Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol
.
7
,
No
. 2,
J
une
2
0
1
6
,
pp
. 48
1~
49
7
I
S
SN
: 208
8-8
6
9
4
4
81
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Low Voltage Ride-through for Do
ubly Fed Induction Generator
Using B
a
tt
ery-St
orage System
D.
V.
N.
An
an
t
h
*,
G.
V.
N
a
ge
sh Ku
mar
*
*
* Electr
i
cal
Engineering
Depar
t
ment, VITAM Co
llege of
Engineer
ing,
Visak
a
patnam, India
** Electr
i
cal D
e
partment, GITA
M UNI
VERSITY,
Visaka
pa
t
n
am,
Indi
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Dec 11, 2015
Rev
i
sed
Mar
31
, 20
15
Accepted Apr 10, 2016
In this paper
,
en
hanced f
i
eld oriented
con
t
rol tech
nique (EFOC) was adopted
in Rotor Side
Control (RSC) of DFIG converter for improv
ed response
during severe faults. Th
e work is
intende
d to dam
p
pulsations in
ele
c
trom
agnet
i
c
torque, im
prove
voltage m
itig
ati
on and lim
it surge currents
and to enhance the operation of
DFIG
during v
o
ltag
e
sags. The converter
topolog
y
uses a batter
y
energ
y
storage
s
y
stem with capacitor stor
age s
y
stem
to further
enhan
ce oper
a
tion of
DFIG
during faults. Th
e batter
y
and capacito
r
s
y
stem
in
coord
i
nation
provid
e
addition
a
l
real
and reactiv
e pow
er support
during faults an
d nearly
constan
t
voltag
e
profile
at stator and ro
tor terminals
and lim
it ov
ercu
rrents
.
F
o
r EF
O
C
techn
i
que, rotor flux ref
e
ren
c
e changes
its
value from s
y
nchronous speed to
zero dur
ing fau
l
t for injecting
cu
rrent at th
e
rotor slip frequ
ency
. In
this
pro
cess DC-Offset component of flux is
controlled, decomposition d
u
ring ove
rvo
l
tage f
a
ults
.
The offset
decom
position of flux will be oscill
ator
y in a co
nvention
a
l FOC, whereas in
EFOC it will dam
p
quickl
y
. A com
p
arison is m
a
de with proposed
methodolog
y
with batter
y
en
erg
y
sto
r
ag
e s
y
stem and
a
conven
tio
nal s
y
stem.
Later the s
y
stem performance
with unde
r voltage of 50% th
e r
a
ted vo
ltag
e
with fault at P
CC during 0.8
to 1.2
seconds is analy
s
ed usin
g simulation
studies.
Keyword:
DFI
G
Fi
el
d o
r
i
e
nt
e
d
cont
rol
Low
v
o
ltag
e
f
a
u
lt r
i
d
e
th
rough
Vo
ltag
e
m
i
t
i
g
a
tio
n
Vo
ltag
e
sag
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
G.
V. Na
gesh
Kum
a
r,
Depa
rtem
ent of Electrical a
n
d
El
ect
ro
ni
cs E
n
gi
nee
r
i
n
g,
GIT
A
M
Uni
v
e
r
si
t
y
, Vi
sa
kapa
t
n
am
, Indi
a.
Em
a
il: d
r
gv
nk1
4@g
m
ai
l.co
m
1.
INTRODUCTION
The
d
o
u
b
l
y
fe
d i
n
d
u
ct
i
o
n
ge
nerat
o
r
(
D
F
I
G
)
i
s
ha
v
i
ng
b
e
tter preferen
ce
d
u
e
to its sm
a
ll size wit
h
h
i
gh
er MVA
ratin
g
s
av
ailab
l
e in
th
e m
a
r
k
et, lo
w pow
er ratin
g
s
o
f
conver
t
er
s, v
a
r
i
ab
le g
e
n
e
r
a
t
o
r
sp
eed
and
constant fre
quency ope
ration, robust four
qua
drant
react
ive powe
r control and
m
u
ch better performance
d
u
ring
th
e low vo
ltag
e
ri
de th
roug
h
(LVRT). Ho
wever, DFIG is sen
s
itiv
e to
ex
t
e
rn
al d
i
st
u
r
b
a
n
ces lik
e
vol
t
a
ge s
w
el
l
and sa
g. I
f
gri
d
vol
t
a
ge
fal
l
s
or
ri
ses sud
d
e
n
l
y
due t
o
any
rea
s
on
, l
a
rge s
u
r
g
e curre
nt
s ent
e
r i
n
t
o
th
e ro
t
o
r term
i
n
als and
vo
ltage in
du
ces sign
ifican
tly. Hen
c
e, th
e ro
to
r si
d
e
co
nv
erter (RSC) will g
e
t d
a
mag
e
d
d
u
e
t
o
ex
ceed
i
n
g
vo
ltag
e
or
th
e curren
t
ratin
g. Ap
art
from th
is, th
ere
will b
e
hu
g
e
electro
m
a
g
n
e
tic to
rq
u
e
pulsations a
n
d
increase i
n
rot
o
r spee
d
which m
a
y redu
ce
g
e
ars
o
f
th
e
wind tu
rb
in
e-g
e
n
e
rato
r lifetim
e.
The
status of research on
the
LVRT issu
e
fo
r
DFIG
for sy
mmetrical an
d
asymmetrica
l
fau
lts and
co
m
p
ariso
n
o
f
d
i
fferen
t
con
t
ro
l strateg
i
es is g
i
v
e
n
in
[1
]. Und
e
rstan
d
i
ng
th
e cap
ab
ilit
y o
f
RSC to
d
e
liv
er
d
e
sired
reactive p
o
wer and
with
stand
i
ng
cap
a
b
ility d
u
ring
fa
u
lt in
[2
].
In
t
h
is p
a
p
e
r, i
f
th
e stator and
ro
tor
vol
t
a
ge
s are
dr
op
pe
d t
o
a ce
rt
ai
n val
u
e
d
u
ri
n
g
fa
ul
t
,
t
h
e
DF
IG t
u
r
b
i
n
e sy
st
em
got
sy
nc
hr
oni
ze
d q
u
i
c
kl
y
aft
e
r
faul
t
cl
eared a
nd i
s
m
a
de t
o
ope
rat
e
as i
n
p
r
e-
faul
t
st
at
e. The pa
pe
r ai
m
e
d i
n
sm
oot
he
ni
n
g
o
f
el
ect
ro
m
a
gnet
i
c
t
o
r
que
(EM
T
),
an
d t
o
c
ont
r
o
l
t
h
e
react
i
v
e
p
o
we
r t
o
gri
d
d
u
ri
ng
fa
ul
t
t
i
m
e
. E
nha
nce
d
re
act
i
v
e p
o
w
er
s
u
p
p
o
rt
[3]
,
c
o
nt
r
o
l
l
i
ng
DC
l
i
n
k c
u
r
r
ent
of
R
S
C
t
o
sm
oot
he
n
D
C
v
o
l
t
a
ge
fl
uc
t
u
at
i
ons
d
u
e t
o
gri
d
fa
ul
t
s
b
y
usi
n
g
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
2,
Ju
ne 20
16
:
481
–
4
97
48
2
st
ore
d
Ki
net
i
c
Ener
gy
[4]
are
t
echni
q
u
es us
ed t
o
im
pr
ov
e D
F
IG
op
er
ation
du
r
i
ng
LV
R
T
. I
n
th
ese
p
a
per
s
an
ad
d
ition
a
l reactiv
e p
o
wer su
pp
ort can
enh
a
nce p
e
rform
a
n
ce o
f
DFIG syste
m
d
u
r
ing
sudd
en
fau
lt issu
es. Also
crowbar as
pa
ssive and RSC
strategy as ac
tive com
p
ensa
tion for LVRT
reactive
powe
r
com
p
ensation [5],
FFTC schem
e
with PIR
[6] a
nd
PI [7]
with
sy
mm
e
t
rical a
n
d
asymm
e
tric
al fau
lts for imp
r
ov
ing
un
in
terru
p
t
ed
P, Q su
p
p
l
y
fr
om
W
T
t
o
gri
d
an
d en
hance
m
ent
based o
n
fl
ux t
r
a
j
ect
o
r
y
[8]
,. I
n
t
h
ese pape
rs aut
h
o
r
s
cl
aim
t
h
at
, i
n
st
ea
d
o
f
usi
n
g a
co
n
v
ent
i
o
nal
PI c
ont
rol
l
e
r,
P
I
+
R
e
so
nant
co
n
t
rol
l
e
r ca
n
pe
r
f
o
r
m
bet
t
e
r d
u
ri
ng
asy
m
m
e
trical
fau
lts fo
r DFIG system
. Fe
w in
tellig
en
t co
n
t
ro
l techn
i
qu
es lik
e
Gen
e
t
i
c Alg
o
rith
m
[9
] and
bacterial searc
h
etc were
use
d
in control strategi
es f
o
r i
m
pr
o
v
i
n
g t
h
e pe
rf
orm
a
nce du
ri
ng L
V
R
T
a
n
d
can
im
pro
v
e
vol
t
a
ge a
n
d
cu
rre
nt
l
e
vel
s
du
ri
n
g
faul
t
a
n
d
m
a
kes sy
st
em
m
o
r
e
sust
ai
na
bl
e
d
u
ri
ng
an
d a
f
t
e
r
fa
ul
t
.
So
m
e
ex
tern
al
p
a
ssiv
e
elemen
ts and
active so
urces are
u
s
ed
in
coo
r
d
i
n
a
tio
n
for im
p
r
ov
ing
stab
ility an
d
t
h
ere
b
y
pr
o
v
i
d
i
ng a
bet
t
e
r L
V
R
T
o
p
erat
i
o
n o
f
D
F
I
G
d
u
r
i
ng sy
m
m
e
t
r
i
c
al
and asy
m
met
r
i
cal
faul
t
s
.
Am
ong
external de
vices whic
h we
re c
o
nnected
i
n
co
or
di
nat
i
o
n
wi
t
h
D
F
I
G
sy
st
em
t
o
en
hance sy
s
t
em
LVR
T
beh
a
vi
o
r
du
ri
n
g
se
vere
f
a
ul
t
s
i
s
Si
ngl
e
pha
se cr
ow
ba
r
[1
1]
, S
upe
r-ca
p
aci
t
o
r e
n
er
gy
st
ora
g
e sy
st
em
[1
2]
, Fa
ul
t
C
u
rre
nt
Lim
i
t
e
r (FC
L
)
[1
3]
, S
u
p
e
rc
o
n
d
u
ct
i
n
g FC
L
wi
t
h
M
a
g
n
et
i
c
Ener
gy
st
o
r
a
g
e devi
ces
[
14]
were
use
d
rec
e
nt
l
y
.
There
f
ore t
o
c
ont
rol
o
v
e
r
cu
r
r
ent
d
u
r
i
n
g sev
e
re fa
ul
t
s
, co
n
v
ent
i
o
nal
cr
o
w
bar ci
rc
ui
t
i
s
avoi
ded
w
h
i
c
h
di
sabl
e
D
F
IG
to
pro
v
i
d
e
r
eactiv
e pow
er
su
ppo
r
t
thr
o
w
i
ng
th
e gr
id
into m
o
re critical sta
t
e. From these papers
, active
energy storage
devices a
r
e much
help
ful for rapi
d real and reactive powe
r
com
p
ensation for stator a
n
d rotor
termin
als with
i
m
p
r
ov
ed stab
i
lity d
u
r
ing
symmetrical o
r
asy
mme
trical fau
lts.
A co
nve
nt
i
o
na
l
vect
or c
ont
r
o
l
t
echni
ques
i
n
R
S
C
does
not
p
r
ovi
de l
o
w m
a
gni
t
ude
rot
o
r o
v
e
r
cu
rr
en
ts. Th
ey
m
a
y tr
ig
g
e
r
cr
ow
bar
,
pu
sh
ing
w
i
nd
system to
d
e
m
a
n
d
r
e
activ
e pow
er
.
W
i
t
h
Enh
a
n
c
ed
Fl
ux
Ori
e
nt
ed C
ont
rol
(EF
O
C
)
be
t
t
e
r red
u
ct
i
o
n
i
n
r
o
t
o
r
ove
r c
u
r
r
ent
s
can
be
m
a
de possi
bl
e by
c
o
n
s
i
d
eri
n
g
t
h
e
effect
of
direct
axis
stator fl
ux
ф
align
e
d wit
h
ro
tatin
g stator flux
. Th
e B
E
SS is
u
s
ed
fo
r co
n
t
ro
lling
po
wer
fl
uct
u
at
i
o
ns i
n
t
h
e
wi
n
d
gen
e
rat
i
o
n
sy
st
em
[1
5
-
1
8
]
,
vol
t
a
ge a
n
d
f
r
eq
ue
ncy
fl
uct
u
at
i
o
ns
wi
t
h
red
u
ce
d
noi
se
an
d
v
i
bration
with
BESS fo
r iso
l
ated
asyn
ch
ron
o
u
s
g
e
n
e
rato
rs
is u
s
ed
in
[19
,
2
0
]
. A BESS
b
a
sed
on
m
u
lti-
lev
e
l PW
M
inv
e
r
t
er for
co
n
t
in
uo
us an
d imp
r
ov
ed state of
ch
arg
i
ng
is pr
opo
sed in [21,
2
2
]
.
I
n
[22
]
, PSO
base
d M
I
WP
m
odel
i
s
pr
o
p
o
se
d t
o
m
i
ti
gat
e
o
u
t
p
ut
po
we
r fl
uct
u
at
i
o
ns
i
n
wi
n
d
farm
. The e
q
ui
val
e
nt
ci
rcui
t
for lith
iu
m
io
n
b
a
sed
BESS is
an
alysed
an
d
ex
p
e
rim
e
n
t
all
y
v
e
rified
in [23
]
.
As fa
r as the
stora
g
e technique is c
o
ncerned, BE
SS is ch
o
s
en
for its co
st effectivene
ss where
a
s
Su
per M
a
gnet
i
c Ener
gy
St
o
r
a
g
e sy
st
em
i
s
consi
d
e
r
abl
y
co
st
and
fl
y
wheel
[2
4]
, [
25]
t
a
ke
s
l
a
rge t
i
m
e const
a
nt
to
prov
id
e
d
yna
m
i
c su
p
p
o
r
t t
o
ov
erall wind
tu
rb
in
e sy
stem
[9]
.
ST
ATC
O
M
with EF
OC technique is
us
ed for
di
ffe
re
nt
fa
ul
t
s
[2
6]
f
o
r t
h
e e
nha
ncem
ent
i
n
t
h
e pe
rf
orm
a
nce
of DFIG. Real
and
reactiv
e po
wer co
ntro
l is
pr
o
pose
d
i
n
[
27]
f
o
r D
F
I
G
as pe
r g
r
i
d
r
e
qui
rem
e
nt
. The
per
f
o
r
m
a
nce of
DF
I
G
wi
nd
ene
r
gy
c
o
n
v
ersi
on
sy
st
em
i
s
com
p
are
d
wi
t
h
PI,
AN
N a
n
d
hy
br
i
d
PI
a
n
d
A
N
N
i
n
[2
8]
.
A
hy
b
r
i
d
P
I
a
n
d
AN
N c
ont
rol
l
e
r
f
o
r D
F
I
G
i
s
exam
i
n
ed i
n
[2
8]
t
o
rapi
dl
y
changi
ng
gri
d
v
o
l
t
a
ge co
n
d
i
t
i
ons. The a
u
t
h
o
r
s f
o
un
d t
h
a
t
, act
i
v
e and re
act
i
v
e
po
we
rs a
r
e
ha
vi
n
g
s
u
r
g
es
an
d al
s
o
r
o
t
o
r a
n
d st
at
o
r
pa
r
a
m
e
ter
s
go
t
d
i
sturb
e
d m
u
ch
wit
h
PI and t
h
eir e
ffects
are l
o
w wi
t
h
A
N
N
.
H
o
weve
r
whe
n
usi
n
g
bo
t
h
PI a
n
d
ANN, the
effects s
a
id abov
e got
minimized and hence
th
e au
tho
r
s in [1
9
]
con
c
lude th
at h
y
b
r
id
is b
e
tter co
n
t
ro
l wh
en
grid
v
o
ltag
e
co
nd
it
io
n
s
are
h
i
gh
. Also
i
nde
pen
d
e
n
t
cont
rol
o
f
act
i
v
e and react
i
v
e
po
we
r exam
i
n
ed i
n
t
h
i
s
pape
r and
fo
u
nd t
h
at
fuzzy
cont
r
o
l
l
e
r i
s
bet
t
e
r t
h
a
n
co
nve
nt
i
o
nal
P
I
cont
rol
l
e
r
[
29]
. T
h
e a
u
t
h
ors
com
p
ared t
h
e
per
f
o
r
m
a
nce o
f
DFI
G
d
u
ri
ng
t
h
re
e
pha
se t
o
gr
ou
n
d
w
h
e
n
co
nt
r
o
l
l
e
d usi
n
g P
I
a
nd
fu
zzy
. It
i
s
fo
un
d t
h
at
wi
t
h
f
u
zzy
, st
at
o
r
an
d r
o
t
o
r v
o
l
t
age,
cu
rren
t and
power wav
e
forms are b
e
tter an
d h
a
v
e
b
e
tter
stab
ility
th
an
a con
v
e
n
tion
a
l PI co
n
t
ro
ller. Th
e fu
zzy
cont
roller is
having
faster c
ont
rol action
and accurate
perform
a
nce due to faste
r
c
h
anging
disturbance
s
.
Pre
d
i
c
t
i
v
e di
re
ct
powe
r
co
nt
r
o
l
t
echni
que i
s
appl
i
e
d t
o
D
F
IG sy
st
em
i
n
[3
0]
t
o
have
qui
c
k
er a
nd
ro
bus
t
per
f
o
r
m
a
nce t
o
m
a
i
n
t
a
i
n
cons
t
a
nt
DC
l
i
nk v
o
l
t
a
ge wi
t
h
l
e
s
s
er ha
rm
oni
c cur
r
ent
a
nd f
o
r ope
rat
i
o
n d
u
ri
ng s
u
b
sy
nch
r
o
n
o
u
s
and s
upe
r- sy
nc
hr
o
n
o
u
s spee
d
oper
a
t
i
o
n
.
Dr
oo
pi
n
g
cha
r
act
eri
s
t
i
c
s of DF
I
G
i
s
st
udi
ed i
n
[3
1]
and found t
h
at
DFIG
output
powe
r is c
o
ntrolled according t
o
varying
wind spee
d.
Th
e p
r
esen
t p
a
p
e
r d
e
scrib
e
s
ho
w
(LVRT)
b
e
h
a
v
i
o
r
is
ach
iev
e
d withou
t sacrificin
g d
y
n
a
mic stab
ilit
y
of
D
F
I
G
sy
st
e
m
usi
ng a
n
a
d
vance
d
co
nt
r
o
l
t
echni
q
u
e E
n
hance
d
Fl
u
x
O
r
i
e
nt
ed
C
o
nt
r
o
l
(EF
O
C
)
wi
t
h
ai
d
of
effective e
n
ergy storage syste
m
connect
e
d
t
h
ro
u
gh
bi
di
rect
i
onal
s
w
i
t
c
hes t
o
th
e
d
c
lin
k. Th
is supp
orts voltag
e
at
dc l
i
n
k a
n
d i
m
pro
v
es
d
y
n
am
i
c
st
abi
l
i
t
y
du
ri
n
g
sy
m
m
e
t
r
i
cal
gri
d
di
st
ur
ba
nces.
Thi
s
pap
e
r
de
scri
be
s
co
m
p
ariso
n
b
e
tween
with
ou
t
BESS and
wi
th
BESS to
the DC lin
k
durin
g
symmetric
al an
d
asymmetrical
vol
t
a
ge
di
st
u
r
bance
s
at
gri
d
. It
al
so ex
pl
ai
ns h
o
w ef
fi
ci
ent
l
y
a rot
o
r
cur
r
ent
ca
n be
cont
r
o
l
l
e
d wi
t
h
fl
u
x
orie
nted m
echanism
.
In t
h
e sect
i
o
n 2 desc
ri
bes t
h
e
desi
gn
of R
S
C
for EF
OC
.
Sect
i
on 3
gi
ve
s
m
odel
l
i
ng u
n
d
er t
r
a
n
si
ent
co
nd
itio
ns was exp
l
ain
e
d
with
symmetrical
fau
lts an
d d
e
sig
n
o
f
EFOC
for th
e
LVR
T
issu
e is
d
e
scrib
e
d
.
Fu
rt
h
e
r
sectio
ns 4
d
e
scri
b
e
the si
m
u
latio
n
resu
lts wh
en a fau
lt o
c
cu
rs at PCC with
50
%
d
ecrease in
th
e rat
e
d
voltage
. T
h
e
efficacy of the
proposed m
e
thod is teste
d
in t
h
e M
A
TL
AB
envi
ronm
ent and the
conclus
i
on
are
gi
ve
n i
n
sect
i
o
n
5
fol
l
o
we
d
b
y
appe
n
d
i
x
a
n
d
refe
re
nces.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Low
V
o
l
t
a
ge R
i
de-t
hr
o
u
g
h
f
o
r
D
o
u
b
l
y
Fe
d
In
duct
i
o
n
Ge
ner
a
t
o
r
Usi
n
g
B
a
t
t
e
ry- …
(
G
.V
. Nages
h
K
u
mar
)
48
3
2.
DESIG
N
OF
ROTO
R
SID
E
CO
NVE
RT
ER C
O
NT
RO
L FOR
EFO
C
R
S
C
cont
r
o
l
l
e
r
hel
p
s i
n
i
m
pr
ovi
ng
react
i
v
e
po
wer
dem
a
nd at
gri
s
a
n
d t
o
ext
r
act
m
a
xim
u
m
powe
r
fr
om
t
h
e
m
achi
n
e by
m
a
ki
ng t
h
e r
o
t
o
r t
o
ru
n
at
opt
im
al
speed. T
h
e optim
a
l
spee
d of
th
e
roto
r is d
ecid
e
d
fro
m
machine real powe
r and rotor s
p
ee
d cha
r
acteristic cu
rves from
MPP
T
algorithm
.
The stator act
ive a
nd
reactiv
e
po
wer con
t
ro
l
is po
ssib
l
e wit
h
t
h
e R
S
C con
t
ro
ller st
rateg
y
th
ro
ugh
i
an
d
i
com
p
onents
co
n
t
ro
lling
resp
ectiv
ely. Th
e
ro
t
o
r
vo
ltag
e
i
n
a station
a
ry
referen
ce fram
e
[11
]
and
further an
alysis from
o
u
r
pape
r [2
6]
i
s
gi
ven
by
V
V
R
i
σ
L
di
dt
j
ω
i
(1a
)
with
σ
1
and
ω
is th
e
ro
t
o
r
sp
eed
,
i
is th
e
ro
tor curren
t i
n
a statio
n
a
ry fra
m
e
of
refe
rence, Ls, Lr and
Lm
are stator,
the
ro
t
o
r and
m
u
tu
al in
du
ctan
ce param
e
ters in
Hen
r
y
o
r
in
pu
V
L
L
d
dt
j
ω
Φ
(1
b)
is th
e
v
o
ltag
e
in
du
ced
in th
e stato
r
fl
u
x
wit
h
Φ
L
i
L
i
(2
)
Φ
L
i
L
i
(3
)
The d an
d q a
x
i
s
rot
o
r
vol
t
a
ge
equat
i
o
ns (
1
a,
1b)
, (
2
) an
d (
3
) i
n
t
h
e sy
nch
r
on
o
u
s r
o
t
a
t
i
ng
refe
rence f
r
am
e are
gi
ve
n by
V
d
Φ
dt
ω
ω
Φ
R
i
(4
)
V
d
Φ
dt
ω
ω
Φ
R
i
(5
)
The stator a
n
d
rot
o
r t
w
o axis
fluxes
are
Φ
L
L
i
L
i
(6
)
Φ
L
L
i
L
i
(7
)
Φ
L
L
i
L
i
(8
)
Φ
L
L
i
L
i
(9
)
whe
r
e,
L
L
L
,L
L
L
,
ω
ω
ω
By sub
s
titu
ting
(6),
(7
), (8
),
(9
) in
(4),
(5
) and
b
y
rearrang
ing
th
e term
s, then
V
R
dL
′
dt
i
s
ω
L
′
i
L
L
V
(1
0)
V
R
dL
′
dt
i
s
ω
L
′
i
L
L
V
ωΦ
(1
1)
Whe
r
e
ω
is
ro
t
o
r sp
eed
,
ω
Φ
i
s
spe
e
d
of
st
at
or
fl
u
x
,
ω
i
s
sy
nc
hr
o
n
o
u
s s
p
ee
d.
The M
A
TL
AB
/
SIM
U
LI
N
K
base
d o
n
t
h
e cont
rol
ci
rc
ui
t
of R
S
C
fo
r en
ha
nci
n
g pe
rf
orm
a
nce f
o
r L
V
R
T
i
ssues
are sh
ow
n i
n
F
i
gu
re 1a, G
S
C
con
v
e
r
t
e
r i
n
Fi
gu
re 1
b
. T
h
e ri
ght
si
de co
r
n
er
subsy
s
t
e
m
2 is a sub-ci
rcui
t
of t
h
e
co
n
t
ro
ller
fo
r
EFOC is shown
later i
n
Fi
g
u
re 3
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
2,
Ju
ne 20
16
:
481
–
4
97
48
4
(a)
Fi
gu
re
1a.
The
R
S
C
co
nt
r
o
l
l
e
r wi
t
h
EF
OC
t
echni
que
de
si
g
n
f
o
r
Gri
d
c
o
nne
ct
ed D
F
I
G
wi
t
h
E
V
λ
ω
andE
V
(b
)
Fi
gu
re
1
b
.
Gri
d
si
de c
ont
r
o
l
l
er f
o
r
DFI
G
Th
e ab
ov
e eq
uatio
n
s
1
0
and
1
1
can
b
e
rewritten
in
term
s o
f
d
e
cou
p
l
ed
p
a
ram
e
ters an
d
are d
e
si
g
n
ed
for RSC
co
n
t
ro
ller
as in equ
a
tio
ns
1
2
an
d 13
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Low
V
o
l
t
a
ge R
i
de-t
hr
o
u
g
h
f
o
r
D
o
u
b
l
y
Fe
d
In
duct
i
o
n
Ge
ner
a
t
o
r
Usi
n
g
B
a
t
t
e
ry- …
(
G
.V
. Nages
h
K
u
mar
)
48
5
σ
V
σ
L
dI
dt
ω
Φ
L
L
V
R
I
ω
Φ
(1
2)
σ
V
σ
L
dI
dt
ω
Φ
L
L
R
I
ω
Φ
(1
3)
In g
e
n
e
ral th
e ro
tor sp
eed
ω
i
s
and th
e syn
c
h
r
on
ou
s sp
eed of
stato
r
is
ω
.Bu
t
th
is syn
c
hr
ono
us
fre
que
ncy
ha
s t
o
be c
h
a
nge
d f
r
om
ω
t
o
a ne
w
sy
nch
r
o
n
o
u
s
s
p
eed
val
u
e a
s
descri
bed i
n
fl
owc
h
a
r
t
i
n
Fi
g
u
re
3
ω
′
as it is
represen
ted co
mm
o
n
l
y b
y
ω
.
Und
e
r i
d
eal co
nd
ition
s
,
referen
c
e stat
o
r
d
-
ax
is
flux
Φ
∗
is zero
and
q-a
x
i
s
fl
u
x
Φ
∗
is eq
u
a
l t
o
the m
a
g
n
itud
e
of stat
o
r
flux
Φ
for
give
n
back em
f and rotor s
p
eed.
The GSC converter is shown in Figure 1b. t
h
e refe
re
nce re
al powe
r
is ext
r
acted from
lookup table
base
d o
n
wi
n
d
spee
d. T
h
e
err
o
r i
n
t
h
i
s
r
e
fere
nce t
o
ac
t
u
al
po
wer i
s
cont
rol
l
e
d
usi
ng P
I
c
ont
r
o
l
l
e
r. T
h
e
di
ffe
re
nce i
n
s
qua
re o
f
DC
r
e
fere
nce v
o
l
t
a
ge t
o
act
ual
D
C
vol
t
a
ge i
s
cont
rol
l
e
d
usi
n
g
a t
uned P
I
co
nt
r
o
l
l
e
r.
Th
e
d
i
fferen
c
e in
th
e abo
v
e
two
PI con
t
ro
llers an
d
m
u
ltip
lied
with
stato
r
d-ax
is
cu
rren
t v
ector to
g
e
t
refe
rence
d-
axi
s
st
at
or c
u
r
r
en
t
.
Thi
s
cu
rre
nt
and act
ual
st
at
or
out
put
c
u
r
r
e
nt
i
s
m
a
i
n
t
a
i
n
ed t
o
ze
ro
usi
ng
PI
co
n
t
ro
ller. Usi
n
g
d
e
cou
p
ling v
o
ltag
e
v
ect
o
r
con
t
ro
l
m
e
th
od
, referen
c
ed
-ax
i
s d
ecoup
led
vo
ltag
e
will
b
e
ex
tracted. In
th
e
sim
ilar
way q
-
ax
is d
ecoup
led
vo
ltag
e
vector is obtai
ned. T
h
e d and q axis voltages are
con
v
e
r
t
e
d t
o
3
p
h
ase
by
usi
n
g i
n
ver
s
e
par
k
’s t
r
a
n
sf
o
r
m
a
tion
an
d
fu
rt
he
r
gi
ve
n t
o
P
W
M
t
o
get
p
u
l
s
es
t
o
t
h
e
gri
d
si
de
co
n
v
e
r
t
e
r ci
rc
ui
t
.
The fl
u
x
de
ri
v
a
t
i
on t
echni
qu
e hel
p
s i
n
u
n
d
e
rst
a
n
d
i
n
g t
h
e ope
rat
i
o
n of D
F
IG
du
ri
n
g
st
eady
st
at
e an
d
transient state. The accuracy of syst
em
perform
ance during steady state de
pe
nds on ac
curacy of wi
nd speed
m
easurem
ent
act
i
on o
f
t
h
e
p
i
t
c
h angl
e co
n
t
rol
l
e
r, m
easur
em
ent
of st
at
o
r
cur
r
e
n
t
,
v
o
l
t
a
ge, fl
ux a
n
d ot
he
r
im
portant
pa
ra
meters. The
m
o
re accurate
these m
easur
e
m
ents, the m
o
re
can be
a
real power
e
x
t
r
acted
fr
om
t
h
e DFI
G
wi
nd t
u
r
b
i
n
e
sy
st
em
. The equat
i
o
ns
14 t
o
17
pl
ay
s
a
vi
t
a
l
rol
e
i
n
u
nde
rs
t
a
ndi
n
g
t
h
e
be
havi
or
of
DFIG
during stea
dy state and
accuracy
of R
S
C control action
depe
nd
s on
control of
the d
a
n
d q
axis
vol
t
a
ge
s.
3.
MAT
H
EM
AT
ICAL
AN
AL
YSIS
OF R
S
C A
N
D
G
S
C C
O
NVE
RTERS F
O
R THE GR
ID
C
O
N
N
E
C
TED
D
F
IG DURIN
G
TRA
N
SIEN
T STA
T
E
3.1 Three
Phase Symmetric
a
l F
a
ults
Th
e
stato
r
vo
ltag
e
will reach
zero m
a
g
n
itu
de du
ri
n
g
sev
e
re th
ree
p
h
a
se’s symmetrical fau
lt of
v
e
ry
l
o
w
i
m
pedanc
e an
d
st
at
or
fl
ux
Φ
gets
re
duc
ed t
o
ze
ro m
a
gnitude. T
h
e
decay in
flux is
not as
ra
pid a
s
i
n
voltage
and ca
n
be explaine
d
from
the flux decay theorem
a
v
ailable in
literature a
n
d furt
her can be
expla
i
ned
as,
d
e
lay is
due to in
ertial time lag
τ
ef
f
ectin
g th
e
r
o
to
r ind
u
c
ed Electrom
o
t
i
v
e
Fo
r
c
e
(EMF)
V
. The
fl
u
x
du
ri
n
g
fau
l
t
i
s
gi
ve
n by
Φ
Φ
e
/
τ
(1
4)
and
Φ
is
negative
,
indicating its decay.
By substituting (14) in
(1b)
V
L
L
1
τ
j
ω
Φ
e
/
τ
(1
5)
The a
b
ove
eq
u
a
t
i
on i
s
c
o
nve
r
t
ed i
n
t
o
a
rot
o
r refe
re
nce frame and
neglecting
τ
V
L
L
j
ω
Φ
e
ω
(1
6)
By su
b
s
titu
ting
Φ
ω
e
ω
in
(16
)
V
L
L
1
s
V
(1
7)
|
V
|
is p
r
op
ortion
a
l
to
(1
-s)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
2,
Ju
ne 20
16
:
481
–
4
97
48
6
The c
o
nve
rtin
g
eq
uation
(
1
a)
i
n
to t
h
e
rot
o
r
re
fere
nce
fram
e
V
V
e
ω
R
i
σ
L
di
dt
(1
8)
Th
us
rot
o
r e
q
u
i
val
e
nt
ci
rc
ui
t
deri
ved
f
r
om
(16
)
i
s
a
s
s
h
o
w
n i
n
Fi
g
u
r
e
2 [
11]
.
Fi
gu
re
2.
The
r
o
t
o
r e
qui
val
e
nt
ci
rcui
t
A considera
b
le decrease i
n
pre-fa
ult steady state voltage
V
to
certain
fau
lt
v
o
ltag
e
du
ri
n
g
a th
ree
pha
se fa
ul
t
was expl
ai
n
e
d
i
n
ab
ove a
n
al
y
t
i
c
s. Howe
ve
r, R
S
C
co
n
v
e
r
t
e
r i
s
desi
g
n
e
d t
o
m
eet
V
to
match
V
for
rot
o
r
cu
rre
nt
c
o
nt
r
o
l
a
n
d
t
h
e
des
i
gn
has
t
o
be
m
a
de f
o
r
rat
i
n
g
of
onl
y
3
5
%
o
f
st
at
or
ra
t
e
d
vol
t
a
ge
. The
vol
t
a
ge
di
p
d
u
ri
ng fa
ul
t
can be a
d
o
p
t
e
d
i
ndep
e
n
d
e
n
t
l
y
or i
n
co
or
d
i
nat
i
on
by
usi
ng t
w
o
t
echni
q
u
es
i
s
e
xpl
ai
ne
d
bel
o
w
.
Du
rin
g
fa
ult,
at first instant
,
Φ
do
es no
t f
a
l
l
in
stan
tly (
1
6)
as show
n
i
n
th
e f
l
ux
an
d v
o
ltage
traj
ectories in
Fig
u
re
4
.
If the
m
ach
in
e is ru
nn
ing
at
s
upe
r sy
nc
hr
o
n
o
u
s
spee
d wi
t
h
sl
i
p
(s
)
near t
o
-
0
.
2
p
u
,
du
ri
n
g
faul
t
,
ro
t
o
r s
p
ee
d f
u
rt
h
e
r i
n
c
r
eases
ba
sed
on
t
h
e t
e
r
m
(1-s) as
gi
ve
n
by
(
1
6
)
.T
he
abo
v
e s
p
ee
d c
h
ange
i
s
unc
o
n
t
r
ol
l
a
bl
e
fo
r a
ge
nerat
o
r
ha
vi
n
g
hi
g
h
er
el
ect
ri
cal
an
d
mechanical ine
r
tia consta
nt
s.
In o
r
de
r
t
o
c
o
nt
r
o
l
the r
o
to
r c
u
rre
nt c
h
an
ge,
V
h
a
s
to
be in
creased. Based
o
n
th
e
first
reason listed
abo
v
e
, a vo
l
t
ag
e
V
Φ
has t
o
be
in
j
ected
in
the feed
fo
rward
p
a
t
h
for imp
r
ov
ing
th
e
rotor dip t
o
re
ach to its nea
r
steady state value.
C
o
n
v
ert
i
n
g t
h
e
equat
i
o
n
(1
6)
i
n
t
o
a sy
nc
hr
o
n
o
u
s
refe
rence
fram
e
and by
con
s
i
d
eri
ng
di
r
ect
al
i
gnm
ent
of
Φ
with
Φ
w
e
get
,
V
Φ
L
L
ωΦ
(1
9)
The se
co
n
d
t
e
chni
que
f
o
r
vo
l
t
a
ge i
n
crea
se
req
u
i
r
em
ent
i
n
a r
o
t
o
r i
s
,
di
p ca
n
be c
o
m
p
en
sat
e
d
by
replacing
s
ω
with
(
ω
Φ
ω
) in cro
s
s co
up
ling
term
s
s
ω
L
′
i
and
s
ω
L
′
i
resp
ectively. Th
e redu
ctio
n
i
n
m
a
gni
t
ude a
n
d
fre
que
ncy
o
f
f
l
ux
Φ
,
an
d
align
m
en
t o
f
flux
with
th
e stator vo
l
t
ag
e witho
u
t
the rate o
f
ch
an
ge
i
n
fl
ux
an
gl
e
θ
Φ
i
ndi
cat
es DC
o
f
f
s
et
com
pone
nt
i
n
fl
ux
.
d
ф
dt
ω
ф
0
ω
(2
0)
Here
,
ω
i
s
t
h
e s
p
eed
of
st
at
or
fl
ux
d
u
r
i
n
g fa
ul
t
an
d
this
val
u
e
can
be m
a
de to zero as
offset.
The v
o
l
t
a
ge i
n
ject
i
on c
o
m
p
o
n
ent
s
(
2
0, 2
1
)
and com
p
ens
a
t
i
ng com
pon
e
n
t
s
as di
scusse
d ab
ove a
r
e
est
i
m
a
t
e
d usi
n
g e
n
h
a
nce
d
fl
u
x
ori
e
nt
ed
co
nt
rol
(EF
O
C
sc
h
e
m
e
wh
ose
fl
o
w
c
h
art
i
s
s
h
o
w
n
i
n
Fi
g
u
re
3
and
t
h
e
det
e
rm
i
n
ed val
u
es a
r
e i
n
c
o
rp
o
r
at
ed i
n
t
h
e
R
S
C
co
nt
rol
l
e
r
sh
ow
n i
n
Fi
gu
re
1.
d
Ѳ
ф
dt
ω
ф
V
β
ф
α
V
α
ф
β
ф
α
ф
β
ω
(2
1)
Wh
en
d
y
n
a
m
i
c
stab
ility h
a
s to
b
e
im
p
r
o
v
e
d
,
p
r
op
osed
techn
i
qu
e co
n
t
ro
ls
th
e d
e
crease i
n
stato
r
and
ro
t
o
r fl
u
x
m
a
g
n
itu
d
e
and
also d
a
m
p
s o
s
cillat
i
o
n
s
at th
e
fau
l
t in
stan
ces. To
ach
iev
e
b
e
tter
p
e
rform
a
n
ce du
ri
n
g
t
r
ansi
ent
s
, t
h
i
s
paper
pr
o
pos
es a st
rat
e
gy
for st
at
or
fre
qu
ency
refe
rence
t
o
chan
ge t
o
zero o
r
ot
her
val
u
e
depe
n
d
i
n
g t
y
p
e
and
seve
ri
t
y
of
di
st
u
r
ba
nc
e. The acc
u
r
at
e
m
easurem
ent
of st
at
o
r
an
d
rot
o
r
param
e
ters l
i
k
e
fl
u
x
, cu
rre
nt
h
e
l
p
s i
n
achi
e
vi
ng
bet
t
e
r per
f
o
rm
ance duri
n
g
t
r
ansi
ent
s
. T
h
e DC
off
s
et
st
at
or cu
rre
nt
re
duct
i
o
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Low
V
o
l
t
a
ge R
i
de-t
hr
o
u
g
h
f
o
r
D
o
u
b
l
y
Fe
d
In
duct
i
o
n
Ge
ner
a
t
o
r
Usi
n
g
B
a
t
t
e
ry- …
(
G
.V
. Nages
h
K
u
mar
)
48
7
during tra
n
sients and m
a
king
the two a
x
is fl
ux a
n
d volta
ge
trajectories circular al
so im
prove
s the efficacy of
t
h
e sy
st
em
perfo
rm
ance duri
ng a
n
y
faul
t
s
.
The eq
uat
i
o
ns
13 t
o
1
8
hel
p
i
n
un
derst
a
nd
i
ng D
F
I
G
be
h
a
vi
o
u
r
during transient conditions and accur
acy of
its working de
pends
on m
eas
urem
ent of rotor
c
u
rrent and flux
param
e
ters.
3.
2 E
F
O
C
c
o
n
t
rol
techni
q
u
e
The
EF
OC
m
e
t
h
o
d
of
i
m
provi
ng
fi
el
d
fl
ux
ori
e
nt
e
d
c
ont
rol
t
e
c
hni
q
u
e
hel
p
s
i
n
i
m
provi
n
g
t
h
e
p
e
rform
a
n
ce of th
e R
S
C contro
ller
o
f
DFIG
d
u
ring
fau
l
t
con
d
ition
s
is
d
e
scri
b
e
d in
Fig
u
re
4
.
Th
e
DCOC
obs
er
ver
d
o
es
t
w
o act
i
o
ns t
h
e ch
an
ge i
n
fl
u
x
va
l
u
es
of
st
at
i
onary
f
r
a
m
e stator refe
rences
(
Φ
α
,
Φ
β
)
for
t
r
acki
n
g ra
di
u
s
of t
r
a
j
ect
o
r
y
and
DC
OC
fo
r o
ffset
c
h
an
g
e
i
n
st
at
i
onary
fl
ux
es (
Φ
α
,
Φ
β
) d
u
ri
ng
fault
co
nd
itio
ns and co
n
t
ro
llin
g
the
m
th
e first ac
tio
n
h
e
lps in
no
t lo
sing
th
e traj
ectory fro
m
a circle p
o
i
n
t
,
an
d
to
reach its pre-fault state with
the sam
e
radius and ce
ntre
of the circ
le a
nd he
nce im
proving t
h
e sam
e
rate of
flux
co
m
p
en
satio
n
ev
en
d
u
rin
g
fau
lt withou
t lo
sing
stab
i
lity. Th
e secon
d
action
h
e
lps in
con
t
ro
lling
and
main
tain
in
g
t
o
n
early zero
m
a
g
n
itud
e
u
s
i
n
g th
e
DCOC techn
i
qu
e.
B
a
sed o
n
ab
o
v
e t
w
o act
i
o
ns
, i
f
fo
rm
er on
e i
s
gr
eater with change in
tr
aject
o
r
y
w
h
i
c
h ge
neral
l
y
hap
p
e
n
s d
u
r
i
n
g di
st
u
r
bance
s
fr
om
an ext
e
rn
al
gri
d
,
st
at
or s
y
nch
r
o
n
ous
fre
que
ncy
fl
ux s
p
eed (
ω
Φ
) cha
n
ges
to
syn
c
hr
ono
us gr
id
fr
equ
e
n
c
y flu
x
(
ω
)
ot
her
w
i
s
e
ω
Φ
ch
ang
e
s to fau
lt an
gu
lar freq
u
e
n
c
y
v
a
l
u
e
an
d is inj
ected
to
RSC
v
o
ltag
e
con
t
ro
l loo
p
as error co
m
p
en
sato
r.
The
ge
neral
fo
rm
of s
p
eed
re
gul
at
i
o
n i
s
gi
v
e
n
by
T
J
dω
dt
B
ω
T
(2
2a)
T
J
s
B
ω
T
(
22b
)
Whe
r
e
T
iselectr
omag
netic
to
rq
u
e
, J is m
o
m
e
n
t
o
f
i
n
ertia and
B is friction
co
efficien
t,
T
is
co
nsid
ered
t
o
be d
i
sturb
a
n
ce.
Mu
ltip
lyin
g
b
o
th
sid
e
s with
ω
,
we
g
e
t th
e equatio
n
as
T
ω
J
s
B
ω
ω
T
ω
(2
3)
C
o
n
s
id
e
r
in
g
ω
const
a
nt
a
n
d
c
h
ange
i
n
s
p
eed
err
o
r
i
s
ω
i
s
c
o
n
t
rol
vari
a
b
l
e
, t
h
e a
b
ove
e
quat
i
on
becom
e
s.
P
∗
= (
K
s +
K
)
ω
+
P
(2
4)
As pro
d
u
c
t of
to
rq
u
e
an
d
sp
eed
is po
wer,
we w
ill b
e
g
e
tting
stato
r
referen
ce power an
d d
i
stu
r
b
a
n
ce
po
we
r as s
h
ow
n
bel
o
w.
P
∗
P
K
s
K
ω
(2
5)
Whe
r
e,
K
J*
ω
and
K
B*
ω
Fin
a
lly d
i
rect ax
is referen
ce
vo
ltag
e
can
b
e
writte
n
b
y
u
s
ing
eq
u
a
tion
(2
5)
and
fro
m
Fig
u
re 4
is
V
∗
ω
K
K
s
P
K
K
s
(2
6)
V
∗
Q
K
K
s
(2
7)
V
∗
K
i
∗
i
k
i
∗
i
dt
ω
L
i
k
V
(2
8)
V
∗
K
i
∗
i
k
i
∗
i
dt
ω
L
i
k
V
(2
9)
i
∗
K
sqrt
V
∗
V
k
V
∗
V
dt
R
V
(3
0)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
2,
Ju
ne 20
16
:
481
–
4
97
48
8
i
∗
K
sqrt
V
∗
V
k
V
∗
V
dt
(3
1)
The r
o
tating d
i
rect and q
u
a
d
rature
refe
renc
e volta
ges
of
rot
o
r are c
o
nverted into stationa
ry abc
fram
e
param
e
ters
by
u
s
i
n
g i
nve
rse
pa
rks
t
r
ansf
o
r
m
a
ti
on.
Sl
i
p
f
r
eq
ue
ncy
i
s
use
d
t
o
ge
nerat
e
si
n
u
soi
d
al
and
cosi
ne
pa
ram
e
t
e
rs f
o
r i
nve
rs
e par
k
s t
r
ans
f
orm
a
t
i
on. I
n
g
e
neral
,
d
u
ri
ng
faul
t
a
nd a
f
t
e
r fa
ul
t
,
t
h
e
D
C
l
i
nk
voltage
across
the ca
pacitor
at the
DFIG back-t
o-back
con
v
e
rter term
in
al falls and
rises, th
e STATCOM
h
e
lp
s i
n
i
m
p
r
ov
ing
th
e
o
p
e
ratio
n
and
assist
in
reg
a
i
n
ing
its v
o
ltag
e
v
a
lue resp
ectiv
ely
to
g
e
t read
y fo
r the
ope
rat
i
o
n d
u
ri
ng
next
fa
ul
t
.
Ho
we
ver
,
ST
ATC
O
M
p
r
ovi
des effi
ci
e
n
t
sup
p
o
rt
t
o
t
h
e gri
d
-
g
ene
r
at
o
r
sy
st
em
un
de
r se
vere
f
a
ul
t
s
by
fast
a
c
t
i
on i
n
co
nt
r
o
l
l
i
ng
reac
tiv
e po
wer
flow t
o
g
r
i
d
b
y
m
a
i
n
tain
ing
the DC lin
k
v
o
ltag
e
at th
e
cap
acito
r termin
al o
f
DFIG
co
nv
erters
c
o
nstant pa
rticularly duri
ng t
r
ans
i
ent state. Hence it
h
e
lp
s in
im
p
r
ov
ing
th
e d
y
n
a
mic stab
ilit
y o
f
th
e
o
v
e
rall syste
m
.
Un
der s
t
ea
dy
sta
t
e,
the
ro
to
r Sy
nch
r
on
iz
in
g
spee
d
w
i
ll b
e
Un
der f
a
ul
t
Condition
s
,
Ro
to
r
S
y
nc
hr
o
n
i
z
in
g
St
art
Ca
lcula
t
e
the
inst
ant
a
ne
o
u
s
diffe
re
nc
e
(V
RY
B
s
—
R
s
I
RY
Bs
)
Ap
ply
Clark’s
tr
an
sfor
matio
n
to
ge
t
V
αs
,
Vβ
s
I
n
tegr
at
e an
d
o
b
t
a
in
Φ
α
s
,
Φ
β
s
Ca
lc
u
l
at
e
R
Φ
s
Φ
α
s
2
Φ
β
s
2
Ca
lc
u
l
at
e DCOC=
Φ
dc
α
s
2
Φ
dc
β
s
2
R
Φs
If
ω
Φs
ω
s
ω
Φs
ω
f
I
n
c
o
rpor
at
e
ω
Φ
s
and
Φ
ds
in RSC
St
o
p
Ca
lcu
l
a
t
e
wi
th
phase
loc
k
ed
lo
o
p
Flux
in
αβ
dq
tra
n
sf
or
m
a
tion
C
a
lculate
Φ
ds
NO
Yes
To
im
p
r
o
v
e
flux
de
c
a
y
and
m
i
tig
a
te
vol
t
a
g
e
,
cu
r
r
e
n
t
du
r
i
n
g
faults
Fi
gu
re 3.
Sc
he
m
e
of
e
n
hance
d
fl
u
x
ori
e
nt
e
d
cont
rol
w
h
ere,
DC
OC
=
d
c of
fs
et
com
pone
nt
of
fl
u
x
,
R
Ф
s=
r
a
di
us
o
f
f
l
ux
t
r
aj
ect
or
y
Fig
u
re
4
.
Th
e
v
o
ltag
e
and
curren
t
with im
p
e
d
a
n
c
e m
u
ltip
l
i
catio
n
are su
b
t
racted
t
o
g
e
t referen
ce
v
o
ltag
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Low
V
o
l
t
a
ge R
i
de-t
hr
o
u
g
h
f
o
r
D
o
u
b
l
y
Fe
d
In
duct
i
o
n
Ge
ner
a
t
o
r
Usi
n
g
B
a
t
t
e
ry- …
(
G
.V
. Nages
h
K
u
mar
)
48
9
The stator three phase
volt
a
ges a
n
d current are
u
s
ed
as
in
pu
ts for ex
tracting
a new
arb
itrary
refe
rence f
r
am
e for RSC d
u
r
ing
diffe
re
nt fa
ult levels. Here
‘z’ is the internal resistance
of the stator wi
ndi
ng.
Th
e vo
ltag
e
and
curren
t
with i
m
p
e
d
a
n
ce mu
ltip
licatio
n
ar
e su
b
t
racted
to g
e
t referen
ce
v
o
ltag
e
as shown
i
n
Fig
u
re
4
.
Under
n
o
rm
al co
nd
itio
n
s
, th
e d
i
fferen
ce
will
b
e
n
e
arly zero
.
During
fau
lt co
nd
itio
ns, t
h
e
v
o
ltag
e
decrease
s
and
current inc
r
eas
es, which
m
a
ke t
h
e di
ff
ere
n
c
e
bet
w
ee
n t
h
es
e t
w
o pa
ram
e
t
e
rs t
o
t
h
e
pi
ct
ur
e. N
o
w
the re
fere
nce
three
phase
vol
t
ages a
r
e c
o
nverted t
o
stationary al
pha
,
bet
a
(V
α
s
, V
β
s
)
vo
l
t
a
ges u
s
i
n
g C
l
ark’
s
tran
sform
a
t
i
o
n
.
Th
is
vo
ltag
e
is in
teg
r
ated
an
d m
a
n
i
p
u
l
ated
to g
e
t stator flux
Φ
α
s
,
Φ
β
s
. The a
n
gle be
twee
n
these tw
o flu
x
e
s is flu
x
an
gle
refe
rence
θ
λ
.
This angle is used to c
o
nve
rt
Φ
α
s
,
Φ
β
s
to
Φ
ds
,
Φ
qs
and als
o
the t
w
o
st
at
i
onary
vol
t
a
ges V
α
s
, V
β
s
are also conv
ert
e
d
to ro
tatin
g
v
o
ltag
e
s
V
ds
, V
qs
usi
n
g
pa
r
k
s t
r
ans
f
orm
a
t
i
on.
The
mag
n
itu
d
e
of
th
ese two
vo
ltag
e
s is V
2
. T
h
e re
fere
nce
v
o
l
t
a
ge m
a
gni
t
ude
o
f
st
at
or i
s
V
1
. Du
rin
g
no
rm
al
co
nd
itio
ns, V
1
and
V
2
a
r
e sa
m
e
. B
u
t
d
u
ri
n
g
vol
t
a
ge
di
ps,
t
h
ere e
x
i
s
t
s
a
di
ffe
re
nce
bet
w
een
t
h
e t
w
o
vol
t
a
ge
s
V
1
and
V
2
.
During
fau
lts, if
V
1
is greater t
h
an V
2
, R
S
C
i
nne
r c
ont
rol
l
o
op
an
d s
p
ee
d r
e
fere
nce c
h
an
g
e
s fr
om
W
λ
s
to
W
1
s. else in a
n
othe
r c
a
se,
with
V
2
greater t
h
an V
1
,
the s
p
ee
d
refe
rence
va
ries
fr
om
W
λ
s
to 0 or
W
1
.
Und
e
r sev
e
re
fau
lt, wh
ere vo
l
t
ag
e d
i
p
will go
b
e
yon
d th
e
ratin
g
o
f
con
v
e
rters, t
h
e
W
λ
s
will b
e
zero
.
Else it
will h
a
v
e
certain
v
a
l
u
e sp
ecifi
ed
b
y
fl
o
w
ch
art an
d con
t
ro
ller as sh
own
in Fi
g
u
re
3
and
Fi
gu
re 4.
4.
DESIGN OF PARAMETERS
FO
R LIT
H
IUM ION B
A
TTERY
The ge
neral
l
a
y
out
of
DFI
G
gri
d
con
n
ect
e
d
sy
st
em
i
s
shown i
n
Fi
gu
re 5
a
. The desi
gn
of B
E
SS a
n
d
capaci
t
o
r
sy
st
em
i
s
sho
w
n
i
n
Fi
gu
re 5
b
[
2
3]
.
T
o
ac
hi
eve
a dc-
b
us vol
t
a
g
e
o
f
70
0 V
t
h
r
o
ug
h seri
es
c
o
n
n
ect
ed
cel
l
s
of
1
2
V,
t
h
e
bat
t
e
ry
b
a
n
k
s
h
oul
d
have
(6
0
0
/
1
2) =
50
num
ber
of
cel
l
s
i
n
s
e
ri
es.
Si
n
ce t
h
e st
ora
g
e
capaci
t
y
o
f
th
is co
m
b
inatio
n
is 1
5
0
Ah
and
th
e to
tal a
m
p
e
re h
o
u
r
requ
ired
is (600
kW
· h
/
6
0
0
V) = 10
00
Ah, th
e
num
ber o
f
s
u
c
h
set
s
re
qui
re
d
t
o
be co
n
n
ect
ed i
n
pa
ral
l
e
l
wo
ul
d
be (
1
00
0 A
h
/
1
5
0
A
h
)
= 6.6
6
or
7 (se
l
ect
ed).
Th
us, t
h
e bat
t
e
ry
ban
k
co
nsi
s
t
s
of si
x pa
ral
l
e
l
-
co
nnect
e
d
sets of 50 series c
o
nnected
battery cells. Theve
n
in’s
m
o
d
e
l is u
s
ed
to
d
e
scri
b
e
th
e en
erg
y
sto
r
age o
f
th
e b
a
ttery in
wh
ich
th
e p
a
rallel co
m
b
i
n
atio
n
o
f
cap
a
citan
ce
(Cb) and
resistance (R
b) i
n
se
ries with i
n
ternal resi
st
ance (
R
i
n
) a
nd a
n
i
d
eal
vol
t
a
ge
so
u
r
ce o
f
vol
t
a
ge
70
0
V
are u
s
ed
for mo
d
e
lling
th
e
b
a
ttery in
wh
ich
th
e equ
i
v
a
le
n
t
cap
acitan
ce Cb is g
i
v
e
n
as [23
]
. Th
e
v
a
lu
e
o
f
t
h
e
B
E
SS
param
e
ters i
s
gi
ve
n i
n
t
h
e
Ap
pe
ndi
x.
(a)
(b
)
Fi
gu
re 5a.
G
r
i
d
co
nnect
e
d
DF
IG sh
o
w
i
n
g
t
h
e
l
o
cat
i
o
n of u
nde
r-
v
o
l
t
a
ge fa
ul
t
,
5
(
b)
B
E
SS sy
st
em
5.
RESULT ANALYSIS
The sy
st
em
unde
r st
udy
i
s
sho
w
n i
n
Fi
gu
re
5a. T
h
e
val
u
es a
r
e
gi
ve
n
i
n
t
h
e
A
ppe
n
d
i
x.
A
DFI
G
syste
m
is co
n
n
ected
d
i
rectly to
grid
with
R
S
C and
GSC
h
e
lp
s i
n
im
p
r
o
v
i
ng
reactiv
e
po
wer su
pp
ly to g
r
i
d
.
Th
e cap
acito
r
at b
ack-to-b
a
ck
conv
erters will p
r
ov
id
e
reac
tiv
e po
wer to
g
r
i
d
in
t
h
e situatio
n
s
lik
e
g
r
i
d
fau
l
t
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
2,
Ju
ne 20
16
:
481
–
4
97
49
0
o
r
sudd
en ch
an
g
e
in grid
termin
al v
o
ltag
e
. Th
e b
a
ttery
e
n
ergy stora
g
e
syste
m
(BESS
)
as i
n
Figure
5b will
provide real
a
nd reactive power supp
ort to
th
e co
nv
erters to
en
h
a
n
c
e th
e syste
m
o
p
e
ration
du
ri
ng
g
r
i
d
disturba
nces.
The system
pe
rform
a
nce
is st
udie
d
unde
r two cases
.
In the
fi
rst ca
se, e
ffi
cacy of the
sys
t
e
m
is
p
e
rform
a
n
ce du
ri
n
g
fau
lts is co
m
p
ared
with
t
h
e
work
in th
e literature [8
].
A
fau
lt
o
ccurred at poin
t
of
com
m
on cou
p
l
i
ng o
r
al
so cal
l
e
d as gri
d
t
e
r
m
i
n
al
here i
n
Fi
gu
re 5a
. Thi
s
faul
t
m
a
kes
t
h
e gri
d
an
d s
t
at
or
vol
t
a
ge
t
o
dr
o
p
t
o
7
0
%
fr
om
n
o
rm
al
val
u
e
bet
w
ee
n
0.
15
a
n
d
0
.
5s
. I
n
t
h
e
seco
nd ca
se, a
com
p
ari
s
on
i
s
m
a
de
with out and
with battery energy so
urce
whic
h is placed betwee
n bac
k
to
back c
o
nverters
of DFIG. In the
second case
,
a
fault with
r
e
si
stan
ce of
0.001
25
Ω
betwee
n the three
phas
es an
d g
r
o
u
nd
at
PC
C
occu
r
du
ri
n
g
0.
8 t
o
1.
2 seco
nds
. The R
S
C
cont
rol
sy
st
em
i
s
provi
ded
wi
t
h
pr
op
ose
d
E
F
OC
t
echni
que
and t
h
e GSC
cont
rol
as explaine
d e
a
rlier. The
nee
d
for additiona
l reactive
p
o
wer requ
irem
en
t to
m
a
in
tain
v
o
ltag
e
profile d
u
ring
fau
lts
is du
e
to lo
w po
wer ratin
g
of
con
v
e
rters.
The p
e
r
f
o
r
m
a
nce of a
n
EF
O
C
based t
e
st
s
y
st
em
i
n
Fi
gure 5
wi
t
h
bat
t
ery
energy storage system
co
n
t
ro
ller
(BESS) is con
s
id
ered
fo
r an
alysis. A to
tal
0.4
secon
d
s
th
ree
p
h
a
ses to gr
oun
d f
a
u
lt o
c
cu
rr
ed
at
PCC is consi
d
ered for the
study
with fau
lt resistan
ce
o
f
0
.
0
015
Ω
. D
u
ri
ng
fa
ul
t
,
st
at
or
vo
l
t
a
ge
dec
r
ease
d
fr
om
1p
u t
o
0.
6p
u
w
i
t
h
a 40%
decr
ease com
p
ared
t
o
no
rm
al
duri
ng
0.
1 t
o
0.
5 se
con
d
s as s
h
o
w
n i
n
Fi
g
u
r
e 6
(
a
)
. T
h
e
decrease
i
n
g
r
i
d
v
o
l
t
a
ge
d
u
r
i
ng
fa
ul
t
de
pe
nds
m
a
i
n
l
y
on
lo
catio
n,
fau
l
t resistan
ce and
typ
e
of fau
l
t. Th
e
efficacy of the
propose
d
EFOC syste
m
can be com
p
ared
with
[9-13, 21 a
n
d 22] for th
e operation
a
nd re
active
po
we
r
c
ont
r
o
l
du
ri
n
g
faul
t
s
.
Th
e stato
r
cu
rren
t is n
e
arly co
nstan
t
with
0
.
8
p
u
at h
ealth
y co
nd
ition
s
to
0
.
5
6pu
du
ri
n
g
fau
lt and
reg
a
i
n
s in
stan
tl
y
with
ou
t surges, its n
o
r
m
a
l
v
a
lu
e on
ce fau
l
t is cleared
as i
n
Figu
re
6
(
b
)
. Du
e to
u
npred
i
c
tab
l
e
su
rg
e curren
t
en
tering
i
n
to
t
h
e syste
m
, at fau
lt in
stan
t,
th
ere will b
e
curren
t
su
rg
es. Bu
t
d
u
e
to
faster actio
n
o
f
co
n
t
ro
llers, th
i
s
su
rg
e cu
rren
t
is li
mited
.
The su
rg
es at
the
s
e instants are
due t
o
sudden
change in ca
pa
citor
voltage
at the
back to
back c
o
nve
r
ters
an
d also
du
e t
o
a sud
d
e
n
i
n
ru
sh
of
fau
lt curren
t
into
th
e stator and
ro
tor
windings. T
h
e
rot
o
r current in
Figure 8(c) which is initially under stea
dy state without fa
ult is 0.70pu.
There
is a v
e
ry sm
a
ll
su
rg
e curren
t in
th
e ro
tor at fau
lt in
st
an
t m
a
k
i
ng
th
e current to
in
crease and the
n
dec
r
eas
ed and
m
a
i
n
t
a
i
n
ed at
0.
50
p
u
f
r
o
m
0.1 t
o
0
.
3s
. T
h
i
s
cur
r
ent
has
a d
ecrease i
n
m
a
gni
t
ude
d
u
r
i
n
g f
a
ul
t
,
b
u
t
no
ch
ange
i
n
rot
o
r slip fre
quency beca
use
of the pr
opos
ed control sche
m
e
. It reached its
pre-fa
ult value after the
fault is
cleared
. Fro
m
th
e equ
a
tio
ns (1
5-1
8
),
with
the ch
ang
e
in
th
e stato
r
and
ro
tor flux
lin
kag
e
v
a
lu
e an
d
ro
t
o
r slip
,
th
e ro
t
o
r
v
o
ltag
e
in
creases slig
h
tly ex
pon
entiall
y to
cer
tain value
beca
us
e of cha
n
ge in back em
f of DFIG.
Because
of t
h
i
s
, ba
sed on Fi
gure
3, it ca
n
be
obse
r
ved
that rot
o
r c
u
rre
n
t, thereby
stator curre
n
t will decrease
w
ith
a p
r
o
p
o
s
ed
sch
e
m
e
in
ste
a
d
o
f
in
cr
easing
du
r
i
ng
a f
a
ult. Th
e r
o
tor
vo
ltag
e
is al
m
o
st co
n
s
tan
t
at 0
.
4pu
b
e
fo
r
e
,
d
u
r
i
ng
an
d af
ter f
a
u
lt is show
n in
Figu
r
e
8(
d)
.
Case 1: C
o
m
p
ariso
n
fo
r the
w
o
r
k
with
70
% d
ecrease
in
grid
v
o
ltag
e
In
th
is case, mu
ch
sev
e
re fau
lt o
ccurre
d
at PCC near grid,
whic
h m
a
kes the grid
voltage
decrease
d
t
o
0.
3p
u f
r
o
m
1pu d
u
ri
n
g
0.
1 t
o
0.
5s. T
h
i
s
dec
r
ease i
s
7
0
% f
o
r st
at
o
r
v
o
l
t
a
ge com
p
are
d
t
o
rat
e
d v
o
l
t
a
ge
un
d
e
r
heal
t
h
y
co
n
d
i
t
i
ons
as s
h
o
w
n
i
n
Fi
g
u
re
6
(a
). B
eca
use
of
t
h
i
s
fa
ul
t
,
t
h
e
st
at
or a
nd
r
o
t
o
r cu
rre
nt
s
u
r
g
e
s
are
pr
o
duce
d
at
t
h
e i
n
st
ant
of fa
u
l
t
at 0.1s.
Aft
e
r
0.0
1
2
s,
these
currents de
crea
sed and reac
he
d a s
m
aller and safe
v
a
lu
e with
th
e p
r
opo
sed
techn
i
qu
e. Th
e stato
r
curren
t in
Fig
u
re 6
(
b) wh
i
c
h
is in
itiall
y
0
.
8
0pu
b
e
fore fau
lt,
reaches
to
0.4pu duri
ng fa
ult betwee
n
0.1 a
n
d 0.3s
.
A
s
u
rge
c
u
rrent of magnitude
1.5pu is produce
d at fault
instant 0.1s a
n
d lasts for one
cycle.
Co
m
p
ared to the
work
in literature
[8,26], the offset DC com
ponents
(DC
O
C) in fl
u
x
d
u
ri
ng fa
ult are m
i
nim
i
sed
even
with
sev
e
re fau
lt with
a
fau
lt resistan
ce o
f
0.001
25
Ω
. The
d
ecrease i
n
DC o
ffsets cu
rren
t
o
s
cillatio
ns, li
m
i
tin
g
su
rg
e curren
t
s, main
tain
ing
cu
rren
t
wav
e
fo
rm
, all are
considere
d
a
dvantages
with
proposed
EFOC. A stea
dy state is reache
d
a
nd
stator c
u
rre
n
t m
a
intained as in
pre
-fa
ul
t
st
at
e.
W
i
t
h
EF
OC
t
echni
que
, c
o
nt
i
nui
t
y
o
f
c
u
r
r
e
n
t
,
t
h
ere
b
y
p
o
w
er
fl
o
w
i
s
i
m
prove
d.
The
ove
ral
l
syste
m
s
t
abilit
y and performance are
i
m
proved. The results obtaine
d with
BESS which is placed between the
back to
back converters
across
norm
al c
a
pacitor, he
lp
s to
realize faster co
n
t
ro
l actio
n
with
sustain
e
d
o
s
cillatio
n
s
and
the EFOC li
mits th
e d
e
co
up
led curren
t
co
n
t
ro
l p
a
ram
e
te
rs.
Th
is BESS
h
e
lp
s in
su
stai
n
i
ng
t
h
e
syste
m
with
o
u
t
m
u
ch
sev
e
re o
s
cillatio
n
s
du
e to
sev
e
re
fau
lts with
t
h
e
ad
d
ition
a
l real
p
o
wer su
ppo
rt fro
m
battery
an
d
rea
c
tive p
o
we
r
fr
o
m
sem
i
-cond
uc
tor s
w
itches
.
Evaluation Warning : The document was created with Spire.PDF for Python.