Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol.
6, No. 4, Decem
ber
2015, pp. 723~
729
I
S
SN
: 208
8-8
6
9
4
7
23
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Voltage and Frequency Control
of Variable Speed Induction
Generator using One C
ycle Control Technique
T. Ela
n
g
o
1
,
A.
Senthil Kum
a
r
2
1
Anna Univ
ersity
, Chenn
a
i & D
e
partment of
EEE, Sri B
a
laji Chockaling
a
m Engg.
Colle
ge, Arn
i
, Tamil Nadu
, India
2
Department of
EEE, Velammal
Engg.
Co
lleg
e
, Chennai,
Tamil Nadu,
India
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Apr 24, 2015
Rev
i
sed
Au
g
11
, 20
15
Accepted
Sep 10, 2015
Induction gen
e
r
a
tors are widely used to extract the energ
y
fro
m renewable
sources, p
a
rticularly
as a wind
power
gener
a
tor
eith
er gr
id
con
n
ect
ed or
is
olated op
era
tio
n. The probl
em
as
s
o
ci
ated with
stand-alon
e mode operation
is
voltag
e
and f
r
equenc
y
con
t
ro
l. An
el
ectron
i
c
load
contro
ll
er
is
us
ed for
frequency
/
voltage cont
rol. I
t
us
es PI contro
ller to gener
a
te th
e g
a
ting
signal
for the DC chopper. This metho
d
has
the fault o
f
bad d
y
namic r
e
sponse and
thedistortion of
output voltag
e
at zero-
cr
ossing. To
overcome the defect
of
PI
controll
er when
s
t
ead
y s
t
at
e er
ror is
equ
a
l
to
zero
,
a
one
c
y
c
l
e
contro
l
techn
i
que suggested and
implemented.
Simulation of wind d
r
iven self-
excited inductio
n
gener
a
tor (SEIG)
pe
rformance is studied
and
results
are
disc
usse
d.
Keyword:
Electronic
loa
d
controller
Fre
que
ncy
c
o
n
t
rol
I
ndu
ctio
n G
e
ner
a
to
r
One
cycle cont
rol
Vo
ltag
e
con
t
rol
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
T. Elango,
Research
Sc
holar, Anna University,Chennai,
Ass
o
ciate Prof., De
pa
rtem
ent of
EEE,
Sri
B
a
l
a
ji
C
h
oc
kal
i
ngam
E
ng
g.
C
o
l
l
e
ge,
A
r
ni
,
Tam
i
l
Nad
u
,
I
ndi
a.
Em
a
il: te
lan
g
o
_
a
rn
i@yahoo
.co
.
in
1.
INTRODUCTION
To m
eet
t
h
e sh
ort
f
al
l
i
n
po
we
r dem
a
nd,
po
w
e
r ge
nerat
i
o
n f
r
om
wi
nd c
ont
ri
b
u
t
e
s m
a
jor r
o
l
e
am
ong
othe
r re
newa
bl
e energy sourc
e
s suc
h
as s
o
lar, tide et
c., a
n
d, adva
ncem
e
n
t of power el
ectronics technology
also
sup
por
t to
g
e
n
e
r
a
te m
o
r
e
po
w
e
r
fr
om w
i
n
d
.
Th
e
f
u
t
u
r
e
tr
en
d
of
w
i
nd
en
erg
y
co
nv
er
si
on
syste
m
s
(W
EC
S) is to increase the powe
r capac
i
t
y
of wi
nd t
u
rbi
n
es and ge
ner
a
t
o
rs t
o
re
d
u
ce t
h
e cost
of
gen
e
rat
e
d
electricity[1]-[5]. The
po
we
r electronic technologies
used in
wi
n
d
t
u
r
b
i
n
e a
ppl
i
c
at
i
on ha
ve c
h
ange
d
dram
atically duri
n
g la
st 30 y
ears
[6]-[7].
In rem
o
t
e
area el
ect
ri
c powe
r
su
ppl
y
,
st
an
d
a
l
one o
p
e
r
at
i
o
n of SE
I
G
s ha
s a vi
t
a
l
rol
e
.
In o
r
der t
o
opt
i
m
i
z
e t
h
e cost
of t
h
e sy
st
em
i
nduct
i
o
n m
o
t
o
r i
s
used as gene
rat
o
r. It
has si
gni
fi
can
t
advant
a
g
es such as
easy
m
a
i
n
t
e
nance an
d c
o
nt
r
o
l
,
n
o
nee
d
o
f
separat
e
l
y
exciting source instead
of t
h
at, capacitor c
o
nnecte
d
acros
s the stator wi
ndi
ng is s
u
fficient to e
x
cite the m
ach
in
e, an
d, rug
g
e
d
in
ro
t
o
r co
nstru
c
ti
o
n
is m
o
re su
itab
l
e
for wind
turb
i
n
e ro
tatio
n
s
. Th
e vo
ltag
e
g
e
neratio
n
an
d
g
e
n
e
rated
frequ
en
cy d
e
p
e
nd
s on
th
e wind
v
e
l
o
cities.
Th
e
p
r
ob
lem
a
sso
ciated
with
th
is sch
e
m
e
is to
co
n
t
ro
l t
h
e
freq
u
e
n
c
y an
d vo
ltag
e
.
B
h
i
m
Si
ngh e
t
al
[8]
s
u
g
g
e
s
t
e
d a l
o
ad
co
nt
r
o
l
t
ech
ni
q
u
e
t
o
s
o
l
v
e
t
h
e
ab
ove
p
r
obl
e
m
. Transi
ent
anal
y
s
i
s
o
f
S
E
IG
co
nsi
d
ere
d
on
t
h
ei
r
f
u
rt
her
resea
r
c
h
[
9
]
.
H
o
weve
r, t
h
e m
e
t
hod
su
gg
est
e
d
by
t
h
em
in
corpo
r
ated
PI con
t
ro
ller to
g
e
n
e
rate th
e
gate p
u
l
se
for the ch
opp
er switch
wh
ich
is con
t
ro
llin
g
p
o
wer flow
th
ro
ugh
th
e dum
p
lo
ad
/ add
itio
n
a
l l
o
ad.
One-cy
cl
e con
t
rol
i
s
a t
y
pi
cal
pract
i
cal
nonl
i
n
ear cont
r
o
l
t
echnol
ogy
;
i
t
has
rapi
d
dy
nam
i
c respons
e an
d
track
p
e
rf
o
r
ma
n
c
e
[
1
0
]
.
It is desig
n
e
d
to
con
t
ro
l th
e d
u
t
y-ratio
o
f
th
e switch in
real ti
me. T
h
e
a
i
m
o
f
t
h
i
s
w
o
rk
to elim
inate the
problem
a
ssociated
with PI con
t
ro
ller as an
d wh
en th
e stea
dy state error is z
e
ro by
im
pl
em
ent
i
ng
one
cy
cl
e co
nt
r
o
l
(
O
C
C
)
.
T
h
e
OC
C
i
s
prese
n
t
e
d i
n
s
ubse
q
ue
nt
sect
i
o
n i
n
de
t
a
i
l
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6
,
No
.
4
,
D
ecem
b
er
2
015
:
72
3 – 729
72
4
Thi
s
pa
per
o
r
g
a
ni
zed
as sect
i
o
n
2
descri
bes
t
h
e sy
stem
confi
g
uration,
Freque
ncy c
o
ntrol,
one cycle
co
n
t
ro
l and
its
o
p
e
ration
.
Simu
lated
resu
lts an
d con
c
lusion
p
r
esen
ted in
sectio
n
3
an
d 4 resp
ectiv
ely.
2.
SYSTE
M
CO
NFIG
U
RATI
O
N
Th
e
p
r
op
osed
syste
m
is sh
ow
n in
Figu
r
e
1. I
t
co
m
p
r
i
ses
w
ith
SEIG
,
Electr
o
n
i
c lo
ad
co
n
t
r
o
ller
,
on
e
cycle controller, c
o
nsum
er load
a
n
d wi
nd turbi
n
e em
ulator.
Fi
gu
re
1.
Sc
he
m
a
t
i
c
di
agram
of
SE
IG
wi
t
h
El
ect
roni
c
Loa
d
c
ont
rol
l
e
r
an
d
one
cy
cl
e co
nt
r
o
l
l
e
r
The t
o
rq
ue
ge
nerat
e
d by
t
h
e
wi
n
d
t
u
r
b
i
n
e em
ul
at
or wi
t
h
wi
n
d
vel
o
ci
t
y
of
6 m
/
sec i
s
appl
i
e
d t
o
t
h
e
in
du
ctio
n
m
o
tor. Sin
ce t
h
e torq
u
e
is in
n
e
g
a
tiv
e and
ade
q
ua
te capacitor c
o
nnecte
d
across
the stator wi
nding,
as soon as t
h
e
rot
o
r speed e
x
ceed
the
synchronous s
p
ee
d (Ns
=
120f/
P
)
volta
ge induced across
the stator
wind
ing
an
d
also
b
u
ild
s up, to
t
h
e
rated v
a
lu
e is
called
self-ex
c
itatio
n
pro
cess.
So
called self-ex
c
ited
in
du
ctio
n gen
e
rato
r.
The SE
IG s
u
pply the power t
o
a three
-
phase
wye
con
n
ect
e
d
co
ns
um
er l
o
ad an
d an a
ddi
t
i
onal
(d
um
p
l
o
ad
) i
s
sh
o
w
n
i
n
Fi
g
u
re
1.
D
u
m
p
l
o
ad i
s
c
o
nt
r
o
l
l
e
d by
t
h
e
pr
o
pose
d
one
c
y
cl
e cont
r
o
l
l
e
r.
The
fu
nct
i
o
n
of t
h
e
co
n
t
ro
ller is to
main
tain
th
e
po
wer
g
e
n
e
rated b
y
SEIG is con
s
tan
t
at all con
d
ition
.
2.
1.
Frequenc
y Contr
o
l
The Electronic
load c
ontrolle
r can
be use
d
t
o
connect
or d
i
scon
nect
t
h
e dum
p
l
o
ad
wheneve
r
the c
onsum
e
r
load fl
uctuates
. It consists of a diode rectifier and a
step
d
o
wn
chop
p
e
r circu
it co
nn
ected
in
series
with
a
dum
p l
o
ad
. T
h
e dut
y
cy
cl
e o
f
t
h
e I
G
B
T
s
w
i
t
c
h i
s
cont
rol
l
ed de
pe
ndi
n
g
on t
h
e va
ri
at
i
o
ns i
n
c
o
nsum
er l
o
a
d
whi
c
h e
v
ent
u
al
l
y
deci
de t
h
e a
m
ount
o
f
po
we
r t
o
be
d
u
m
p
ed
.
Th
e AC
v
o
ltage fro
m
th
e SEIG term
in
al is r
ectifie
d by
m
e
ans o
f
an
u
n
co
nt
r
o
l
l
e
d b
r
i
d
ge
rect
i
f
i
e
r an
d
a cap
acito
r is co
nn
ected
acro
ss th
e
d
i
od
e b
r
i
d
g
e
rec
tifi
e
r to
filter out th
e ripp
les.
Th
e effectiv
e
in
pu
t
resistance see
n
by the
s
o
urce
at
poi
nt
o
f
c
o
m
m
on cou
p
l
i
n
g
(
P
C
C
)
i
s
,
R
R
V
V
I
V
R
s
s
o
s
i
(1
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Voltage and Fr
eque
ncy
C
o
ntrol
of
Vari
able
Spee
d
I
n
duction Gene
rat
o
r
us
ing
O
n
e Cycle
....
(
T
. El
ango)
72
5
From
eqn.
(1
),
t
h
e dut
y
cy
cl
e can be
vari
e
d
f
r
om
0 t
o1 by
v
a
ry
i
ng T
or f a
nd t
h
e i
n
p
u
t
re
si
st
ance (R
i
)
as a function of
duty cycle
α
.
2.
2.
One Cycle Contr
o
l
Tecnique
One cy
cl
e co
nt
rol
ca
n be
use
d
t
o
co
nt
r
o
l
a swi
t
c
hed
va
ri
ab
l
e
and a s
w
i
t
c
h
cont
rol
l
e
d
by
t
h
i
s
m
e
t
hod
ful
l
y
reject
s t
h
e i
nput
si
g
n
al
and
rep
r
o
d
u
ce
s t
h
e cont
rol
r
e
fere
nce at
t
h
e out
p
u
t
[
10]
. T
h
e basi
c ass
u
m
p
ti
on
here i
s
t
h
at
t
h
e
swi
t
c
hi
n
g
fre
q
u
ency
i
s
m
u
ch hi
ghe
r t
h
a
n
t
h
e
m
a
xim
u
m
freque
ncy
o
f
t
h
e
i
nput
a
nd re
fe
rence
si
gnal
s
.
One cy
cl
e co
n
t
rol
l
e
r use
s
t
h
e const
a
nt
fre
que
ncy
p
u
l
s
e t
o
t
u
r
n
on a
n
d
t
u
rn
of
f t
h
e t
r
ansi
st
or a
n
d
activ
e th
e in
teg
r
at
o
r
.
It is n
e
w non
lin
ear co
n
t
ro
l techn
i
que i
m
p
l
e
m
en
ted
to
con
t
ro
l th
e
d
u
t
y ratio
o
f
switch
i
n
real tim
e
,
in each cycle th
e avera
g
e val
u
e chopping wa
veform
of switc
h output is exactly sa
me as
cont
rol
refe
rence
vol
t
a
ge. T
h
i
s
sam
p
l
e
si
gnal
i
s
t
a
ken f
r
o
m
t
h
e cho
ppe
d v
o
l
t
a
ge n
o
t
fr
om
t
h
e out
put
v
o
l
t
age.
One
-
cy
cl
e co
nt
rol
m
e
t
hod re
je
ct
i
nput
vol
t
a
g
e
pert
ur
bat
i
on i
n
o
n
l
y
o
n
e swi
t
chi
ng cy
cl
e an
d f
o
l
l
o
w t
h
e co
nt
r
o
l
refe
rence
ve
ry
quic
k
ly
.
Let u
(
t) b
e
an
in
pu
t to
a switch
op
erating
at v
a
riab
le o
n
and
off ti
m
e
s (Ton
and
Toff),t
o
tal cycle
ti
me
Ts,
d
u
t
y
r
a
tio
d(
t)
an
d pro
d
u
c
i
n
g th
e av
er
ag
e
o
f
th
e switch
e
d ou
tpu
t
i.e., effectiv
e sign
al, i
s
)
(
)
(
0
)
(
1
)
(
t
d
t
u
dt
T
t
u
T
t
w
ON
s
(2
)
The
dut
y
rat
i
o
has t
o
be
ge
ner
a
t
e
d as a c
o
nt
r
o
l
i
n
put
t
o
t
h
e
swi
t
c
h
base
d o
n
are
f
ere
n
ce
si
gnal
vre
f
(t
)
.
Th
e in
teg
r
ation
of th
e
switched
v
a
riab
le is
mad
e
ex
actly
equal
t
o
t
h
e i
n
t
e
grat
i
o
n
of t
h
e
cont
rol
refe
re
nce by
regu
latin
g th
e
d
u
t
y-ratio
o
f
the switch in
each
cycle, i.e.,
dt
t
T
ref
V
dt
T
t
u
s
ON
)
(
0
0
)
(
(3
)
If t
h
e switch
i
ng
p
e
riod
is constan
t
in
each
cycle,
then
t
h
e avera
g
e value
of
t
h
e
s
w
itche
d varia
b
le
is
precisely equa
l to control re
fere
nce.
T
h
us, the avera
g
e
of the
switche
d
v
a
riab
le at th
e switch
ou
tp
u
t
i
s
cont
rol
l
e
d
i
n
st
ant
a
ne
ou
sl
y
wi
t
h
i
n
one
cy
cl
e
of
t
i
m
e
durat
i
o
n, i
.
e
.
,
)
(
)
(
0
1
0
)
(
1
)
(
t
V
dt
t
T
ref
V
T
dt
T
t
x
T
t
y
ref
s
s
ON
s
(4
)
The nonlinear
technique
use
d
to co
n
t
ro
l switch
e
s b
a
sed
on
th
is co
ncep
t is
k
nown
as t
h
e “On
e
-Cycle
C
ont
r
o
l
t
e
c
hni
que”
(
O
C
C
)
.
W
i
t
h
t
h
i
s
t
e
c
hni
que
, t
h
e
ef
fect
i
v
e
out
put
si
g
n
a
l
of
t
h
e s
w
i
t
c
h
i
s
)
(
)
(
t
u
V
t
w
ref
(5
)
In OCC tech
n
i
q
u
e
, t
h
e
n
on-lin
ear switch
lead
s i
n
to
a
lin
ear p
a
t
h
b
y
rej
ectin
g th
e inp
u
t
sig
n
a
l
of t
h
e
swi
t
c
h a
nd l
i
n
e
a
rl
y
passi
n
g
t
h
e cont
rol
refe
r
e
nce
W
re
f
.T
he i
n
t
e
g
r
at
or
an
d t
h
e re
-set
t
e
r a
r
e
t
h
e key
c
o
m
pone
nt
s
o
f
th
e
OCC tech
n
i
q
u
e
.
As t
h
e switch is turn
ed on with
the fix
e
d
frequ
e
n
c
y clo
c
k
pu
lse, th
e in
tegratio
n g
e
ts
starts. Th
e in
teg
r
ation
v
a
lu
e is,
dt
t
t
x
k
V
0
)
(
int
(6
)
Wh
ere k
is a co
n
s
tan
t
th
e in
teg
r
ation
valu
e and
th
e
co
n
t
ro
l referen
ce
V
ref
(t
)
are com
p
ared
in
stan
tan
e
ou
sl
y. Thu
s
, t
h
e con
t
ro
ller m
a
d
e
th
e switch
to
t
u
rn
ed
o
f
f wh
en
th
e in
tegration
v
a
lu
e
V
int
reac
hes
the
cont
rol refe
ren
ce
V
ref
(t
)
an
d
th
e co
n
t
ro
ller au
to
m
a
tical
ly resets th
e in
teg
r
ato
r
v
a
lu
e t
o
zero
. Th
e
du
ty rat
i
o
(d)
o
f
th
e
p
r
esen
t cycle is calcu
lated
b
y
using
th
e fo
llo
wi
n
g
equatio
n
:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6
,
No
.
4
,
D
ecem
b
er
2
015
:
72
3 – 729
72
6
)
(
0
)
(
t
V
dt
dT
t
u
k
ref
s
(7
)
Sin
ce th
e switch
p
e
riod
,
T =
co
nstan
t
and
K = l/k
Ts
is also constant. T
hus, the a
v
era
g
e
value
of t
h
e
switch
e
d
v
a
riab
le in
each cycle at th
e switch ou
tpu
t
y (t) is
ad
m
i
tted
to
b
e
)
(
1
0
)
(
1
)
(
t
V
kT
dt
dT
t
u
T
t
w
ref
s
s
s
(8
)
Th
is con
t
ro
l strateg
y
can
b
e
i
m
p
l
e
m
en
ted
with
a si
m
p
le in
teg
r
ator with
reset. Areset p
u
l
se is
gene
rat
e
d
by
a
cl
ock
of
re
q
u
i
r
ed s
w
i
t
c
hi
n
g
fr
eque
ncy
.
At
the start of ev
ery
c
ycle th
e
switch
is turn
ed
on
b
y
th
e
reset pulse. The input is integrated
and
whe
n
theinte
g
rate
d out
put just
exceeds the re
ference signal vre
f
, t
h
e
switch
is t
u
rn
ed
o
f
f.
Th
ei
n
t
egrato
r resets
aft
e
r tim
e Ts and
the s
w
itch
goe
s on a
g
ain.
3.
MATL
AB/SI
M
UL
K BA
SE
D
SIMULATION RESULTS
Sim
u
link c
o
nnection
of wi
nd
dri
v
en
SE
IG e
m
ployed in sta
ndal
one
power supply
for a
re
m
o
te places
an
d its con
t
ro
l
is sho
w
n
i
n
Fi
gu
re 2.
Fi
gu
re
2.
Si
m
u
l
a
t
i
on ci
rc
ui
t
o
f
pr
op
ose
d
sy
st
em
One cy
cl
e cont
rol
t
ech
ni
q
u
e i
s
im
pl
em
ent
e
d usi
ng t
h
e
bui
l
t
-i
n l
i
b
rari
es o
f
po
wer sy
st
em
t
ool
b
ox
of
M
a
t
l
a
b/
Sim
u
l
i
nk
so
ft
wa
rei
s
sho
w
n i
n
Fi
g
u
r
e3
.I
n o
r
der t
o
sol
v
e t
h
e e
q
u
a
t
i
on
ode
2
3
t
b
i
s
consi
d
ere
d
f
o
r t
h
e
si
m
u
latio
n
ti
me of
6
seco
nd
s.
Fi
gu
re
3.
Im
pl
em
ent
a
t
i
on
of
one
cy
cl
e co
nt
r
o
l
i
n
M
a
t
l
a
b/
Si
m
u
li
nk
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Voltage and Fr
eque
ncy
C
o
ntrol
of
Vari
able
Spee
d
I
n
duction Gene
rat
o
r
us
ing
O
n
e Cycle
....
(
T
. El
ango)
72
7
Th
e con
s
u
m
er
lo
ad
of
3
23W
an
d 200W
is co
nn
ected at
2
.
5
an
d 4 seco
nds r
e
sp
ectiv
ely.
V
o
ltag
e
and
freq
u
e
n
c
y is con
t
ro
lled
b
y
contro
llin
g th
e acti
v
e
p
o
wer co
n
s
u
m
ed
b
y
th
e
con
s
u
m
er and
dum
p
lo
ad
s.
3.
1.
Vol
t
a
g
e C
o
ntr
o
l
The s
o
urce
v
o
l
t
a
ge an
d c
u
r
r
e
nt
wa
ve
fo
rm
i
s
sh
ow
n i
n
F
i
gu
re
4(a
)
, t
h
e
l
o
ad
v
o
l
t
a
ge
and
cu
rre
nt
wave
f
o
rm
i
s
sh
ow
n i
n
Fi
gu
re
4(
b)
.
Fi
g
u
r
e
4(a
)
. S
o
urce
v
o
l
t
a
ge a
n
d
cu
rre
nt
wave
f
o
rm
s
Fi
gu
re
4(
b
)
. L
o
ad
vol
t
a
ge
a
n
d
cur
r
ent
wa
vef
o
rm
s
Fig
u
re
5
illu
strate th
e activ
e
p
o
wer
g
e
n
e
ratio
n of
SEIG and
feed
i
n
g to
t
h
e lo
ads,
fro
m
2
.
5
to 4 and
4
to 6 seco
nd
s th
e con
s
u
m
er
lo
ad
is conn
ected
to th
e
SEIG term
in
als and
th
e
v
a
riatio
ns is sh
own
in
Fig
u
re
5(
b)
.
Fi
gu
re
5.
va
ri
at
i
ons
o
f
act
i
v
e
p
o
we
r i
n
(a
) s
o
u
r
ce, a
n
d (
b
) c
o
nsum
er l
o
a
d
.
Fig
u
re
6
illu
strate th
e variation
s
o
f
d
c
vo
ltage and
p
o
wer con
s
u
m
ed
b
y
th
e
d
u
m
p
lo
ad
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6
,
No
.
4
,
D
ecem
b
er
2
015
:
72
3 – 729
72
8
Fi
gu
re
6.
Vari
at
i
ons
o
f
dc
vol
t
a
ge a
n
d
p
o
w
er
acros
s t
h
e
d
u
m
p
l
o
a
d
3.
2.
Frequenc
y Contr
o
l
Fig
u
re
7
illu
strates th
e freq
u
e
n
c
y v
a
riatio
ns
; it lies with
in
i
n
th
e prescrib
ed
limit.
Fi
gu
re 7.
Fre
q
uency
va
ri
at
i
ons
4.
CO
NCL
USI
O
N
A si
m
p
l
e
vol
t
a
ge an
d fre
q
u
en
cy
cont
r
o
l
of S
E
IG
usi
n
g o
n
e
cy
cl
e cont
rol
i
s
sim
u
l
a
t
e
d and res
u
l
t
s
ar
e
d
i
scu
s
sed. Th
e resu
lt shows t
h
e term
in
al v
o
l
tag
e
is alm
o
st
n
early co
n
s
tan
t
irresp
ectiv
e
of wind
v
e
lo
city. It is
o
b
s
erv
e
d th
at th
ere is
vo
ltag
e
redu
ction
in
SEIG term
in
al
b
e
fo
re po
in
t
o
f
co
mm
o
n
co
uplin
g
(PCC) sli
g
h
tly
because
of i
n
ductance
connec
ted be
fore t
h
e
dum
b lo
a
d
c
o
ntroller nee
d
s
a reactive powe
r
controller.
AC
KN
OWLE
DG
MENT
Th
e au
thor
s ack
now
ledg
e the m
a
n
a
g
e
m
e
n
t
an
d th
e
resea
r
c
h
c
o
mmittee
me
m
b
ers,
for t
h
eir val
u
able
successi
ons
to
com
p
lete this work s
u
ccess
f
ully.
REFERE
NC
ES
[1]
Bans
al, RC.
, “
T
hree-P
h
as
e S
e
l
f-Exci
t
ed
indu
ction generators:
An over View”,
IEEE T
r
ansac
tions on Energy
Conversion,
vo
l/issue: 20(2), pp.
292-299, 2005
.
[2]
Senthil Kumar, A., Singh, GK., Saini,
RP., “A self-ex
c
ited six-phase inducti
on g
e
nerator for stand-alone ren
e
wab
l
e
energ
y
g
e
ner
a
tio
n”,
European Tr
ansactions on
Electrical
Power
, vol/issue: 20(7), pp.
884-900
,
20
10.
[3]
T. Elango, A. Senthil Kuma
r, “Investigation of an
Induction Moto
r pe
rformance w
o
rking as Gener
a
tor with Motor
parameters
”,
International Journ
a
l of A
pplied
En
gineering
Res
e
a
r
ch,
vol/issue: 9(
22), pp
. 16613-1
6623, 2014
.
[4]
Ridwan Gunawan, et
al, “The Self Ex
cited
Induction Generator w
ith Observat
ion
M
agnetizing Ch
aracteristic
in th
e
Air Gap”,
Intern
ational Journal of
Pow
e
r Electronics and
Drive System,
vo
l/issu
e: 5(3)
, pp
. 355~
365, 2015
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Voltage and Fr
eque
ncy
C
o
ntrol
of
Vari
able
Spee
d
I
n
duction Gene
rat
o
r
us
ing
O
n
e Cycle
....
(
T
. El
ango)
72
9
[5]
Mohamed Barar
a
,
et
al, “Advanced C
ontro
l of
Wind Electric Pumping Sy
st
em
forIs
olat
ed Are
a
s
Applica
tion
”
,
International Jo
urnal of
Power
Electronics and
Drive System,
vo
l/issue: 4
(
4), pp.
567~577, 2014.
[6]
F.
Bla
a
b
je
rg,
M.
Lise
rre,
Ke Ma
,
“Future
on
Power electro
n
ics for wind turbine s
y
stems”,
IEEE Trans. on
Emerging and S
e
lected
Topics
in
Power Electron
i
cs,
vo
l/issue: 1(
3), pp
. 139
–151
, 2013
.
[7]
F. Blaabjerg
,
M. Liserr
e, Ke
Ma, “Power electro
n
ic
converters f
o
r wind turb
ine
s
y
stems”,
I
EEE
Trans. on Indust.
Appli..,
vol/issue: 48(2), pp. 169–
176, 2012
.
[8]
Bhim Singh, SS. Murth
y
, Sushma Gupta,
“Analy
s
i
s and Design of Electron
ic
Load Contro
ller for Self-Ex
c
ited
Induction
Gener
a
tor”,
I
EEE Trans. on
Energy Conver
, vo
l/issue: 21(1), pp. 285-2
93, 2006
.
[9]
Bhim Singh, SS. Murth
y
, Sushma Gupta,
“Tr
a
nsient Analy
s
is of
self-Excited
Ind
u
ction Gen
e
rator
with Electron
ic
Load Contro
ller
supply
i
ng
St
atic and D
y
namic
loads”,
IEEE Trans. on Indust.
Appli.
Vol/issue: 41(5), pp. 1194
-
1204, 2005
.
[10]
KM. Smedley
,
S. Cuk, “One-cy
c
le
con
t
rol of
switching converters",
IEEE Transactions on Power Electronics,
vol/issue: 10(6), pp.
625-633
,
19
95.
BIOGRAP
HI
ES OF
AUTH
ORS
T.Elango obtain
e
d is Bach
elor’s
Degree in
Electr
ical Engin
eerin
g from Bangalor
e
University
in
the
y
e
ar 1996. H
e
obtained is Master’s degree in
Applied Electro
n
ics from University
of
Madras
in the
y
ear 20
01. He is currently
pursuing
th
e P
h
.D. in E
l
ec
tric
al Engin
e
ering at Anna
Univers
i
t
y
,
Che
nnai.
His
curr
e
n
t res
e
arch
inc
l
udes
Ren
e
wabl
e-Energ
y
G
e
ner
a
tion
,
P
o
wer
Ele
c
troni
cs
con
v
erters
and P
o
wer Quali
t
y
is
s
u
es
in R
e
newa
ble
Energ
y
.
He
has
a
t
each
ing
experience of 1
7
y
e
ars. He h
a
s published 3 p
a
pers in in
tern
at
ional jo
u
r
nals and presented 3
papers in Nati
onal & Intern
a
tional con
f
eren
ces. He has attend
ed man
y
seminars and
workshops.He is lif
e member of
Indian
Society
of Technical Ed
ucation (ISTE)
.
He is a Ph.D
res
earch s
c
ho
lar
of Anna Univers
i
t
y
, Chenn
a
i.
At pres
ent he is
working as
Head of the E
E
E
department at Sr
i Balaji Cho
c
ka
lingam Engineering
Coll
ege,
Arni
.
Dr. A.Senthil
Kumar, obtained is Bachelor’s
Degree (1996) in Electr
i
cal and Electronics
Engineering in
first class from University
of
Madras, Chennai, Tamil Nadu.
He obtain
e
d is
Master’s degree (2000) in Power Electron
ics
and Drives in first class from
Bharath
i
dasan
University
, Trich
y
, Tamilnadu, and also he o
b
tain
ed is Master’s degree (20
06) in Human-
Resource Management in first class from TNOU,
Chennai. He
com
p
leted
his Doctoral degree
(2010) in
the area of
Electrical Eng
i
neer
ing f
r
om Indian Institute of
Techno
log
y
Roorkee,
Roorkee,
Utt
a
ra
khad, Ind
i
a
.
He
is also
com
p
le
t
e
d isPost-doctor
a
l r
e
sear
ch f
e
llo
w in Cen
t
re
for
Energ
y
and E
l
e
c
t
ric
a
l P
o
wer
,
E
l
e
c
tri
cal
Engin
eer
i
ng Departm
e
nt
,
F
acult
y o
f
Eng
i
n
eering
and
the
Built Env
i
ronm
ent, Tshwane Un
iversit
y
of T
ech
nolog
y, Pretor
ia
,
South Africa f
o
r a period of
one
y
ear from 2012-13.
He obtained man
y
aw
ard
s
and certif
icates
during M.E and
Ph.D studies.
He has 17 y
ears of teach
ing and r
e
search exp
e
ri
en
ce. He has publi
s
hed 25 papers in interna
tiona
l
journals and pr
esented 30 p
a
pers in intern
a
tion
a
l and n
a
tional
conferen
ces. H
e
has attended
man
y
in
tern
atio
nal seminars
an
d workshops. He
is
a life memb
er of
man
y
pro
f
essional bodies
like ISTE, IEI,
CSI, IAENG, I
A
CSIT, etc.; He visited foreign
countries such as Hong
Kong
Chengudu& Mauritius whi
c
h w
a
s finan
c
iall
y
s
upported b
y
D
S
T, CSIR and
NRF. He has
deliv
ered stat
e of the art le
ctur
es in m
a
ny
educ
a
t
i
onal institu
tions and professional
societi
e
s. He
is currently
doin
g
an on-going project funded b
y
AI
CTE worth of 33 lakhs. His research interests
includ
e M
u
lt
ip
has
e
M
ach
ines
,
P
o
wer El
ectr
onics
, R
e
newab
l
e-En
erg
y
Gen
e
ration
S
ource
,
Microcontro
ller
& VLSI applic
ation in Power El
e
c
troni
cs & Ele
c
tri
c
Drives,
Active Filters
S
t
abili
t
y
and S
y
stem
Anal
y
s
is.
Currentl
y
, he
is working as P
r
ofessor/EEE at Velam
m
a
l
Engineering Co
llege,
Ch
ennai,Tamil Nadu.
Evaluation Warning : The document was created with Spire.PDF for Python.