Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
7, N
o
. 1
,
Mar
c
h
20
16
,
pp
. 21
7
~
22
4
I
S
SN
: 208
8-8
6
9
4
2
17
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Close Loop V/F Control
of Vo
ltage Source Inverter using
Sinusoidal PWM, Third Harmon
ic Injection PWM and Space
Vector PWM Method for Induction Motor
San
d
eep
Ojh
a
, As
hok K
u
m
a
r Pande
y
Department o
f
Electrical E
ngin
e
ering, Mad
a
n Mo
han Malavi
y
a
U
n
iversity
of Technolog
y
Gorakhpur, Uttar Pradesh, India
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Oct 20, 2015
Rev
i
sed
D
ec 21
, 20
15
Accepte
d
Ja
n 15, 2016
The aim
of this
paper to pres
en
t
s
a co
m
p
arative
anal
ys
is
of Volt
age S
ource
Inverter using Sinusoidal Pulse Widt
h Modulation Method, Thir
d Harmonic
Injection Pulse
Width Modulation Me
thod
and
Space Vector
Pulse Width
Modulation
Two level inv
e
rter
for Induc
tion
Motor. In
this pap
e
r we hav
e
designed th
e Simulink model of Inverter
for different
techniqu
e. An abov
e
techn
i
que is used to reduce th
e Total Harmonic
Distortion (THD) on the AC
side of th
e Inver
t
er. The Simulin
k mode
l is close loop. R
e
sults ar
e an
aly
z
ed
using Fast Fourier Transformation (FFT)
which is for anal
ysis
of the Tot
a
l
Harm
onic Distortion. All sim
u
lati
ons
ar
e pe
rform
ed in the
M
A
TLAB
Simulink / Simulink
environmen
t of MATLAB
.
Keyword:
I
ndu
ctio
n m
o
to
r
Si
nus
oi
dal
p
u
l
s
e wi
dt
h
m
odul
at
i
o
n
Space vector pulse width
m
odul
at
i
o
n
Thi
r
d
harm
oni
c i
n
ject
i
o
n
p
u
l
s
e
wi
dt
h
m
odul
at
i
o
n
Vol
t
a
ge
s
o
u
r
ce
i
nve
rt
er
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Sandeep Ojha,
PG Scholar
Depa
rt
m
e
nt
of
El
ect
ri
cal
Engi
neeri
n
g
,
M
a
dan
M
o
han
M
a
l
a
vi
y
a
Uni
v
ersi
t
y
of
Tech
n
o
l
o
gy
,
G
o
r
a
k
hpu
r
,
U
t
t
a
r
Pr
ad
esh, India
Em
a
il: o
j
h
a
.san
d
e
ep8
9
@g
m
a
il.co
m
1.
INTRODUCTION
A ci
rcui
t
w
h
i
c
h i
s
use
d
f
o
r c
o
n
v
e
r
t
i
ng
DC
po
we
r i
n
t
o
a
n
AC
p
o
we
r at
d
e
si
red
out
put
Vol
t
a
ge a
n
d
Fre
que
ncy
i
s
k
n
o
w
n as a
n
I
n
v
e
rt
er.
A p
h
ase
cont
rol
l
e
d c
o
n
v
ert
e
r
,
w
h
e
n
i
t
i
s
used i
n
i
n
ver
t
er m
ode, are
k
n
o
w
n
as line-comm
utated Inverter, only line-
c
o
mm
uta
t
ed invert
er requires at th
e ou
tpu
t
termin
als an
ex
istin
g
AC
su
pp
ly wh
ich
is u
s
ed
for th
ei
r co
mm
u
t
at
io
n it
mean
s it req
u
i
red
ex
tern
al circu
it for commu
tatio
n
.
A Fo
rce
com
m
ut
at
ed Invert
er
gi
ves a
n
i
nde
pen
d
e
n
t
AC
o
u
t
p
ut
v
o
l
t
a
ge o
f
ad
j
u
st
ab
l
e
Vol
t
a
ge a
n
d
Freq
ue
ncy
t
h
e
r
ef
or
e
its ap
p
licatio
n
is so
v
a
st. In
an
In
v
e
rter we
requ
ire
F
o
rce
d
com
m
utation fo
r thy
r
is
tor, there
f
ore we ca
n use
ot
he
r sel
f-c
om
m
u
t
a
t
i
ng devi
ce l
i
k
e GTO,
M
O
SFET
,
an
d
ot
her Tra
n
si
s
t
ors t
o
av
oi
di
ng t
h
e c
o
m
m
u
t
at
i
on
ci
rcui
t
.
B
u
t
f
o
r hi
gh
p
o
we
r
appl
i
cat
i
o
n we
m
u
st
use t
h
yristo
r alon
g wit
h
th
e
forced
co
mm
u
t
a
tio
n
circu
it.
There
are
m
a
jor four techniques to
reduce
t
h
e Tot
a
l
Harm
oni
c Di
st
ort
i
o
n i
n
In
vert
e
r
:
1)
Si
nus
oi
dal
P
u
l
s
e
W
i
dt
h M
o
d
u
l
a
t
i
o
n
2)
Thi
r
d
Harm
oni
c I
n
ject
i
o
n M
e
t
h
o
d
3)
6
0
° Pu
lse m
o
du
latio
n
4)
Space Vector Pulse Widt
h
M
o
dulation
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
: 2
1
7
–
22
4
21
8
2.
TWO LEVEL
INVERTE
R
In this level
180 de
gree m
ode
each MOSFE
T
conduct
s for 180°
of a pe
ri
odic cycle. Ea
ch phase
has
a pair S1, S4; S3,
S6;
S5, S2
and each t
r
igger
for
180° of tim
e
inte
rval. And
S1, S3, a
nd
S5 conduct
at an
in
ter
v
al
o
f
120°. Ref
e
r
t
o
Fi
gu
r
e
1.
0°
60°
120°
180°
240°
300°
360
°
S
1
S
3
S
5
S6
S
2
S
4
S6
Fi
gu
re 1.
S
w
i
t
c
hi
n
g
peri
od
o
f
M
O
SFET
Speci
fi
cat
i
o
n
o
f
eac
h M
O
SFE
T 1
8
0
° m
ode
VSI
.
R
e
f
e
r t
o
Tabl
e
1.
Tabl
e 1. Fo
r 5
0
Hz fre
que
nc
y
Pul
s
e Ge
nera
t
o
r w
h
ere
am
pl
i
t
ude
= 2
3
0
*
1
.
4
1
4
a
n
d pul
se
wi
dt
h
5
0
%
S1
Ph
ase D
e
lay
=
0
m
s
ec
S4
Ph
ase D
e
lay
=
1
0
m
s
e
c
S3
Phase Delay =
6.
667
m
s
ec
S6
Phase Delay =
16.
667
m
s
ec
S5
Ph
ase D
e
lay
=
1
3
.
3
3
m
s
ec
S2
Phase Delay =
23.
33
m
s
ec / - 0.
0033 sec
3.
SINU
SOIDAL
PU
LSE WID
T
H M
O
DULA
T
ION
(SPWM)
Thi
s
t
ech
ni
q
u
e
i
s
very
use
f
ul
fo
r
red
u
ci
n
g
t
h
e T
o
t
a
l
Ha
rm
oni
c
Di
st
o
r
t
i
o
n
(T
HD
). T
h
i
s
t
echni
que
i
s
charact
e
r
i
zed
by
t
h
e c
o
n
s
t
a
n
t
am
pl
i
t
ude p
u
l
se. A
nd t
h
e
wi
dt
h
o
f
t
h
ese
pul
ses
i
s
m
odul
at
ed t
o
get
I
nve
rt
e
r
out
put
Vol
t
a
ge
cont
r
o
l
an
d t
o
red
u
ce i
t
s
har
m
oni
c cont
ent
i
n
t
h
e v
o
l
t
a
ge.
For
ce com
m
utat
i
on i
s
essent
i
a
l
fo
r
t
h
e p
u
l
s
e wi
dt
h m
odul
at
i
o
n
t
echni
q
u
e.
Th
e
Swi
t
c
hi
ng se
que
nces a
n
d t
o
p
o
l
o
gy
of t
h
e In
ve
rt
er i
s
s
a
m
e
as
norm
al
level of Inve
rter. In t
h
is techni
que t
h
e Gate
pulses
of each M
O
S
F
ET is
m
odul
ated and control the
Swi
t
c
hi
n
g
o
f
M
O
SFET
t
o
g
e
t
t
h
e
de
si
red
out
put
v
o
l
t
a
ge at
desi
re
d fre
q
u
ency
f
o
r
i
n
p
u
t
vol
t
a
ge
o
f
In
duct
i
o
n
mo
t
o
r
.
Fo
uri
e
r
anal
y
s
i
s
o
f
t
h
e
v
o
l
t
a
ge
wa
vef
o
rm
and
get
t
h
e
o
u
t
put
vol
t
a
ge
o
f
a
n
I
nve
rt
er.
V(t)=
A
0
+ 2*
∑
∗
∗
]
(i)
Th
e
ou
tpu
t
vo
l
t
ag
e w
a
v
e
is od
d symmetr
y. So
, A
0
and
A
k
is
z
e
r
o b
e
c
a
u
s
e it h
a
s
an
ev
en
s
y
mme
t
r
y
.
S
o
,
Bk
= (2
/
π
)*
[
∗
s
in
]
=((4*Vs)/(n
π
))
*[si
n(
n
π
/
2
)
*
s
i
n
(
n
d
)
]
(
1
)
V
0
=
∑
∗s
i
n
∗
sin
∗s
i
n
,
,
…
)
(
2
)
n
d
is m
a
d
e
equal to
π
. So, d= (
π
/n
)
So
, th
e
pu
lse
wid
t
h
is m
a
d
e
2d so
it is equ
a
l t
o
(2d
/
n).
In t
h
e Si
m
u
l
i
nk m
odel
si
ne
wave
f
r
eq
ue
nc
y
i
s
50
Hz a
n
d
t
h
e am
pl
i
t
ude of t
h
e si
ne w
a
ve i
s
23
0
*
1
.
4
14
an
d
car
r
i
er fr
equ
e
ncy is sin
u
so
i
d
al w
ith
f
r
e
q
u
e
n
c
y is 10
000
H
z
.
For a close loop we take the speed as a fe
edback a
n
d
com
p
are to the re
ference spee
d a
n
d then the s
p
eed error
ag
ain
add
e
d wi
th
th
e
ro
to
r sp
eed
an
d its ou
tpu
t
is ch
ang
e
i
n
to
th
e Gate
Pu
lse of th
e MOSFET.
4.
THIRD H
ARMO
N
IC I
N
JE
CTIO
N P
U
LS
E
WIDT
H MODULATION
M
ETHOD
(THIM)
Thi
s
m
e
t
hod i
s
al
so a very
us
eful
m
e
t
hod fo
r el
im
i
n
at
i
ng the ha
rm
oni
c i
n
t
h
e sy
st
em
whi
c
h com
e
s
d
u
e
to
the presen
ce
o
f
po
wer
electro
n
i
c switch
e
s.
In
th
is m
e
th
od
we inj
e
ct th
e th
ird
h
a
rm
o
n
i
c in
th
e syste
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
C
l
ose L
o
o
p
V/
F co
nt
rol
of
V
S
I
usi
n
g
SPWM
,
TH
IPWM
a
n
d
SVPWM
M
f
o
r
IM
(
S
an
dee
p
O
j
ha)
21
9
an
d co
n
t
ro
l t
h
e pu
lse
o
f
th
e each
M
O
SFET
to
get th
e
ha
r
m
oni
c free i
n
v
e
rt
er
o
u
t
p
ut
v
o
l
t
a
ge.
No
w t
o
f
i
nd t
h
e
am
pl
i
t
ude
of t
h
e t
h
i
r
d
harm
on
i
c
of
u
n
k
n
o
w
n
am
pl
i
t
ude
of t
h
e t
h
i
r
d
harm
on
i
c
com
pone
nt
.
So
let
u
s
tak
e
si
m
p
le sin
e
w
a
ve w
ith
t
h
e t
h
ird h
a
rm
o
n
i
c sin
e
w
a
v
e
of
un
know
n am
p
litu
d
e
x
.
Y (
α
) = si
n
(
α
)
+ x*
sin (3
α
)
(
3
)
For
fi
ndi
ng
t
h
e
m
a
xim
u
m
value
of
t
h
e
fu
nct
i
on
d/
d
α
(Y
(
α
))
=0
Whi
c
h gi
ves
,
α
=cos
-1
9
1/12
(
4
)
From
eq
uat
i
o
n
(3
) a
n
d
(
4
)
F(x)=
Y
(
α
)=
[(
3
x
+1
)(
3
1
/12
–
4x
3
1/12
.
]
(
5
)
For
fi
ndi
ng
t
h
e
m
a
xim
u
m
value
of
eq
uat
i
o
n
(5
)
usi
n
g
fo
rm
ul
a d/
dx
(
F
(
x
)
)
So
w
e
g
e
t x
= -0
.3
34
,
0.166
7
A
t
x =
-
0
.334
d
2
/dx
2
(F(x
))
=
0
A
t
x =
0
.
1
667
d
2
/dx
2
(F(x
))
=
1
0
.
392
3
Whi
c
h s
h
ows
t
h
e
gi
ve
n
fu
nct
i
o
n
i
s
m
i
nim
u
m
.
At
x
=
0
.
16
67
and th
e
v
a
lu
e
of
α
is
60
°
No
w
p
u
t
t
i
ng t
h
e val
u
e
o
f
α
at
x
=
0
.
16
67
d
2
/dx
2
(Y
(
α
))
=
-
2
Th
is sho
w
s th
e fu
n
c
tion
Y
(
α
)
i
s
m
a
xim
u
m
at
x =
0.
1
6
6
7
a
n
d t
h
e
val
u
e
of
α
is 60
°
So t
h
i
s
i
s
cl
ear
t
h
at
t
h
e t
h
i
r
d
h
a
rm
oni
c sh
oul
d
be
0.
16
6
7
of
t
h
i
s
am
pl
i
t
ude
N
o
w
pu
ttin
g
t
h
e v
a
lu
e of
x
=
0.16
67
and
α
=
6
0
° i
n
e
quat
i
on
(4
)
Whi
c
h gi
ves
Y
(
α
) =
0
.
8
6
6
0
2
5
w
h
i
c
h i
s
t
h
e pea
k
o
f
r
e
sul
t
a
nt
wave
f
o
rm
wi
t
h
t
h
i
r
d
harm
oni
c.
An
d t
h
e
m
odulation fac
t
or of
1/
0.866025
is 1.1547
0053
gi
ving 15.47%
m
o
re DC utilization.
120°
120°
(
6
)
Whe
r
e,
V i
s
Inst
a
n
t
a
ne
ous
m
a
xim
u
m
M
a
gni
t
u
de
of
f
u
n
d
am
ent
a
l
An
d
α
i
s
i
n
st
ant
a
n
e
ous
p
h
ase
o
f
fu
ndam
e
nt
al
Th
e ab
ov
e
resu
lts g
i
v
e
th
e i
n
form
at
io
n
ab
ou
t th
e am
p
litu
d
e
o
f
t
h
e
o
u
t
pu
t ph
ase
vo
ltag
e
is
1
.
1
5
tim
e
s
of th
e
no
rm
al
out
p
u
t
pha
se v
o
l
t
a
ge
.
In t
h
e Si
m
u
l
i
nk m
odel
si
ne
wave
f
r
eq
ue
nc
y
i
s
50
Hz
an
d
t
h
e am
pl
i
t
ude of
t
h
e
sine wave is 230*1.414 and
carrier fre
que
ncy is sinus
oida
l with freque
n
cy is 1000
0 Hz. And additional sine
wave i
s
a
d
ded
t
o
ad
d t
h
e
t
h
i
r
d
harm
oni
c i
n
t
h
e I
nve
rt
er
w
hos
e si
ne
wa
v
e
am
pl
it
ude i
s
23
0
*
1
.
4
1
4
/
6
a
nd i
t
s
fre
que
ncy
i
s
3
t
i
m
e
s of rat
e
d
fre
que
ncy
.
Fo
r
a cl
ose l
o
o
p
w
e
t
a
ke t
h
e
spe
e
d
as a
fee
d
bac
k
a
n
d
com
p
are
t
o
t
h
e
r
e
f
e
r
e
n
c
e s
p
e
e
d
an
d th
en
th
e s
p
e
e
d
er
ro
r ag
a
i
n
add
e
d w
i
th
th
e ro
tor
sp
ee
d
an
d its
ou
tpu
t
is
ch
a
n
g
e
into
th
e
Gate Pu
lse
o
f
t
h
e MOSFET.
5.
SPA
C
E VEC
T
OR
P
U
LSE WIDTH
M
O
DUL
ATIO
N (
S
VPW
M
)
Thi
s
t
ech
ni
q
u
e
i
s
ve
ry
use
f
ul
fo
r
red
u
ci
ng
t
h
e T
o
t
a
l
Harm
oni
c
Di
st
ort
i
o
n. T
h
i
s
t
echni
que
i
s
charact
e
r
i
zed
by
t
h
e c
onst
a
n
t
am
pl
i
t
ude p
u
l
se. A
nd t
h
e
wi
dt
h
o
f
t
h
ese
pul
se i
s
m
o
d
u
l
a
t
e
d t
o
get
I
nve
rt
er
out
put
Vol
t
a
ge
cont
rol
a
nd t
o
red
u
ce i
t
s
ha
r
m
oni
c cont
ent
.
The t
o
p
o
l
o
gy
of t
h
ree l
e
g V
o
l
t
a
ge So
urce
I
n
vert
er
because of the
const
r
aint that
the in
put line m
u
st never be
shore
d
and th
e
out
put curre
nt
m
u
st be always be
cont
i
n
u
o
u
s
a
Vol
t
a
ge
S
o
u
r
c
e
In
ve
rt
er ca
n
assum
e
onl
y
e
i
ght
di
st
i
n
ct
se
ct
ors.
Si
x
o
u
t
of t
h
ese ei
ght
sect
ors
p
r
od
u
ces a
n
o
n
-
zero ou
tpu
t
v
o
ltag
e
and
are kn
own
as
no
n-zero
switich
i
ng
states and
th
e rem
a
in
in
g
t
w
o
sectors
produc
e
s zero
voltage
are
known as
zero switchi
ng
states.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
: 2
1
7
–
22
4
22
0
T
h
e
SV
P
W
M
c
a
n b
e
i
m
p
l
e
m
e
n
t
e
d by
u
s
i
n
g
w
i
t
h
e
r
s
e
c
t
or s
e
l
e
c
t
i
o
n a
l
go
ri
t
h
m
o
r
by
u
s
i
ng a c
a
r
r
i
e
r
b
a
s
e
d
s
p
ace
v
ect
o
r
al
g
o
r
i
t
h
m
.
T
h
e
t
y
p
e
s
of
S
V
P
W
M
i
m
pl
e
m
e
n
t
a
ti
on
s
a
r
e
:
a)
S
e
c
t
o
r
s
e
l
ect
i
o
n
b
)
R
e
duc
e
d
s
w
i
t
c
h
i
n
g
c)
C
a
r
r
i
er
b
a
s
e
d
d)
R
e
duc
e
d
s
w
i
t
c
h
i
ng c
a
r
r
i
e
r
ba
s
e
d
Sect
or
sel
ect
i
o
n
of
SV
P
W
M
:
-
Step1. Determ
ine V
d
, V
q
, V
re
f
,
an
d a
ngl
e µ
Step
2.
Determ
i
n
e tim
e d
u
r
ation
T1
, T2, T0
Step3.
Determ
ine the
s
w
itching tim
e of each
IGBT
(S
1 t
o
S
6
)
For Ste
p
1, Re
fer Fi
gure
2
Fi
gu
re 2.
V
d
, V
q
, V
re
f
,
an
d µ
c
a
n
det
e
rm
i
n
e
V
d
=V
an
–
0
.5*V
bn
-0.
5
*V
cn
(
7
)
V
q
=0
+0
.86
6*V
bn
–0
.8
66*
V
cn
(
8
)
V
ref
=
V
d
2
+ V
q
2
)
(
9
)
µ = tan
-1
(
Vq
/
Vd
) = w
t
=2
π
f
t
(
1
0
)
For
St
e
p
2, R
e
f
e
r Fi
gu
re
3
whi
c
h s
h
ows
t
h
e
s
w
i
t
c
hi
n
g
t
i
m
e
du
ri
n
g
a
sect
o
r
1
Figure 3.
Reference vector
as
a
com
b
in
ation
of adjace
nt vec
t
ors at
sector
Switch
i
ng
tim
e
du
ration
at secto
r
1
=
1
+
2
+
0
(
1
1
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
C
l
ose L
o
o
p
V/
F co
nt
rol
of
V
S
I
usi
n
g
SPWM
,
TH
IPWM
a
n
d
SVPWM
M
f
o
r
IM
(
S
an
dee
p
O
j
ha)
22
1
T
t
*V
re
f
= (T
1
*V
1
+ T
2
* V
2
)
(
1
2
)
T
t*
|V
ref
|* co
s (µ) = T
1
* 2/
3
*
V
dc
+
V
2
*2
/3 *co
s
(
π
/
3
)
(
1
3
)
T
t*
|V
ref
|*c
o
s (µ
)
= V
2
*
0
.
6
67
*s
i
n
(
π
/
3
)
(
1
4
)
Whe
r
e, (0 <=
µ <= 60º)
T
1
= T
t
*µ
*(si
n (
π
/3-µ
) / si
n (
π
/
3
)
)
(
1
5
)
T
2
= T
t
*µ
*(si
n
(µ) /
si
n
(
π
/
3
)
)
(
1
6
)
T
0
= T
t
– (T
1
+ T
2
)
(
1
7
)
Whe
r
e,
T
t
=
1/f
t
and µ= |
V
ref
| /
(
0
.667
*V
dc
)
For
step
3
re
fer
Table
2
Tabl
e
2.
Swi
t
c
hi
n
g
Ti
m
e
C
a
lcul
at
i
on
at
Eac
h
sect
or
Sector Upper
Switches
(
S
1,
S3, S5)
Lower S
w
itches
(S4, S6,
S2)
1 S1=T
1
+ T
2
+
T
0
/2
S3= T
2
+
T
0
/2
S5= T
0
/2
S4= T
0
/2
S6= T
1
+
T
0
/2
S2= T
1
+
T
2
+
T
0
/2
2 S1=
T
1
+
T
0
/2
S3= T
1
+
T
2
+
T
0
/2
S5= T
0
/2
S4= T
2
+
T
0
/2
S6= T
0
/2
S2= T
1
+
T
2
+
T
0
/2
3 S1=
T
0
/2
S3= T
1
+
T
2
+
T
0
/2
S5= T
2
+
T
0
/2
S4= T
1
+
T
2
+
T
0
/2
S6= T
0
/2
S2= T
1
+
T
0
/2
4 S1=
T
0
/2
S3= T
1
+
T
0
/2
S5= T
1
+
T
2
+
T
0
/2
S4= T
1
+
T
2
+
T
0
/2
S6= T
2
+
T
0
/2
S2= T
0
/2
5 S1=
T
2
+
T
0
/2
S3= T
0
/2
S5= T
1
+
T
2
+
T
0
/2
S4= T
1
+
T
0
/2
S6= T
1
+
T
2
+
T
0
/2
S2= T
0
/2
6 S1=
T
1
+
T
2
+
T
0
/2
S3= T
0
/2
S5= T
1
+
T
0
/2
S4= T
0
/2
S6= T
1
+
T
2
+
T
0
/2
S2= T
2
+
T
0
/2
6.
SIMULATION MO
DEL PARAMETER
Speci
fi
cat
i
o
n o
f
m
odel
.
R
e
fe
r Tabl
e 3.
Tabl
e
3. M
odel
pa
ram
e
t
e
r and
Speci
fi
cat
i
o
n
I
nver
t
er
Power
Su
pply
400 V DC
I
nduction M
o
tor
par
a
m
e
ter
Stator
Resistance
1.
5oh
m
Stator
I
nductance
0.
0354 Henr
y
Rotor
Resistance
0.
5 oh
m
Rotor
I
nductance
0.
0354 Henr
y
M
u
tual I
nductance
0.
0104 Henr
y
No
m
i
nal Power
5.
15 hp
Rated RM
S
Voltage
330±1
0
VOL
T
S
Rated Speed
1500 r
p
m
Pole
4
Slip 2%
M
o
m
e
nt of I
n
er
tia
0.
0488 Kg*m
^
2
Lo
ad
To
rq
u
e
(Step in Nature)
25 Nm
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
: 2
1
7
–
22
4
22
2
7.
SIMULINK
MODEL AND WAVEFORM
Fi
gu
re 4 s
h
o
w
s t
h
e c
o
m
p
let
e
Sim
u
l
i
nk m
odel
of C
l
o
s
e l
o
o
p
co
nt
r
o
l
of
In
d
u
ct
i
o
n M
o
t
o
r wi
t
h
di
ffe
re
nt
di
f
f
er
ent
I
nve
rt
er t
e
chni
que
. Fi
g
u
r
e 5,
7, a
nd
9
sho
w
s t
h
e T
o
r
que a
n
d S
p
eed
C
h
aract
erst
i
c
s
wi
t
h
respect
t
o
t
i
m
e
and
Fi
g
u
re
6,
8, a
nd
1
0
s
h
o
w
s t
h
e
St
at
or c
u
r
r
ent
of t
h
e I
n
d
u
ct
i
o
n M
o
t
o
r TH
D
whe
n
S
P
W
M
,
TH
IPW
M
, an
d SVPW
M techn
i
qu
e is em
p
l
oyed
r
e
sp
ectiv
el
y.
Fi
gu
re 4.
C
l
ose
l
o
o
p
I
nve
rt
er wi
t
h
IM
L
o
ad
Fi
gu
re
5.
Tw
o
l
e
vel
SP
WM
I
NVER
TER
T
o
rq
ue a
n
d
Spee
d
Fi
gu
re
8.
SP
W
M
St
at
or c
u
rre
nt
T
H
D
Fi
gu
re
6.
Tw
o
l
e
vel
TH
IP
W
M
IN
VER
TER
To
rq
ue
and Speed
Fi
gu
re
9.
TH
IP
WM
St
at
o
r
c
u
r
r
ent
T
H
D
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
C
l
ose L
o
o
p
V/
F co
nt
rol
of
V
S
I
usi
n
g
SPWM
,
TH
IPWM
a
n
d
SVPWM
M
f
o
r
IM
(
S
an
dee
p
O
j
ha)
22
3
Fi
gu
re 7.
Tw
o l
e
vel
SV
P
W
M
IN
VER
TER
T
o
r
q
ue
and Speed
Figure 10. SVP
W
M
Stat
or
C
u
rrent THD
8.
RESULTS
Table 4 shows
the Stator Current
of
I
ndu
ctio
n
Mo
t
o
r
THD
w
ith
r
e
sp
ect
there techni
ques which a
r
e
em
pl
oy
ed.
A
n
d t
h
e
res
u
l
t
s
h
o
w
s t
h
e S
V
P
W
M
t
ech
ni
q
u
e
has
bet
t
e
r
w
a
vef
o
rm
as co
m
p
re t
o
SP
W
M
and
THIP
W
M
.
Tabl
e 4.
T
H
D resul
t
s
LEVEL TECH
N
I
Q
UE
LO
AD
TH
D%
TWO
SPWM
IM
3.
91
TH
IPWM
IM
3.
61
SVPWM
IM
3.
21
9.
CO
NCL
USI
O
N
W
i
t
h
t
h
e
h
e
lp of sim
u
latio
n
resu
lt we can
co
nc
lude that SVPWM
(Space
Vect
or
Pulse
Widt
h
Mo
du
latio
n) tech
n
i
q
u
e
is
b
e
tter th
an
th
e
THIPW
M
(Third
Harm
o
n
i
c Inj
ection
Pu
lse
W
i
d
t
h
M
o
du
lation)
t
echni
q
u
e a
n
d
SP
W
M
(Si
n
usoi
dal
Pul
s
e
W
i
dt
h M
o
d
u
l
a
t
i
on) t
ech
ni
q
u
e
. The T
HD
of St
at
o
r
cu
rr
ent
of
SVPWM In
v
e
rter is less so
it
s in
du
strial app
licatio
n
is
bet
t
er t
h
an t
h
e T
H
IPM
In
vert
e
r
and SP
WM
I
nve
rt
er.
Bu
t th
e rise time o
f
SVPWM In
verter
is
m
o
re as co
m
p
are to THIPWM and
SP
WM
In
verter t
h
at is 1.5 sec,
0.
38
5sec a
nd
0.
4 sec sim
u
l
a
t
i
on t
i
m
e
respect
i
v
el
y
.
The
sy
st
em
i
s
free from
t
h
e PID co
nt
r
o
l
l
e
r. So t
h
e
co
n
t
r
o
lling
cost o
f
th
e
In
du
ct
io
n
M
o
to
r
is ch
eap.
W
e
know
th
at PI
D
con
t
ro
ller
is 85% ef
f
i
cien
t. B
u
t th
is
Si
m
u
lin
k
m
o
d
e
l is 90
-9
5% efficien
t.
REFERE
NC
ES
[1]
Chimezie O
.
Adiuku, Abdul Rahiman Beig an
d
Saikrishna
Kan
ukollu, “Sensorless Closed Loo
p
V/F control o
f
m
e
dium
-Voltage
High-Power Ind
u
ction
Motor wit
h
S
y
n
c
hroniz
e
d
Space Ve
ctor
PW
M”, IEE
E
201
5 PP 978-4799.
[2]
Vijay
B
a
bu Koreboina, Shankar J Ma
gajikondi and A.B. RAJU, “Mod
e
ling
,
Simulatio
n and PC based
Implementation
of a C
l
oed
Loop
Speed Contro
l o
f
VSI Fed Induction Motor Driv
e”, I
E
EE 2011
PP978-4244.
[3]
Zulkifi
lie Bin I
b
rahim
,
Md. Lit
on,
Ismadi Bin
Bugis, Nik Mun
a
ji Nik Ma
hadi
and Ahmad Shu
k
ri, “Simulation
Investigation of
SPWM, THIPWM and
S
V
P
W
M Te
chniques
for
Three
P
h
as
e Vo
ltag
e
S
ource
Inv
e
rter
”,
IJ
P
E
DS
,
Vol.4 No.2
pp.2
23-232.
[4]
G.K. Dube
y
and
C.R.
Kas
r
abad
a
,
“
P
ower El
ectro
nics
and
Drives
”
,
IETE Boo
k
Ser
i
es
, Vol
.
1
,
TM
HILL P
.
C.
L
t
d.
,
New Delhi,
1993.
[5]
B.K. Bose, “En
e
rg
y
,
environment a
nd Advan
ces
in Power Electr
onics”,
IEEE Trans. on P.E.
Vol.
15,
No.
4
JULY
2000.
[6]
P.
C.
Se
n,
“
t
hyr
i
s
t
or
is
ed D
C
D
r
iv
e”
,
New York:
Wiley
Interscien
ce, 1981.
[7]
P. Ramana, B. Santhosh Ku
mar,
K.
Alice
Mary
and M.
Suray
a
Ka
lavath
i, “Comparison of various PWM
Techn
i
ques for
Field Oriented
C
ontrol VSI f
e
d P
M
SM Drive”,
IJA
R
EE
I
E
, Vol. 2, Issue. 7
,
pp
. 292
8-2936.
[8]
R. Kam
e
s
w
ara Rao, P
.
S
r
iniv
as
, M
.
V. S
u
res
h
Kum
a
r, “
D
es
ign and anal
ys
is
of
vari
ousInverter
s using differen
t
P
W
M
Techniqu
es
”,
IJES
,
ISSN€: 2319-1813 IS
SN, (p): 2319-18
05.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
: 2
1
7
–
22
4
22
4
[9]
Ra
j
a
Ra
m Kuma
r,
Suni
l Kuma
r,
Al
ok Yadav, “Comparison of PWM Tec
hniques
and Inv
e
rter Per
f
ormance”,
IOS
R
Journal of Electrical and Electr
onics Engineering (
I
OSR-JEEE)
,
ISSN: 2278-1
676,
Vol 4, Issu
e 1 (Jan. – Feb.
2013), PP 18-22.
[10]
DUBEY,
G.
K.
,
Power Semicond
uctor Controll
ed
Drives. Englew
ood Cliffs,
NJ: Prentice H
a
ll, 198
9.
[11]
DATTA, S
.
M.
“Power Electroni
cs &
Control”.
Reston, VA: Res
t
on Publis
hing
Co., Inc., 198
5.
[12]
Microsemi User Guide, “Field Or
iented Co
ntrol of P
e
rmanent Magn
et S
y
nchronous Mo
tors (PMSM)”,
www.
microsemi
.
com
[13]
N. Mohan, T.M.
Undeland, etal.
“Power Converters, Applica
tions
and Design”,
3
rd
edition
,
Johan W
ile
y
and Sons,
New York, 2003
.
[14]
Bimal K. Bose,
“
Modern Power
Electronics and
AC Drives
”, Prentice Hall, 2002.
[15]
R. Krishnan
,
“
E
l
ectr
i
c Motor
Dr
ives
- Mod
e
ling
,
A
nalys
is
, and
Con
t
r
o
l”
,
Prentice H
a
ll, 2001
.
[16]
Muhammad H. Rashid,
“Pow
er
Electronics C
i
rcuits
, De
vi
ces
,
an
d
Application”,
Third Edit
ion
.
BIOGRAP
HI
ES OF
AUTH
ORS
Sandeep Ojhareceiv
e
d th
e Bach
elor of
Techno
lo
g
y
in
Electrical Engi
neering in 2013
from
JSS
Academ
y
of
Technical Edu
cation Noida affilia
ted to Gau
t
am Buddh Technical Univ
ersity
,
Lucknow, Uttar
Pradesh, India and curren
t
ly
pursuing Master of Technolo
g
y
in Power
Electronics and Drives from Ma
dan Mohan Mala
viy
a
University of Technolog
y
,
Gorakhpur,
Uttar P
r
ad
es
h, In
dia.
Ashok Ku
mar Pandey
receiv
e
d the Bach
elor of
Engi
neering
in Electrical Engin
eering in
1987
from Madan Mohan Malaviy
a
Univ
ersity
of
Technolog
y
(Madan
Mohan Malaviya Engin
eer
ing
College) Gorak
hpur, Uttar Pradesh, India and
Master of
Technolog
y
in Po
wer Electron
i
cs,
Electrical Mach
ines and Drives
from Indian In
st
itute of Technolog
y
Delhi, India in 1995 and
PhD. in Power
Ele
c
troni
cs, El
e
c
tri
cal Ma
chines
and Drives from
Indian Institut
e
of Techno
logy
Roorkee, India
in 2003.
Evaluation Warning : The document was created with Spire.PDF for Python.