
DS
VP
W
M
bo
ost
co
nt
r
o
l
m
e
t
hods
f
o
r m
a
xim
u
m
boost
i
ng
fact
o
r
Bm
ax vari
at
i
o
n
wi
t
h
m
odul
at
i
on i
nde
x m
us
i
ng e
q
uat
i
o
n
s
(
1
1
)
a
n
d (
1
2) i
s
sh
ow
n i
n
Fi
gu
re
4. T
h
e a
d
va
nt
ag
e
of
D
S
V
P
W
M
t
ech
ni
q
u
e i
s
t
h
at
t
h
e m
a
xi
m
u
m
boost
i
n
g
fact
o
r
i
s
hi
g
h
er
t
h
a
n
t
h
at
of
SB
C
bo
ost
co
nt
r
o
l
m
e
t
hod.
Fi
gu
re
4.
C
o
m
p
ari
s
on
bet
w
ee
n C
ont
r
o
l
M
e
t
h
o
d
s
Th
e
ov
er-all vo
ltag
e
g
a
in of t
h
e ZSI
u
s
i
n
g DSVPWM is
g
i
ven
as
2
3
∗
(1
3)
-
pea
k
of t
h
e
f
u
n
d
am
ent
a
l
co
m
ponent
of
p
h
a
se v
o
l
t
a
ge,
V
in
- i
n
put
DC
s
o
urce
v
o
l
t
a
ge.
M
o
d
u
l
a
t
i
o
n
i
n
dex
'm
'
of S
V
P
W
M
t
ech
ni
q
u
e
i
s
de
fi
ne
d as
(1
4)
V
dp
(
s
) is DC
-lin
k vo
ltag
e
Substitu
tin
g
Z-n
e
t
w
ork boo
st
facto
r
B
d
e
fin
ition
fro
m
(1
0) and
sh
oo
t-
th
ro
ugh
d
u
t
y
ratio
D
sh
fr
om
(4)
in (1
3
)
, we get
2
3
∗
1
12∗
(1
5)
4.
CAP
A
C
ITO
R
VOLT
AGE
CO
NTR
O
L
Th
e DC
-lin
k
vo
ltag
e
is a pu
lsatin
g
v
a
l
u
e and its co
n
t
ro
l is difficu
lt. So
, it is co
n
t
ro
lled
b
y
e
m
p
l
o
y
in
g
th
e cap
acitor
vo
ltag
e
co
n
t
ro
l.
Th
e cap
acito
r
v
o
ltag
e
con
t
ro
l is work
ed
ou
t for a ZSI fed
i
n
du
ction
m
o
to
r drive
real
i
z
i
ng I
F
OC
al
ong
wi
t
h
D
S
VP
WM
t
ech
ni
q
u
e sh
o
w
n i
n
Fi
g
u
re
5(a
)
.
The capaci
t
o
r
vol
t
a
ge c
o
nt
rol
bl
ock
di
ag
ram
i
s
as sho
w
n i
n
Fi
g
u
r
e
5(b
)
.
Th
e erro
r in
th
e cap
acito
r v
o
ltag
e
due to
ch
ang
e
in
lo
ad
ing
is fed
t
o
a PI
cont
roller
G
c
(
s
) to
ob
tain
th
e ap
propriate
V
offset
val
u
e. Thi
s
V
offset
v
a
lu
e is u
s
ed
to
g
e
n
e
rate th
e two
sets of
refe
rence si
g
n
a
l
s
as
m
e
nt
i
oned
i
n
DS
VP
W
M
t
echni
q
u
e. The gat
i
ng p
u
l
ses
obt
ai
ned f
r
om
t
h
e
DS
V
P
W
M
t
echni
q
u
e
resul
t
i
n
bot
h re
q
u
i
r
ed m
odul
at
i
on
i
nde
x 'm
'
and sho
o
t
-
t
h
r
o
u
g
h
d
u
t
y
rat
i
o
'
D
sh
'. Th
e
sh
oo
t-
t
h
rough
d
u
t
y ratio
calcu
lato
r
u
s
es equatio
n
(4
) to
cal
cu
late
D
sh
fro
m
the
V
offset
val
u
e obt
ai
n
e
d f
r
o
m
t
h
e PI co
nt
rol
l
e
r
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
47
7 – 485
48
2
It is neces
sary
to esta
blis
h c
a
pacitor voltage
V
c
(
s
)
to
shoot-
t
h
r
o
ugh
d
u
t
y
r
a
tio
D
sh
(
s
) p
l
an
t
tran
sfer fun
c
tio
n
G
vd
(
s
) to tun
e
t
h
e PI con
t
ro
ller
G
c
(
s
)
f
o
r DC
-
l
i
nk vol
t
a
g
e
c
o
m
p
ensat
i
on.
(a)
Schem
a
tic Diag
ram
of ZS
I fe
d
I
n
d
u
ctio
n
Mo
to
r Coup
led with
DC
g
e
n
e
rato
r
(b
) Bloc
k
Diag
ram
for Ca
paci
tor
V
o
ltage Co
ntr
o
l
Fi
gu
re
5.
Sc
he
m
a
t
i
c
Di
agram
o
f
ZS
I
(a) I
n
d
u
ctio
n M
o
tor
Rot
o
r S
p
eed
(b
)
DC-Li
n
k
V
o
ltage Res
p
o
n
s
e
Fi
gu
re
6.
R
e
sp
ons
e
of
ZSI
Fe
d
In
d
u
ct
i
o
n
M
o
t
o
r
Dri
v
e
wi
t
h
S
p
ee
d C
h
an
g
e
s.
Usi
n
g t
h
e Ta
bl
e.1
(
a)
, Ta
bl
e.1
(
b
)
pa
ram
e
t
e
rs an
d t
r
a
n
s
f
e
r
f
unct
i
o
n
G
vd
(
s
), the c
o
m
p
ensator (PI
cont
rol
l
e
r
)
i
s
desi
gne
d f
o
r t
h
e
resp
onse:
(i
)
Ove
r
s
h
o
o
t
l
e
ss th
an
10
%, (ii) Rise t
i
m
e
less
th
an
0
.
01
seco
nds,
(iii) Settlin
g
ti
me less th
an
0
.
0
5
seco
nd
s,
(i
v) Stead
y
-state
erro
r less th
an
1
%
.
Using
SISO-too
l MATLAB/
S
i
m
u
lin
k
t
h
e Ph
ase Marg
i
n
(PM)
an
d G
a
in
Mar
g
in
(G
M) ar
e f
oun
d
to
be 5
9
.
5
de
g & 12
.3
db
, re
spect
i
v
el
y
.
He
nce t
h
e de
vel
ope
d m
a
t
h
m
a
ti
cal
m
odel
wi
th t
h
e desi
gne
d ci
rcui
t
p
a
ram
e
ters is qu
ite stab
le syst
e
m
.
The c
o
nt
rol
l
e
r
(PI
)
i
s
t
une
d a
n
d i
t
s
(
G
c
) v
a
lu
es
a
r
e
K
p
= 0.007
5,
Ki= 0
.
0
95
Tabl
e
1. Z
-
S
o
u
r
ce I
n
vert
er
a
n
d
In
d
u
ct
i
o
n
M
o
t
o
r Pa
ram
e
t
e
r
s
(a) ZSI
Pa
ram
e
ters
Para
m
e
ters
Valu
e
I
nput Voltage V
in
400 V
Capacitor Voltage
V
c
500
V
Peak DC link voltage V
d
p
600
V
ZNetwork Capaci
t
o
r C
1
= C
2
1000
F
Z
N
etwor
k
I
nductor
L
1
= L
2
2
m
H
Switching fr
equen
c
y
f
s
1000
0 Hz
(b
) In
d
u
ction
M
o
tor
Pa
ram
e
ters
Para
m
e
ters
Valu
e
Output Power
3.
2 kW
L
i
ne Voltage
400 V
Fr
equency 50
Hz
No of Ploes P
4
Speed 1440
r
.
p.m
Stator Resistance,
R
s
2.
125
Oh
m
Rator Resistance,
R
r
2.
05
Oh
m
Statot I
nductance,
L
s
2
m
H
Rator
I
nductance,
L
r
2 m
H
M
u
tual I
nductance,
L
m
6.
4 m
H
I
n
er
tia, J
0.
015 kg.m
2
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Dig
ita
l
Imp
l
emen
ta
tion
o
f
DSVPWM C
o
n
t
rol fo
r EV fe
d
t
h
ro
ugh
I
m
p
e
d
ance So
urce In
verter (An
and
a K
.
A.)
48
3
5.
SIMULATION AND HARDW
ARE IMPLEMENTATION
5.
1. Simulation
Studies
Th
e
d
y
n
a
m
i
c p
e
rform
a
n
ce of th
e ZSI
with
DC link
voltag
e
th
rou
gh
cap
acito
r vo
lt
ag
e con
t
ro
l
t
echni
q
u
e
has
been si
m
u
l
a
t
e
d usi
n
g M
A
TL
AB
/
Sim
u
l
i
n
k
(1
1.B
)
t
ool
,
fo
r ci
rcui
t
pa
ram
e
t
e
rs of
ZSI i
n
t
a
bl
e.
1(a
)
a
n
d
3
-
pha
se i
n
duct
i
o
n m
o
t
o
r
param
e
t
e
rs i
n
t
a
bl
e 1
b
us
ed as
t
h
e l
o
ad
.
Fi
gu
re 6
(
a) s
h
ows t
h
e ZS
I fe
d i
n
d
u
ct
i
o
n m
o
t
o
r resp
o
n
se
du
ri
n
g
t
h
e di
f
f
e
rent
o
p
erat
i
o
n
m
odes. The
acceleration m
ode
with t
h
e
rated torque
during the tim
e
interval 0-0.5
s
ec, the stea
dy
state ope
ration m
ode
with the rate
d torque a
nd t
h
e rate
d s
p
eed
1400 rpm
duri
ng t
h
e tim
e
in
terval 0.5-1 se
c, the decele
r
a
tion
transient m
ode
from
the 1400 rpm
spee
d
to
1
000
rp
m
sp
eed
with
th
e rated
torqu
e
du
ri
ng
tim
e in
terv
al 1
-
1
.
2
sec an
d st
ep
ch
ange
1
0
00
r
p
m
fr
om
140
0r
pm
at
1.
6 sec.
Fi
g
u
re
6.
b s
h
ows
refe
rence
9
5
0
V, ca
paci
t
o
r
v
o
l
t
a
ge
(
V
c
=
(
V
dp
+
V
in
)=2 = (95
0
+
500
)/
2
=
72
5 V)
an
d th
e act
u
a
l
ZSI
DC-link
vo
ltag
e
s is con
t
ro
lled
to 950
V.
(a) I
n
d
u
ctio
n M
o
tor
Rot
o
r S
p
eed
Resp
o
n
se
(b
) Ca
pacitor
Voltage
Resp
o
n
se
Fi
gu
re
7.
R
e
sp
ons
e
of
ZSI
Fe
d
In
d
u
ct
i
o
n
M
o
t
o
r
Dri
v
e
wi
t
h
L
o
a
d
C
h
a
n
ge
s
(a) I
n
d
u
ctio
n M
o
tor
Rot
o
r S
p
eed
Resp
o
n
se
(b
) Ca
pacitor
Voltage
Resp
o
n
se
Fi
gu
re
8.
R
e
sp
ons
e
of
ZSI
Fe
d
In
d
u
ct
i
o
n
M
o
t
o
r
Dri
v
e
wi
t
h
S
p
ee
d C
h
an
g
e
s
(
a
)
ZSI Response at 25
%
Lo
ad
(b
) Z
S
I Res
p
o
n
se at
3
0
% L
o
ad
Figu
re
9.
ZS
I
Respo
n
se
at Di
ffe
rent L
o
a
d
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
47
7 – 485
48
4
5.
2. Har
d
w
a
re
Stu
d
i
e
s
Th
is section
exp
l
ain
s
th
e h
a
rdware im
p
l
e
m
e
n
tatio
n
o
f
th
e
ZSI
fed ind
u
c
ti
o
n
m
o
to
r driv
e for
v
o
ltag
e
sag c
ont
rol
.
T
h
e ZS
I
fed i
n
duct
i
o
n m
o
t
o
r
i
s
co
nt
rol
l
e
d
by
p
r
o
g
r
am
m
i
ng
IF
OC
al
g
o
r
i
t
h
m
wi
t
h
DS
VP
W
M
tech
n
i
qu
e
on
a TMS320
F2
83
35
Tex
a
s
Instr
u
m
e
n
t
s
m
i
c
r
o
c
on
tr
o
ller. Th
e inpu
t vo
ltag
e
'
V
in
', m
o
to
r
lin
e
currents
'
i
a
'
and '
i
b
'
and t
h
e
rotor s
p
eed '
r
' are se
nse
d
a
n
d
gi
ve
n as a
n
al
og i
n
p
u
t
s
t
o
t
h
e m
i
croco
n
t
r
ol
l
e
r
sho
w
n i
n
Fi
g
u
r
e 5
(
a)
. T
h
e C
C
S5.
4
s
o
ft
war
e
wi
t
h
GU
I c
o
m
poser by
Te
xas I
n
st
r
u
m
e
nt
s pr
o
v
i
d
es i
n
t
e
grat
e
d
envi
ro
nm
ent
f
o
r
de
vel
o
pm
ent
o
f
t
a
r
g
et
a
p
pl
i
cat
i
on.
Th
e IFOC
with
DSVPWM al
g
o
rith
m
is p
r
og
ra
mm
ed
usi
n
g C
C
S
5.
4
soft
ware a
n
d l
o
ade
d
i
n
t
o
t
h
e
m
i
croco
n
t
r
o
ller. Th
e m
i
cro
c
on
tro
ller ex
ec
ut
es the algorit
h
m
using
th
e an
alog
i
n
pu
ts to
g
e
n
e
rate g
a
ting
pu
lses fo
r
th
e
inv
e
rt
er switch
e
s wi
th
requ
ired
mo
du
latio
n
an
d
sh
oo
t-
th
ro
ugh
tim
e fo
r sp
eed
,
DC
lin
k and
cap
acit
o
r vo
ltag
e
con
t
ro
l.
(a)
(b
)
Fig
u
r
e
10
. Exper
i
m
e
n
t
al Setu
p
5.
2.
1. Z
S
I fed
Induc
tion
Motor
Dri
v
e with
DS
VPW
M
Technique
The ZS
I i
s
co
n
n
ect
ed t
o
a
40
0V
DC
so
urc
e
.
The DC
l
i
n
k vol
t
a
ge
refe
re
n
ce has bee
n
set
t
o
60
0
V
so
th
e cap
acito
r vo
ltag
e
referen
c
e in
d
i
rectly set to
50
0V
(
V
c
= (
V
dc
+
V
in
)
/
2
= (6
00
+ 400
)
/
2
= 500
V)
.
The t
w
o
cases studied in Z
S
I
drive a
r
e
st
u
d
i
e
d
here
f
o
r
eval
uat
i
o
n
.
C
a
se1:
Th
e ZS
I fe
d
dri
v
e,
u
n
d
er c
o
nst
a
nt
s
p
eed
re
fere
nce
,
va
ry
i
n
g
l
o
a
d
t
o
r
que
, n
o
t
onl
y
m
a
i
n
t
a
i
n
s
t
h
e speed
but
a
l
so com
p
ensat
e
s t
h
e capaci
t
o
r vol
t
a
g
e
cont
r
o
l
t
o
50
0V
. Fi
gu
res 7
(
a) a
nd
7(
b) s
h
o
w
s t
h
e
rot
o
r
spee
d N
r
and
cap
acito
r vo
ltage
V
c
res
p
on
se.
Case2: The
sp
eed re
fere
nce
of Z
S
I
fe
d d
r
i
v
e is cha
n
ge
d
in f
o
u
r
ste
p
s
fr
om
750
rpm
- 8
1
0
r
p
m
-
8
70rp
m
- 81
0rp
m
- 7
5
0
r
p
m
u
n
d
e
r lo
ad
ing
co
nd
itio
n. Th
e m
o
to
r sp
eed
N
r
and t
h
e ca
pacitor voltage
V
c
are
seen followi
ng the speed
re
fe
rence a
nd
50
0
V
V
cref
respectively. Figures 8(a) an
d 8
(
b) sh
ows t
h
e
rot
o
r s
p
e
e
d
N
r
and ca
paci
t
o
r
vol
t
a
ge
V
c
r
e
sp
on
se.
Th
e Figu
res
9(a) and
9(b) sh
ow th
e in
pu
t, cap
acito
r vo
ltag
e
, lin
e vo
ltag
e
and
lin
e cu
rren
t
u
n
d
e
r
lo
ad
ed
co
nd
itio
n. Th
e ZSI fed
indu
ctio
n m
o
to
r
d
r
i
v
e ex
p
e
ri
m
e
n
t
al setu
p
i
s
shown in
Figu
re 10
.
6.
CO
NCL
USI
O
N
The
digital im
ple
m
entation of
pr
opose
d
DSVPW
M
tec
hni
que
is
s
u
c
cessfully accom
p
lished
for
i
n
d
u
ct
i
o
n
m
o
t
o
r
dri
v
e
fe
d t
h
r
o
ug
h
Z-s
o
urce
i
nve
rt
er.
It
ease in
im
p
l
e
m
en
ta
tio
n
an
d effectiv
en
ess is
p
r
ov
ed
b
y
sim
u
l
a
t
i
on an
d e
xpe
ri
m
e
nt
al
l
y
. It
has
be
en est
a
bl
i
s
hed
here
t
h
at
t
h
e
Z-s
o
u
r
ce i
n
v
e
rt
er t
o
p
o
l
o
gy
wi
t
h
ap
pro
p
riate PWM tech
n
i
q
u
e
g
i
v
e
s b
e
tter resu
lt for EV / in
du
ctio
n
m
o
to
r driv
e th
an
th
e trad
ition
a
l in
v
e
rter
base
d dri
v
e
.
REFERE
NC
ES
[1]
C. Chan
, “
The state of th
e art o
f
el
ectric and h
y
b
r
id veh
icles
”, Proceed
ings of th
e
IEEE
, vol
. 90
, n
o
. 2, pp. 247{27
5,
Feb 2002.
[2]
R. Krishnan
,
“
El
ectr
i
c motor
dr
i
v
es
: modelin
g
,
an
alysis, and
con
t
rol
”. Prentice Hall PTR, 2001.
[3]
H.J. Lee, S. Ju
ng, a
nd S.K. Su
l, “A current contro
ller design for current source
inverter-fed ac machine driv
e
s
y
s
t
em
”,
Pow
e
r
Electronics, IEEE Transactions
on
, vol. 28
, no
. 3
,
pp
. 1366-1381
, March
2013.
[4]
P.
Va
s,
“
Sensorless vector and d
i
rect
torque
contr
o
l
”. Oxford University
Press, 19
98.
[5]
R. Rajendr
an an
d N. Devarajan
,
“A co
mparativ
e perform
ance analy
s
is of torque control schem
e
s for induction
m
o
tor drives”,
International Jou
r
nal of Power El
ectronics and Drive Systems (
I
JPEDS)
, vol. 2, no. 2, pp. 177-19
1
,
2012.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Dig
ita
l
Imp
l
emen
ta
tion
o
f
DSVPWM C
o
n
t
rol fo
r EV fe
d
t
h
ro
ugh
I
m
p
e
d
ance So
urce In
verter (An
and
a K
.
A.)
48
5
[6]
Y. Tang
, S. Xie, and J. Ding, “Pulse
width modulation
of z-source inver
t
ers
with
minimum inductor curren
t
r
i
pple”,
Industrial Electronics,
I
E
EE Transactions on
, vol. 61
, no
. 1
,
pp
. 9
8
-106, Jan
2014.
[7]
Z. M. Salem, “Dsp based vect
or
control of five-p
hase induc
tion using fuzzy
logic
control”,
International Journal of
Power Electronics and Dr
ive Sys
t
ems (
I
JPEDS)
, 2012.
[8]
Y. Liu, B
.
Ge, H
.
Abu-Rub, and
F.
Z. Peng, “Overview of space
vector m
odulations for three-ph
ase zsource/quas
i
-
z-source inver
t
er
s”,
Pow
e
r Electronics, I
E
EE Transactions on
, vol. 29
, no
. 4
,
pp
. 2
098-2108, April
2014.
Evaluation Warning : The document was created with Spire.PDF for Python.