Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l. 5,
N
o
.
1
,
Ju
ly 20
14
, pp
. 15
~23
I
S
SN
: 208
8-8
6
9
4
15
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Comparative An
alysi
s
of P
WM Techniques for Three Level
Diode Clamped Voltage Source Inverter
Z
u
lkifil
ie Bin Ibra
him,
Md.
Lito
n
Hossa
in, Isma
d
i Bi
n B
u
gi
s,
Ju
ri
fa
M
a
t
L
a
z
i
, Nur
a
z
l
i
n
Mo
hd
Y
a
a
k
op
Department o
f
P
o
wer Electronics
and Driv
e,
Facu
lt
y of
El
ec
tric
al
Engine
ering,
Un
iversiti
T
e
knika
l
Mala
ysi
a
Me
lak
a
,
Me
la
ka,
Malay
s
ia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Mar 30, 2014
Rev
i
sed
May 22
, 20
14
Accepte
d
J
u
n 1, 2014
Multilev
e
l inv
e
r
t
ers are in
cre
a
singl
y
b
e
ing use
d
in high-power m
e
dium
voltag
e
industr
ial dr
ive
applications
du
e to
their super
i
or p
e
rformance
com
p
ared to co
nvention
a
l two-l
e
vel inv
e
rt
ers
.
Thre ar
e a num
ber of P
u
ls
e
width modulation (PWM) tech
niques a
pplied
in recent
y
e
ars. The most
widely
app
lied
PWM techniques are Si
ne Pulse
Width Modulation (SPWM)
and Space Vect
or Pulse W
i
dth
Modulation (SVPW
M
).
SPW
M
is the m
o
st
simple modulation techniqu
e that can
realize easily
in analog circuit.
However, it has
some drawbacks such
as high
er total harmonic distortion
(THD), lower ef
fect
ive DC utili
z
a
tion and lower
switching freque
nc
y. Spac
e
vector pu
lse width modulation
(SVPWM)
is widely
used b
e
cause of their
easier digi
ta
l rea
liz
ation and bet
t
e
r DC
bus utiliz
ation and lower
THD. The
com
p
lexit
y
is d
u
e to
the
diffi
c
u
lt
y in
det
e
rm
i
n
ing the
ref
e
re
nce v
ector
location, on tim
es calcu
lation,
and switc
hing states selection.
This paper
pres
ents
a s
i
m
p
l
e
S
V
P
W
M
algorithm
for
diode clamped three lev
e
l inv
e
rters
based on standard two-level SVPW
M
which can eas
il
y d
e
t
e
rm
ine th
e
loca
tion of refe
r
e
nce v
ector
, ca
lc
ulat
e th
e on-times, the selection o
f
switching
s
t
ates
. Thr
ee l
e
vel diode c
l
am
ped invert
er (3LDCI) us
ing space ve
cto
r
modulation technique h
a
s been
modeled and simu
lated using
MATLAB/SIMULINK and Ori
g
in 6.1 with a passive R-L load
that can be
extend
ed to an
y
level. Simulatio
n results
are presented to ver
i
f
y
the proposed
S
V
PW
M control in term
s
of THD. The res
u
lts
arecom
p
ared with
conventional sin
u
soidal pulse w
i
dt
h modulation
(SPWM) wher
e SVPWM
shows better
per
f
ormance
than S
P
WM in terms of THD.
Keyword:
3L
DC
I
Multilev
e
l
inver
t
er
Pulse width m
o
d
u
lation
SP
W
M
SVP
W
M
THD
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Zu
lk
ifilie Bin
Ib
rah
i
m
,
Ass
o
ciate Professor,
Depa
rt
m
e
nt
of
Po
wer
El
ect
ro
ni
cs a
n
d
D
r
i
v
e,
Facu
lty of Electrical Eng
i
n
eerin
g
,
Un
iv
ersiti Tekn
ik
al Malaysia Melak
a
,
H
a
ng
Tu
ah
Jay
a
, 761
00
Du
r
i
an
Tun
g
g
a
l, Melak
a
, Malaysia.
Em
a
il: d
r
zu
lk
ifilie@u
te
m
.
ed
u.my
1.
INTRODUCTION
Multilevel inverter technol
ogy has em
erged recently as a very im
porta
nt
alternative in
the area of
hi
g
h
-
p
owe
r
m
e
di
um
vol
t
a
ge e
n
er
gy
co
nt
r
o
l
.
To
day
,
i
t
i
s
har
d
t
o
c
o
n
n
ect
a
si
ngl
e
po
wer s
e
m
i
cond
uct
o
r s
w
i
t
c
h
di
rect
l
y
t
o
m
e
di
um
vol
t
a
ge g
r
i
d
s.
Harm
oni
c
di
st
ort
i
o
n i
s
h
i
gh f
o
r c
o
n
v
e
n
t
i
onal
i
nve
rt
er.
For t
h
ese re
as
ons
, a
new fam
i
l
y
of di
ode cl
am
ped m
u
l
t
i
l
e
vel
inve
rt
ers
has em
erged as t
h
e
sol
u
t
i
o
n fo
r wo
rki
n
g wi
t
h
hi
g
h
e
r
v
o
ltag
e
lev
e
ls
an
d lower
h
a
rm
o
n
i
c d
i
sto
r
tio
n [1
]. Rodr
ígu
ez an
d Lai
d
i
scu
ssed
sev
e
ral
m
u
lti-lev
e
l in
v
e
rter
to
po
log
i
esto
increase th
e
power
d
e
liv
er
ed
to
th
e lo
ad
and
to
im
p
r
ov
e the q
u
ality o
f
the v
o
ltag
e
[2
].
In
t
h
is
pape
r,
a
di
o
d
e
cl
am
ped t
h
re
e l
e
vel
v
o
l
t
a
ge
so
urce
i
n
vert
er i
s
prese
n
t
e
d
.
Thi
s
cl
am
pi
ng
di
o
d
e ca
n
pr
od
uce
ad
d
ition
a
l
v
o
l
t
a
g
e
lev
e
l
th
at red
u
c
es th
e h
a
rm
o
n
i
c d
i
sto
r
tion
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
15
–
23
16
A vari
us
pul
se
wi
dt
h m
odul
at
i
on (
P
W
M
) t
echni
que
s hav
e
b
een di
sc
ussed t
o
co
nt
rol
t
h
e i
nve
rt
er [
3
]
.
Am
ong these
m
odulation tec
hni
que
s
for
a
m
u
ltilevel inve
rter, S
V
P
W
M
is the m
o
st popula
r
techni
que due t
o
th
eir un
iqu
e
characteristics such
as d
i
rectly u
s
ing
th
e
con
t
ro
l v
a
riab
le, i
m
p
r
ov
ing
DC lin
k
vo
ltag
e
u
tilizatio
n
,
red
u
ci
n
g
c
o
m
m
ut
at
i
on l
o
sse
s an
d T
H
D
,
ea
sy
DSP
i
m
pl
em
ent
a
t
i
on an
d
opt
i
m
i
zati
on o
f
s
w
i
t
c
hi
n
g
pat
t
e
rns
[4
]
,
[5]. T
h
e s
p
ace
vector
diagra
m
consists of
six sector
s
for any level inverter. E
ach
se
ctor c
ontai
ns (m
-1)
2
trian
g
l
es
wh
ere
m
is
th
e n
u
m
b
er o
f
lev
e
lsin
wh
ich
th
e
refere
nce vect
or can be lo
cated
with
in
an
y of th
ese
t
r
i
a
ngl
es.
A
s
w
i
t
c
hi
ng
vect
or
com
p
ri
si
ng a
n
u
m
b
er o
f
s
w
i
t
c
hi
ng states
represents the
ve
rtices of eac
h tria
ngle
.
There
are
m
3
s
w
itch
i
ng
states fo
r m
-
lev
e
l inv
e
rter. Th
e
on
t
i
m
e
equat
i
ons
o
f
S
V
PWM e
x
ecute t
h
e s
w
itchi
ng
states o
f
th
e triang
le. Th
e
pe
rf
orm
a
nce o
f
t
h
e i
nve
rt
er
si
gni
fi
can
tly dep
e
nd
s on
t
h
e selectio
n
of
th
ese
switching stat
es [6]. Tria
ngl
e num
b
er
s, s
w
itching state
s
increase
wit
h
th
e i
n
crea
se
of level that
creates
co
m
p
u
t
atio
n
a
l
co
m
p
lex
ity in
term
s o
f
on
time calcu
la
tions. T
h
ere a
r
e a
num
ber
of
spa
ce vector algorith
m
s
t
h
at
sh
ow
s t
h
e
bet
t
e
r
per
f
o
r
m
a
nce. S
o
m
e
of t
h
em
som
e
are m
e
n
tio
n
e
d
with
th
ei
r limi
t
atio
n
s
. Celanov
ic and
Boroyevich
presented a e
u
c
lidean
v
e
cto
r
syste
m
b
a
sed SVPWM algo
rith
m
th
at n
eed
s sev
e
ral
matrix
t
r
ans
f
o
r
m
a
ti
on
s, l
acks
of
reg
u
l
a
r se
que
nce
of
det
e
rm
i
n
i
n
g
t
h
e swi
t
c
hi
ng
st
at
es and i
s
u
n
sui
t
a
bl
e fo
r re
al
-t
im
e
im
pl
em
ent
a
t
i
o
n [
7
]
.
T
h
e m
e
tho
d
pr
o
pose
d
by
Lo
h a
nd
H
o
l
m
es [8]
wi
t
h
t
w
o l
e
vel
o
n
t
i
m
e
cal
cul
a
ti
on wi
l
l
resul
t
i
n
t
o
t
a
l
com
put
at
i
ons
hi
g
h
er t
h
a
n
C
e
l
a
no
vi
c an
d B
o
r
o
y
e
vi
c
h
[
7
]
.
Aut
h
o
r
s [
9
]
i
n
t
r
o
d
u
ce a m
e
t
hod
f
o
r
o
n
-tim
e calcu
l
a
tio
n
t
h
at work
s
well on
ly
up
to three lev
e
ls. The m
u
ltile
v
e
l ON-ti
m
e
calcu
latio
n
p
r
oble
m
i
s
con
v
e
r
t
e
d t
o
a
sim
p
l
e
t
w
o-l
e
vel
O
N
-t
i
m
e cal
c
ul
at
i
on p
r
o
b
l
e
m
.
J. H. Seo an
d C
.
H
.
C
hoi
[
1
0]
pr
o
p
o
s
ed a
technique for
a
three
-
levelinverter base
d on two
le
vel
inverter.The
three-l
e
vel s
p
ace
vectordiagram
is divide
d
into si
x two-l
e
vel s
p
ace
ve
ctor
diag
ram
s
. Atwo-phase t
o
three-phase
co
nve
r
sion is
neede
d
t
o
cal
culate
th
epo
i
n
t
to sh
i
f
t of orig
i
n
of
a v
i
rtu
a
l t
w
o-l
e
v
e
l inv
e
rter.
Sub
s
equ
e
n
tto
t
h
e sh
ift of
o
r
i
g
in
and
60
0
c
o
or
di
nat
e
t
r
ans
f
o
r
m
a
ti
on,
on
-t
i
m
es are cal
c
ul
at
ed usi
ng t
w
o
-
l
e
vel
eq
uat
i
ons
. Eve
n
f
o
rt
hree l
e
vel
s
, t
h
i
s
t
echni
q
u
e
r
eq
ui
res
m
o
re co
m
puta
tions tha
n
the
prese
n
tedtec
hnique [6].
Tra
b
elsiand Ben-B
r
ahim
[11] propose
d
a ne
w space
vector algorithm that need
ed
separat
e
eq
ua
t
i
ons t
o
cal
cul
a
t
e
on t
i
m
e
s for
od
d an
d ev
en n
u
m
b
er t
r
i
a
ngl
e
d
e
term
in
atio
n
.
In t
h
i
s
pa
per
,
we p
r
ese
n
t
e
d
a sim
p
l
e
al
gor
i
t
h
m
t
o
per
f
o
r
m
t
h
e SVP
W
M
fo
r di
ode c
l
am
ped t
h
re
e
l
e
vel
i
nve
rt
er.
The
on
-t
i
m
e cal
c
ul
at
i
on i
s
b
a
sed
on t
w
o l
e
vel
SV
P
W
M
a
l
go
ri
t
h
m
t
h
at
is sim
p
l
e
and t
h
e o
n
-
t
i
m
e
cal
cul
a
t
i
on e
quat
i
o
ns
do
not
cha
n
g
e
wi
t
h
t
h
e po
si
t
i
on of r
e
fe
r
e
nce vect
o
r
l
i
k
e t
h
e co
nve
nt
i
onal
algorithm
.
In the space
vect
or
diagra
m
of an m
-
level inverter, the tria
ngle
whe
r
e the refere
nce
ve
ctor is
lo
cated
is id
en
ti
fi
ed as inte
ger
∆
n
.
An
y switch
i
ng
sequen
ce can
b
e
ex
ecu
ted
with
resp
ect to
triang
le
∆
n
,
le
a
d
in
g to
an
ea
s
i
n
e
s
s
and
fl
e
x
ibility of
optimizing the
swi
t
ching se
que
nc
e. Three
le
vel space vector diagram
i
s
di
vi
de
d i
n
t
o
si
x sect
or eac
h
cont
ai
ni
n
g
f
o
u
r
t
r
i
a
ngl
e s
h
o
w
n i
n
fi
g
u
re
1.S
h
ant
a
nuC
hat
t
e
r
j
ee use
d
7 s
w
i
t
c
hi
n
g
st
at
es for t
r
i
a
n
g
l
e
1,
4 s
w
i
t
c
h
i
ng st
at
es f
o
r t
r
i
a
n
g
l
e
2 a
nd
4 an
d
5 swi
t
c
h
i
ng st
at
es f
o
r t
r
i
a
n
g
l
e
3 t
h
at
neede
d
m
o
re
m
e
m
o
ry space, m
o
re com
putation time and m
o
re lo
okup table [12]. In this
c
o
ntrol technique, there
have
bee
n
propos
ed
only four a
c
tive s
w
itching states
in
each tria
ngle s
h
own in
Table
1 t
h
at re
qui
re
d less
num
ber
of
l
o
o
k
u
p
t
a
bl
e a
n
d
com
put
at
i
ons.
Thi
s
t
e
c
hni
que
can
be
use
d
f
o
r
any
m
-
l
e
vel
i
nve
rt
er
wi
t
h
o
u
t
any
si
gni
fi
ca
nt inc
r
ease in c
o
m
putations.
Figure
1. Spac
e vector
diag
ra
m
for th
ree lev
e
l inve
rter
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Comparative Analysis
of PW
M techniques f
o
r Three
Level
Diode Clampe
d Voltage
… (Zulkifilie Bin Ibrahi
m)
17
2.
SVPW
M AL
GORITHM
Nupu
r Mittal a
n
d
Bind
esh
w
ar Sin
g
h
presen
ted
d
i
ff
eren
t PWM tech
n
i
q
u
e
s ap
p
lied
for co
n
t
ro
lling
the
activ
e d
e
v
i
ces
in
a m
u
ltilev
e
l
in
v
e
rter
[13
]
.
In
t
h
is
p
a
p
e
r,
SVPWM techn
i
qu
e is
p
r
esented
to
p
r
od
u
ce PWM
co
n
t
ro
l sign
als to
th
e in
v
e
rter. SVPW
M com
p
en
sates
th
e requ
ired
vo
lt-secon
d
s
u
s
ing d
i
screte switch
i
ng
states and t
h
eir on-tim
es. The classical two-l
e
vel space
vect
or
ge
om
et
ry
can be
use
d
fo
r
o
n
-t
i
m
e cal
cul
a
ti
on.
The s
p
ace vec
t
or dia
g
ram
of a three phase
voltage s
o
urc
e
inverte
r
is a hexa
gon, consisting of six s
ectors.
Ev
ery
sector i
s
an equ
ilateral trian
g
l
e of
un
ity sid
e
and
h
(=
√
3
/
2) is th
e
h
e
igh
t
o
f
a sector.
Th
e on
-tim
e
calcu
latio
n
is
sa
m
e
fo
r all secto
r
s.
Vo
lt-secon
d
equ
a
tion
is:
(
1
)
The
v
o
l
t
-
seco
n
d
s i
n
t
e
rm
s of
com
pone
nt
s
V
Z
, V
X
and
V
Y
of
along
axis are
,
(
2
)
(
3
)
(
4
)
So
lv
i
n
g Eq
u
a
ti
o
n
(2
)–(4),
ob
tain
fo
r th
e calcu
l
atio
n
of
ON ti
m
e
s,
(
5
)
(
6
)
(
7
)
Whe
r
e T
s
= 1/
2f
s
, f
s
i
s
t
h
e sw
i
t
c
hi
ng f
r
e
que
n
c
y
.
Fo
r any
gi
v
e
n ref
e
re
nce v
ect
or, t
h
e sect
o
r
of
o
p
erat
i
o
n
and i
t
s
an
g
l
e
with
i
n
the secto
r
is
d
e
term
in
ed
b
y
u
s
ing
Equ
a
tio
n (8
)
an
d (9
),
resp
ectiv
ely.
1
(
8
)
(
9
)
In e
q
ns.
(8
) a
nd
(
9
),
0
360
is the
angle
of t
h
e refere
nce
v
ector with
res
p
ect to
x-axis,
0
6
0
is th
e ang
l
e with
in
the secto
r
an
d
1
6
is its secto
r
o
p
e
ration
,
in
t and
rem are
st
anda
rd
m
a
t
h
fu
nct
i
o
n
of i
n
t
e
ger
an
d
rem
i
nder
.
In each sector, triangle ca
n
be classi
fi
ed
i
n
to
t
w
o typ
e
s. Typ
e
1 triangle h
a
s its
b
a
se sid
e
at
the
bot
t
o
m
.
Ty
pe
2 t
r
i
a
n
g
l
e
has
i
t
s ba
se si
de
at
t
h
e
t
o
p.
T
h
e t
r
i
a
ngl
e
num
ber
∆
can b
e
d
e
term
in
ed in term
s o
f
t
w
o
in
teg
e
r v
a
riab
l
e
s P
1
and P
2
,
wh
ich
ar
e
d
e
p
e
nd
en
t
on
th
e po
sitio
n
of
r
e
f
e
r
e
nce v
ector
,
.
√
(
1
0
)
(
1
1
)
P
1
represe
n
ts the pa
rt of the
s
ector
betwee
n t
h
e tw
o l
i
n
es
jo
i
n
i
ng t
h
e
vert
i
c
es, sepa
rat
e
d
b
y
di
st
ance h
and i
n
cl
i
n
e
d
at
12
0
0
with
respect to
ax
is sh
ow
n
i
n
Figur
e 2. P
1
= 0
si
g
n
i
fies th
at th
e po
i
n
t Q is
b
e
low line
A
1
A
2
. P
1
= 1 si
gni
fi
es t
h
at
t
h
e
poi
nt
Q i
s
bet
w
een l
i
n
e
A
1
A
2
and l
i
n
e A
3
A
5
. P
2
re
prese
n
ts
the pa
rt of t
h
e
sector
b
e
tween
th
e two lin
es
j
o
i
n
ing
th
e v
e
rtices
,
separat
e
d
by
d
i
st
ance h
an
d
paral
l
e
l
t
o
axis
. P
2
=
0 si
gni
fi
e
s
th
at th
e p
o
i
n
t
Q is b
e
tween
lin
e A
0
A
3
a
nd l
i
n
e A
2
A
4
. P
2
= 1 si
gni
fi
es t
h
at
t
h
e poi
nt
Q i
s
abo
v
e l
i
n
e
A
2
A
4
.Geo
m
e
tri
cally, th
e v
a
l
u
es of P
1
and
P
2
are a
n
i
n
terse
c
tion
of two re
ctangular
regi
ons
whic
h is eit
h
er
a
t
r
i
a
ngl
e
o
r
r
h
o
m
bus. I
n
ot
her
w
o
r
d
s
,
t
h
e
p
o
i
nt
Q
l
i
e
s i
n
(
a
) t
r
i
a
ngl
e
∆
if
P
1
=0 a
n
d P
2
=0
, (b
) rho
m
b
u
s
A
1
A
3
A
4
A
2
if P
1
= 1 an
d P
2
= 0
,
(c) triang
le
∆
if P
1
= 1
and P
2
= 1. T
h
e s
a
m
e
anal
ogy
c
a
n be
use
d
f
o
r
any
lev
e
l. In
Figu
re 2
,
th
e
referen
ce vect
or is l
o
cated in
rhom
bus A
1
A
3
A
4
A
2
.Thi
s r
h
om
bus i
s
m
a
de u
p
o
f
t
w
o
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
15
–
23
18
trian
g
l
es
∆
and
∆
.
T
he
poi
nt
Q ca
n be l
o
cat
ed i
n
any
of t
h
e t
w
o
.
Let
,
be t
h
e c
o
or
di
nat
e
s
of t
h
e poi
nt
Q with
resp
ect to
th
e po
in
t A
1
obt
ai
ne
d a
s
:
.
5
(
1
2
)
Fi
gu
re
2.
S
p
ac
e vect
o
r
di
ag
ra
m
of t
r
i
a
ngl
e
d
e
t
e
rm
i
n
at
i
on
fo
r sect
o
r
1
(
1
3
)
In
E
quat
i
o
n
(
1
2)
an
d
(
1
3),
/
is th
e slop
e
of t
h
e lin
e
b
e
tween
t
h
e
o
r
i
g
in of th
e rh
o
m
b
u
s
an
d
t
h
e re
fere
nce
v
ect
or a
n
d i
t
i
s
c
o
m
p
ared
wi
t
h
sl
ope
o
f
t
h
e
di
a
g
o
n
al
of
t
h
e
rh
om
bus w
h
i
c
h i
s
√3
.
Th
e slop
e com
p
ariso
n
is
do
n
e
b
y
ev
alu
a
t
i
n
g
in
eq
u
a
lity
√
3
and to
determ
ine t
h
e
sm
all
vector V
Z
and
the e
x
act t
r
iangle
num
b
er
∆
. I
f
√
3
wh
ich ind
i
cates triang
le
of typ
e
1 an
d t
h
ese
t
r
i
a
ngl
es a
r
e si
m
i
l
a
r t
o
sect
or
1
of
t
w
o-l
e
vel
i
nve
rt
er.
T
h
e t
r
i
a
ngl
e
n
u
m
b
er
∆
i
s
ob
tain
ed
as:
∆
2
(
1
4
)
If
√
3
w
h
i
c
h i
ndi
cat
es t
r
i
a
ngl
e
of t
y
pe
2 a
n
d
t
h
ese t
r
iang
les are sim
ilar to
secto
r
2
o
f
two-lev
e
l
i
nve
rt
er. The
t
r
i
a
ngl
e num
ber
∆
is ob
tain
ed as:
∆
2
1
(
1
5
)
In
E
quat
i
o
n
(
1
4)
an
d
(
1
5
)
,
∆
indicates the triangle a
n
d
n is
the t
r
iangle num
b
er and he
nce
∆
is an
in
teg
e
r and
sign
i
fi
es
nt
h t
r
i
a
ng
l
e
i
n
t
h
e sect
or
. Usi
ng
eq
ns.
(
1
4
)
an
d (1
5), t
o
id
en
tify triang
le in
a sect
o
r
and
the
on tim
es are calculatedusi
ng E
q
uation
(5)–(7). T
h
e
∆
i
s
f
o
rm
ul
at
ed t
o
p
r
ovi
de
a
si
m
p
l
e
way
of
a
rra
ng
i
n
g
th
e triang
le, lead
ing
to ease
of id
en
ti
fi
catio
n
an
d ex
ten
s
ion
t
o
an
y lev
e
l.
3.
CO
NTR
O
L T
E
CHN
I
Q
U
E
AN
D TO
POL
OGY
Th
e m
u
lti
lev
e
l in
v
e
rter is b
e
st su
ited
for th
e ap
p
licatio
n
wh
ich
dem
a
n
d
s
th
e
fi
n
e
st qu
ality o
f
th
e ac
sup
p
l
y
wa
vef
o
rm
s. Thi
s
wo
r
k
p
r
ese
n
t
e
d a
SVP
W
M
co
nt
r
o
l
t
echni
qu
e,
whi
c
h pe
rt
ai
ns
ful
l
H
-
B
r
i
d
ge
di
o
d
e
cla
m
p
e
d
m
u
ltil
ev
el inv
e
rters.
So
m
e
researcher
u
s
ed (m
+1
) n
u
m
b
e
r d
c
sources [4
],
[1
5
]
fo
r
d
e
v
e
lop
i
ng
th
eir
propose
d
m
o
del that increas
e the cost as
well as m
a
ke
t
h
e sy
st
em
bul
ky
. I
n
t
h
i
s
m
o
del
,
we us
ed
(
m
-1)/
2
n
u
m
b
e
r of d
c
so
urces
t
h
at
are co
st
effectiv
e. Th
e g
e
n
e
ra
l
fun
c
tio
n
o
f
t
h
is
m
u
l
tilev
e
l in
v
e
rter is t
o
sy
n
t
hesize a
desi
re
d
vol
t
a
g
e
fr
om
a si
ngl
e dc s
o
urce
w
h
i
c
h m
a
y
be o
b
t
a
i
n
ed
f
r
om
bat
t
e
ry
, fuel
cel
l
,
or
sol
a
r cel
l
.
Unl
i
k
e
the cascaded i
nve
rter, the
di
odeclam
p inve
rter
does
no
t
require se
pa
ra
te voltage
sources for each
half
bri
dge
.A t
h
ree
phase t
h
ree-l
e
vel
ful
l
H-
b
r
i
d
ge i
nve
rt
er
is sh
own
in
Figu
re 3
.
An
m
-
lev
e
l th
ree p
h
a
se
fu
ll H-
bri
dge i
n
vert
e
r
t
y
pi
cal
ly
consi
s
t
s
of 6(m
-
1)
m
a
i
n
swi
t
c
hi
ng de
vi
ces and
6(m
-
2) m
a
i
n
di
odes
.
A t
h
ree
pha
se
R
L
l
o
a
d
of
5
0
ohm
an
d
20
m
H
i
s
c
o
nnect
e
d
acr
oss t
h
e
o
u
t
put
o
f
i
n
ve
rt
er.
The
s
w
i
t
c
hi
n
g
seq
u
e
n
ces
fo
r
t
h
re
e
pha
se t
h
ree l
e
v
e
l
i
nve
rt
er a
r
e
gi
ve
n i
n
Ta
bl
e
2
[1
6]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Comparative Analysis
of PW
M techniques f
o
r Three
Level
Diode Clampe
d Voltage
… (Zulkifilie Bin Ibrahi
m)
19
Fi
gu
re
3.
C
o
m
p
l
e
t
e
si
m
u
l
a
ti
on
bl
oc
k
di
ag
ra
m
for t
h
e
w
hol
e sy
st
em
4.
RESULT AND DIS
C
USSI
ON
Si
m
u
latio
n
s
are p
e
rform
e
d
fo
r th
is system an
d
co
m
p
ared
with
SPWM
to
v
a
lid
ate th
e resu
lts b
y
usi
n
g M
A
T
L
A
B
/
S
im
ul
i
nk an
d O
r
i
g
i
n
6
.
1
.
T
h
ree l
e
vel
i
nve
rt
er ba
sed
o
n
S
V
P
W
M
i
s
pr
es
ent
e
d as
3LS
V
P
W
M
and a
not
hers
are sam
e
like
this. Measure
m
ent of out
put curre
nts are shown in Figure 4(a
)
and 4(b) for
2LS
V
P
W
M
a
n
d
3LS
V
P
W
M
respect
i
v
el
y
.
C
o
m
p
ari
s
on
of
t
h
ei
r
h
arm
oni
c
di
st
ort
i
o
n
(
H
D
)
i
s
s
h
ow
n
i
n
f
i
gu
re
4(c
)
. F
u
ndam
e
nt
al
harm
oni
c
di
st
ort
i
o
n i
s
al
way
s
1
0
0
%
t
h
at
has bee
n
s
k
i
ppe
d
due t
o
si
m
p
li
ci
t
y
of g
r
a
phi
cal
prese
n
t
a
t
i
o
n
.
T
h
e m
easurem
ent
o
f
c
u
r
r
e
n
t
T
H
D
f
o
r
2L
SV
P
W
M
i
s
3.
8
6
%
an
d
fo
r
3LS
V
P
W
M
i
s
2.
83
%. T
h
e
r
e
du
ced
cu
rr
ent THD
is
f
ound
f
o
r
3
L
SV
PW
M
b
y
1.03
% th
an 2LSV
PW
M.
Measur
emen
t o
f
ou
tpu
t
cur
r
e
n
t
s
are sh
o
w
n i
n
Fi
gu
re
4(
d) a
n
d 4
(
e)
fo
r
2L
SP
W
M
a
nd
3
L
SP
W
M
res
p
e
c
t
i
v
el
y
.
C
o
m
p
ari
s
o
n
o
f
t
h
ei
r
HD i
s
sh
own
in
Fig
u
re 4(
f)
.
Th
e m
e
asu
r
em
en
t of
cu
rr
en
t
THD
fo
r 2
L
SPW
M
is
10
.6
9% an
d fo
r
3
L
SPW
M
is 4.4
9
%.
3LSP
WM
sh
o
w
s red
u
ce
d
T
H
D
t
h
a
n
2LS
P
W
M
by
6
.
2%
. C
o
m
p
ari
s
on
o
f
C
u
r
r
e
n
t
H
D
b
e
t
w
een 3L
SP
WM
a
n
d
3LS
V
P
W
M
i
s
sho
w
n i
n
Fi
g
u
r
e
4(g
)
.
3LS
V
P
W
M
sh
ows t
h
e
reduct
i
on o
f
T
HD t
h
a
n
3L
SP
WM
by
1.
66
%
t
h
at
i
s
t
h
e l
o
west
c
u
r
r
ent
T
H
D t
h
an any
ot
he
rs.
M
easurem
ent
of
out
p
u
t
v
o
l
t
a
ges are s
h
ow
n
i
n
Fi
g
u
re
4(
h
)
and
4
(
i
)
f
o
r
2
L
SV
PWM
and
3
L
SVPW
M r
e
sp
ectiv
ely.
Co
m
p
ar
is
o
n
o
f
t
h
eir
H
D
is sh
own in
Fi
gu
r
e
4(j
)
. Th
e
m
easurem
ent
of
v
o
l
t
a
ge
T
HDs
are
5
2
.
2
4% a
n
d
23
.2
1
%
f
o
r
2L
SV
P
W
M
a
n
d
3L
S
V
P
W
M
re
spe
c
t
i
v
el
y
.
29
.0
3%
re
duc
e
d
T
H
Di
s f
o
un
d
fo
r
3LS
V
P
W
M
t
h
a
n
2L
S
V
P
W
M
.
M
eas
urem
ent
o
f
out
put
v
o
l
t
a
ges a
r
e sh
o
w
n
i
n
Fi
gu
re 4
(
k
)
and
4(l
)
f
o
r 2L
SP
W
M
an
d 3
L
SP
W
M
res
p
ect
i
v
el
y
.
C
o
m
p
arison
of t
h
ei
r
H
D
i
s
sho
w
n i
n
Fi
gu
re
4(m
)
. T
h
e m
e
asurem
ent
o
f
vo
l
t
a
ge TH
Ds a
r
e 6
4
.
6
7
%
a
n
d
36
.6
3%
f
o
r
2L
SP
W
M
a
n
d
3L
SP
W
M
res
p
ect
i
v
el
y
.
3LSP
WM
s
h
o
w
s
28
.0
4%
re
d
u
ced
T
HD t
h
a
n
2LSP
WM
.
C
o
m
p
ari
s
on
o
f
vol
t
a
ge
H
D
be
t
w
een
3L
SP
W
M
and
3LS
V
P
W
M
i
s
sh
ow
n i
n
Fi
g
u
re
4(
n
)
.
3LS
V
P
W
M
p
r
o
v
i
d
es 1
3
.
42%
re
d
u
ced
TH
D t
h
a
n
3
L
SP
WM
.
Hence
,
3LS
V
P
W
M
s
h
ows
t
h
e
best
pe
rf
orm
a
nce t
h
a
n
any
ot
he
rs.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
15
–
23
20
Tabl
e
1.
Swi
t
c
hi
n
g
Se
q
u
ence
of
Act
i
v
e
Vect
ors
f
o
r
T
h
ree
L
e
vel
I
n
vert
er
Table 2. Switc
hing
Se
quence
for
Phase
A
Switching
Sy
m
bol
Switching States f
o
r Phase A
Ter
m
inal Voltage
S
a1
S
a2
S
a3
S
a4
P
1 1 0
0
V
dc/
2
O
0 1 1
0
0
N
0 0 1
1
-
V
dc/
2
Fi
gu
re
4(a
)
.
O
u
t
p
ut
cu
rre
nt
f
o
r
t
w
o l
e
vel
S
V
P
W
M
Fi
gu
re
4(
b
)
.
O
u
t
p
ut
cu
rre
nt
f
o
r
t
h
ree
l
e
vel
S
V
P
W
M
Fi
gu
re 4(c
)
.C
o
m
pari
son of
C
u
r
r
ent
H
D
bet
w
een
2
L
SV
PW
M and
3
L
SV
PW
M
Fi
gu
re 4(
d
)
. O
u
t
p
ut
cu
rre
nt
f
o
r
t
w
o
l
e
vel
SP
WM
0
2000
4000
6
000
800
0
10000
-2
-1
0
1
2
Ti
m
e
(
m
s
)
C
u
r
r
e
n
t ( A
)
0
2000
4000
6
000
8000
1000
0
-2
-1
0
1
2
Ti
m
e
(m
s
)
C
u
r
r
e
n
t ( A
)
2
4
6
8
10
12
14
16
18
20
0.
0
0.
5
1.
0
1.
5
2.
0
2.
5
3.
0
H D
(
%
)
Har
m
on
i
c
Ord
e
r
Current
H
D
for 2
L
SV
PW
M
Current
H
D
for 3
L
SV
PW
M
0
50
0
100
0
1
500
200
0
-2
-1
0
1
2
Tim
e
(
m
s
)
C
u
rr
en
t
(
A
)
Sector
Triangle No.
Sequence of
Active Vectors
1
0 111-
21
1-
221-
22
2
1 100-
20
0-
210-
21
1
2 100-
11
0-
210-
21
1
3 110-
21
0-
220-
22
1
2
0 111-
12
1-
221-
22
2
1 110-
12
0-
220-
22
1
2 110-
12
0-
121-
22
1
3 010-
02
0-
120-
12
1
3
0 111-
12
1-
122-
22
2
1 010-
02
0-
021-
12
1
2 010-
01
1-
021-
12
1
3 011-
02
1-
022-
12
2
4
0 111-
11
2-
122-
22
2
1 011-
01
2-
022-
12
2
2 011-
01
2-
112-
12
2
3 001-
00
2-
012-
11
2
5
0 111-
11
2-
212-
22
2
1 001-
00
2-
102-
11
2
2 001-
10
1-
102-
11
2
3 101-
10
2-
202-
21
2
6
0 111-
21
1-
212-
22
2
1 101-
20
1-
202-
21
2
2 101-
20
1-
211-
21
2
3 100-
20
0-
201-
21
1
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Comparative Analysis
of PW
M techniques f
o
r Three
Level
Diode Clampe
d Voltage
… (Zulkifilie Bin Ibrahi
m)
21
Fi
gu
re 4(e
)
O
u
t
put
c
u
r
r
ent
f
o
r
t
h
ree
l
e
vel
S
P
W
M
Fi
gu
re 4(
f)
.C
o
m
pari
son of
C
u
r
r
ent
H
D
bet
w
een
2LSP
WM
a
n
d
3LSP
WM
Fi
gu
re 4(
g
)
.
C
o
m
p
ari
s
on
o
f
C
u
r
r
ent
H
D
be
t
w
een
3LSP
WM
a
n
d
3LS
V
P
W
M
Fi
gu
re
4(
h
)
.
O
u
t
p
ut
V
o
l
t
a
ge
f
o
r
t
w
o l
e
vel
S
V
P
W
M
Fi
gu
re
4(i
)
.
O
u
t
put
Vol
t
a
g
e
f
o
r t
h
ree l
e
v
e
l
S
V
P
W
M
Fi
gu
re
4(
j
)
. C
o
m
p
ari
s
on
of
V
o
l
t
a
ge
HD
bet
w
een
2
L
SV
PW
M and
3
L
SV
PW
M
Fi
gu
re
4(
k
)
.
O
u
t
p
ut
V
o
l
t
a
ge
f
o
r
t
w
o l
e
vel
SP
WM
Fi
g
u
re
4
(
l
)
.
Outp
u
t
Vo
ltage for three level SPWM
0
500
1000
1500
2000
-2
-1
0
1
2
Ti
m
e
(
m
s
)
C
u
rr
en
t
(
A
)
2
4
6
8
1
01
21
4
1
61
82
0
0
1
2
3
4
5
6
H
D
(
%
)
Ha
rm
o
n
i
c
Order
Curr
ent
HD for
2LSP
W
M
Curr
ent
HD for
3LSP
W
M
2468
1
0
1
2
1
4
1
6
1
8
2
0
0.
0
0.
5
1.
0
1.
5
2.
0
H D
(
%
)
Harm
o
n
i
c
O
r
der
Current HD
for 3LSPW
M
Current HD
for 3LSV
PW
M
0
2000
4000
6000
8000
10000
-20
0
-10
0
0
10
0
20
0
Ti
m
e
(
ms
)
V
o
l
t
ag
e (
V
)
02
46
8
1
0
1
2
1
4
1
6
1
8
2
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
H
D
(
%
)
Ha
r
m
on
i
c
Or
de
r
V
o
l
t
age
H
D
for
2LSV
PW
M
V
o
l
t
age
H
D
for
3LSV
PW
M
0
500
10
00
15
00
2
000
-20
0
-10
0
0
10
0
20
0
Ti
m
e
(
ms
)
V
o
l
t
ag
e (
V
)
0
50
0
1000
1
500
2
000
-20
0
-10
0
0
10
0
20
0
Tim
e
(
ms
)
Vo
l
t
a
g
e
(
V )
0
500
1000
15
00
2000
-200
-100
0
100
200
Tim
e
(
ms
)
Vo
l
t
a
g
e
(
V )
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
15
–
23
22
Fi
gu
re
4(m
)
. C
o
m
p
ari
s
on
o
f
Vol
t
a
ge
H
D
be
t
w
een
2LSP
WM
a
n
d
3LSP
WM
Fi
gu
re
4(
n
)
. C
o
m
p
ari
s
on
o
f
Vol
t
a
ge
H
D
be
t
w
een
3LSP
WM
a
n
d
3LS
V
P
W
M
5.
CO
NCL
USI
O
N
This
pape
r re
prese
n
ts
diode
cla
m
ped thre
e leve
l invert
er ba
sed
on s
p
ace
vector pulse wi
dth
m
odul
at
i
on a
n
d a
n
al
y
zed i
n
det
a
i
l
s
.Si
m
ul
ati
ons a
r
e
per
f
o
r
m
ed wi
t
h
red
u
ced
num
ber
of
swi
t
c
hi
n
g
st
at
e
s
(f
o
u
r
activ
e switch
i
n
g
states)t
h
i
s syste
m
an
d
co
m
p
ared
with
SPWM
to
v
a
lid
ate th
e resu
lts b
y
u
s
ing
M
A
TLAB
/
Si
m
u
l
i
nk a
nd O
r
i
g
i
n
6.
1. Fr
om
t
h
e sim
u
l
a
t
i
on resul
t
s
, 2LS
V
P
W
M
sh
ows
bet
t
e
r perf
o
r
m
a
nce t
h
a
n
2LSP
WM
.
F
u
r
t
herm
ore, 3LS
V
P
W
M
s
h
o
w
s bet
t
e
r per
f
o
r
m
a
nce
t
h
a
n
b
o
t
h
2LS
V
P
W
M
a
n
d 3LSP
WM
i
n
t
e
rm
s
o
f
THD. Hen
c
e, it can
b
e
co
n
c
lud
e
d
th
at 3LSVPWM
g
i
ves en
h
a
n
ced
fun
d
a
m
e
n
t
al o
u
t
p
u
t
with
better q
u
a
lity
i.e. lesser THD com
p
ared to t
h
e
othe
rs.
ACKNOWLE
DGE
M
ENTS
Th
is work
h
a
s b
een
su
ppo
rted
b
y
Malaysian
Techn
i
cal
Un
iv
ersities Netwo
r
k
(MTUN)
gran
t. W
e
would like to t
h
ank all the re
s
earch students
of the
Resea
r
c
h
La
boratory
of Electric
Vehi
cle and Drive
in
UTeM
for th
ei
r
h
e
lp
i
n
so
lv
ing
m
a
n
y
critical
prob
lem
s
.
REFERE
NC
ES
[1]
Jose Rodriguez,
Steffen Bernet,
Peter
K S
t
eim
e
r,
Ignacio E Li
za
m
a
. A S
u
rvey
o
n
Neutral-Point-
Clamped Inverters.
IEEE Transactio
ns on
Industrial Electronics
. 201
0; 57(7).
[2]
José Rodríguez, Jih-Sheng
Lai, Fang Zh
engPeng. Multilev
e
l
I
nverters:
A Survey
of Topolog
ies, Controls, and
Applica
tions.
IEEE Transactions
on I
ndustrial Electronics
. 2002
;
49(4).
[3]
Colak, Ilh
a
m
i
, Kabalc
i, Ersan
,
Ba
y
i
ndir
,
Ram
azan. Rev
i
ew of m
u
ltileve
l volta
ge source invert
er topologies an
d
control schemes.
Energy Conversion and Manag
ement
. 2011
; 52(2
)
: 795-1574.
[4]
Am
it Kum
a
r Gupta, Ashwin M
Kham
badkone.
A General Sp
ace Vector PWM Algorithm
for
Multilev
e
l
Inver
t
ers
,
Including Oper
ation in Overmodulation R
a
nge.
IEEE Int
e
rnatio
nal Conferenc
e
on Elec
tric Mac
h
ines and Drive
s
.
2005: 1437-144
4.
[5]
S
a
ravanan
M
,
N
a
ndakum
ar R,
Veerab
al
aji G
.
Eff
ectu
a
l S
V
P
W
M
Techn
i
ques
and
Im
plem
entation
of F
P
GA Bas
e
d
Induction
Motor
Drive.
International Journal of
Reco
n
figurable
and Embedded
S
y
stems
. 2012; 1(
1): 11-18.
[6]
Am
it Kum
a
r Gu
pta, Ashwin M Kham
badkone.
A Space Vect
or
PW
M
Schem
e
for Multilev
e
l I
nverters Based
on
Two-Level Space Vector PWM.
IEEE Transactio
ns on
Industrial Electronics
. 200
6; 53(5).
[7]
Nikola Celanov
i
c
, DushanBoro
y
e
vich
. A Fast
Space-Ve
ctor Modulation Algori
t
h
m
for
Multile
vel Thre
e-Phase
Converters.
IEEE Transactions
on Industry App
l
ications
. 2001; 3
7
(2).
[8]
Poh Chiang Loh, Donald Grah
am
e Holm
es.
Flux Modulation
for Multilevel
Inverters.
IEEE Transactions on
Industry Applica
tions
. 2002
; 38(5
)
.
[9]
Haoran Zh
ang,
Annette von
Jouanne, Shaoan D
a
i. Multil
evel In
verter Modulatio
n Sc
hemes to Eliminate Common-
Mode Voltag
e
s.
IEEE Transactio
ns on
Industry Applications
. 200
0; 36(6).
[10]
JH Seo, CH Ch
oi, DS H
y
un. A new simpli
fi
ed
space-v
e
c
t
or p
w
m
m
e
thod for thre
e-lev
e
l
inve
rters.
I
E
EE Trans.
Power E
l
ec
tron
.
2001; 16(4): 545
-550.
[11]
M
Trabels
i
, L
Ben-Brahim
,
T Y
oko
y
a
m
a
, A
K
a
w
a
m
u
ra,
R Kurosawa, T Yoshino. An Improved SVPWM Method
for Multileve
l Inverters.
15th In
ternational Pow
e
r Electroni
cs and Motion Control Conference.
2012: LS5c.1-1
-
LS5c.1-7.
[12]
Shantanu Chatt
e
rje
e
. A Multi
leve
l
Inverter Based on SVPWM Technique
for Photovoltaic Application
.
International Jo
urnal of
Powe
r Electronics
and
Drive
System
. 20
13; 3(1): 62-73.
2
4
6
8
10
12
14
1
6
18
2
0
0
1
2
3
4
5
6
7
8
9
H D
(
%
)
Ha
rm
on
i
c
Ord
e
r
V
o
l
t
ag
e HD
f
o
r
2LSPW
M
V
o
l
t
ag
e HD
f
o
r
3LSPW
M
2
4
6
8
1
01
21
4
1
61
82
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
H D
(
%
)
Ha
rm
oni
c Orde
r
Vol
t
age HD fo
r
3LSP
W
M
Vol
t
age HD fo
r
3LSVP
W
M
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Comparative Analysis
of PW
M techniques f
o
r Three
Level
Diode Clampe
d Voltage
… (Zulkifilie Bin Ibrahi
m)
23
[13]
Nupur Mittal,
Bindeshwar Si
ngh, SP Singh, Rahul Dixit
,
Dasharath Kum
a
r. Multilev
e
l Inv
e
rters: A Li
ter
a
t
u
re
Survey
on
Topo
logies and Con
t
rol Strategies.
2
nd International Conference on
Power, Contro
l and Embedded
Systems
. 2012: 1
– 11
.
[14]
M ValanRajku
m
a
r, PS Manoha
ran. FPGA b
a
sed m
u
ltil
evel
cascaded
inver
t
ers with SVPWM algorithm
for
photovoltaic s
y
stem.
Solar Energ
y
. 2013
; 87
: 229
–245.
[15]
Am
it Kum
a
r Gupta, Ashwin M
Kham
badkone.
A General Sp
ace Vector PWM Algorithm
for
Multilev
e
l
Inver
t
ers
,
Including
Operation in
Overmodulation
Rang
e.
I
EEE Transactio
ns
on Power
Electronics
. 2007; 2
2
(2).
[16]
Lin Lei, Zhong
Heqing, Deng
Yu, Zh
ang
Jie,
ZouYunping, Sh
e Xu. A DTC
Algorithm for Three-level Induction
Motor Drives Sy
stem Based on
Di
screte Space Vector Modulation.
Twenty-Fo
u
rth Annual IEEE Applied Po
wer
Electronics Con
f
eren
ce and
Expo
sition.
2009: 197
8-1983.
Evaluation Warning : The document was created with Spire.PDF for Python.