Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
6, N
o
. 3
,
Sep
t
em
b
e
r
2015
, pp
. 62
5
~
63
5
I
S
SN
: 208
8-8
6
9
4
6
25
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Performance Comparison of PI
D and Fuzzy Controllers in
Distributed MPPT
Ch
and
a
ni
Sh
a
rma,
An
ami
k
a Jai
n
Department o
f
Electronics
and C
o
mmunication Engineer
ing, Grap
hic
Er
a University
, Dehr
adun, In
dia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Mar 16, 2015
Rev
i
sed
Jun
2
,
2
015
Accepted
Jun 21, 2015
With an in
crease of Green Technolog
y
applications, Photov
oltaic hav
e
emerged as
the
most appropriate solu
tion for
electricity
gener
a
tion purposes.
However, due to variable temp
eratur
e
and
irr
a
diance, und
er
th
e par
tial or
shaded conditio
n
s Maximum Power Poin
t Tracking is needed to determin
e
highes
t
effi
cien
c
y
of the s
y
s
t
em
. Th
e paper descr
i
bes d
y
namic modeling and
control of var
i
ab
le temper
ature
and irradian
ce on
solar panel in S
I
MULINK-
MATLAB environment. The
implementation of
Buck
Converter
is used for
power switching and impedance matchi
ng on connecting the
panel to th
e
load. Th
e effectiven
ess of the model, with enhanced ef
ficiency
th
rough
voltag
e
stabilization, is performed us
ing Proportional-Integral-D
erivativ
e and
F
u
zz
y
-
Logi
c-Co
ntrolle
rs
. A com
p
arat
iv
e stud
y
is
made for PID and FLC on
the basis of outputs to deal with online
set point
variations. FLC gives closer
results to Standard Test Conditions
when compared with PID. The Fu
zzy
s
y
stem developed, using te
sted membership
functions
serve as a platform for
s
u
s
t
ainabl
e s
t
and
a
lone
and
grid-b
as
ed
app
lication
s
using distribu
ted MPPT.
Keyword:
Co
nv
erters
FLC
Gree
n Tec
h
nol
ogy
M
a
x
i
mu
m-
P
o
w
e
r
-
P
o
i
n
t
-
Tracki
n
g
PID
SIM
U
L
I
NK
-M
ATL
A
B
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
C
h
an
da
ni
S
h
ar
m
a
,
Depa
rt
m
e
nt
of
El
ect
roni
cs
an
d C
o
m
m
uni
cati
on
En
gi
nee
r
i
n
g,
G
r
aph
i
c
E
r
a Un
iv
er
s
ity,
Bell Ro
ad
, Clemen
t Town,
Deh
r
adu
n
, Ind
i
a.
Em
a
il: ch
an
d
a
n
i
19
nov
@g
m
a
il.co
m
1.
INTRODUCTION
Solar is
a va
st, m
u
ltidisciplinary
tec
h
nology that has e
xpande
d t
r
em
endously in rece
nt
years. T
h
e
In
tern
ation
a
l En
erg
y
Ag
en
cy esti
mates ex
p
o
n
e
n
tial g
r
owth
of PV in
electricity
g
e
neratio
n. Th
e ro
ad
m
a
p
towa
rds i
n
crea
sing PV s
h
are
in global electricity gene
r
a
tion
tar
g
ets 16
% g
r
o
w
t
h
b
y
2
050
ov
er
11
%
in
2
010
.
To
ach
i
ev
e th
i
s
v
i
sion
, th
e t
o
tal PV cap
acity in
stalled
nee
d
s t
o
ri
se
ra
pi
d
l
y
,
fr
om
36
G
W
i
n
2
0
1
3
t
o
12
4
G
W
p
e
r
year
on
aver
ag
e, w
ith
a p
eak
of
20
0
GW
p
e
r
year
b
e
tw
een
20
25
and
2
040
[
1
].
This
in
stallatio
n
w
o
u
l
d
co
n
t
r
i
bu
te signif
i
can
t r
i
se of
1
7
% to
clean e
l
ectricity and
20%
of all re
ne
wabl
e
el
ect
ri
ci
t
y
gene
rat
e
d
t
h
ro
u
g
h
PV (ph
o
t
o
v
o
l
t
a
ic). So
lar Renewab
l
e En
erg
y
Techn
o
l
o
g
y
(SRET)
h
a
s brou
gh
t am
p
l
e o
p
p
o
rtun
ities in
Utility-
scale an
d
ro
ofto
p
system
s
p
r
o
j
ecting
electric p
o
w
er
g
e
n
e
r
a
tio
n
fr
o
m
6
0
GW
in
2014
to
25
0GW
b
y
2
020
th
ro
ugh
ou
t world
.
So
lar Ind
i
a is
m
a
rk
ed
b
y
Jawah
a
rlal Neh
r
u
Nation
a
l So
lar Missio
n
t
h
at in
teg
r
ates t
o
add
20
,0
0
0
M
W
of
capaci
t
y
i
n
el
ect
ri
ci
t
y
gener
a
t
i
on
by
2
022
. Th
e clean en
erg
y
security tog
e
th
er
with
red
u
ced
car
bon
em
issio
n
s
h
a
v
e
r
a
ised
p
e
r un
it of
its
G
D
P
b
y
20-
25% p
e
r
c
en
t in
20
15
ov
er 200
5
lev
e
ls [2
]. Th
er
e are
v
a
ri
o
u
s
sn
ap
sho
t
s fo
r
PV effi
cien
cy in
clud
in
g
u
tilizati
o
n
in
infrastru
ct
u
r
e b
u
i
l
d
ing
s
, commercial b
a
n
k
s, so
lar
cities d
e
v
e
lopmen
t, so
lar
p
a
rk
s,
d
o
m
estic a
n
d
e-su
stain
a
b
ility, with
a v
a
st research
po
ten
tial fo
r
b
i
g
pro
j
ects
in
electricity g
e
n
e
ration
and
d
i
stribu
tio
n.
Due t
o
t
h
e g
r
owi
ng
dem
a
nd
on el
ect
ri
ci
t
y
, t
h
e l
i
m
i
t
e
d st
ock a
nd ri
si
n
g
p
r
i
ces of c
o
nve
nt
i
o
nal
sou
r
ces (
s
uc
h
as coal
and
pe
t
r
ol
eum
,
et
c.), PV ene
r
gy
bec
o
m
e
s a prom
i
s
i
ng al
t
e
rnat
i
v
e
bei
ng
om
ni
pr
esent
,
freely av
ailab
l
e, env
i
ron
m
en
t
frien
d
l
y, and
h
a
s less
op
er
at
io
n
a
l an
d m
a
in
ten
a
n
ce co
sts.
W
i
t
h
av
ailab
ility o
f
30
0
0
su
ns
hi
ne
ho
u
r
s dai
l
y
fo
r
30
0 d
a
y
s
i
n
a y
ear, effi
ci
e
n
t
SR
ET ap
pl
i
a
nc
es can be
de
ve
l
ope
d an
d i
n
st
al
l
e
d.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
62
5 – 635
62
6
The m
a
i
n
req
u
i
rem
e
nt
for s
o
l
a
r desi
gn
,
pr
oc
ess an
d c
ont
r
o
l
i
s
t
h
at
t
h
ey
m
u
st
be m
o
re
pr
od
uct
i
v
e,
ada
p
t
i
ve t
o
v
a
riation
s
in
en
v
i
ron
m
en
tal c
o
nd
itio
ns p
r
odu
cing
h
i
gh
efficien
cy as p
e
r cu
sto
m
ers an
d
mark
et requ
iremen
ts
in
th
e
wo
rl
d
mark
et’s co
nd
itio
n
s
. Th
er
efore
,
eve
r
y stage i
n
optim
i
zation
fo
r
pr
odu
ctio
n
syste
m
s can
b
e
u
s
ed
fo
r co
nt
i
n
uo
us
im
pro
v
em
ent
.
For t
h
i
s
p
u
r
p
o
s
e
, m
a
ny
t
ool
s, t
echni
q
u
es
, su
bsy
s
t
e
m
s
, and
sy
st
em
s can be
use
d
.
DMPPT
(Distrib
u
t
ed
Max
i
mu
m
Po
wer Po
in
t Track
i
ng
) te
chni
que l
o
cates MPP, a unique operating
point to
deliver hi
ghe
st efficiency
eve
n
for
varia
b
le te
m
p
erature a
n
d irradia
n
ce
[3].
The continuous stride towards ach
ie
ving the sufficiency in powe
r
shor
tag
e
fo
r
econo
m
i
c g
r
o
w
t
h
need
s t
o
rem
o
v
e
ba
rri
ers
o
f
n
o
n
-
r
eg
ul
at
i
o
n
of
p
o
we
r.
Si
nce
,
t
h
e o
u
t
p
ut
vol
t
a
ge
fr
om
t
h
e sol
a
r
pa
nel
i
s
a
p
pl
i
e
d
acros
s a loa
d
; fluctuations i
n
te
m
p
erature a
nd i
rra
dian
ce
effect out
put
powe
r. T
h
is impeda
nce m
i
s
m
atch is
stabilized using Conve
r
ters a
c
ting as
an inte
rface bet
w
een
panel and loa
d
m
onitore
d by Set Point Controllers
fo
r real
t
i
m
e
appl
i
cat
i
o
ns t
o
overc
om
e power fl
uct
u
at
i
o
n. Se
veral
M
PPT t
echni
q
u
es
are repo
rt
ed
i
n
t
h
e
literatu
re.
Offl
in
e or
Ind
i
rect
tech
n
i
q
u
e
s like Cu
rv
e
f
ittin
g [4
], Fracti
o
n
a
l Sho
r
t Circu
it Cu
rren
t, Fractio
n
a
l
O
p
en
Cir
c
u
i
t
V
o
ltag
e
[5
]-[
6
]
and
Look U
p
Tab
l
e [7
] o
p
e
r
a
te upo
n
p
r
e ex
p
e
r
i
men
t
ed
d
a
tasets an
d
app
r
oxi
m
a
t
i
ons. Sam
p
l
i
ng t
echni
que
s l
i
k
e Pert
u
r
b a
n
d O
b
ser
v
e [
8
]
,
C
e
nt
ere
d
Di
f
f
ere
n
t
i
a
t
i
on [
9
]
,
I
n
crem
ent
a
l
Co
ndu
ctan
ce
[1
0
]
and
Feedback
tech
n
i
q
u
e
s were
b
a
sed on
d
i
rect sam
p
les u
s
ed
earlier un
til 2
007
. Bu
t m
a
n
y
n
e
w MPPT
In
tellig
en
t tech
n
i
q
u
e
s su
ch
as
Fu
zzy log
i
c[
11
]-[16
]
, Artificial Neu
r
al
Net
w
ork [17
]
, Est
i
m
a
ted
pert
ur
b a
n
d
pert
ur
b
[1
8]
,
Genet
i
c
Al
g
o
r
i
t
h
m
[1
9]
, A
d
apt
i
v
e
Ne
u
r
o
-
Fu
zzy
[
20]
and
pa
rt
i
c
l
e
swarm
opt
i
m
i
zati
on [
21]
-
[
22]
b
a
sed
M
PPT, et
c.
, h
a
ve
been
re
po
r
t
ed si
nce t
h
en
base
d o
n
a
d
va
nced
k
n
o
wl
e
d
g
e
of t
h
e
PV p
a
n
e
l ch
aracteristics. It i
s
j
u
stified
th
at
th
e Fu
zzy
lo
gic syste
m
b
a
sed
In
tellig
en
t tech
n
i
q
u
e
s in
PV g
i
ve
G
ood
perf
or
man
ces,
Fast r
e
sp
on
ses, No
over
s
hoo
t and
le
s
s
Fl
uct
u
at
i
o
ns
fo
r ra
pi
d
t
e
m
p
erat
ure
an
d i
r
r
a
di
anc
e
vari
at
i
o
ns. F
o
r
anal
y
z
i
ng F
u
zz
y
Logi
c
Con
t
roller, th
ere is no requ
irem
en
t o
f
exact PV m
odel and he
nce i
t
can
be easi
l
y
i
m
pl
em
ent
e
d [
2
3]
-[
2
9
]
.
Vari
ous
Converters a
r
e a
v
ailable that aim
in
crease,
decrease
or
maintaining s
a
m
e
output
powe
r/voltage
acros
s loa
d
. T
h
ese a
r
e classi
fied i
n
to
B
u
c
k
Co
nve
rter
(St
e
p
Do
w
n
)
,
Bo
ost Co
n
v
erte
r
(Step
Up
), B
u
c
k
-B
o
o
st
C
o
n
v
ert
e
r (B
ot
h St
e
p
U
p
and St
ep
Do
wn
), C
u
k C
o
n
v
ert
e
r
(B
ot
h St
ep U
p
an
d St
ep D
o
w
n
rev
e
rsing
po
larity
o
f
vo
ltag
e
),
and
SEPIC
(
S
i
ngl
e-e
n
ded
p
r
im
ary
-
i
nduct
o
r
co
n
v
ert
e
r
)
al
l
o
wi
ng
vol
t
a
ge
at
i
t
s
out
put
t
o
be
hi
ghe
r t
h
a
n
, l
e
ss t
h
an,
or eq
ual
t
o
t
h
at
at
i
t
s
i
nput
wi
t
h
o
u
t
i
nve
rsi
o
n. Th
e deg
r
ee of o
u
t
p
ut
vo
l
t
a
g
e
at
C
onve
rt
er v
a
ri
es shar
pl
y
whe
n
u
s
ed t
o
l
o
cat
e DM
PP
. C
ont
r
o
l
l
e
r m
oni
t
o
rs t
h
e
de
si
red set
p
o
i
n
t
from
Co
nv
erter con
tin
uo
usly in
p
r
ocess ap
p
lication
s
. Th
e Co
n
t
roller estab
lish
e
s set o
f
co
n
t
ro
l fu
n
c
tion
s
requ
ired
to
m
a
ke app
r
o
p
r
i
a
t
e
adj
u
st
m
e
nts i
n
t
h
e desi
re
d v
o
l
t
a
ge
out
p
u
t
of
pa
nel
us
i
ng C
o
n
v
ert
e
r
[3
0]
, [
31]
. Si
m
p
le
ci
rcui
t
r
y
wi
t
h
di
rect
feed a
nd s
h
o
r
t
ci
rcu
i
t
prot
ect
i
on
f
o
r i
n
rus
h
c
u
r
r
e
nt
m
a
kes B
u
ck co
nve
rt
er
m
o
st
acceptable c
onverter for tem
p
erature
and
i
rra
diance va
riati
on [32]-[33].
2.
R
E
SEARC
H M
ETHOD
In
t
h
is stud
y,
firstly a syste
m
atic an
alysis o
f
so
lar
p
a
n
e
l mo
du
le
b
a
sed
on m
a
th
e
m
atical
m
o
d
e
lin
g
in
Sim
u
l
i
nk-M
A
TLAB
i
s
pe
rf
orm
e
d f
o
r
t
h
e
pa
nel
ope
rat
e
d
by
36
cel
l
s
ge
ner
a
t
i
n
g
60
W.
T
h
erea
f
t
er, t
o
un
de
rst
a
n
d
t
h
e
ope
rat
i
o
n
of
va
ri
abl
e
t
e
m
p
erat
ure a
n
d i
r
radi
a
n
ce i
n
vest
i
g
at
i
o
n
i
s
ex
pe
ri
m
e
nt
ed
o
n
m
odel
.
M
P
P
is ob
tain
ed at
STC (Stand
ard Test Cond
ition
s
) m
a
in
tain
in
g
tem
p
eratu
r
e
o
f
25
°C
(2
98
.15
K
) and
irrad
i
an
ce
o
f
1
000
W
/
m
2
. A
n
y
de
vi
at
i
o
n
i
n
STC
di
st
ort
s
M
PP an
d
res
u
l
t
s
i
n
p
o
w
er
di
s
c
repa
ncy
,
he
nc
e M
PPT i
s
em
pl
oy
ed
.
Th
e MPPT
syste
m
is su
ppo
rted
b
y
im
p
l
e
m
en
tin
g D
C
/
D
C
Bu
ck
C
o
nv
erter
fo
llow
e
d by PID
an
d FLC t
o
m
oni
t
o
r o
u
t
p
ut
of C
o
n
v
e
r
t
e
r.
An est
i
m
at
i
on of
di
f
f
ere
n
t
t
e
m
p
erat
ure an
d
i
rradi
a
n
ce c
o
n
d
i
t
i
ons i
s
ca
rri
ed o
u
t
with
th
e co
m
p
arison
of vo
ltag
e
conv
ersi
on
ratio and
duty
cycle for the c
o
nv
e
r
ter. T
h
e
Converte
r is tracked t
o
desi
re
d STC
s
e
t
poi
nt
by
usi
ng c
ont
rol
f
u
n
c
t
i
ons f
o
r C
o
n
v
ent
i
o
nal
PI
D
and F
u
zzy
C
o
nt
r
o
l
l
e
rs ada
p
t
i
v
e t
o
changes
in te
m
p
erature a
n
d irra
diance
. A
com
p
arison
i
s
fo
rm
ul
at
ed fo
r
est
i
m
a
t
i
ng pe
r
f
o
r
m
a
nce of
P
I
D a
n
d
FLC.
PV
panel
uses
an array of s
o
lar cells that
conv
ert lig
h
t
in
to
electric en
er
gy
usi
ng
p
hot
o-el
ect
ri
c
effect. So
lar cell eq
u
a
tio
n
s
are u
s
ed
to
m
o
del th
e d
c
eq
u
i
valen
t
circu
it o
f
so
lar cell [3
4
]
. Th
e m
o
d
e
l is teste
d
fo
r di
ffe
rent
ra
nge
o
f
t
e
m
p
erat
ure
fr
om
5°C
t
o
4
5
°C
a
n
d
i
rra
di
ance i
n
c
l
udi
n
g
c
o
nst
a
n
t
, st
ep an
d t
r
a
p
ezoi
d
a
l
fu
nct
i
o
ns [3
5]
.
The
DC
eq
ui
v
a
l
e
nt
of s
o
l
a
r c
e
l
l
i
s
represe
n
t
e
d by
a cu
rrent so
urce in
p
a
rallel with
sh
unt an
d
series
resi
st
ance
desc
ri
be
d i
n
Fi
g
u
re
1.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Perf
or
ma
nce
C
o
m
p
ari
s
o
n
of
PID
a
n
d
F
u
zzy
Controllers in
Distribute
d
M
PPT
(Ch
and
ani S
h
a
r
m
a
)
62
7
Fi
gu
re
1.
S
o
l
a
r
C
e
l
l
DC
eq
ui
v
a
l
e
nt
m
odel
The com
p
l
e
t
e
subsy
s
t
e
m
of pa
nel
i
s
di
spl
a
y
e
d i
n
Fi
g
u
re
2, f
o
l
l
o
we
d by
I
-
V
(C
ur
rent
Vol
t
a
ge) a
nd P
-
V (P
owe
r
V
o
l
t
a
ge) C
h
a
r
act
er
i
s
t
i
c
curves o
b
t
ai
ned aft
e
r si
m
u
l
a
t
i
on pl
ot
t
e
d i
n
Fi
g
u
re
3.
The val
u
e
s
fo
r M
P
P
d
e
liv
ered
at l
o
ad
for
p
a
n
e
l is
P
MAX
=5
9.39W w
ith
V
OC
=2
1.
07
Va
nd
I
SC
=3.7
981
A.
Fi
gu
re
2.
S
o
l
a
r
Panel
Su
bsy
s
t
e
m
Fi
gu
re
3.
I
-
V
a
n
d
P-
V C
h
a
r
ac
t
e
ri
st
i
c
s of
sol
a
r
panel
The g
r
a
phs
of
Fi
gu
re 3
pre
d
i
c
t
t
h
at
sol
a
r pa
nel
be
have
s ne
i
t
h
er as a cu
rre
nt
so
urce
no
r a
s
a vol
t
a
g
e
source.
For
va
riations in temperat
ure a
n
d irradia
n
ce,
p
a
n
e
l o
u
t
pu
t varies sev
e
rely across th
e resistiv
e lo
ad
.
The inte
rsection
of s
o
urce
and loa
d
c
h
aracte
r
istics can
fi
x
M
PP. Fi
gu
re
4
sh
ows
m
o
re cl
osel
y
M
PP
var
i
at
i
o
n
with
lo
ad
. R2
is d
e
sired
op
eratin
g
lo
ad
lin
e for MPP.
R
1
i
s
vol
t
a
ge s
o
ur
ce regi
on a
n
d R
3
i
s
cur
r
e
n
t
sou
r
c
e
ch
aracterized
reg
i
on
. Th
u
s
, op
ti
m
i
zin
g
R1
an
d
R
3
clo
s
er t
o
R2
in
all p
o
s
sib
l
e co
nd
itio
ns will g
i
v
e
MPP ev
en
o
n
v
a
riatio
n in
lo
ad
.
Fig
u
re 4
.
MPP with
v
a
riation
s
in
lo
ad
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
62
5 – 635
62
8
Si
m
u
latio
n
resu
lts sh
ow that, in
creasing te
m
p
er
ature increases c
u
rrent
so
urce (hig
h
in
tern
al
im
pedance
)
re
gi
o
n
t
o
shi
f
t
t
o
wa
r
d
s R
3
i
.
e.
l
e
ft
of l
o
ad l
i
n
e an
d vi
ce ve
rsa. A
n
ex
pre
ssi
on i
s
det
e
r
m
i
n
ed
,
co
nsid
er
i
n
g the po
w
e
r
ou
tpu
t
ob
tain
ed
f
r
o
m
a PV
sys
t
e
m
for
va
riable tem
p
erature inc
r
em
ented
by
i
n
crem
ent
a
l
change
i
n
p
o
we
r,
v
o
l
t
a
ge a
n
d
c
u
rre
nt
gi
ven
by
equat
i
o
n
(
1
) a
n
d
(2
).
P+
Δ
P =
(I+
Δ
I).
(V
+
Δ
V
)
(
1
)
After ign
o
ring
sm
a
ll ter
m
s si
m
p
l
i
fies to
:
Δ
P =
Δ
V.I
+
Δ
I
.
V
(2)
Δ
P
m
u
st be zero at pea
k
point. There
f
ore, at p
eak poi
nt the above expre
ssi
on
in
th
e li
mit
g
i
v
e
s
equat
i
o
n
(
3
)
re
prese
n
t
i
n
g
Dy
n
a
m
i
c im
pedanc
e o
f
t
h
e
so
u
r
ce,
(
3
)
W
h
er
e,
P
:
PV
po
w
e
r
ou
tp
u
t
Δ
P
: In
crem
en
tal Po
wer
ou
tpu
t
fro
m
PV
I
:
PV c
u
rre
nt
o
u
t
put
Δ
I
: In
crem
en
tal cu
rren
t
ou
tpu
t
fro
m
PV
V
:
PV vo
ltag
e
ou
tpu
t
Δ
V
: In
crem
en
tal v
o
ltag
e
o
u
t
pu
t fro
m
PV
dV/
d
I
:
Dy
nam
i
c im
p
e
dance
o
f
s
o
ur
ce
In ac
corda
n
ce
with Maxim
u
m
Power
T
r
a
n
s
f
e
r
T
h
eo
r
e
m,
M
a
x
i
mu
m
P
o
w
e
r is d
e
liv
ered
to lo
ad
when
source internal
im
pedance matches lo
ad i
m
peda
nce.
He
nc
e, M
PP nee
d
s
t
o
b
e
track
ed b
y
ad
ju
sting
th
ese
v
a
r
i
ation
s
using
MPPT as
show
n
i
n
Figur
e 5. Th
e
p
r
ef
erab
le resu
lts for MPP relativ
e to
chan
g
i
n
g
tem
p
eratu
r
e
and
i
rra
di
an
ce can be obt
ai
ne
d usi
n
g
C
o
n
v
e
r
t
e
r
an
d
C
ont
rol
l
er.
Fi
gu
re 5
B
l
oc
k di
ag
ram
for M
PP
Tra
c
ke
r
The m
i
s
m
a
t
ch in output powe
r
cha
r
acteristics is co
m
p
en
sated
b
y
u
s
ing
B
u
ck
Conv
erter. It is u
s
ed
t
o
“buc
k u
p
” or
r
e
duce
o
u
t
p
ut
v
o
l
t
a
ge wi
t
h
pa
ssi
ve
sem
i
c
ond
uct
o
r
devi
ces t
o
obt
ai
n
v
o
l
t
a
g
e
st
abi
l
i
zat
i
on.
Fo
u
r
m
a
i
n
com
pone
nt
s a
r
e
use
d
i
n
desi
gni
ng
buc
k c
o
nve
rt
ers.
These
i
n
cl
u
d
e
swi
t
c
hi
n
g
p
o
w
e
r M
O
SFET
,
di
o
d
e
,
an
d
indu
ctor fo
llo
wed
b
y
filter cap
acitor and
lo
ad
at ou
tpu
t
. Th
e
o
u
t
p
u
t
o
f
PV p
a
n
e
l is u
s
ed
to
feed
Drai
n
input of M
O
SFET.
The
drai
n
c
u
rrent
is then a
d
juste
d
by set of
pu
lses
receive
d at
Ga
te from
Controller
d
e
sign
ed
.
A co
n
t
ro
l circu
it is u
s
ed
to
m
o
n
ito
r th
e
ou
tp
u
t
v
o
ltag
e
fro
m
t
h
e conv
erter an
d
m
a
in
tain
it at th
e
desi
re
d l
e
vel
.
Fi
gu
re 6 sh
o
w
s
m
odel
i
ng o
f
B
u
ck co
nve
rt
er wi
t
h
co
nt
r
o
l
pul
se gene
ra
t
o
r ap
pl
i
e
d at
Gat
e
termin
al o
f
MOSFET.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Perf
or
ma
nce
C
o
m
p
ari
s
o
n
of
PID
a
n
d
F
u
zzy
Controllers in
Distribute
d
M
PPT
(Ch
and
ani S
h
a
r
m
a
)
62
9
Fi
gu
re 6.
B
u
c
k
C
o
nve
rt
er usi
n
g
co
nt
r
o
l
l
e
d P
u
l
s
e Gene
rat
o
r at
gat
e
M
O
SFET
act
s
as a swi
t
c
h
.
It
i
s
ON
o
r
O
FF
depe
n
d
i
n
g
on
pul
ses t
h
at
det
e
rm
i
n
e conve
rt
er o
p
e
r
at
i
n
g
fre
que
ncy. A
variation in converter
duty cycle is pr
ovi
de
d base
d on the proportion of each switchi
ng
period
through
whic
h MOSFET is t
u
rne
d
ON and
OFF.
T
w
o differe
n
t
m
odels were
studied based on
state
s
p
ace
m
odel
equat
i
o
ns a
nd
use
of
di
rect
com
p
o
n
e
nt
s avai
l
a
bl
e i
n
M
A
T
L
AB
-
S
IM
UL
IN
K.
In
s
t
ead o
f
usi
ng
ON a
n
d
OFF
va
ri
abl
e
s,
di
rect
c
o
m
pon
ent
m
odel
ga
v
e
bet
t
e
r
res
p
o
n
s
e. T
h
e
Gat
e
o
f
M
O
SFET
w
h
en t
r
i
gge
re
d
by
t
r
ai
n
o
f
pu
lses fro
m
th
e con
t
ro
ller cau
s
es cu
rren
t fl
o
w
t
h
ro
u
g
h
indu
ctor,
b
u
ild
i
n
g u
p
o
s
cillatio
n
s
in
ind
u
c
t
o
r.
Wh
en
M
O
SFET i
s
t
u
rne
d
O
N
,
vol
t
a
ge i
s
red
u
ce
d by
m
a
gnet
i
c
fi
el
d dev
e
l
o
ped
acros
s i
n
d
u
ct
o
r
.
W
h
e
n
M
O
SF
ET i
s
tu
rn
ed
OFF, EMF is su
dd
en
l
y
rev
e
rsed
in
th
e in
du
ct
o
r
t
h
at
opp
oses
fu
r
t
her d
r
o
p
i
n
c
u
r
r
ent
.
T
h
us,
pul
se
s
appl
i
e
d
fr
om
cont
rol
l
e
r
hel
p
s
i
n
m
a
i
n
t
a
i
n
i
ng
con
s
t
a
nt
v
o
l
t
a
g
e
out
put
f
o
r O
N
an
d
OFF
ph
ase. The a
p
pr
o
p
ri
at
e
adj
u
st
m
e
nt
s i
n
vol
t
a
ge
o
u
t
p
ut
of
pa
nel
are
ob
t
a
i
n
ed
by
co
nn
ect
i
ng C
o
nt
r
o
l
l
e
r i
n
C
o
n
v
ert
e
r
sy
st
em
. The b
a
si
c
bl
oc
k
di
ag
ram
usi
n
g C
ont
rol
l
er,
PV
an
d C
o
nve
rt
er
su
bsy
s
t
e
m
i
s
sho
w
n i
n
Fi
g
u
re
7
.
Fi
gu
re
7.
B
l
oc
k
di
ag
ram
of C
ont
rol
l
e
r
wi
t
h
PV a
n
d c
o
n
v
e
r
t
e
r su
bsy
s
t
e
m
Th
e Con
t
ro
ller u
s
ed
in
Fi
g
u
re 7
can
b
e
constru
c
ted
u
s
i
n
g
Co
nv
en
tio
n
a
l PID
or
an
In
tellig
en
t
FLC
C
ont
r
o
l
l
e
rs.
2
.
1
PID CONTROLLER
PID
(
P
r
opor
tio
n
a
l-In
tegr
al-
D
er
iv
ativ
e)
co
n
t
r
o
ller
is
one o
f
t
h
e ear
liest co
nv
en
tio
n
a
l in
du
str
i
al
cont
rol
l
e
rs
. It
has m
a
ny
adv
a
nt
ages l
i
k
e
e
c
on
om
i
c
, sim
p
l
e
and easy
t
o
t
une.
The
Si
m
u
li
nk m
odel
fo
r t
h
e
no
nl
i
n
ea
r sy
st
em
usi
ng a co
nve
nt
i
o
nal
PI
D co
nt
r
o
l
l
e
r i
s
devel
ope
d. T
h
e m
a
t
h
em
at
i
c
al
expre
ssi
o
n
fo
r t
h
e
sam
e
i
s
gi
ven i
n
e
quat
i
o
n e
x
p
r
esse
d
by
eq
ua
t
i
on
(4
).
U (t
) =
K
P.
e (t
) + K
I
ʃ
e
(t
) dt +
K
D
(
4
)
Whe
r
e,
U (t
)
:
C
ont
r
o
l
Si
gna
l
e (t
)
:
Tracki
n
g
E
r
r
o
r
,
t
h
e
di
f
f
ere
n
ce bet
w
ee
n t
h
e
desi
re
d a
n
d t
h
e act
ual
out
put
.
K
P
:
Pr
op
ort
i
o
nal
Gai
n
(T
uni
ng
Param
e
t
e
r)
K
I
:
In
teg
r
al Gain (Tun
ing
Param
e
ter)
K
D
: Deri
v
a
tiv
e
Gain
(Tun
ing
Param
e
ter)
The m
odel
i
n
Fi
gu
re 8 s
h
o
w
s B
u
ck C
o
nve
r
t
er wi
t
h
PI
D C
ont
rol
l
e
r. T
h
e
sim
u
l
a
t
i
on i
s
perf
orm
e
d fo
r
di
ffe
re
nt
val
u
e
s
o
f
t
u
ni
n
g
pa
r
a
m
e
t
e
rs K
P
,
K
I
and K
D
t
o
g
e
t desired
Set
Po
int.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
62
5 – 635
63
0
Fi
gu
re
8.
B
u
c
k
co
nve
rt
er
wi
t
h
PI
D C
ont
rol
l
e
r
Tabl
e 1
s
h
o
w
s
t
h
e
res
u
l
t
s
of d
i
ffere
nt
val
u
es
of
va
ri
abl
e
t
uni
ng
pa
ram
e
t
e
rs
and
co
nt
r
o
l
l
e
r out
put
.
Tabl
e 1.
C
o
n
v
e
r
t
e
r Out
put
s
us
i
ng PI
D
K
P
K
I
K
D
Conver
t
er
output
PI
D Contr
o
ller
output
0
0
0
0.
0109
7
0
0
0
0.
5
0.
0109
7
0.
0789
2
0
0
0.
8
0.
0109
7
0.
1263
0
0
1
0.
0109
7
0.
1578
0
0
1.
2
0.
0109
7
0.
1894
0
0
1.
5
0.
0109
7
0.
2368
0.
5
0
0
0.
0109
7
0.
4385
0.
8
0
0
0.
0109
7
0.
7016
1
0
0
0.
0109
7
0.
877
1.
2
0
0
21.
89
1.
052
1.
5
0
0
21.
91
1.
315
0
0.
5
0
0.
0109
7
0.
373
0
1
0
0.
0109
7
0.
746
0
1.
2
0
0.
0109
7
0.
8952
0
1.
5
0
21.
89
1.
119
0
1
1
0.
0109
7
0.
9038
1
1
0
21.
79
1.
035
1
0
1
21.
79
1.
035
1
1
1
21.
79
1.
035
It can be seen
from
the Table 1,
th
at selecti
n
g
v
a
lu
e of any o
f
th
e tu
n
i
ng p
a
ram
e
ters les
s
th
an
un
ity,
MOSFET
remains in
OFF st
ate. Howe
ver, on i
n
creasi
ng
an
y one of the
param
e
ters greater than
or e
qual t
o
uni
t
y
, M
O
SFE
T i
s
t
u
rne
d
O
N
an
d
bot
h C
o
n
v
e
rt
er a
n
d
C
o
nt
r
o
l
l
e
r
out
put
i
s
obt
ai
ne
d.
Out
of t
h
e above tested
value
s
, the
value
of K
P
= 1, K
I
=
1 an
d
K
D
= 1
is selected
and si
m
u
latio
n
resul
t
s
a
r
e
obt
a
i
ned a
s
s
h
o
w
n
i
n
Fi
g
u
r
e
9.
Fi
gu
re 9.
C
o
nv
ert
e
r out
put
usi
n
g
PI
D
C
o
nt
r
o
l
l
e
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Perf
or
ma
nce
C
o
m
p
ari
s
o
n
of
PID
a
n
d
F
u
zzy
Controllers in
Distribute
d
M
PPT
(Ch
and
ani S
h
a
r
m
a
)
63
1
The B
l
oc
k
di
a
g
ram
of C
o
nt
r
o
l
l
e
r
wi
t
h
P
V
a
n
d
C
o
n
v
ert
e
r
s
ubsy
s
t
e
m
i
s
no
w i
m
pl
em
ent
e
d
usi
n
g
FLC
.
2
.
2
FUZ
Z
Y
L
OGIC CONTROLLER
Fuzzy logic
(FL)
has
bee
n
available as
a
contro
l
m
e
th
o
d
o
l
og
y f
o
r
ov
er
fo
ur
d
ecades
in
v
a
r
i
ou
s
appl
i
cat
i
o
ns t
o
en
gi
nee
r
i
n
g
cont
rol
sy
st
em
s. T
h
eo
ry
of
fu
zzy sets was in
tro
d
u
c
ed
b
y
Lo
tfi A.
Zad
e
h,
Profess
o
r
for c
o
m
puter science at the Uni
v
ersity of Ca
l
i
f
or
ni
a i
n
B
e
r
k
e
l
ey
i
n
19
65
[
3
6]
an
d t
h
e i
n
d
u
st
ri
al
ap
p
lication
of th
e first fu
zzy co
n
t
ro
ller
was in
itiated
b
y
E. H. Mam
d
an
i in
19
74
[37
]
. Fu
zzy system
s
h
a
ve
o
b
t
ain
e
d
a m
a
j
o
r ro
le in
engin
eering
system
s
an
d
con
s
umer p
r
odu
cts sin
ce th
en. Fuzzy Lo
g
i
c is a
m
u
lti-
v
a
lu
ed
log
i
c that allo
ws in
termed
iate v
a
lu
es to
b
e
d
e
fined
b
e
tween
conv
en
tio
n
a
l ev
alu
a
t
i
o
n
s
lik
e tru
e
/false,
y
e
s/
no,
hi
g
h
/
l
o
w, et
c. F
u
zzy
l
ogi
c i
s
a p
o
w
er
ful
pr
obl
e
m
sol
v
i
n
g m
e
tho
d
o
l
o
gy
t
h
at
pr
ovi
des rem
a
rka
b
l
e
sim
p
l
e
way
t
o
dra
w
defi
ni
t
e
concl
u
si
o
n
s
fr
om
vague,
am
bi
g
u
o
u
s
or i
m
preci
se i
n
f
o
rm
at
i
on [
3
8]
. Th
e fuzzy
syste
m
is a k
n
o
w
led
g
e
-b
ased syste
m
wh
ich
u
tilizes fu
zzy
i
f-th
e
n
ru
les and
fu
zzy l
o
g
i
c i
n
o
r
d
e
r to
ob
tain
th
e
out
put
o
f
t
h
e
s
y
st
em
.
There a
r
e m
a
ny adva
ntages
of using Fuzzy cont
ro
llers. Firstly, a Fu
zzy Lo
g
i
c Con
t
ro
ller g
i
v
e
s m
u
ch
b
e
tter ou
tpu
t
in
co
m
p
ariso
n
to th
e co
nv
en
tion
a
l PID con
t
roller. Th
e resp
on
se of FLC syste
m
is stab
le a
n
d
can
be easi
l
y
va
ri
ed acc
or
di
n
g
t
o
t
h
e c
h
a
ngi
ng
dem
a
nd
fo
r t
h
e i
n
p
u
t
.
S
econ
d
l
y
, t
h
e
e
ffect
s
of
t
h
e t
uni
n
g
param
e
ters are joi
n
tly analyzed and easy to m
onitor for
var
y
i
ng o
u
t
p
ut
s of
PV wi
t
h
cha
n
gi
n
g
t
e
m
p
erat
u
r
e an
d
i
rradi
a
n
ce. T
h
i
r
dl
y
,
FLC
ca
n be easi
l
y
t
u
ned acc
o
r
di
ng
t
o
t
h
e desi
re
d o
u
t
p
ut
by
c
h
an
gi
n
g
t
h
e
d
e
si
gn
p
a
r
a
m
e
ter
s
o
f
me
m
b
er
sh
ip
fun
c
tio
ns r
e
sponsib
le fo
r system
p
e
r
f
o
r
m
an
ce
.
FLC
i
m
pl
em
ent
a
t
i
on i
n
t
h
e
prese
n
t
wo
rk i
s
use
d
t
o
a
d
ju
s
t
t
h
e co
nve
rt
er
dut
y
cy
cl
e by
vary
i
n
g t
h
e
gat
e
v
o
l
t
a
ge ac
cor
d
i
n
g t
o
t
h
e
chan
gi
n
g
val
u
e
s
of t
h
e pa
nel
v
o
l
t
a
ge an
d set
poi
nt
. P
r
act
i
cal
l
y
, panel
se
nso
r
s are
incorporate
d
a
t
the end of PV s
ubsystem
to m
easure
t
h
e
onl
i
n
e va
ri
at
i
ons
i
n
t
e
m
p
erat
ure a
nd i
rra
di
ance
.
Sim
u
l
i
nk m
ode
l
desi
g
n
e
d
usi
n
g F
L
C
i
s
gi
ve
n
i
n
Fi
gu
re
1
0
.
Fi
gu
re
1
0
.
Fuz
z
y
Lo
gi
c C
o
nt
r
o
l
l
e
r c
o
r
r
ect
i
n
g
C
o
nve
rt
er
o
u
t
put
Prese
n
t
l
y
, a t
w
o-i
n
p
u
t
si
n
g
l
e
-
out
put
fuzzy
l
ogi
c c
ont
rol
l
e
r
i
s
desi
g
n
ed at
a sam
p
l
i
ng i
n
st
ant
n. T
h
e
in
pu
t v
a
r
i
ab
les er
ror
E
(n
)
and
ch
ang
e
in
er
ro
r
Δ
E
(n)
a
r
e ex
pr
e
s
s
e
d
in
equ
a
tio
ns
(5)
an
d (6
)
.
E (n
) =
ሺ
ሻ
ି
ሺ
ି
ଵ
ሻ
ூ
ሺ
ሻ
ିூ
ሺ
ି
ଵ
ሻ
(
5
)
Δ
E
(n
)
=
E
(
n
)
–
E
(n
-1
)
(
6
)
The
o
u
t
p
ut
va
r
i
abl
e
i
s
D
u
t
y
c
y
cl
e (DC
)
o
f
t
h
e co
nve
rt
er
gi
v
e
n
by
ex
p
r
essi
on
i
n
e
q
uat
i
o
n
(7
).
DC =
௨௧
(
7
)
Whe
r
e,
E (n
)
:
Er
ro
r Inp
u
t
Δ
E (n
)
:
Ch
ang
e
in
Er
ror
Inp
u
t
P
(n
)
:
P
V
po
w
e
r
co
mp
u
t
ed
a
t
an
in
s
t
a
n
t n
P (n
-1
)
:
PV
po
w
e
r
co
mp
u
t
ed
at an
in
stan
t n-1
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
62
5 – 635
63
2
I
(n)
:
PV c
u
rre
n
t com
puted at an instant
n
I
(n)
:
PV c
u
rre
n
t com
puted at an instant
n-1
DC
:
Duty
Cy
cle
V
OUT
:
O
u
t
p
u
t
Vo
ltage of
Conv
er
ter
V
IN
:
In
p
u
t
V
o
l
t
a
ge
of
C
o
nve
rt
er
The i
n
put
va
ri
abl
e
s i
n
a fuzz
y
cont
r
o
l
sy
st
em
are
m
a
pped i
n
t
o
set
s
of m
e
m
b
ershi
p
f
unct
i
ons t
e
rm
ed
"fuzzy sets". T
h
e proces
s,
o
f
con
v
e
r
t
i
ng a c
r
i
s
p i
n
put
val
u
e t
o
a fu
zzy value, is called "fuzzification". The
"
m
ap
p
i
ng
s"
o
f
in
pu
t
v
a
riab
les in
to m
e
m
b
ersh
i
p
fun
c
tion
s
and
tru
t
h
v
a
lu
es h
e
l
p
the con
t
ro
ller to m
a
k
e
deci
si
o
n
s
fo
r
w
h
at
act
i
o
n i
s
t
o
be t
a
ke
n
base
d
on
a set
of
"r
ul
es".
The de
vel
o
ped
FLC
uses
t
w
o
i
n
p
u
t
s
wi
t
h
uni
verse
of di
s
c
ou
rse f
o
r
er
ro
r
i
n
p
u
t
t
a
ke
n [
-
8
,
+
8
]
a
n
d
chan
ge i
n
e
r
r
o
r
chose
n
t
o
be [
-
1
0
, +
10]
f
o
r t
h
e pa
nel
v
o
l
t
a
g
e
. The
ran
g
e
of
t
h
e i
n
p
u
t
va
ri
abl
e
s can
be cha
n
g
e
d
according to the changing de
mand for th
e varying input. The unive
r
se of
discourse for the output duty
cycle
of c
o
n
v
ert
e
r i
s
chose
n
t
o
be a
s
[-
8, 8]
. T
h
e cont
rol
l
e
r
desi
g
n
ed i
s
des
c
ri
be
d by
t
w
o i
n
p
u
t
s
assi
gne
d wi
t
h
fi
v
e
me
m
b
ersh
ip
fu
n
c
tion
s
n
a
m
e
ly, NB n
e
g
a
tiv
e
b
i
g
,
NS n
e
g
a
tiv
e sm
all,
Z zero
,
PS
p
o
sitiv
e sm
a
ll a
n
d PB
p
o
s
itiv
e b
i
g
.
The co
nt
r
o
l
l
e
r m
a
kes deci
si
o
n
s f
o
r w
h
at
act
i
on i
s
t
o
be t
a
k
e
n base
d o
n
a set
of "rul
es" i
m
pl
em
ent
i
ng
the ex
pert
kn
o
w
led
g
e in a
fo
r
m
of IF
-T
HEN
rule str
u
ctu
r
e.
The system
was tested for
various s
u
bsets of error
and
cha
n
ge i
n
err
o
r
wi
t
h
c
h
an
gi
n
g
c
r
oss
ove
r
p
o
i
n
t
s
.
Ho
we
ver
,
Gau
ssi
an m
e
m
b
ershi
p
f
unct
i
o
ns
p
r
o
v
e
d
sm
o
o
t
h
and
non
-
z
er
o at all poin
t
s w
ith 0.5 cro
s
so
v
e
r
s
p
r
ov
i
d
ing
less
ov
er
/
u
nd
er
sh
oo
t
w
ith
f
a
ster
Rise time.
The
fu
zzy
l
o
gi
c de
vel
o
pe
d m
odel
c
a
n
be
d
e
ri
ve
d
fr
om
a 55
-r
ul
e m
a
t
r
i
x
t
h
at
c
onsi
s
t
s
of
2
5
r
u
l
e
s
gi
ve
n i
n
Ta
bl
e
2.
Tabl
e 2. Fuzzy
m
e
m
b
ershi
p
F
unct
i
o
ns
Δ
E(
n)
E (n
)
NB
NS
Z
PS
PB
NB
Z
Z
NB
NB
NB
NS
Z
Z
NS
NS
NS
Z
NS
Z
Z
Z
PS
PS
PS
PS
PS
Z
Z
PB
PB
PB
PB
Z
Z
On
t
h
e
b
a
sis
o
f
t
h
ese ru
les, th
e system
w
o
rk
s, and
th
e
i
m
p
licatio
n
meth
od
is ap
p
l
i
e
d
.
After the
i
m
p
licatio
n
m
e
th
od
, th
e
ou
tpu
t
for each
ru
le is ag
greg
at
e
d
and the
defuzzification is done t
o
find the
cris
p
o
u
t
p
u
t
. Th
e
o
u
t
p
u
t
of
th
e conver
t
er
u
s
ing
Fu
zzy Log
i
c Con
t
ro
l system
is sh
o
w
n
i
n
Fi
g
u
r
e
1
1
.
Fig
u
r
e
11
. C
o
nv
er
ter ou
tpu
t
usin
g FLC
3.
CO
MP
ARI
S
O
N
OF P
I
D
A
N
D
FLC
A C
o
m
p
arat
i
v
e st
udy
of C
o
n
v
ert
e
r
out
put
u
s
i
ng P
I
D an
d F
L
C
i
s
done o
n
t
h
e basi
s of t
h
e
readi
n
g
o
f
Converte
r
out
put and t
h
e
Dut
y
cycle. This c
a
n
be see
n
from
Table 3.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Perf
or
ma
nce
C
o
m
p
ari
s
o
n
of
PID
a
n
d
F
u
zzy
Controllers in
Distribute
d
M
PPT
(Ch
and
ani S
h
a
r
m
a
)
63
3
Tab
l
e
3
.
C
o
m
p
ar
ison
o
f
conver
t
er
O
u
t
p
u
t
s usin
g PID
and
FLC
Para
m
e
ter
Set point Fixed STC= 21.
07 V
Panel output for
va
r
i
able T and G= 21
.
86 V
PI
D Contr
o
ller
FLC Controller
Conver
t
er
Output
21.
82 V
21.
40 V
Duty C
y
cle
0.
998
0.
978
The set
poi
nt
o
b
t
a
i
n
ed at
o
u
t
p
ut
of C
o
n
v
ert
e
r usi
n
g FLC
i
s
cl
oser t
o
desi
re
d set
poi
nt
i
n
c
o
m
p
ari
s
on
to the PID. Als
o
, The
Duty cycle in
case of FLC is less co
mpare
d
to PID.
Duty cycle describes the proportion
of t
i
m
e for
wh
i
c
h ci
rcui
t
i
s
o
p
erat
e
d
. T
h
e
h
i
ghe
r t
h
e
d
u
t
y
cy
cl
e, hi
g
h
er t
h
e c
ons
um
pt
i
on
of c
o
m
pone
n
t
s an
d
lesser th
e
sp
an for
wh
ich
it can
b
e
o
p
e
rated. Th
e step down Bu
ck
C
o
nv
erter g
i
v
e
s less du
ty cycle in
FLC
whe
n
com
p
are
d
wi
t
h
P
I
D
.
Th
us, t
h
e
out
put
of m
odel
usi
n
g
FLC
i
s
unde
r
cont
rol
an
d cl
o
s
er t
o
set
poi
nt
even
whe
n
t
h
e
di
st
ur
ba
nce i
s
ad
ded t
o
t
h
e sy
s
t
em
wi
t
h
l
e
ss dut
y
cy
cl
e. The m
odel
dev
e
l
ope
d can
be
easi
l
y
i
m
p
l
e
m
en
ted
in
th
e ind
u
stry.
4.
R
E
SU
LTS AN
D AN
LYSIS
The m
odeling
perform
a
nce of solar
panel
operate
d
on Buc
k
Conve
rter int
e
rface is studied usi
ng PID
and FLC
C
o
nt
rol
l
e
r.
A com
p
ari
s
o
n
of re
sul
t
s as i
n
Tabl
e
3 desc
ri
bes F
L
C
resul
t
s
cl
oser t
o
St
anda
r
d
Test
C
o
n
d
i
t
i
ons
(
S
T
C
) w
h
e
n
c
o
m
p
ared
t
o
c
o
nve
n
t
i
onal
P
I
D
.
The pa
nel cha
r
acteristics implem
ented for
Fuzzy and
PID con
t
ro
llers sh
ow th
at du
ty cycle is
less
th
an
un
ity
in
b
o
t
h
cases. Ho
wev
e
r, STC resu
lts
MPP
c
l
oser in
FLC
as com
p
are
d
t
o
PID.
Thus,
Buc
k
conve
r
ters ca
n
m
onitor MPP
m
o
re closely to STC
by
sel
ect
ed m
e
m
b
ershi
p
f
unct
i
ons a
n
d pa
ram
e
t
e
r
m
odel
i
n
g
of
FLC
.
M
o
re
ove
r,
l
e
ss c
o
st
f
o
r c
o
m
put
i
n
g a
n
d
fast
e
r
r
e
sp
onse
are
a
dva
nt
age
s
of
FLC
o
v
e
r
t
r
a
d
i
t
i
onal
cont
rol
l
e
rs
. M
o
re sat
i
s
fact
or
y
resul
t
s
f
o
r F
L
C
are o
b
ser
v
ed f
o
r
fi
xe
d an
d va
ry
i
ng i
n
p
u
t
i
n
bot
h t
h
e c
a
ses i
.
e
.
te
m
p
erature
and irradia
n
ce.
5.
CO
NCL
USI
O
NS
Whe
n
a
n
al
y
z
i
n
g sol
a
r P
V
ap
pl
i
cat
i
ons,
di
st
ri
b
u
t
e
d M
P
P
T
need
s t
o
b
e
t
r
a
c
ked
.
T
h
i
s
pa
p
e
r ex
pl
o
r
es
M
PPT m
e
t
hod
fo
r
onl
i
n
e va
ri
at
i
ons
usi
n
g B
u
ck
C
o
nve
rt
er
t
h
r
o
u
g
h
P
I
D a
n
d
FLC
whe
n
ope
rat
e
d i
n
rea
l
t
i
m
e
appl
i
cat
i
o
ns. T
h
e w
o
rk e
n
c
o
u
r
ages
co
nt
i
n
ui
ng
o
n
-
g
oi
n
g
re
search
t
o
i
m
prove
cu
rre
nt
ass
e
ssm
ent
usi
ng
fut
u
r
e
to
o
l
s lik
e Hy
b
r
id
FLC.
ACKNOWLE
DGE
M
ENTS
Ackno
wled
g
e
men
t
s
m
a
y
b
e
mad
e
to
all th
o
s
e in
d
i
v
i
d
u
a
ls
an
d
institu
tio
ns n
o
t
m
e
n
tio
n
e
d
else wh
ere
i
n
t
h
e
pa
per
b
u
t
t
h
at
m
a
de an
im
port
a
nt
c
o
nt
ri
b
u
t
i
o
n
.
REFERE
NC
ES
[1]
Techno
log
y
Roadmap: Solar Pho
t
ovoltaic Ener
g
y
Report International
Energ
y
Ag
ency
, 2014
.
[2]
Energ
y
Sta
tisti
c
s
Report, Cen
t
r
a
l Stat
istics Off
i
ce
, Nation
a
l St
atisti
ca
l Organi
z
a
tion
,
Ministr
y
of Statisti
cs and
Programme Impl
ementation, Gove
rnment Of Ind
i
a, March 2014
.
[3]
N. Pongratanan
ukul, “Analy
sis
and Simu
lation
Tools for Solar Array
Power S
y
stems”, Ph.D. dissertation
,
Dept.
Electrical and
C
o
mputer Engin
e
ering,
Univ. Cen
t
ral Florida, Orlando, 2005
.
[4]
J.C.H. Phang
,
D.S.H. Chan
and J.R. Phillips
,
“Accurate
analy
tical
method for
the
extr
action of solar
cell”,
Ele
c
tronics Le
tte
rs,
May
1984, V
o
l. 20
, no
. 10
, pp
. 406–408
.
[5]
Rosa
.
A Ma
stro
ma
uro,
Ma
rc
o Lise
rre
and Antonio Dell Aquila, “Control I
ssues in Single-Stage Photovoltaic
S
y
stems MPPT,
Current and Voltage Control”,
I
E
EE Transactions on Industrial Informatics
, May
2
012, Vol. 8, no
.
2.
[6]
M.
A.
S.
Ma
soum,
H. Dehbonei and E.F. Fuchs, “The
oretical an
d experimental
an
aly
s
es of photovoltaic s
y
stems
with voltage an
d curren
t
b
a
sed
maximum power poin
t
tr
ack
in
g”,
I
E
EE Transactions on
Energy Conversion
,
Decem
ber 2012
, Vol. 17, no. 4, p
p
. 514–522
.
[7]
B. Subudhi and
R. Pradhan
,
“
Characteristics evalua
tion
and parameter
extraction o
f
a solar
array based on
exper
imen
tal an
alys
is
”, P
r
oce
e
di
ngs of 9th IEEE P
o
wer Electron
i
cs and Drives System
s
,
S
i
ngapo
re, Decem
ber 5–
8, 2011
.
[8]
B. Amrouche, M. Belhamel an
d A. Guessou
m
, “
Artificial in
tell
igence based P&
O
MPPT method
for
photovolt
a
ic
sy
ste
m
s
”, Proceedings of Revu
e d
e
s Energ
i
es R
e
n
ouve
lab
l
es, Tlemcen, Alg
e
ria, S
e
ptember 5–7
, 2
007.
[9]
W. Xiao, W.G
.
Dunford and A.
Capel,
“Application of centered
differen
tia
tion
and steep
est descent to
maximum
power point tr
acking”,
IEEE Tra
n
sactions on In
d
u
strial Electronics
, Octob
e
r 2007
, Vol. 54
, no
. 5
,
pp. 2539–2549
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
62
5 – 635
63
4
[10]
Dezso Sera,
L
Mathe
Ker
e
kes
and
Spataru, “On the Pe
rturb-
and-Observe and
Incremental C
onductan
ce MPPT
Methods for PV
S
y
stems”,
I
E
EE
Journal of Photo
v
oltaics
, July
20
13, Vol 3, no. 3.
[11]
M.
A.
Usta,
O.
Aky
a
szi and I.H.
Atlas,
“
Design and performance of solar tr
acking system
with fuzzy logic
Controlle
r”
, Six
t
h International
Advanced
Techn
o
logies S
y
m
posium
(IATS’11), Elazig,
Turk
ey
, May
16-18
,
2011
.
[12]
M
d
. Tanvir Araf
at Khan, S
.
M
.
S
h
ahrear T
a
nz
il,
Rifat Rehm
an a
nd S
M S
h
afful
Alam
, “
Design a
nd construction of
an Automati
c S
o
lar tracking
S
y
stem
”, 6th In
ternational Conf
erence on
El
e
c
t
r
ica
l
and
Com
puter Eng
i
ne
erin
g
(ICECE’2010),
Dhaka Bang
lad
e
sh, December18-20, 2010
.
[13]
Nader Barsoum and Pandian
Vasant, “
S
im
plified So
lar Tracking
Prototy
p
e”,
Transaction in controllers a
n
d
Energy
,
Global
Journal of Tech
nology and
Optimization
, June 2
010, Vol. 1
,
pp
3
8
-45.
[14]
A. Louch
e
ne, A. Benmakhlouf
and A.
Chagh
i
, A
.
Benmakhlouf
and A. Chagh
i
“
S
olar T
r
ack
ing s
y
s
t
em
with fuz
z
y
reasoning
applied to
crisp sets”,
Revu
e d
e
s
En
er
gies
R
e
neou
velab
l
e
s
, June 2007, Vol. 10
no. 2, pp.
231-240.
[15]
A. M
a
thew and
A.I. S
e
lv
akum
ar, “
N
ew M
P
P
T
for P
V
arra
y
s
using fuzzy
controller in
clos
e
coop
erat
ion with f
u
z
z
y
cognitiv
e n
e
twor
k”,
I
E
EE Transactions on
En
ergy Conversion
, September 2006
, V
o
l. 21
, no
. 3
,
pp
.
793–803.
[16]
Y. Chen, K. S
m
edle
y, F
.
Vach
er
and J
.
Brouwer, “
A new
maximum power point t
r
acking controller
”, P
r
oceed
ings
of 18th Annu
al I
EEE Confer
ence on Applied
Pow
e
r Electronics, F
l
orida, Febru
a
r
y
2003.
[17]
M
u
mm
adi Veer
achar
y
,
T
o
m
onobu Senj
y
u
and
Katsum
i Uezato
,
“
N
eural-Ne
twork-Based Maxi
m
u
m
-
Power-Poi
nt
Track
ing of Coupled-Inductor I
n
terleaved-Boos
t-Convert
er-Supplied PV Sy
stem Us
ing Fuzzy
Controller
”
,
IE
EE
Transactions on
Indus
trial Electronics
, August 20
03, Vol. 50
, no
.
4.
[18]
C. Liu
,
B
.
Wu and R. Cheung
,
“
Advanced a
l
go
rithm for MPPT
control o
f
photovoltaic systems
”, Proceedings
of
Canadian Solar
Buildings Conf
erence
, Montr
e
al, Canad
a
, August 20–24, 2004.
[19]
C. Larbes
, S
.
M
.
A. Cheikh, T
.
Obeidi
and A. Zer
guerras, “Genet
i
c
algori
t
hm
optim
ized fuzz
y log
i
c contro
l for th
e
maximum powe
r
point
track
i
ng in
photovoltaic s
y
stem”,
Ren
e
w
able En
ergy
, October 2009
, Vol. 34, no
. 10, pp.
2093–2100.
[20]
A.M.S. Aldobh
ani and
R. John, “
MPPT
of
PV system usin
g ANFIS pr
ed
iction and
fuzzy logic tracking
”,
Proceedings of Interna
tiona
l Multi-Confer
ence on
Engineering an
d Com
puter Sci
e
nce
,
Hong Kon
g
, March 13–15
,
2008.
[21]
Jieming Ma, T.O. Ting,
Ka Lo
k Man,
Nan Zh
ang,
Sheng-Uei Guan
and Prudence
W. H. Wong, “Parameter
Estimation of Photovoltaic M
odels via Cuckoo Search”,
Journa
l of Applied Mathematics
, June 2
013, Vol. 12, no.
5.
[22]
Kashif Ishaque,
Zain
al Salam, Muha
m
m
a
d Am
ja
d and Saad Mek
h
ilef
,
“
A
n Im
proved Parti
c
le Swa
r
m
Optim
izatio
n
(PSO)–Based MPPT for PV with Re
duced S
t
e
a
d
y
-
S
t
a
t
e Os
cil
l
a
tion”
,
IEEE Transactions on Power Electronics
,
August 2012, V
o
l. 27
, no
. 8
.
[23]
Balasubramanian and S. Singaravelu
, “Fuzzy logic con
t
roller for the maximum power
point tracking
in
photovoltaic s
y
stem”,
In
ternation
a
l Journal of
Co
mputer Applications
, March
2012
, Vol. 41
, no
.12.
[24]
M.
A.
Islam,
N.
Mohammad and
P.
K.
S.
Khan
.
, “
Modeling and performance analysis
of a generalized photovolta
ic
array in Matlab
”, IEE
E
J
o
int Interna
tiona
l Conferenc
e
on P
o
wer Elec
tronics
,
Drives
and Energ
y
S
y
s
t
em
s
,
Dec
2010.
[25]
Yeong-Chau Kuo,
Tseng-Jun Liang, and Jiang-F
uh Chen, “Novel
Maximum-Po
wer-Point-Track
ing Controller for
Photovoltaic
En
erg
y
Conversion
S
y
stem”,
I
EEE Transactions
on
Industrial Electronics
, June 2001
, Vol. 48
, No. 3.
[26]
Tarak
Salmi, Mounir Bouzgu
en
da, Ad
el Gastli
and Ah
med Masmoudi, "MATLAB/Simu
link Based Modelling
Of
Solar Photovoltaic C
e
ll”, International
Journal
o
f
Renewab
l
e Ener
gy
Research
, Februar
y
2012
, Vo
l.2, Issue 2
.
[27]
S. Laloun
i, D. R
e
kioua, T. Rek
i
o
u
a a
nd
E. Matag
n
e, “Fuzzy
l
ogic control of stand
-
alone
photovoltaic s
y
stem with
batt
er
y s
t
orag
e”
,
Journal o
f
Pow
e
r Sources
, 2009
, Vol. 193
, pp
89
9-907.
[28]
P. Sangameswar Raju
and Mr. G
.
Venkateswar
lu
,
“
S
im
scape Model of
Photovo
ltaic cell”,
In
ternational Journal o
f
Advanced Resea
r
ch
in El
ectrical, Electroni
cs
and Instrumentation Engineering
, M
a
y
2013, Vol. 2,
Issue 5.
[29]
V.
Salas,
E.
Oli’s,
A.
Barrado and A.
Lazaro, “R
eview of the maximum power
point tra
c
king a
l
g
o
rithm
s
for stand-
alone photovoltaic s
y
stems”,
Solar Energy
Mater
i
als
&
Solar Cells,
2006, Vol. 90
,
pp 1555-1578.
[30]
C. Hua and C
.
S
h
en, “
Study
of maximum power tracking
techni
ques and control of DC/DC converters for
photovolta
ic po
wer system”,
in
Proceedings of
P
o
wer El
ec
tronics
Speci
alist
Conf
erenc
e
, Japan
,
M
a
y
17–22, 1998.
[31]
T.
T.
N.
Khatib,
A.
Mohamed,
N
.
Amin
and K. S
opian, “An eff
i
cient maximu
m power point
track
i
ng contro
ller
fo
r
photovoltaic s
y
s
t
ems using new
boost conver
t
er
design and
impr
oved con
t
rol alg
o
rithm”,
WSEAS
Transactions on
.
Powe
r Sy
ste
m
s
,
April 2010, Vol. 5,
no. 2, pp. 53–
63.
[32]
Huiy
ing
Zheng
,
Shuhui Li, Rajab Challoo an
d Julio
Proano, “Shading and b
y
pass diode
impacts to ener
g
y
extraction of PV array
s
under
diffe
ren
t
converter
configuration
s
”,
Ren
e
wable Energy
,
August 2014, Vol. 68,
p
p
.
58-66.
[33]
Pavels Suskis and Il
ya
Galki
n
, “
Enhanced
Photovoltaic Panel Mode
l for
MATLAB-Simu
link
Environment
Considering Solar Cell
Junction
Capacitance
”, I
ndustrial
Electro
nics Society
,
39th Annual Confer
ence of th
e IEEE
(IECON 2013),
Aug 2013.
[34]
Chandani Shar
ma and Anamik
a Jain
, “Solar P
a
nel
M
a
them
at
i
cal
M
odell
ing u
s
ing Simulink”, in
Internationa
l
Journal of Engin
eering
Research
and
Applications
, May
2014, Vol. 4
,
Issue 5
,
v
e
rsion 4, pp 67-72
.
[35]
Chandani Shar
ma and Anamika Jain, “Simulink ba
sed Multi
variab
le Solar
Panel Modell
in
g”, in
Tel
k
omin
ika
Indonesian Jour
nal of El
ectrical Engineering,
August 2014, Vol.
12, Issue 8
,
pp
5
784-5792.
[36]
Zadeh
.
L.A, Fuzzy
sets, Information
and
Control,
Vol. 8
,
pp
. 338-
353. 1965
.
[37]
Mamdani E. H, Application of fuzzy
algor
ith
ms for the control of
a d
y
namic plant,
Pr
oceed
ings
of IEEE
, 1974, Vol
121, pp
. 1585-1
588.
Evaluation Warning : The document was created with Spire.PDF for Python.