I
nte
rna
t
io
na
l J
o
urna
l o
f
P
o
w
er
E
lect
ro
nics
a
nd
Driv
e
Sy
s
t
e
m
(
I
J
P
E
DS
)
Vo
l.
8
,
No
.
4
,
Dec
em
b
er
2
0
1
7
,
p
p
.
1
5
9
5
~
1
6
0
2
I
SS
N:
2
0
8
8
-
8
6
9
4
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
p
ed
s
.
v8
i
4
.
pp
1
5
9
5
-
1602
1595
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JP
E
DS
A
c
om
p
ar
ati
v
e
A
na
lys
is
of
S
y
mm
e
tric
a
l and
Asy
mm
e
trical
Ca
s
c
ad
e
d
M
ul
t
il
ev
e
l
I
n
v
e
r
t
e
r
Ha
v
i
ng
R
e
du
ce
d
N
u
m
b
e
r
of
S
w
itc
h
e
s
a
n
d
D
C
S
o
u
r
c
e
s
L
ipi
k
a
Na
n
da
,
A
Da
s
g
up
t
a
,
U.
K.
Ro
ut
S
c
h
o
o
l
o
f
El
e
c
tri
c
a
l
En
g
in
e
e
ri
n
g
,
KIIT
Un
iv
e
rsit
y
,
In
d
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Sep
20
,
2
0
1
7
R
ev
i
s
ed
No
v
2
5
,
2
0
1
7
A
cc
ep
ted
Dec
2
,
2
0
1
7
As
m
u
l
t
i
l
e
v
e
l
i
n
v
e
r
t
e
r
s
a
r
e
g
a
in
in
g
i
n
c
r
e
a
s
in
g
i
m
p
o
rt
a
n
c
e
.
N
e
w
t
o
p
o
lo
g
i
e
s
a
r
e
b
e
i
n
g
p
ro
p
o
s
e
d
i
n
o
rd
e
r
t
o
a
c
h
i
e
v
e
l
a
r
g
e
n
u
m
b
e
r
o
f
l
e
v
e
l
s
i
n
o
u
t
pu
t
v
o
l
t
a
g
e
.
A
s
i
m
p
l
i
fi
e
d
M
L
I
t
o
p
o
lo
g
y
h
a
s
b
e
e
n
p
r
e
s
e
n
t
e
d
wi
t
h
b
o
t
h
s
y
m
m
e
t
r
i
c
a
l
a
n
d
a
s
y
m
m
e
t
r
i
c
a
l
c
o
n
fi
g
u
r
a
ti
o
n
s.
Th
i
s
p
a
p
e
r
r
e
p
r
e
s
e
n
t
s
a
c
o
m
p
r
e
h
e
n
s
i
v
e
a
n
a
l
y
s
i
s
o
f
a
b
o
v
e
m
e
n
t
i
o
n
e
d
to
p
o
l
o
g
y
wi
t
h
F
F
T
a
n
a
l
y
s
i
s
,
s
wi
t
c
h
i
n
g
a
n
d
c
o
n
d
u
c
t
io
n
lo
s
s
e
s
o
f
t
h
e
in
v
e
r
t
e
r
.
H
e
n
c
e
e
f
fi
c
i
e
n
c
y
a
t
d
i
ffe
r
e
n
t
c
a
r
r
i
e
r
fr
e
q
u
e
n
c
i
e
s
h
a
s
b
e
e
n
c
a
l
c
u
l
a
t
e
d
s
u
c
c
e
s
s
fu
l
l
y
.
R
e
s
u
l
t
s
a
r
e
v
e
r
i
fi
e
d
wi
t
h
si
m
u
l
a
t
io
n
s
tu
d
i
e
s
.
M
u
lt
i
le
v
el
i
n
v
e
rters
a
r
e
c
u
rre
n
t
l
y
c
on
s
i
d
e
re
d
as
a
b
e
tt
e
r
i
n
d
u
st
r
ial
s
o
l
u
t
i
o
n
f
o
r
h
i
g
h
d
y
n
a
m
i
c
p
er
f
o
r
m
a
n
ce
a
n
d
po
w
er
-
q
u
a
li
ty
d
e
m
an
d
i
n
g
a
p
p
li
c
a
t
io
n
s
,
c
o
v
e
r
i
n
g
a
w
i
d
e
po
w
er
r
a
n
g
e
.
K
ey
w
o
r
d
:
As
y
m
m
etr
ic
M
L
I
c
o
n
d
u
ctio
n
lo
s
s
S
w
ich
in
g
lo
s
s
Sy
m
me
t
r
ic
ML
I
T
o
tal
h
ar
m
o
n
ic
d
is
t
o
rt
i
on
V
o
lta
g
e
s
tr
e
s
s
Co
p
y
rig
h
t
©
201
7
In
s
t
it
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
L
i
p
i
k
a
N
a
nd
a,
Dep
ar
t
m
e
n
t
o
f
E
lec
t
r
ical
E
n
g
i
n
eer
i
n
g
,
KI
I
T
U
n
i
v
e
r
s
i
t
y
,
Bh
ub
an
es
w
ar
,
O
d
is
h
a,
I
n
d
ia.
E
m
a
il:
l
n
an
d
a
f
e
l
@
k
iit
.
ac
.
in
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
t
w
o
l
e
v
e
l
i
n
v
e
r
t
e
r
s
h
o
w
e
v
e
r
h
a
v
e
m
an
y
l
im
i
t
a
i
o
n
s
i
n
o
p
e
r
a
t
i
n
g
a
t
h
i
g
h
f
r
e
q
u
e
n
c
y
m
a
i
n
l
y
d
u
e
t
o
c
o
n
s
t
r
a
i
n
t
s
o
f
d
e
v
i
c
e
r
a
t
i
n
g
s
a
n
d
s
w
i
t
c
h
in
g
l
o
s
s
e
s
.
T
h
e
m
u
l
t
il
e
v
e
l
i
n
v
e
r
t
e
r
s
h
a
v
e
g
o
t
t
r
e
m
en
d
o
u
s
i
n
t
e
r
e
s
t
i
n
t
h
e
p
o
w
e
r
i
n
d
u
s
r
y
.
I
n
c
r
e
a
s
i
n
g
t
h
e
n
u
m
b
e
r
o
f
v
o
l
t
a
g
e
l
e
v
e
l
s
i
n
t
h
e
i
n
v
e
r
t
e
r
w
i
t
h
o
u
t
r
e
q
u
i
r
i
n
g
h
i
g
h
e
r
r
a
t
i
n
g
s
o
n
i
n
d
i
v
i
s
u
a
l
d
e
v
i
c
e
s
c
a
n
i
n
c
r
e
a
s
e
t
h
e
p
o
w
e
r
r
a
t
i
n
g
[
1
]
.
Wi
t
h
o
u
t
t
h
e
u
s
e
o
f
t
r
a
n
s
f
o
r
m
e
r
s
t
h
e
u
n
i
q
u
e
s
t
r
u
c
t
u
r
e
o
f
M
L
I
a
l
l
o
w
s
t
h
em
t
o
r
e
a
c
h
h
i
g
h
v
o
l
t
a
g
e
s
w
i
t
h
l
o
w
h
a
r
m
o
n
i
c
s
o
r
s
e
r
i
e
s
c
o
n
n
e
c
t
e
d
s
n
c
h
r
o
n
i
s
e
d
s
w
i
t
c
h
i
n
g
d
e
v
i
c
e
s
.
M
L
I
s
ar
e
d
iv
i
d
ed
i
n
to
t
h
r
ee
c
a
t
e
g
o
r
ie
s
,
t
h
e
y
a
r
e
n
e
u
t
r
al
p
o
i
n
t
cla
m
p
ed
,
f
l
y
i
n
g
ca
p
ac
i
t
o
r
a
n
d
c
a
s
ca
d
ed
H
-
b
r
i
d
g
e
[
2
]
.
F
o
r
h
ig
h
v
o
lta
g
e
ap
p
li
c
a
t
io
n
s
C
asc
a
d
ed
H
-
b
ri
d
g
e
m
u
lt
i
l
e
v
el
i
n
v
er
ter
h
as
b
ee
n
re
s
ea
r
ch
ed
an
d
p
r
ef
er
ab
le
[
3
]
-
[
4
]
.
A
s
t
h
e
n
u
m
b
er
o
f
l
e
v
e
l
i
n
cr
e
a
se
s
,
t
h
e
n
u
m
b
er
o
f
H
-
b
ri
d
g
es
al
s
o
i
n
cr
e
a
s
e
s
[
5
]
.
T
O
a
v
o
i
d
t
h
e
l
a
r
g
e
n
u
m
b
e
r
o
f
D
c
s
o
u
r
c
e
s
,
c
a
s
c
a
d
e
d
M
L
I
s
a
r
e
a
g
a
i
n
d
e
s
i
g
n
e
d
f
o
r
r
e
d
u
c
e
d
n
u
m
b
e
r
o
f
D
c
s
o
u
r
c
e
s
a
n
d
s
w
i
t
c
h
e
s
[
6
]
.
T
he
y
ar
e
ca
tag
o
r
is
ed
as
s
y
m
me
t
r
ical
a
n
d
as
y
m
m
etr
ical
C
a
s
ca
d
ed
ML
I
s
[
7
]
d
ep
en
d
i
n
g
u
p
o
n
t
h
e
v
o
lt
a
g
e
s
o
u
r
ce
u
s
e
d
.
A
d
if
f
e
r
e
n
t
to
p
o
l
o
g
y
o
f
M
L
I
d
esig
n
ed
f
r
o
m
s
ev
e
r
al
bi
d
i
r
ec
t
i
on
al
s
w
itc
h
es
is
p
r
o
po
s
e
d
i
n
[
8
]
.
.
Du
e
to
b
i
d
i
r
e
c
t
i
on
al
s
w
itc
h
es
v
o
lt
a
g
e
s
tr
e
s
s
a
c
r
o
ss
t
h
e
sw
it
c
h
e
s
is
h
i
g
h
e
r
.
A
s
t
h
e
n
u
m
b
er
o
f
s
w
i
t
ch
e
s
ar
e
less
co
m
p
ar
ed
to
co
n
v
en
tio
n
al
to
p
o
lo
g
ies
ea
ch
s
w
i
t
ch
u
n
d
er
g
o
e
s
h
i
g
h
v
o
l
t
ag
e
s
t
r
ess
a
n
d
s
w
i
t
ch
i
n
g
lo
s
s
t
h
u
s
in
cr
ea
s
ed
[
9
]
.
2.
RE
S
E
ARCH
M
E
T
H
O
D
2
.1.
P
ro
po
s
ed
To
p
o
l
o
g
y
I
t
h
as
t
w
o
v
o
lta
g
e
s
ou
rc
e
s
V
1
an
d
V
2
a
l
ong
w
i
th
t
w
o
c
a
p
ac
i
t
o
r
s
C
1
a
nd
C
2
w
hi
c
h
a
c
t
li
k
e
v
o
l
ta
g
e
d
iv
i
d
er
cir
cu
it
.
If
V
1
=
V
2
it
is
t
r
ea
t
ed
as
s
y
m
m
e
tr
i
cal
o
t
h
er
w
i
s
e
a
s
y
m
m
e
t
r
i
c
a
l
.
P
r
o
p
o
s
e
d
T
o
p
o
l
o
g
y
p
r
o
d
u
ce
s
7/
9
/
1
1
le
v
els
w
i
t
h
c
e
r
tai
n
v
o
lt
a
g
e
co
m
b
i
n
at
io
n
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
8
,
No
.
4
,
Dec
em
b
er
2
0
1
7
:
1
5
9
5
–
1
6
0
2
1596
Fig
u
r
e
1
.
P
r
o
p
o
s
ed
T
o
p
o
lo
g
y
2
.
2
Dif
f
e
re
nt
S
w
i
t
ch
i
n
g
S
t
a
t
es
Of
T
o
p
o
l
o
g
y
T
o
pol
o
g
y
w
i
t
h
d
i
f
f
er
en
t
l
e
ve
l
s
ha
v
e
b
een
r
ep
r
e
s
e
n
ted
in
t
h
is
s
ec
t
i
on
.
B
o
th
s
y
m
m
e
tr
ical
an
d
as
y
m
m
e
tr
ical
co
n
f
ig
u
r
a
t
i
o
n
s
h
a
v
e
b
e
e
n
si
m
u
l
a
ted
at
di
f
f
er
e
n
t
ca
r
r
ier
f
r
eq
u
en
cie
s
an
d
r
e
s
u
lt
s
ar
e
c
o
m
p
ar
ed
.
T
ab
le
1
.
Di
f
f
er
e
n
t
S
w
i
tch
i
n
g
St
r
a
t
e
g
ie
s
7
l
e
v
e
l
9
L
e
v
e
l
1
1
L
e
v
e
l
O
u
t
p
u
t
C
o
n
d
u
c
t
i
n
g
S
w
i
t
c
h
e
s
O
u
t
p
u
t
C
o
n
d
u
c
t
i
n
g
S
w
i
t
c
h
e
s
O
u
t
p
u
t
C
o
n
d
u
c
t
i
n
g
sw
i
t
c
h
e
s
V
d
c
S
4
,
S
2
,
S
5
V
d
c
S
7
,
S
6
,
S
4
V
d
c
S
4
,
S
2
,
S
5
2
V
d
c
S
4
,
S
7
,
S
5
2
V
d
c
S
4
,
S
2
,
S
5
2
V
d
c
S
7
,
S
6
,
S
4
3
V
d
c
S
4
,
S
1
, S
5
3
V
d
c
S
4
,
S
7
, S
5
3
V
d
c
S
4
,
S
7
, S
5
0
S
1
, S
3
, S
5
4
V
d
c
S
4
, S
1
, S
5
4
V
d
c
S
6
, S
4
, S
1
-
V
d
c
S
6
, S
1
, S
3
0
S
1
, S
3
, S
5
5
V
d
c
S
4
, S
1
, S
5
-
2
V
d
c
S
3
, S
6
, S
7
-
V
d
c
S
3
, S
5
, S
7
0
S
1
, S
3
, S
5
-
3
V
d
c
S
6
,
S
2
, S
3
-
2
V
d
c
S
6
,S
1
,
S
3
-
V
d
c
S
6
, S
1
, S
3
х
х
-
3
V
d
c
S
3
, S
6
, S
7
-
2
V
d
c
S
3
, S
5
, S
7
х
х
-
4
V
d
c
S
6
, S
2
, S
3
-
3
V
d
c
S
6
, S
7
, S
3
х
х
х
х
-
4
V
d
c
S
3
, S
5
, S
2
х
х
х
х
-
5
V
d
c
S
3
, S
6
, S
2
F
o
r
7
le
v
el
a
s
y
m
m
e
tri
c
a
l
V
1
=
2
V,
V
2
=
V
a
n
d
V
dc
=
V
.
F
o
r
9
le
v
el
sy
mm
e
tri
c
a
l
V
1
=
V
2
=
V
.
F
o
r
1
1
le
v
el
a
s
y
m
m
e
tri
c
a
l
V
1
=
4
V
,
V
2
=
V.
3.
M
O
DULA
T
I
O
N
S
CH
E
M
E
B
o
t
h
f
o
r
s
y
m
m
e
t
r
i
c
a
l
a
n
d
a
s
y
m
m
e
t
r
i
c
a
l
t
o
p
o
l
o
g
i
e
s
t
o
g
e
n
er
a
t
e
g
ati
n
g
s
i
g
n
al,
P
h
ase
Di
s
p
o
s
it
i
o
n
P
u
l
s
e
W
i
d
t
h
M
o
d
u
l
a
t
i
o
n
(
P
D
P
W
M
)
tech
n
i
q
u
e
is
p
r
ef
er
ab
le
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
A
co
mp
a
r
a
tive
A
n
a
lysi
s
o
f S
ymm
etri
ca
l a
n
d
A
s
ymm
etri
ca
l
C
a
s
ca
d
ed
….
(
Lip
ika
N
a
n
d
a
)
1597
Fig
u
r
e
2
(
a)
.
PW
M
s
ig
n
al
s
Ge
n
er
aio
n
f
o
r
P
r
o
p
o
s
ed
T
o
p
o
lo
g
y
F
i
gu
r
e
2
(
b
)
.
P
W
M
s
ig
n
al
s
f
o
r
P
r
o
p
o
s
ed
T
o
p
o
lo
g
y
4.
S
I
M
U
L
A
T
I
O
N
R
E
S
U
L
T
S
F
o
r
p
r
op
o
s
ed
t
o
p
o
l
o
g
y
t
h
e
s
im
u
l
at
io
ns
ar
e
ca
r
r
i
e
d
o
u
t
i
n
M
A
T
L
A
B
e
n
v
ir
on
m
e
n
t
a
n
d
r
e
s
u
l
ts
a
r
e
c
o
m
p
ar
e
d
.
F
o
ll
o
w
in
g
F
i
g
u
r
e
4
r
e
p
r
e
s
e
n
t
s
o
u
t
p
u
t
v
ol
t
a
g
e
an
d
c
u
r
r
e
n
t
w
a
v
e
f
o
r
m
a
t
Ca
r
r
ier
F
r
e
qu
en
c
y
=1
0
K
Hz,
R
=
1
0
Ω
,
L
=2
5
mH
in
1
1
lev
el
as
y
m
m
etr
i
c
co
n
f
i
g
u
r
atio
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
8
,
No
.
4
,
Dec
em
b
er
2
0
1
7
:
1
5
9
5
–
1
6
0
2
1598
Fig
u
r
e
3.
Si
m
u
laio
n
i
n
M
A
T
L
A
B
f
o
r
P
r
o
p
o
s
ed
T
o
p
o
l
o
g
y
E
a
c
h
v
o
l
t
a
g
e
s
o
u
r
c
e
i
s
c
o
n
n
e
c
t
e
d
w
i
t
h
a
c
u
r
r
e
n
t
m
e
a
s
u
r
i
n
g
d
e
v
i
c
e
t
o
m
e
a
s
u
r
e
i
n
p
u
t
c
u
r
r
e
n
t
.
S
i
m
i
l
a
r
l
y
l
o
a
d
c
u
r
r
e
n
t
c
a
n
b
e
m
e
a
s
u
r
e
d
b
y
t
h
e
c
u
r
r
e
n
t
m
e
a
s
u
r
e
m
e
n
t
d
e
v
i
c
e
i
n
R
L
l
o
a
d
.
H
e
n
c
e
i
n
p
u
t
p
o
w
e
r
a
n
d
o
u
p
u
t
p
o
w
e
r
h
a
s
b
e
e
n
c
a
l
c
u
l
a
t
ed
.
Fig
u
r
e
4
.
Si
m
u
laio
n
i
n
M
A
T
L
A
B
f
o
r
P
r
o
p
o
s
ed
T
o
p
o
l
o
g
y
b
o
h
v
o
lta
g
e
an
d
cu
r
r
e
n
t
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
A
co
mp
a
r
a
tive
A
n
a
lysi
s
o
f S
ymm
etri
ca
l a
n
d
A
s
ymm
etri
ca
l
C
a
s
ca
d
ed
….
(
Lip
ika
N
a
n
d
a
)
1599
Fig
u
r
e
5
.
FF
T
an
al
y
s
is
i
n
M
A
T
L
A
B
f
o
r
P
r
o
p
o
s
ed
T
o
p
o
lo
g
y
Fig
u
r
e
6
.
FF
T
A
n
al
y
s
i
s
o
f
lo
a
d
cu
r
r
en
t in
M
A
T
L
A
B
f
o
r
P
r
o
p
o
s
ed
T
o
p
o
lo
g
y
5.
R
E
S
U
L
T
A
N
A
L
Y
SI
S
A
t
Mo
d
u
l
a
t
i
o
n
in
d
e
x
(
M
I
)
1,
f
o
r
A
s
y
m
m
etr
ical
7
le
v
el
at
V
1
=
30
V
a
n
d
V
2
=
1
5V
,
s
ym
m
et
r
i
c
a
l
9
l
e
v
el
at
V
1
=
3
0
Va
n
d
V
2
=
3
0
V,
A
s
y
m
m
e
tr
ica
l
11
le
v
el
at
V
1
=
4
0
V,
V
2
=
1
0
V
t
h
e
in
p
u
t
p
o
w
e
r
,
o
u
t
p
u
t
p
o
w
er
a
n
d
l
o
s
s
es
a
r
e
c
al
c
u
l
ated
at
d
if
f
er
e
n
t
ca
r
r
i
er
f
r
e
q
u
e
n
cies
.
FF
Ta
n
a
l
y
s
i
s
f
o
r
b
o
th
v
o
l
t
a
g
e
a
n
d
cu
r
re
n
t
h
a
v
e
b
een
p
r
e
s
en
t
ed
f
o
r
t
h
e
l
o
ad
R
L
t
y
p
e.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
8
,
No
.
4
,
Dec
em
b
er
2
0
1
7
:
1
5
9
5
–
1
6
0
2
1600
T
ab
le
3
.
I
n
v
er
ter
l
o
ss
e
s
,
T
H
D
s
an
d
e
f
f
i
c
i
e
n
cies
at
d
if
f
e
r
e
n
t
c
a
r
r
ier
f
r
eq
u
e
n
cie
s
at
M
I
=1
7
L
e
v
e
l
s
C
a
r
r
i
e
r
f
r
e
q
u
e
n
c
i
e
s(
i
n
K
H
z
)
I
n
p
u
t
P
o
w
e
r
O
u
t
p
u
t
P
o
w
e
r
L
o
ss
e
s
V
t
h
d
I
t
h
d
Ef
f
i
c
i
e
n
c
y
(
ɳ
)
1
6
1
.
3
6
5
0
.
3
2
1
1
.
0
4
1
7
.
5
3
2
0
.
5
0
.
8
2
3
6
3
.
1
6
5
1
.
7
3
1
1
.
4
3
2
1
.
1
7
1
8
.
7
9
0
.
8
1
9
5
6
3
.
7
2
5
1
.
3
1
2
.
4
2
2
2
.
4
1
7
.
3
6
0
.
8
0
5
7
6
9
.
5
4
5
5
.
2
9
1
4
.
2
5
2
2
.
1
6
1
5
.
9
8
0
.
7
9
5
10
7
4
.
0
6
5
7
.
7
7
1
6
.
2
9
1
9
.
7
8
1
4
.
0
6
0
.
7
8
15
7
7
.
6
5
8
.
2
1
9
.
4
1
6
.
5
6
1
2
.
5
0
.
7
5
9
L
e
v
e
l
s
C
a
r
r
i
e
r
f
r
e
q
u
e
n
c
i
e
s(
i
n
K
H
z
)
I
n
p
u
t
P
o
w
e
r
O
u
t
p
u
t
P
o
w
e
r
L
o
ss
e
s
V
t
h
d
I
t
h
d
Ef
f
i
c
i
e
n
c
y
(
ɳ
)
1
1
0
6
.
3
9
5
.
4
1
0
.
9
1
8
.
0
7
4
.
3
0
.
8
4
3
1
1
0
.
0
6
9
8
.
1
6
1
1
.
9
1
8
.
8
1
3
.
6
8
0
.
8
3
5
1
1
2
.
7
4
1
0
0
.
0
2
1
2
.
7
2
1
8
.
9
8
2
.
8
8
0
.
8
5
7
1
1
5
.
6
2
1
0
1
.
6
4
1
3
.
9
8
1
8
.
6
7
2
.
1
0
0
.
8
0
10
1
1
6
.
5
5
1
0
2
.
0
5
1
4
.
5
1
7
.
5
3
1
.
9
0
.
7
8
15
1
1
8
.
4
2
1
0
3
.
4
1
5
.
0
2
1
6
.
4
1
.
4
0
.
7
6
1
1
L
e
v
e
l
s
C
a
r
r
i
e
r
f
r
e
q
u
e
n
c
i
e
s(
i
n
K
H
z
)
I
n
p
u
t
P
o
w
e
r
O
u
t
p
u
t
P
o
w
e
r
L
o
ss
e
s
V
t
h
d
I
t
h
d
Ef
f
i
c
i
e
n
c
y
(
ɳ
)
1
7
9
.
4
8
6
8
.
6
9
1
0
.
7
9
1
0
.
2
1
1
.
7
4
0
.
8
6
7
3
8
0
.
8
2
6
9
.
2
2
1
1
.
6
1
2
.
7
1
.
3
1
0
.
8
5
6
5
8
2
.
7
9
7
0
.
3
3
1
2
.
4
6
1
3
.
0
9
1
.
0
0
.
8
4
9
7
8
5
.
3
4
7
1
.
4
3
1
3
.
9
1
1
3
.
0
6
0
.
7
1
0
.
8
3
7
10
8
7
.
1
3
7
2
.
9
1
1
4
.
2
2
1
1
.
8
6
0
.
4
5
0
.
8
3
6
15
8
8
.
0
2
7
3
.
2
2
1
4
.
8
9
.
8
9
0
.
2
0
.
8
3
1
In
all
t
he
l
e
v
el
s
i
t
h
as
b
een
o
b
s
e
r
v
ed
t
h
at
w
i
th
in
c
r
e
a
se
i
n
i
n
v
er
ter
l
e
v
el
s
t
h
e
i
n
v
er
ter
l
o
s
s
es
r
e
d
u
ced
at
s
a
m
e
c
a
r
r
ier
f
r
eq
u
e
n
c
y
bu
t
in
s
a
m
e
le
v
e
l
w
i
t
h
i
n
c
r
e
a
s
e
i
n
ca
r
r
i
er
f
r
eq
u
e
n
c
i
es
t
h
e
i
n
v
er
ter
l
o
ss
e
s
i
n
c
r
e
a
s
es.
T
h
e
i
n
ve
r
t
er
e
f
f
i
c
ie
n
c
y
a
n
d
T
HD
i
n
c
u
r
r
e
n
t
r
e
d
u
ces
as
t
h
e
c
a
rr
i
er
f
r
e
q
u
e
n
c
y
i
n
cr
e
a
s
e
s
.
T
h
e
r
e
su
l
ts
o
f
11
l
e
v
el
as
y
m
me
t
r
ical
C
H
B
h
as
b
ee
n
t
a
k
en
i
n
to
c
o
n
si
d
e
r
atio
n
t
o
o
b
ta
i
n
S
w
i
t
c
h
in
g
a
nd
Co
n
du
c
t
i
o
n
l
o
ss
e
s
o
f
t
he
in
ve
r
te
r
.
T
ab
le
4
.
S
w
i
t
c
h
i
n
g
a
n
d
C
o
n
du
c
t
i
o
n
l
o
ss
e
s
f
o
r
Pr
o
p
o
s
e
d
To
po
l
o
gy
(
1
1l
e
v
e
l
)
C
a
r
r
i
e
r
F
r
e
q
u
e
n
c
y
(
i
n
K
H
z
)
I
n
v
e
r
t
e
r
L
o
ss(
i
n
W
)
C
o
n
d
u
c
t
i
o
n
L
o
ss(
i
n
W
)
S
w
i
t
c
h
i
n
g
L
o
ss(
i
n
W
)
1
1
0
.
7
9
9.
99
0
.
8
3
1
1
.
6
1
0
.
5
8
1
.
0
2
5
1
2
.
4
6
1
0
.
6
2
1
.
8
4
7
1
3
.
9
1
1
0
.
4
4
3
.
4
7
10
1
4
.
2
2
1
0
.
6
9
3
.
5
3
15
1
4
.
8
1
0
.
8
9
3
.
9
1
F
i
g
u
r
e
7
.
C
a
r
r
i
er
f
r
e
q
u
e
n
c
i
es
v
s
in
v
er
ter
l
o
ss
es
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
A
co
mp
a
r
a
tive
A
n
a
lysi
s
o
f S
ymm
etri
ca
l a
n
d
A
s
ymm
etri
ca
l
C
a
s
ca
d
ed
….
(
Lip
ika
N
a
n
d
a
)
1601
I
t
h
as
b
e
e
n
o
b
s
er
v
ed
t
h
at
w
i
th
i
n
cr
e
a
s
e
i
n
c
a
r
r
ier
f
r
eq
u
e
n
cy
th
e
s
w
i
t
c
h
i
n
g
l
o
ss
i
s
i
n
c
r
e
a
s
in
g
w
h
e
re
as
t
h
e
c
o
n
du
c
t
i
o
n
l
o
s
s
e
s
a
r
e
in
d
e
p
e
n
de
n
t
on
ca
r
r
ier
f
re
qu
e
n
c
i
es
.
Hen
ce
in
v
e
r
t
er
l
o
s
s
es
i
n
c
r
ea
s
es
w
i
t
h
i
n
c
r
ea
s
e
i
n
ca
r
r
i
er
f
r
eq
u
e
n
cie
s.
T
ab
le
5
.
T
H
D
at
d
i
f
f
e
re
n
t
c
a
r
r
i
er
f
r
eq
u
e
n
c
i
es
C
a
r
r
i
e
r
F
r
e
q
u
e
n
c
i
e
s
7
L
e
v
e
l
s
9
L
e
v
e
l
s
1
1
l
e
v
e
l
s
T
H
D
Ef
f
i
c
i
e
n
c
y
T
H
D
Ef
f
i
c
i
e
n
c
y
T
H
D
Ef
f
i
c
i
e
n
c
y
1
7
.
8
4
0
.
8
2
4
.
3
1
0
.
8
4
1
.
7
4
0
.
8
6
7
3
7
.
6
1
0
.
8
1
9
3
.
6
8
0
.
8
3
1
.
3
1
0
.
8
5
6
5
5
.
6
1
0
.
8
0
5
2
.
8
8
0
.
8
5
1
.
0
0
.
8
4
5
7
3
.
9
8
0
.
7
9
5
2
.
1
0
0
.
8
0
0
.
7
1
0
.
8
3
7
10
2
.
7
1
0
.
7
8
1
.
9
0
.
7
8
0
.
4
5
0
.
8
3
6
15
2
.
2
0
.
7
5
1
.4
0
.
7
6
0
.
2
6
0
.
8
3
1
F
i
g
u
r
e
8.
T
H
D
at
d
i
f
f
e
r
e
n
t
l
e
v
e
ls
of
to
p
o
l
o
g
y
l
F
i
g
u
r
e
9.
Ca
rrier
f
r
e
qu
e
n
c
i
es
v
s
e
f
f
i
ci
e
n
c
ies
o
f
T
o
p
o
l
o
g
y
1
F
i
g
u
r
e
10.
P
e
r
cen
t
a
g
e
o
f
o
u
t
p
ut
p
o
w
er
a
n
d
In
v
e
r
t
er
l
o
s
s
e
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
8
,
No
.
4
,
Dec
em
b
er
2
0
1
7
:
1
5
9
5
–
1
6
0
2
1602
6.
CO
NCLU
SI
O
N
In
th
is
p
a
p
e
r
,
c
o
m
p
a
r
ed
to
c
o
n
ve
n
t
io
n
a
l
s
y
m
m
et
r
i
c
al
a
n
d
a
sy
m
m
e
tri
c
a
l
to
p
o
l
o
g
i
es
t
h
e
p
r
o
p
o
s
e
d
t
o
p
o
l
o
g
i
es
ha
v
e
l
e
ss
n
u
m
b
er
o
f
s
w
i
t
c
h
e
s
a
n
d
D
C
s
ou
r
ces
.
F
r
o
m
s
i
m
u
l
a
t
i
o
n
it
h
as
be
en
o
b
s
e
r
v
e
d
t
h
a
t
w
i
th
i
n
c
r
e
a
se
i
n
c
a
r
rier
f
re
qu
e
n
c
ies
T
HD
in
lo
ad
c
u
r
re
n
t
a
n
d
t
h
e
in
v
e
r
ter
e
f
f
icie
n
c
y
r
e
d
u
c
e
s.
A
t
t
h
e
s
a
m
e
c
a
rrier
f
r
e
qu
e
n
c
y
,
th
e
i
n
ve
r
t
er
e
f
f
i
c
ie
n
c
y
i
s
m
o
r
e
in
h
i
g
h
e
r
l
e
v
e
l
s
.
W
i
th
i
n
c
r
e
a
s
e
i
n
M
I
v
o
la
g
e
T
H
D
r
e
d
u
c
e
d
s
i
g
n
if
ic
a
n
t
ly
.
RE
F
E
R
E
NC
E
S
[1
]
M
a
li
n
o
w
sk
i,
M
.
,
G
o
p
a
k
u
m
a
r,
K.,
R
o
d
rig
u
e
z
,
J.,
P
a
re
z
,
M
.
A
.
:”A
S
u
rv
e
y
o
n
Ca
sc
a
d
e
d
m
u
l
t
il
e
v
e
l
in
v
e
r
t
e
r”
,
IEE
E
T
ra
n
s.In
d
.
El
e
c
t
ro
n
.
,
2
0
1
0
,
5
7
,
(7
),
p
p
.
2
0
9
7
-
2
2
0
6
.
[2
]
G
u
p
a
,
K.K.,
Ja
in
,
S
.
:”
T
o
p
o
l
o
g
y
f
o
r
M
u
l
t
i
l
e
v
e
l
I
n
v
e
r
t
e
r
t
o
G
a
i
n
M
a
x
i
m
u
m
n
u
m
b
e
r
o
f
l
e
v
e
l
s
f
r
o
m
g
i
v
e
n
D
C
S
o
u
r
c
e
s
”
,
I
E
T
P
o
w
e
r
El
e
c
tro
n
.
,
2
0
1
2
,
5
,
(
4
),
p
p
.
4
3
5
-
4
4
6
.
[3
]
L
ip
ik
a
Na
n
d
a
,
A
.
Da
sg
u
p
ta,
U.
K.
R
o
u
t
,”
A
Co
m
p
a
ra
ti
v
e
S
tu
d
ies
o
f
Ca
sc
a
d
e
d
M
u
lt
il
e
v
e
l
In
v
e
rters
Ha
v
in
g
Re
d
u
c
e
d
Nu
m
b
e
r
o
f
S
w
it
c
h
e
s
w
i
th
R
a
n
d
RL
-
L
o
a
d
”
,
I
n
t
e
r
n
a
ti
on
al
j
o
u
r
n
al
o
f
Po
w
e
r
El
e
c
t
r
o
ni
c
s
a
n
d
Dr
i
v
e
s
s
y
s
t
e
m
V
o
l
.
8
,
No
.
1
,
M
a
rc
h
2
0
1
7
,
p
p
.
4
0
~
5
0
.
[4
]
Ba
b
a
e
i
,
E.
:
A
C
a
sc
a
d
ed
m
ul
t
i
l
e
v
el
c
on
ve
r
t
er
t
o
p
o
l
o
g
y
w
ith
r
e
d
u
c
ed
n
u
m
b
e
r
of
sw
i
t
c
h
e
s
,
I
EE
E
Tr
a
n
s.
Po
w
e
r
El
e
c
t
r
o
n
.
,
2
0
0
8
,
2
3
,
(
6
),
p
p
.
2
6
5
7
-
2
6
6
4.
[5
]
E.
Ba
b
a
e
i
a
n
d
S
.
H.
h
o
ss
e
in
i
.
,
”
Ne
w
Ca
sc
a
d
e
d
M
u
li
lev
e
l
In
v
e
r
t
e
r
t
o
p
o
l
o
g
y
wi
t
h
m
in
i
m
u
m
n
u
m
b
e
r
o
f
sw
i
t
c
h
e
s”
,
J.E
n
g
g
.
c
o
n
v
e
rs.M
a
n
a
g
.
,
v
o
l.
5
0
,
n
o
.
1
1
,
p
p
.
2
7
6
1
-
2
7
6
7
,
No
v
.
2
0
0
9
.
[6
]
S
h
iv
a
m
P
r
a
k
a
sh
Ga
u
t
a
m
,
L
al
i
t
K
u
m
a
r
,
S
h
u
b
h
ra
ta
G
u
p
ta
,
’
H
y
b
rid
t
o
p
o
l
o
gy
o
f
s
y
m
me
t
r
i
c
al
m
u
l
t
i
l
e
v
el
i
n
ve
r
t
er
u
s
i
n
g
l
e
ss
n
u
m
b
e
r
o
f
d
e
v
ice
s
’
,I
E
T
Po
w
er
El
e
ct
r
o
n
.
,
20
1
5
,
8
,(
1
1
),
p
p
.
2
1
2
5
-
2
1
3
5
.
[7
]
A
b
d
u
l
H
a
l
i
m
M
o
h
a
m
ed
Y
at
i
m,
a
n
d
E
h
s
an
N
a
j
a
f
i
,
D
e
s
i
g
n
a
n
d
I
m
p
le
m
e
n
t
a
t
i
o
n
o
f
a
Ne
w
Mu
l
t
i
le
v
el
In
v
e
r
t
er
T
o
p
o
l
o
g
y
, I
E
E
E
t
r
a
n
sa
c
t
i
o
n
s
on
i
n
d
u
s
t
r
ial
e
l
ec
t
r
o
n
i
c
s
,
v
ol
.
59,
n
o.
1
1,
n
o
ve
m
b
er
20
1
2
.
[8
]
G
.
P
r
a
k
a
sh
M
.
,
et
a
l
.
,
“
A
n
e
w
m
u
l
t
i
l
e
v
el
i
n
ve
r
t
e
r
w
i
th
re
d
u
c
ed
n
u
m
b
er
o
f
s
w
i
t
c
h
e
s
,”
I
n
t
e
r
n
a
ti
on
al
j
o
u
r
n
al
o
f
Po
w
e
r
El
e
c
t
r
o
ni
c
s
a
n
d
Dr
i
v
e
s
s
y
s
t
e
m
,
v
o
l
/
i
s
s
u
e:
5
(
1
)
,
p
p
.
63
-
7
0,
2
0
1
4
.
[9
]
F
a
rz
a
n
e
h
,
A
.
,
Na
z
a
r
z
a
d
e
h
,
J.,
”
P
re
c
i
se
lo
ss
Ca
lcu
laio
n
in
Ca
sc
a
d
e
d
m
u
l
t
i
l
e
v
el
i
n
ve
r
t
e
r”
,
Co
m
p
u
re
r
a
n
d
El
e
c
tri
c
a
l
En
g
g
.
,
2
0
0
9
,
ICC
EE
’0
9
,
S
e
c
o
n
d
I
n
t
e
rn
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
,
V
o
l
.
2
,
p
p
5
6
3
-
5
6
8
,
2
8
-
3
0
,
De
c
-
2
0
0
9
Evaluation Warning : The document was created with Spire.PDF for Python.