Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol
.
2,
N
o
.
4
,
D
ecem
b
er 20
1
2
, pp
. 43
4~
44
4
I
S
SN
: 208
8-8
6
9
4
4
34
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Optimal Desi
gn of DC to DC Boos
t Converter with Closed Loop
Control PID Mechanism for
High Voltage Photovoltaic
Application
R
.
A
r
ulmuruga
n*
, N
.
Sut
h
ant
h
ira
Va
ni
t
h
a
**
* Associate Prof
essor, Depar
t
m
e
nt of
EE
E, Knowledge Inst
itut
e
of Technol
og
y
,
Affiliated to
An
na
Universi
t
y
**Professor and
Head, Departm
e
nt of
EE
E, Knowledge Inst
itut
e
of
Technolog
y
,
Affiliated to
An
na
Universi
t
y
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Oct 15, 2012
Rev
i
sed
No
v
11
, 20
12
Accepted Nov 26, 2012
This paper prop
oses a new dc to dc
boost conver
t
er using closed
loop control
proportional Integral
and Derivativ
e mechan
ism for photovoltaic (PV)
standalon
e
high
voltag
e
applications
. Th
e boost converter is co
mposed of
MOSFETs which are driven b
y
closed loop PWM control. Man
y
adv
a
ntag
es
including
high
efficiency
, minimum nu
mber of switch, h
i
gh
voltag
e
an
d
power, low cost. This conver
t
er
is a
ttractiv
e for h
i
gh voltage
and
high power
applications. Th
e an
aly
s
is and design consider
a
tions of the converter ar
e
presented
.
A pro
t
oty
p
e was implemente
d for
an
application
requir
i
ng a 410W
output power,
in
put voltag
e
rang
e from 17.1-V, and a 317-V outp
u
t voltag
e
.
The proposed
s
y
stem efficien
cy
is about 90%
.
Keyword:
B
oost
c
o
nve
rt
e
r
Clo
s
ed
l
o
op
pro
por
tio
n
a
l
In
teg
r
al an
d deriv
a
tiv
e con
t
ro
l
Dc to d
c
conv
erter
Hi
g
h
vol
t
a
ge
St
andal
one
p
h
o
t
o
vol
t
a
i
c
Copyright ©
201
2 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
R. Arulmu
rug
a
n
,
Asso
ciate Pro
f
esso
r,Dep
a
rtmen
t
of
EEE,
Kno
w
led
g
e
In
stitu
te of Techn
o
l
o
g
y
, Affiliated
to
Ann
a
Un
i
v
ersity
Em
a
il: aru
l
.lect@g
m
a
il.co
m
1.
INTRODUCTION
One
of t
h
e major c
once
r
ns
in the power
sector
i
s
day
-
t
o
-
d
ay
i
n
crea
si
ng
p
o
we
r dem
a
nd
b
u
t
t
h
e
u
n
a
v
a
ilab
ility o
f
enou
gh
reso
urces t
o
m
eet th
e power de
m
a
n
d
u
s
ing
th
e conv
en
ti
on
al en
erg
y
sou
r
ces.
Dem
a
n
d
h
a
s in
creased
fo
r
ren
e
wab
l
e sou
r
ces o
f
energ
y
to
b
e
u
tilized
alo
n
g
with
con
v
e
n
tion
a
l syste
m
s to
m
eet
t
h
e ener
gy
dem
a
nd.
R
e
newa
bl
e
s
o
urces like
wind
energy a
n
d sola
r ene
r
gy a
r
e
the
prim
ary energy
so
urces
wh
ich
are b
e
i
n
g u
tilized
in
t
h
is regard. Th
e con
t
i
n
uou
s
u
s
e
o
f
fo
ssil fu
els h
a
s
cau
sed
th
e
fo
ssil fu
el
dep
o
si
t
t
o
be r
e
duce
d
an
d ha
s drast
i
cal
l
y
affect
ed t
h
e en
vi
ro
nm
ent
depl
et
i
ng t
h
e bi
os
ph
ere an
d cum
u
l
a
t
i
v
el
y
addi
ng
t
o
gl
o
b
a
l
warm
i
ng [
1
-
10]
.
So
lar en
erg
y
is ab
und
an
tly av
ailab
l
e th
at has
m
a
d
e
it p
o
ssib
l
e to
h
a
rv
est it
an
d
u
tilize it p
r
o
p
e
rly.
Sol
a
r e
n
e
r
gy
c
a
n
be a st
an
dal
one
ge
nerat
i
n
g
uni
t
or ca
n
be
a gri
d
c
o
n
n
ect
ed
gene
rat
i
n
g
uni
t
depe
n
d
i
n
g
on
t
h
e
av
ailab
ility o
f
a g
r
i
d
n
earb
y
.
Thu
s
it can b
e
u
s
ed
to
po
wer
rural areas where th
e av
ailabilit
y o
f
g
r
i
d
s is v
e
ry
l
o
w.
A
n
ot
he
r a
dva
nt
age
o
f
usi
n
g
sol
a
r e
n
er
g
y
i
s
t
h
e
po
rtabl
e
operation
wheneve
r
where
v
er necessary [2].
So
lar
Pho
t
ovo
ltaic (SPV) cells d
i
rectly con
v
ert sun
ligh
t
in
to
electricity. Man
y
SPV cells
are gro
uped
t
oget
h
e
r
t
o
f
o
r
m
a
m
odul
e.
M
o
d
u
l
e
s are
n
o
rm
al
l
y
form
ed by
se
ri
es co
nnect
i
o
n
of
S
P
V cel
l
s
t
o
g
e
t
t
h
e
require
d
out
put voltage
. Modules ha
ving large output
c
u
rrents are
realized by i
n
creasi
n
g the s
u
rface a
r
ea of
each S
P
V cell
or by c
o
nnecti
n
g se
veral
of t
h
ese i
n
para
llel. A SP
V a
r
ray
m
a
y be either
a m
odule
or group
of
m
odul
es co
n
n
e
c
t
e
d i
n
seri
es/
p
aral
l
e
l
con
f
i
g
u
r
at
i
o
n
.
Out
put
of
t
h
e
SP
V ar
r
a
y
m
a
y
di
rect
l
y
feed
l
o
a
d
s
or
m
a
y
use power elec
tronic conve
rter for
furt
he
r processing [3-8]. These c
o
nvert
e
rs m
a
y
be used t
o
se
rve
di
f
f
e
rent
p
u
rp
o
s
es lik
e co
n
t
ro
lling
th
e
p
o
wer fl
o
w
in
g
r
i
d
conn
ect
ed syste
m
s, track th
e m
a
x
i
m
u
m
p
o
wer av
ailab
l
e fro
m
th
e SPV array
.
Mod
e
l of
SPV system
i
s
t
h
eref
ore
re
qui
re
d t
o
st
u
d
y
a
n
d optim
i
ze the perf
or
m
a
n
ce of
th
e
com
p
l
e
t
e
sy
st
em
i
n
cl
udi
n
g
t
h
ese
co
nve
rt
ers
and
ot
her
c
o
nn
ect
ed
l
o
a
d
s [9
, 10]
. Thi
s
pa
per
aim
s
at
devel
o
pi
n
g
Evaluation Warning : The document was created with Spire.PDF for Python.
43
5
I
S
SN
: 2
088
-86
94
IJPE
DS Vol. 2,
No.
4,
December 2012 :
434 –
444
a co
m
p
lete
math
em
at
ical
mo
d
e
l
of a So
l
a
r Ph
o
t
ov
o
ltaic cell su
itab
l
e for an
alysis
o
f
a non
-un
i
fo
rm
l
y
illu
m
i
nated solar m
odule powere
d
de
sign of
dc to dc
c
o
nve
rter
with high
voltage
ga
in. MATL
AB-M file
codi
ng
ha
s
bee
n
use
d
f
o
r si
m
u
l
a
t
i
on i
n
t
h
e
p
r
o
p
o
sed
sy
st
em
[11-
13]
.
2.
PROP
OSE
D
SYSTE
M
CO
NFIG
U
RATI
O
N
The
pr
o
p
o
s
ed
sy
st
em
consi
s
t
s
o
f
a
PV
m
o
d
u
l
e
, a
ne
w
desi
gn
o
f
DC
t
o
D
C
co
nve
rt
er
(c
ho
p
p
er
),
DC
capacitor, clos
ed loop PID c
o
ntrol m
echanism and loa
d
as
shown in
Figure
1. T
h
e m
easurem
ents are pla
ced at
b
o
t
h
in
pu
t and o
u
t
pu
t sid
e
s
o
f
th
e co
nv
erter, lo
ad
u
tility
. Pro
p
o
s
ed
power co
n
t
ro
l sch
e
m
e
o
f
th
e PV lo
ad
con
n
ect
ed
sy
st
em
i
s
m
odel
e
d
by
usi
n
g M
A
T
L
AB
/
S
i
m
ul
i
nk. T
h
e s
u
b
s
y
s
t
e
m
expl
anat
i
o
n
i
s
gi
ve
n
det
a
i
l
e
d.
Fi
gu
re
1.
B
l
oc
k
di
ag
ram
of P
V
gri
d
c
o
n
n
ect
ed sy
st
em
2.
1 P
V
S
y
s
t
em
2.
1.
1 T
h
e
P-
N
Junc
ti
o
n
Th
e p-n
ju
n
c
ti
o
n
, shown
in
Fig
u
re 2
,
con
s
titu
tes of
a th
ick
m
o
d
e
rately p
-
do
p
e
d
su
b
s
t
r
ate with
ex
tra
hol
es
an
d a
hea
v
i
l
y
n-
d
ope
d t
h
i
n
l
a
y
e
r (a
r
o
u
n
d
10
0 t
i
m
es t
h
i
nne
r t
h
an
t
h
e
p
-
d
o
p
ed
su
bst
r
at
e).
[1
4,
1
5
]
Fi
gu
re
2.
P
V
c
e
l
l
p-
n
ju
nct
i
o
n
Th
e b
a
sic sem
i
co
ndu
ctor m
a
t
e
rial is u
s
u
a
lly silico
n
(S
i)
wh
ich
is do
p
e
d
with
group
III
material su
ch
as bo
ro
n (B
) t
o
get
an
n-
do
p
e
d m
a
t
e
ri
al
, or
wi
t
h
gr
o
up
V m
a
t
e
ri
al
such as ph
os
ph
o
r
o
u
s
(P) t
o
get
a p
-
d
o
p
ed
mater
i
al [
3
].
W
h
en expo
sed to
so
lar r
a
d
i
atio
n of
a sp
eci
f
i
c b
a
nd
g
a
p (
a
ro
und
1
.
1
eV
fo
r Si
w
h
ich
is
clo
s
e t
o
t
h
e re
d l
i
ght
e
n
er
gy
whi
c
h i
s
ar
ou
n
d
1.
7 e
V
),
el
ect
r
o
n
-
h
o
l
e
p
a
i
r
s a
r
e c
r
eat
ed
by
ph
ot
ons
of
ene
r
gy
great
e
r
th
an
t
h
e
b
a
nd
g
a
p.
A
v
o
ltag
e
po
ten
tial is then
created
by t
h
e electric
field
whic
h se
para
tes the create
d
charge
carriers
.
T
h
is
pote
n
tial difference
produce
s
a c
u
rrent i
n
a close
d
circ
ui
t whe
n
a loa
d
is connected
to the
termin
als o
f
the cell.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
4
36
Opt
i
m
al
Desi
g
n
of
DC
t
o
DC
Bo
ost
C
o
nvert
e
r w
i
t
h
C
l
ose
d
Lo
op
C
o
nt
rol
PID
Mec
ha
ni
s
m
..
.(
R. Ar
ul
m
u
rug
a
n
)
2
.
1
.
2
.
T
h
e PV
Cell Circuit
Model
The P
V
cel
l
can be a
p
pr
oxi
m
a
t
e
d by
a cu
rre
nt
so
urce a
n
d
a p-
n j
u
nct
i
o
n
sim
i
l
a
r t
o
t
h
at
of a
di
o
d
e,
t
hus i
t
s
eq
ui
va
l
e
nt
ci
rcui
t
i
s
sho
w
n i
n
Fi
g
u
r
e 3. T
h
e m
odel
i
n
cl
udes al
s
o
seri
es an
d sh
u
n
t
resi
st
o
r
s w
h
ere t
h
e
series resist
or
R
s
i
s
usual
l
y
ve
ry
sm
all
t
h
at
coul
d b
e
ne
gl
ec
t
e
d an
d set
t
o
zero
,
w
h
i
l
e
t
h
e
sh
unt
resi
st
or
R
sh
is
very
l
a
r
g
e a
n
d
coul
d
be c
o
n
s
i
d
ere
d
as
an
o
p
e
n ci
rc
ui
t
.
[
1
4]
Fi
gu
re
3.
P
V
C
e
l
l
C
i
rcui
t
M
o
del
Th
e d
i
rection
s
an
d
lab
e
ls of th
e circu
it cu
rren
ts ar
e sho
w
n
in
Fig
u
re 3
.
Wh
en
th
e cell is
in
th
e d
a
rk
,
the curre
nt s
ource I
ph
w
o
u
l
d be zero
.
2.
1.
3. T
h
e P
V
Arra
y E
q
u
a
ti
ons
The c
u
r
r
e
n
t
an
d
vol
t
a
g
e
of a
PV
array
are ex
pon
en
tially related
wh
ic
h explains t
h
e s
h
a
p
e of the
V-I
curve in Figure 1. If
one considers that the
array con
s
ists o
f
N
p
p
a
rallel cells an
d
Ns
series cells and that R
sh
is
i
n
fi
ni
t
e
, t
h
e
n
t
h
e eq
uat
i
o
ns r
e
l
a
t
i
ng t
h
e v
o
l
t
age, cu
rre
nt
,
and
p
o
we
r are
gi
ve
n i
n
eq
ua
t
i
ons (
1
)
,
(
2
)
,
and
(3
)
whi
l
e
Ta
bl
e 1 defi
nes
t
h
e
eq
u
a
t
i
on vari
a
b
l
e
s [4]
.
Tabl
e 1. PV
Pa
ram
e
t
e
rs
Defi
n
i
t
i
ons
Label
Description
V
pv
Ar
r
a
y
voltage
I
pv
Arra
y
cur
r
ent
G Solar
irradiance
T Cell
te
m
p
e
r
ature
T
r
Ref
e
rence
te
m
p
e
r
a
t
ure
I
ph
L
i
ght gener
a
ted cu
r
r
e
nt
I
0
PV cell
saturation
current
A Ideality
factor
B Ideality
factor
K Boltzm
a
n
constant
Q Electron
charge
R
s
Series
resistance o
f
the cell
I
sc
r
PV cell
short-circu
it current at
25
o
C and 100m
W
/
c
m
2
K
Short-circuit cur
r
e
n
t te
m
p
eratur
e co-
e
f
f
i
cient at I
sc
r
I
0r
Satu
ratio
n
cu
rren
t
at T
r
E
g0
Band gap for silicon
∗
∗
∗
l
n
∗
∗
(
1
)
e
xp
1
2
(
3
)
T
h
e
cu
rr
en
ts
I
0
and I
ph
are
gi
ve
n
by
eq
uat
i
o
ns
(4
) a
n
d
(
5
)
an
d
t
h
ei
r
vari
a
b
l
e
s
are al
s
o
s
h
ow
n i
n
Ta
bl
e 1:
Evaluation Warning : The document was created with Spire.PDF for Python.
43
7
I
S
SN
: 2
088
-86
94
IJPE
DS Vol. 2,
No.
4,
December 2012 :
434 –
444
I
∗
3*ex
p
(
∗
∗
∗
(
4
)
∗
298
∗
(
5
)
2.
1.
4 P
h
o
t
o
v
o
l
t
ai
c
Arr
a
y
C
h
arac
teri
sti
c
s
The m
a
in characteristic curves of
a
PV a
r
ray are the
V-I, P-I,
and P-V curves interrelating the
v
o
ltag
e
(V), the cu
rren
t (I), an
d th
e
po
wer
(P)
o
f
th
e
ar
r
a
y.
S
a
mp
le
V
-
I
an
d P
-
I
cu
rv
e
s
a
r
e
ov
er
la
id
on
th
e
sam
e
g
r
ap
h and
sh
own
i
n
Fi
gu
r
e
4 [5
].
Fi
gu
re
4.
P
hot
ov
ol
t
a
i
c
V
-I a
n
d P
-
I
cha
r
act
er
i
s
t
i
c
curve
Figure 4. Typi
cal V-I a
nd
P-I characteristic curves
of a P
V
array
The
fo
r
m
ul
as st
andi
ng
behi
nd t
h
e
s
e
cu
rv
es are
d
i
scu
ssed
wh
ere a
d
e
tailed
literatu
re surv
ey
of PV arrays and
their op
erati
o
n is in
clud
ed.
The m
a
i
n
pur
p
o
se be
hi
n
d
i
n
t
r
od
uci
n
g Fi
gu
r
e
4 i
s
get
t
i
ng a
n
i
d
ea ab
o
u
t
t
h
e not
i
o
n o
f
t
h
e
m
a
xim
u
m
po
we
r poi
nt
of
a PV array
.
T
h
e be
ndi
ng
poi
nt
of t
h
e V
-
I
,
P
-I cu
rve
s
i
s
t
h
e M
PP of t
h
e ar
ray
un
der a ce
rt
ai
n
t
e
m
p
erat
ure a
n
d i
rra
di
a
n
ce s
h
ow
n i
n
Fi
g
u
re
4. T
h
us
whe
n
ope
rat
i
n
g a P
V
array
at
i
t
s
M
PP, m
a
xim
u
m
po
we
r
is extracte
d
a
n
d the
array
is oper
ating a
t
its m
a
xim
u
m
efficiency (f
or the
avail
a
ble irradia
n
c
e
and
te
m
p
erature
)
because t
h
e input power of
the
solar irra
dianc
e
is fully utilized.
2.
2 An
al
ysi
s
o
f
B
o
os
t Co
nve
r
ter
B
oost
co
n
v
ert
e
r st
e
p
s
up
t
h
e i
n
put
v
o
l
t
a
g
e
m
a
gni
t
ude t
o
a
re
q
u
i
r
ed
out
put
v
o
l
t
a
ge
m
a
gni
t
ude
wi
t
h
o
u
t
t
h
e
u
s
e o
f
a t
r
a
n
s
f
o
r
m
e
r. The
m
a
i
n
com
pone
nt
s
o
f
a
b
oost
c
o
nv
ert
e
r a
r
e a
n
i
n
duct
o
r
,
a
di
o
d
e
an
d a
high
fre
que
ncy
switch. T
h
ese
in a c
o
-ordi
n
ated m
a
nner s
u
pp
ly powe
r t
o
t
h
e loa
d
at a
voltage greater t
h
an the
in
pu
t vo
ltag
e
mag
n
itu
d
e
. The co
n
t
ro
l strateg
y
lies in
t
h
e
m
a
ni
pul
at
i
o
n o
f
t
h
e
dut
y
cy
cl
e of t
h
e swi
t
c
h
whi
c
h
causes t
h
e
volt
a
ge c
h
ange
[6] and [7].
Fi
gu
re
5.
Desi
gn
o
f
a
ne
w
b
o
o
st
c
o
n
v
ert
e
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
4
38
Opt
i
m
al
Desi
g
n
of
DC
t
o
DC
Bo
ost
C
o
nvert
e
r w
i
t
h
C
l
ose
d
Lo
op
C
o
nt
rol
PID
Mec
ha
ni
s
m
..
.(
R. Ar
ul
m
u
rug
a
n
)
There
are
t
w
o
m
odes of
o
p
e
r
at
i
on
of
a
bo
os
t
con
v
e
r
t
e
r.
Th
ey
are
based
o
n
t
h
e
cl
osi
n
g
a
n
d
o
p
e
n
i
n
g
o
f
t
h
e switch.
Th
e fi
rst m
o
d
e
is wh
en
th
e switch
is clo
s
ed; th
is is k
n
o
w
n as th
e ch
ar
g
i
ng
m
o
d
e
of
op
er
atio
n.
The sec
o
n
d
m
ode
i
s
whe
n
t
h
e swi
t
c
h
i
s
ope
n;
t
h
i
s
i
s
k
n
o
w
n
as
t
h
e
di
sc
ha
rgi
n
g
m
ode o
f
ope
rat
i
o
n
[8]
.
Du
ri
n
g
char
gi
n
g
m
ode of o
p
erat
i
o
n
;
t
h
e swi
t
c
h i
s
cl
osed an
d t
h
e i
nduct
o
r i
s
char
ge
d by
t
h
e sou
r
ce t
h
r
o
u
gh t
h
e
swi
t
c
h. T
h
e c
h
argi
ng c
u
rre
nt
i
s
exp
o
n
ent
i
a
l
i
n
nat
u
re
but
fo
r sim
p
licity
is assu
m
e
d
to
b
e
lin
early v
a
ryi
n
g
[8
].
The di
ode rest
ri
ct
s t
h
e fl
ow
of cu
rre
nt
fr
o
m
t
h
e source t
o
t
h
e l
o
ad a
nd
t
h
e dem
a
nd of
t
h
e l
o
ad i
s
m
e
t
by
t
h
e
discha
rgi
n
g of
the capa
c
itor.
In t
h
e di
sc
har
g
e
m
ode o
f
ope
r
a
t
i
on;
t
h
e s
w
i
t
c
h i
s
o
p
e
n
an
d t
h
e di
ode i
s
fo
r
w
ar
d bi
ase
d
.
T
h
e i
n
duct
o
r
no
w
di
scha
r
g
e
s
an
d t
o
get
h
e
r
wi
t
h
t
h
e s
o
u
r
ce cha
r
ge
s th
e cap
acitor an
d m
e
e
t
s th
e lo
ad
d
e
m
a
n
d
s
. Th
e lo
ad
cu
rren
t
v
a
riatio
n
is
v
e
ry
sm
al
l an
d in
m
a
n
y
cases is assu
m
e
d
co
nstan
t
throug
hou
t th
e
op
eratio
n
.
Fi
gu
re 6.
W
a
v
e
fo
rm
s
of bo
os
t
con
v
e
r
t
e
r
3.
RESULT AND DIS
C
USSI
ON
Thi
s
p
r
o
j
ect
w
a
s do
ne by
usi
ng M
A
TL
AB
/
S
im
ul
i
nk i
n
o
r
der t
o
ob
ser
v
e
t
h
e per
f
o
rm
ance of P
V
l
o
a
d
co
nn
ected syste
m
. Fig
u
re
7
il
lu
strates th
e overall m
o
d
e
l o
f
PV system
in
MATLAB/Simu
lin
k.
Th
e p
a
ram
e
ter
s
were ob
tain
ed
fo
r a g
e
n
e
ralized
so
lar cell. Th
e p
l
o
t
is si
m
i
lar to
th
e th
eoretically
kn
o
w
n
pl
ot
o
f
t
h
e sol
a
r cel
l
v
o
l
t
a
ge a
n
d
cu
rr
ent
.
T
h
e
pea
k
po
we
r i
s
den
o
t
e
d
by
a ci
rcl
e
i
n
t
h
e
pl
ot
. Si
nc
e o
n
l
y
one
s
o
lar cell i
n
se
ries is c
o
ns
idere
d
,
he
nce t
h
e s
o
la
r
ou
tpu
t
vo
ltag
e
is less
(0.61
V) in
t
h
is case.
Thi
s
pl
ot
gi
ve
s t
h
e sol
a
r o
u
t
put
p
o
w
er a
g
a
i
nst
t
h
e sol
a
r
out
put
v
o
l
t
a
ge
sho
w
n i
n
Fi
g
u
re
9. T
h
i
s
cl
earl
y
abi
d
es
by
t
h
e t
h
e
o
r
e
t
i
cal
pl
ot
t
h
at
w
a
s sh
ow
n
pre
v
i
ousl
y
. T
h
e m
a
xi
m
u
m
power
poi
nt
i
s
m
a
rked wi
t
h
a
sm
a
ll circle. Th
e in
itial p
a
rt
of th
e
p
l
o
t
fro
m
0
V t
o
th
e m
a
x
i
m
u
m
p
o
w
er po
in
t vo
ltag
e
is
a stead
y slop
e
cu
rv
e
b
u
t
after th
e
max
i
m
u
m
p
o
wer
po
in
t th
e
cu
rv
e is a steep
l
y fallin
g
curv
e. A so
lar
pan
e
l th
at h
a
s th
e k
e
y
specifications l
i
sted in Ta
ble
2.
Fi
gu
re
11 a
n
d
12
are
di
ffe
re
nt
P-
V c
h
aract
eri
s
t
i
c
s of a c
e
rt
ai
n pa
nel
as
di
ffe
re
nt
i
rra
d
i
ances an
d
te
m
p
erature
re
spectively. The circles repres
ent a single
M
PP in each c
h
a
r
acteristic. As
the P-V cha
r
ac
teristic
is con
s
tan
tly varyin
g b
y
ch
ang
i
ng
t
h
e irrad
i
an
ce and
tem
p
erature
,
t
h
e M
PP m
u
st be
tra
c
ked at the
c
h
ange
d
m
o
ment to
m
a
ximize the output power from the panel.
There
f
ore, both
a track
ing spe
e
d and accura
cy are
require
d
to t
h
e
PV system
. The MPPT
pe
rform
a
nce m
a
y
be c
onsi
d
ere
d
as an im
porta
nt factor to increase
gene
rat
i
o
n r
e
v
e
nue
.
Evaluation Warning : The document was created with Spire.PDF for Python.
43
9
I
S
SN
: 2
088
-86
94
IJPE
DS Vol. 2,
No.
4,
December 2012 :
434 –
444
Fi
gu
re
7.
o
v
era
l
l
m
odel
o
f
pr
o
pos
ed
sy
st
em
Th
e
P-V
an
d I-V
cu
rv
es
f
r
o
m
the sim
u
lation are as
shown.
Figure
8. I-V c
h
aracteristics
of a s
o
lar cell
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
4
40
Opt
i
m
al
Desi
g
n
of
DC
t
o
DC
Bo
ost
C
o
nvert
e
r w
i
t
h
C
l
ose
d
Lo
op
C
o
nt
rol
PID
Mec
ha
ni
s
m
..
.(
R. Ar
ul
m
u
rug
a
n
)
Figure 9.
P-V characte
r
istics o
f
a so
lar cell
Figure
10.
P-I
characte
r
istics of a s
o
lar cell
Tabl
e 2 Dat
a
sh
eet
of
KL
0
2
0
Electri
cal char
acte
r
istics
Value
Peak power
20 W
Peak voltage
17.
1 V
Peak cur
r
e
nt
1.
17 A
Open cir
c
uit voltage
21.
5 V
Shor
t cir
c
uit curr
ent
1.
30 A
No.
of cells
36
Figu
re 1
1
. I-
V diffe
re
nt
irra
di
ance
of a s
o
lar
cell
Evaluation Warning : The document was created with Spire.PDF for Python.
44
1
I
S
SN
: 2
088
-86
94
IJPE
DS Vol. 2,
No.
4,
December 2012 :
434 –
444
Fi
g.
ure
1
2
.
P-
I
di
ffe
re
nt
t
e
m
p
erat
ure
o
f
a
sol
a
r cel
l
The si
m
u
l
a
t
i
ons were ca
rri
ed
out
f
o
r dc t
o
d
c
co
n
v
erte
r in
Sim
u
link an
d t
h
e va
rio
u
s wa
v
e
fo
rm
s such
as o
u
t
p
ut
an
d
i
n
p
u
t
v
o
l
t
a
ges,
out
put
a
n
d i
n
put
c
u
r
r
e
n
t
s
, v
o
l
t
a
ge acr
oss
s
w
i
t
c
h, c
o
nt
rol
pul
se
, m
easurem
ent
po
rt
acr
oss
s
w
i
t
c
h
an
d di
o
d
es
pl
ot
s were
o
b
t
a
i
n
ed sh
o
w
n
i
n
Fi
gu
re 1
3
, 1
4
, 15
, 16
, 17
, 18
r
e
spect
i
v
el
y
.
Fi
gu
re 1
3
. O
u
t
put
v
o
l
t
a
ge of
t
h
e
c
o
n
v
e
r
t
e
r
Fi
gu
re
1
4
.
O
u
t
put
c
u
rre
nt
o
f
t
h
e c
o
n
v
e
r
t
e
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
4
42
Opt
i
m
al
Desi
g
n
of
DC
t
o
DC
Bo
ost
C
o
nvert
e
r w
i
t
h
C
l
ose
d
Lo
op
C
o
nt
rol
PID
Mec
ha
ni
s
m
..
.(
R. Ar
ul
m
u
rug
a
n
)
Fi
gu
re 1
5
. V
o
l
t
a
ge
ac
ros
s
s
w
i
t
c
hi
n
g
devi
ce
Fig
u
r
e
16
. Photo
v
o
ltaic
ou
tput
v
o
ltag
e
Fi
gu
re
1
7
. M
e
a
s
urem
ent
p
o
rt
acros
s s
w
i
t
c
h a
n
d
di
ode
Evaluation Warning : The document was created with Spire.PDF for Python.
44
3
I
S
SN
: 2
088
-86
94
IJPE
DS Vol. 2,
No.
4,
December 2012 :
434 –
444
Figure
18. C
o
m
b
ined V
o
,
I
o
,
Vin,
Iin,
P
u
lse, Vs
w,
I
d
4.
CO
NCL
USI
O
N
Anal
y
s
i
s
an
d desi
g
n
co
nsi
d
erat
i
on o
f
dc
t
o
dc bo
ost
con
v
e
r
t
e
r usi
n
g
cl
osed l
o
o
p
PID c
ont
ro
l
m
echani
s
m
for ph
ot
o
vol
t
a
i
c
h
i
gh v
o
l
t
a
ge ap
pl
i
cat
i
ons i
s
pr
op
ose
d
. Si
m
u
lat
i
on res
u
l
t
s
were obt
ai
ned as
31
7
-
V
d
c
to
d
c
co
nv
erter fro
m
a 1
7
.
1
-
V stand
a
lone p
h
o
t
ov
o
ltaic syste
m
. Effici
en
cy attain
ed
u
n
d
e
r lo
ad
con
d
ition
was o
v
er
90
%
.
The co
n
v
ert
e
r m
a
y
be adequat
e
f
o
r
hi
g
h
v
o
l
t
a
ge an
d
hi
gh
po
we
r appl
i
cat
i
o
n. Si
n
ce t
h
e
con
v
e
r
t
e
r has
m
a
ny
advant
a
g
es suc
h
as m
i
nim
u
m
num
b
e
r of
devi
ce,
soft
swi
t
c
hi
n
g
of t
h
e swi
t
c
h
,
hi
g
h
v
o
ltag
e
and
pow
er ou
tpu
t
an
d so
on
.
REFERE
NC
ES
[1]
M
u
mm
adiveera
c
h
ar
y, “
F
ourth-order buck conv
erter fo
r maximum po
wer point tr
acking ap
plications”,
IE
EE
transactions on
aerospa
ce and
e
l
ec
tr
onic s
y
s
t
em
, vol. 47, No. 2. p
p
. 896-911
, April 2011
[2]
Zhong Yi He, Hong Chen, “Integrated solar
controlle
r for solar p
o
wered off-grid
lighting s
y
s
t
em”,
Elsev
i
er, En
erg
y
Pr
ocedia
12, pp. 570-577, September 2011.
[3]
Patel H, Ag
arwa
l V. “
M
ATLAB-based m
odeling
to stud
y the
eff
ects
of p
a
rti
a
l s
h
ading on P
V
arr
a
y char
ac
teris
t
ic
s
Energ
y
Conv
ers
”
,
I
E
EE Trans
vol. 23
, pp
. 302–1
0, 2008
[4]
Ishaque K, Salam Z, Taher
i
H.
“Ac
c
u
ra
te
MATLAB simulink PV
sy
ste
m
simulator based on a two-diode model”,
J
Power E
l
ec
tron
vol. 11
, no
. 9
,
20
11.
[5]
Enslin JHR, W
o
lf MS, Sn
y
m
an DB, Sweiger
s
W. “I
ntegrated photovoltaic
maximum powe
r
point tracking
converter”.
I
E
EE Trans. Ind. Electron
, vol. 44
,
no. 6
,
pp
. 769-7
73, 1997
.
[6]
Martins, D., Weber, C
.
and
Demonti, R
.
(2002)
.
Photovolta
ic po
wer processing
with hi
gh
efficiency
using maximum
power ratio
tech
nique,
Proc. 28
th IEEE I
E
CON
,
v. 2
,
pp
. 1079–1
082.
[7]
Rajib Bar
a
n Ro
y, “Design and performance analys
is of the solar PV DC water pumping sy
stem”,
Canadian
Journal
on El
ectr
i
cal
an
d El
ect
ronics En
gineering
, Vol.
3, No. 7, Septem
ber 2012
[8]
Renewable Ener
g
y
Technologies
: “Cost
Analy
s
is Series”,
Inter
national Ren
e
w
able Energy Ag
ency,
Volume 1:
Power Sector
, Is
sue 4/5,
pp. 1-45
, June 2012.
[9]
Veerach
ar
y
,
M,
“Two-loop voltage-mode control of
coupled
indu
ctor step down b
u
ck conver
t
er
”,
IEE Proc
eed
ing
s
on Electric
Pow
e
r Applications
,
vol. 152
, no
. 6
,
p
p
. 1516—1524
,
2005.
[10]
Eung-Ho Kim
and Bong-Hwan Kwon,
“Zer
o voltage and zero current switc
hing full brid
ge converter with
secondar
y
reson
a
nce”,
IEEE tran
sacti
ons on
indu
strial electronics
, 2009
[11]
Patel
H, Agarwa
l V. “
M
ATLAB
-
based m
odeling
to stud
y
the
ef
f
ects
of
par
tia
l s
h
ading on
P
V
arr
a
y ch
ara
c
ter
i
s
tic
s
.
Energ
y
Conv
ers
”
,
I
E
EE Trans
, v
o
l 23, pp. 302–1
0, 2008
.
[12]
Ishaque K, Salam Z, Taher
i
H.
“Ac
c
u
ra
te
MATLAB simulink PV
sy
ste
m
simulator based on a two-diode model”,
J
Power E
l
ec
tron
,
vol. 11
, pp
. 9
,
20
11.
[13]
Ishaque K, Salam Z, Sy
afar
uddin, “A comprehensive MATLAB Simulink PV
sy
stem simulator
with partial shad
ing
capab
ility
b
a
sed
on two-diode model.”,
Solar
En
ergy,
vo
l. 85, pp. 2217–27, 2011.
[14]
Ahmed M. Kassem, “MPPT control de
sign and
performance im
provements of
a PV generator powered DC mot
o
r-
pump sy
stem based on artifi
cial neural
n
e
tworks
”,
Elsevier Ltd,
Electrica
l
Pow
e
r and Energy Systems
43, pp. 90–9
8,
2012.
[15]
A.
B.
G.
Bahgat,
N.
H.
Helwa, G.E.
Ahmad,
E.
T. El Shen
aw
y
,
“Maximum powe
r
point
tr
aking
controller for P
V
s
y
stems using neural n
e
tworks”,
Renewab
l
e Ener
gy
30
pp. 1257–
1268, 2005
.
[16]
Masafum
i
Mi
y
a
take, Mum
m
a
di Veerach
ar
y
,
Fuhito To
rium
i
,
Nobuhiko Fujii,
Hidey
o
shi Ko
,
“Maxim
u
m
Power
Point Track
ing
of Multiple P
hotovoltaic Arr
a
y
s
: A PSO Approach”,
IEEE Transactions
on Aerospace
and
E
l
ec
t
r
oni
c Sy
stems,
vol. 47, no.
1 janu
ar
y
2011
.
Evaluation Warning : The document was created with Spire.PDF for Python.