Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol.
4, No. 4, Decem
ber
2014, pp. 489~
498
I
S
SN
: 208
8-8
6
9
4
4
89
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
New Structure for Photovoltai
c
S
y
stemAp
plicati
o
ns with
Maximum Power Point Tracking Ability
Mo
st
af
a B
a
rz
egar
K
a
l
a
s
h
a
n
i
,
M
u
rt
az
a F
a
rs
adi
Department o
f
Electrical Engin
e
eri
ng,
Urmi
a Unive
r
si
ty
, Urmi
a
,
Ira
n
Article Info
A
B
STRAC
T
Article histo
r
y:
Received J
u
n
6, 2014
Rev
i
sed
Sep
21
, 20
14
Accepte
d Oct 5, 2014
This pap
e
r reco
mmendes a new
structur
e
for pho
tovolta
ics
y
s
t
em
s with a
new
inverter topolog
y
.
A quasi-Z-source DC
-DC converter with
capability
o
f
dividing its output voltag
e
to the
sam
e
voltag
e
s and track
ing
m
a
xim
u
m
power point is proposed. The pr
oportiona
l-integr
al incr
emental
conductan
ce
method is used for maximum p
o
wer
point tr
ack
ing. Th
e new recommended
inverter topolog
y
is linked to
quasi-Z
-source converter for
transferring
power. For tri
ggering inver
t
er sw
itches, al
t
e
rnat
e phase
opposition
disposition swit
ching te
chniqu
e
is u
tili
zed
. A co
m
p
arison is drawn between
suggested m
u
ltilevel invert
er t
opolog
y
and ot
her convent
ional m
u
ltilevel
inverter topolog
ies. Descrip
tion
of
proposed structure
along w
ith detailed
sim
u
lation resul
t
s that verif
y
it
s feasibilit
y ar
e
given to dem
onstrate th
e
availability
of th
e
proposed
s
y
st
em b
y
MATLAB/Simulink software.
Keyword:
Inc
r
em
ent
a
l
cond
uct
a
nce
M
a
xi
m
u
m
power
p
o
i
n
t
t
r
ac
ki
n
g
Mu
ltilev
e
l in
v
e
rter
Mu
lti-carrier PWM
Quasi
-
Z-sourc
e
conve
rter
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Mostafa Ba
rze
g
ar Kalas
h
ani,
Depa
rt
m
e
nt
of
El
ect
ri
cal
Engi
neeri
n
g
,
Urm
i
a Un
iv
ersity,
Urm
i
a, Ira
n.
Em
a
il: m
o
stafa
.
b
a
rzeg
ar136
8@g
m
ail.co
m
1.
INTRODUCTION
Ph
ot
o
vol
t
a
i
c
sy
st
em
s conver
t
sunl
i
g
ht
i
n
t
o
el
ect
ri
ci
ty
usi
ng sem
i
cond
u
c
t
o
r m
a
t
e
ri
al
s. Due t
o
t
h
e
endless
of the
solar e
n
e
r
gy,
daily available and enviro
nm
e
n
tally friendly energy,
re
searc
h
a
b
out s
u
ch e
n
ergy
conve
r
sion syste
m
s has become an in
creasingly im
porta
nt issue in recent y
ears. Howe
ver, low efficiency is
t
h
e m
o
st
im
por
t
a
nt
di
sa
dva
nt
a
g
es
of
p
h
o
t
o
vo
l
t
a
i
c
sy
st
em
s despi
t
e
al
l
af
ore
m
ent
i
oned
ben
e
fi
t
s
[
1
]
-
[
4
]
.
Tem
p
eratu
r
e, in
so
lation
,
sh
ado
w
a
nd s
o
on
are the factors
that eff
ect on efficiency of
solar cells.
Th
ese en
v
i
r
onmen
tal co
n
d
iti
o
n
v
a
r
i
ation
s
red
u
ce t
h
e photo
v
o
ltaic (
P
V) o
u
t
p
u
t
p
o
w
e
r d
u
e
t
o
non
linear
ity
charact
e
r
i
s
t
i
c
s of
cel
l
s
. M
a
x
i
m
u
m
powe
r
poi
nt
t
r
ac
ki
n
g
(M
PPT
) i
s
a
conce
p
t
whi
c
h
has
bee
n
defi
ned
i
n
addressi
ng
the low
e
fficiency of PV
sy
st
em
s. Vari
o
u
s al
g
o
r
i
t
h
m
s
have
bee
n
pr
o
pose
d
a
s
y
e
t
for
M
PPT
suc
h
as hill clim
bing and pert
urba
tion and observation (P&
O
)
m
e
thod [5], [6
], these two
m
e
thods are sim
p
le in
idea and im
ple
m
entation, but due to pe
rform
i
ng stead
y-state oscillat
i
ons are not accurate enough, whic
h
wast
e t
h
e ener
gy
[7]
.
Ot
her
m
e
t
hods s
u
ch
as fuzzy
l
ogi
c
cont
rol
base
d
(FLC
) [
8
]
an
d
neu
r
al
net
w
or
ks [
9
]
,
[10] are
faster
and m
o
re accura
te, but ha
ve high
c
o
m
p
lexity.
Propo
rtion
a
l-i
n
teg
r
al i
n
crem
en
ta
l c
o
nductance (PI-IncCod)is anothe
r algor
ith
m
th
at pr
opo
sed
b
y
K
.
YC and
et al.
in
20
01
[1
1
]
.
Si
m
p
licit
y
,
ease o
f
im
p
l
e
m
en
tatio
n
and
stead
y
-state stab
ility are th
e i
m
p
o
r
tan
t
f
e
a
t
u
r
es
o
f
a MP
P
T
con
t
r
o
ller
.
Du
e
to th
e
s
e be
n
e
fits, t
h
e PI-In
c
C
o
nd
is u
s
ed
in th
is
p
a
p
e
r
.
Ph
ot
o
vol
t
a
i
c
s
y
st
em
s consi
s
t
of
a DC
-DC
co
nve
rt
er a
n
d
a DC
-
A
C
i
n
vert
er
. R
ece
nt
l
y
, Z-s
o
u
r
c
e
co
nv
erter is
used
rath
er th
an
tr
ad
itio
n
a
l
D
C
-D
C conv
er
ter
s
su
ch
as
b
u
c
k
,
boo
st,
cu
k and
bu
ck-
boo
st
co
nv
erters. In
DC-AC
inv
e
rt
er
sectio
n
,
trad
itio
n
a
l m
u
ltil
ev
el inv
e
rters
su
ch
as
d
i
od
e-cla
m
p
e
d
[1
2
]
,
flyin
g
cap
acito
r [1
3
]
an
d
cascad
ed
H-b
r
i
d
g
e
[1
4
]
are
u
s
ed
. Th
e
main
d
i
sadv
antag
e
s of
d
i
od
e-clam
p
e
d
m
u
ltilev
e
l
in
v
e
rter areu
nb
alan
ced
cap
acito
r’s vo
ltag
e
, u
s
ing
m
u
lt
ip
le cla
m
p
i
n
g
d
i
o
d
e
s an
d
u
tilizin
g
m
o
re n
u
m
b
er o
f
p
o
wer electronic switch
e
s and
g
a
te driv
ers. Th
e flyi
n
g
cap
acito
r m
u
ltile
v
e
l in
v
e
rter u
t
ilizes cla
m
p
i
n
g
and
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
48
9 – 498
49
0
bal
a
nci
n
g
capa
c
i
t
o
rs i
n
st
ead
of
di
odes
t
o
g
e
nerat
e
o
u
t
p
ut
v
o
l
t
a
ge
wa
vef
o
rm
. The
fl
y
i
n
g
ca
paci
t
o
r
st
r
u
ct
u
r
e
also re
quires a
large
num
b
er
of ca
p
acitors an
d in
su
lated
gate b
i
po
lar tr
a
n
sistors (IGBT
s)
witch inc
r
ea
ses the
co
st and
reliabilit
y [1
5
]
. Th
e
cascad
ed
H-bri
d
g
e
m
u
ltilev
e
l i
n
v
e
rter is m
o
du
lar.
Altho
ugh
th
is to
po
log
y
is ab
le
t
o
ge
nerat
e
hi
gh l
e
vel
s
, i
t
n
eeds m
o
re n
u
m
ber of p
o
w
e
r
swi
t
c
he
s an
d gat
e
dri
v
ers
[1
6]
. The
su
gge
st
ed
structure
nee
d
s less num
b
er of IGBT s
w
it
ches a
n
d
gate
d
r
i
v
er circu
its in
co
m
p
ariso
n
with th
e
pro
p
o
s
ed
t
o
p
o
l
o
gy
i
n
[
1
7]
. Less
num
ber
of
swi
t
c
he
s
has l
o
w
co
st
,
h
i
gh
ef
fi
ci
ency
,
ease o
f
c
o
nt
r
o
l
an
d l
o
w
i
n
vert
er si
ze
[1
8]
-[
2
1
]
.
I
n
t
h
i
s
pa
per,
a
no
v
e
l
po
we
r el
ect
r
oni
c c
o
nve
rt
er
is designe
d
tha
t
needs fe
we
r
num
b
ers of ele
m
ents.
2.
PV PANEL
MODEL
Fi
gu
re 1 sh
o
w
s t
h
e equi
val
e
n
t
m
odel
of a t
ypi
cal
PV cel
l
that
has bee
n
fu
l
l
y
m
odel
e
d and ex
pl
ai
ned
in
[2
2
]
.
Th
e sim
p
lest
m
o
d
e
l
can
b
e
d
e
p
i
cted
b
y
a curren
t
sou
r
ce i
n
an
tip
arallel with
a d
i
od
e, alth
oug
h th
e
resistances
R
(se
r
ies resista
n
ce) and
(p
arallel resistan
ce)
d
e
p
i
ct th
e non
-i
d
e
ality o
f
th
e m
o
del.
Fi
gu
re
1.
Eq
ui
val
e
nt
m
odel
o
f
t
h
e
P
V
panel
Equ
a
tio
n (1
) sh
ows t
h
e m
a
th
e
m
atical
m
o
d
e
l
of PV cell:
0
ex
p
1
pv
s
p
v
p
v
s
p
v
pv
p
h
tp
VR
I
V
R
I
II
I
Va
R
(1
)
Whe
r
e
den
o
t
e
s p
hot
ocu
rre
nt
,
is the re
verse
current
of
diode,
is d
i
od
e ideality co
n
s
tan
t
and
/
is t
h
e t
h
erm
a
l vo
ltag
e
of array
with
cells c
o
nnected in series
.
It is
noticeable t
h
at
is
electron c
h
arge (
1.6027
1
0
),
i
s
B
o
l
t
zm
ann c
o
nst
a
nt
(
1.
3802
1
0
/
),
is t
h
e jun
c
tio
n
te
m
p
erature
(in kelvi
n
).
By solvi
n
g
(1), the
characteris
tics of
an
d
cu
rves
have
bee
n
pl
ot
t
e
d
f
o
r
di
f
f
ere
n
ce
PV t
e
m
p
erat
ur
es an
d i
n
s
o
l
a
t
i
ons
i
n
Fi
gu
res
2 an
d
3.
Figure
2 s
h
ows t
h
e PV charact
eristics for di
ffere
n
t
in
so
lation
s
and con
s
tan
t
tem
p
eratu
r
e
o
f
25
an
d
Fi
g
u
re
3
has
been
pl
ot
t
e
d
f
o
r
di
ffe
rent
t
e
m
p
erat
ures a
n
d
co
nstan
t
in
so
latio
n
1
000
(W
/
m
2
). It
i
s
ob
vi
o
u
s t
h
at
t
h
e
PV
out
put
p
o
we
r s
t
ro
ngl
y
depe
n
d
s
o
n
cl
i
m
at
e change
.
Fi
gu
re 2.
chara
c
teristics at constant
t
e
m
p
erat
ure
an
d
di
ffe
re
nt
i
n
s
o
l
a
t
i
ons (
s
ol
i
d
c
u
r
v
es
)
and
characteris
tics at consta
nt
te
m
p
erature
and
di
ffe
rent
i
n
sol
a
t
i
o
ns
(
d
as
h c
u
r
v
es
)
Fi
gu
re 3.
characteristic at constant
in
so
lation
an
d
d
i
fferen
t
tem
p
e
r
atu
r
e (so
lid
curv
es)
and
ch
aracteristic at co
n
s
tan
t
in
so
latio
n
and
di
ffe
re
nt
t
e
m
p
erat
ure
s
(
d
as
h c
u
r
v
es
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
N
e
w
St
ruct
ure
f
o
r P
hot
ovol
t
a
i
c
Syst
e
m
Ap
pl
i
c
at
i
o
n
s
w
i
t
h
M
a
xi
mu
m P
o
w
e
r
…
(
M
ost
a
f
a
B
a
rzeg
a
r K
a
l
a
s
h
ani
)
49
1
3.
PROP
OSE
D
NEW
ST
R
U
C
T
URE
Fi
gu
re
4 re
pre
s
ent
s
t
h
e
basi
c
st
ruct
u
r
e f
o
r
pr
o
pose
d
P
V
s
y
st
em
. Thi
s
st
ruct
ure m
a
i
n
l
y
con
s
i
s
t
s
of
t
w
o
st
ages t
h
a
t
descri
be
d i
n
t
h
e ne
xt
s
u
bse
c
t
i
ons.
At
t
h
e
first stage
a
quasi Z
-
source
conve
r
ter
(qZSC) ha
s
been
use
d
f
o
r
i
n
creasi
n
g t
h
e
out
put
vol
t
a
ge
of
PV a
rray
a
nd t
r
acki
ng m
a
xi
m
u
m
powe
r
p
o
i
n
t
usi
n
g
M
PPT
cont
rol loop, a
nd t
h
e sec
o
nd stage include
s
the basic st
ru
cture of pro
p
o
s
ed
m
u
lti
lev
e
l in
v
e
rter with fewer
num
ber
of
s
w
i
t
c
hes a
n
d l
o
w T
o
t
a
l
Ha
rm
oni
c Di
st
ort
i
o
n
(T
H
D
).
Fi
gu
re
4.
B
a
si
c p
r
o
p
o
sed
st
r
u
c
t
ure
fo
r
PV
pa
nel
co
n
n
ect
ed
t
o
l
o
a
d
3.
1. Fi
rst St
ag
e
At th
is stag
e,
d
u
e
to
no
n
lin
earity ch
aracteri
s
tic
o
f
PV array an
d
low ou
tp
u
t
vo
ltag
e
ab
ility, a q
Z
SC
has
bee
n
used
fo
r i
n
c
r
easi
n
g
out
put
v
o
l
t
a
ge
an
d t
r
ac
ki
n
g
poi
nt
o
f
m
a
xi
m
u
m
power
b
y
M
PPT c
ont
r
o
l
l
o
op
[1
1]
.
W
i
t
h
c
h
angi
ng
P
V
i
n
s
o
l
a
t
i
on a
n
d t
e
m
p
erat
ure, t
h
e
PV
v
o
l
t
a
ge a
n
d
cu
rre
nt
i
s
sense
d
a
nd M
PPT i
s
realized by c
h
anging
duty
cycle of s
w
itch
. It is
noti
ceable that the bo
oste
d vol
t
age is divi
de
d to
sev
e
ralid
en
ticalv
o
ltag
e
s u
s
i
n
g
cap
acito
rs as in
pu
t inv
e
rter voltages
for increasi
n
g the nu
m
b
er
of
v
o
ltag
e
lev
e
ls.
Figure
5. Incre
m
ental co
nductance
basic idea
on a
curve
Fi
gu
re
5
s
h
o
w
s t
h
e
basi
c i
d
e
a
o
f
i
n
cr
em
ental
co
nd
uct
a
nce
m
e
t
hod
o
n
a
curve
for a
PV
m
odul
e. Th
e sl
ope
o
f
t
h
e
PV
po
we
r cu
r
v
e i
s
zero
at
M
PP,
decreasi
n
g
o
n
t
h
e ri
ght
o
f
t
h
e
M
PP an
d i
n
cre
a
si
ng
on
t
h
e l
e
ft
ha
n
d
si
de
of t
h
e M
PP. T
h
e
o
u
t
p
ut
p
o
we
r
fr
om
t
h
e PV
cel
l
can
b
e
gi
ve
n
by
:
pv
pv
pv
PV
I
(2
)
The M
P
P i
n
t
h
e PV
m
odul
e
o
ccurs
w
h
e
n
:
0
pv
pv
dP
dV
(
3
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
48
9 – 498
49
2
Co
n
s
id
er
in
g (2)
an
d (3
) [1
1
]
:
()
pv
pv
pv
pv
pv
dP
d
V
I
dV
d
V
(4
)
From
(3
) a
n
d (
4
)
,
0
pv
pv
pv
pv
dI
IV
dV
(
5
)
Acco
r
d
i
n
g t
o
F
i
gu
re
5 a
n
d
usi
n
g
(
5
)
we
ha
ve
:
pv
p
v
pv
p
v
dI
I
dV
V
a
t
M
P
P
(
6
)
pv
p
v
pv
p
v
dI
I
dV
V
left of
MPP
(7)
pv
pv
pv
p
v
dI
I
dV
V
right of MP
P
(8)
Fro
m
(6)–(8
), it is ex
p
licit th
at th
e PV array
will o
p
e
rate at
th
e MPP
wh
en th
e rati
o
of chan
g
e
in
t
h
e
out
put
co
n
duct
a
nce be eq
ual
t
o
t
h
e negat
i
v
e
out
p
u
t
con
d
u
c
t
ance. Fi
g
u
re 6
depi
ct
s t
h
e fl
o
w
cha
r
t
of I
n
cC
on
d
m
e
t
hod f
o
r PV
M
PPT [1
1]
.
Fi
gu
re
6.
I
n
cre
m
ent
a
l
C
o
n
duc
t
a
nce fl
owc
h
a
r
t
.
3.
2. Seco
nd
s
t
age
At th
is stag
e,
a n
e
w m
u
ltile
v
e
l in
v
e
rter has b
een
p
r
op
osed
.
Fi
g
u
re
7
sh
ows d
i
fferent
switch
i
n
g
m
o
d
e
s for
g
e
neratin
g fiv
e
vo
ltag
e
lev
e
ls. The ou
tp
u
t
vo
ltag
e
lev
e
ls of mu
ltilev
e
l in
v
e
rter are
0
,
V
,
V
,
2V
an
d
2V
.
. As
the
num
ber of vol
t
age levels inc
r
eases,
t
h
e o
u
t
put
vol
t
a
ge wa
vef
o
rm
becom
e
s
cl
oser
and cl
oser t
o
a
si
nus
oi
dal
wa
vef
o
rm
. In t
h
i
s
t
o
p
o
l
o
gy
, t
h
e
switch
m
u
st b
e
b
i
d
i
rection
a
l
with
th
e cap
a
bilit
y
of
bl
oc
ki
n
g
v
o
l
t
a
ge a
n
d
c
o
n
d
u
ct
i
n
g
c
u
r
r
e
n
t
i
n
bot
h
di
rect
i
ons
a
n
d t
h
e
s
w
i
t
c
h
m
u
st
be
uni
di
rect
i
o
nal
.
The
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
N
e
w
St
ruct
ure
f
o
r P
hot
ovol
t
a
i
c
Syst
e
m
Ap
pl
i
c
at
i
o
n
s
w
i
t
h
M
a
xi
mu
m P
o
w
e
r
…
(
M
ost
a
f
a
B
a
rzeg
a
r K
a
l
a
s
h
ani
)
49
3
pr
o
pose
d
sc
he
m
e
for
bi
di
rect
i
onal
s
w
i
t
c
h
ne
eds
onl
y
one
g
a
t
e
dri
v
er ci
rc
u
i
t
s
and i
t
i
s
a
n
im
port
a
nt
a
d
va
nt
age
fo
r this
schem
e
.
(a)
(b
)
(c)
(d
)
(e)
Fi
gu
re
7.
Di
f
f
e
r
ent
s
w
i
t
c
hi
n
g
m
odes fo
r
ge
n
e
rat
i
n
g
fi
v
e
vol
t
a
ge l
e
vel
s
:
a
)
0
, b)
, c)
2
,d)
, e)
2
.
In
or
der t
o
ge
nerat
i
n
g
out
pu
t
vol
t
a
ge
near
a si
nus
oi
dal
wave
f
o
rm
, Fi
gure
4 can
be
ext
e
n
d
ed a
s
sho
w
n i
n
Fi
gu
r
e
8.
Fig
u
re 8
.
Ex
ten
d
e
d
propo
sed m
u
l
tilev
e
l
in
v
e
rter
stru
cture
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
48
9 – 498
49
4
If
is th
e nu
mb
er
o
f
b
i
d
i
rectio
n
a
l switch
e
s,
th
e nu
m
b
er of o
u
t
p
u
t
vo
ltage lev
e
ls (
), I
G
BTs
(
),
g
a
te driv
er circu
its
(
) a
n
d
dc
bus ca
pacitors
can be
ob
tain
ed
as fo
llows, resp
ectiv
ely:
23
Le
v
e
l
Nm
(9
)
25
IG
BT
Nm
(1
0)
5
dr
i
ver
Nm
(1
1)
1
C
apa
c
i
tor
Nm
(1
2)
Co
n
s
i
d
eri
n
g (9) an
d (1
0), (1
3) can
b
e
written
as:
2
IG
BT
L
e
v
e
l
NN
(
1
3
)
Usi
n
g
(9
) a
n
d (
1
1
)
,
we
ha
ve:
7
2
L
eve
l
dri
v
er
N
N
(
1
4
)
Tabl
e 1.
C
o
m
p
ari
s
o
n
pr
o
pose
d
st
r
u
ct
ure
with classical inve
rter structur
es
an
d pro
p
o
s
ed
t
o
po
log
y
in [17]
Structure
Power
electr
onic co
m
ponents
Clam
ping diode
Balancing capacitor
Gate driver
IGBT
DC bus capacitor
Diode clam
ped
(N-1
)
(
N-2
)
0
2
(N-1
)
2
(N-1
)
(N-1
)
Fly
i
ng capacitor
0
(
N
-
1
)(
N-
2)
/2
2(
N-
1)
2(
N-
1)
(
N
-
1
)
Cascade H-
br
idge
0
0
2(
N-
1)
2(
N-
1)
(
N
-
1
)
Pr
oposed str
u
ctur
e in [17]
0 0
N+3
N+3
(
N
-
1
)
/
2
Pr
oposed str
u
ctur
e
0
0
(
N
+7)
/
2
N
+2
(
N
-
1
)
/
2
Also,
f
r
om
(9
)
and
(
1
2),
1
2
Le
v
e
l
C
apaci
t
o
r
N
N
(
1
5
)
Al
so,
i
n
t
h
i
s
st
r
u
ct
u
r
e t
h
e
am
ount
o
f
ca
paci
t
o
rs
vol
t
a
ge
s are
t
h
e sam
e
and e
qual
wi
t
h
:
1
(1
2
)
Cb
VV
mD
(1
6)
Tab
l
e 1
d
e
p
i
cted
so
m
e
co
m
p
arison
s b
e
tween
classical
m
u
l
tilev
e
l in
v
e
rter stru
ctu
r
es [12]-[14
]
, [17
]
an
d su
gg
ested
str
u
ctur
e
f
o
r
an N
-
lev
e
l (
ou
tpu
t
vo
ltag
e
.
Fi
gu
re 9.
The
num
ber of
d
r
i
v
er used
ve
rs
us out
put
v
o
ltag
e
lev
e
ls
Fig
u
r
e
10
. Th
e nu
m
b
er
of
I
G
BT u
s
ed
v
e
rsus ou
tpu
t
v
o
ltag
e
lev
e
ls
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
N
e
w
St
ruct
ure
f
o
r P
hot
ovol
t
a
i
c
Syst
e
m
Ap
pl
i
c
at
i
o
n
s
w
i
t
h
M
a
xi
mu
m P
o
w
e
r
…
(
M
ost
a
f
a
B
a
rzeg
a
r K
a
l
a
s
h
ani
)
49
5
Fi
gu
re 9 a
n
d 1
0
com
p
are t
h
e
num
ber o
f
re
qui
red
dri
v
ers
and
IGB
T
s ve
rsus
o
u
t
p
ut
v
o
l
t
a
ge l
e
vel
s
,
respectively. T
h
ese fi
gures s
h
ow t
h
at propos
e
d struct
u
r
e us
es l
e
ss num
ber
of s
w
i
t
c
hes a
n
d d
r
i
v
e
r
s c
o
m
p
ared
with
casca
de H-bridge (CHB) an
d pro
p
o
s
ed
str
u
ctur
e in [17
]
.
4.
SWIT
CH
ING
STRATE
GY
Diffe
re
nt m
u
lti-car
rier P
u
lse
W
i
dth
M
o
d
u
lation
(P
W
M
) s
w
itchin
g
strate
gies are
k
n
o
w
n
s
o
far
su
c
h
as Ph
ase Disp
o
s
ition
(PD), Ph
ase
Sh
i
f
ted
(PS), Ph
ase Oppo
site Di
sp
ositio
n
(POD), Altern
ate Ph
ase
Oppo
sitio
n Di
sp
ositio
n
(APOD) and
m
a
n
y
o
t
her m
e
th
od
s th
at ex
p
l
ain
e
d in
[23
]-[25
].
In
th
is p
a
p
e
r,
APOD
m
u
lti-carrier
PWM is
used. T
h
is technique
uses (z
-1)
ca
rrie
r
s for z-le
vel
phase
wa
veform
where
eve
r
y c
a
rrier
w
a
v
e
fo
r
m
is i
n
ou
t
o
f
ph
ase w
i
t
h
its n
e
i
g
hb
or carr
i
er b
y
180
°
. T
h
e
car
ri
ers
have
sam
e
f
r
e
que
ncy
(
) a
n
d
am
pl
i
t
ude (
).
T
h
e am
pl
i
t
ude
o
f
t
h
e
m
odul
at
o
r
i
s
den
o
t
e
d
as
(
) an
d t
h
e
f
r
eq
uency
(
).
In
m
u
ltilev
e
l in
v
e
rters, th
e am
p
l
itu
d
e
m
o
d
u
latio
n
ind
e
x (
) and
the fre
q
u
e
n
cy
ratio (
), a
r
e gi
ve
n
by
(
1
7) a
n
d
(1
8)
, re
spect
i
v
el
y
:
/(
1
)
am
c
mAm
A
(
1
7
)
/
f
cm
mF
F
(
1
8
)
5.
SIMUL
A
TION RES
U
L
T
S
The
pr
o
pose
d
st
ruct
u
r
e
fo
r P
V
po
wer
ge
ne
rat
i
o
n
sy
st
em
i
s
sim
u
l
a
t
e
d i
n
M
A
TL
AB
/
S
i
m
uli
nk.
A
p
r
o
t
o
t
yp
e of
K
C
20
0G
T PV ar
r
a
y
h
a
s b
e
en
selected an
d
its
p
a
ram
e
te
rs are listed
i
n
[22
]
. Th
e selected
param
e
ters are
:
3000
µ
,
5
,
300
µ
,
1
,
3
0
and a
load
with
5
0
Ω
,
20
.
Fig
u
re
1
1
shows th
e
p
r
op
osed
5-lev
e
l inverter
wit
h
th
e
cap
ab
ility o
f
PV MPPT and
two
d
i
v
i
d
e
d
q
Z
SC
ou
tpu
t
vo
ltag
e
. Th
is top
o
l
o
g
y
u
s
es
7
I
G
BTs and 6
d
r
i
v
er cir
c
u
its. Th
e so
lar
i
n
so
latio
n is
1
000W
/m
2
du
ri
n
g
0
-
1 sec
,
50
0
W
/
m
2
duri
n
g 1-
2 sec and
80
0
W
/
m
2
during 2-3 sec
,
but the tem
p
erature
keeps at T =
25
0
C.
Fi
gu
re 1
1
. 5-l
e
vel
p
r
op
ose
d
st
ruct
ure
Fig
u
r
e
s
12
and 13
sh
ow
th
e PV
p
a
n
e
l an
d qZSC ou
tpu
t
s for
5-
lev
e
l st
r
u
ct
u
r
e, r
e
sp
ectiv
el
y. Figu
r
e
12
i
ndi
cat
es PV i
n
sol
a
t
i
o
n,
out
p
u
t
vol
t
a
ge, o
u
t
put
c
u
r
r
ent
an
d
out
p
u
t
p
o
w
er.
It
i
s
cl
ear t
h
at
t
h
e m
a
xim
u
m
po
we
r
is ex
tracted
from th
e PV in
v
a
riatio
n
in
so
latio
n. Figu
re 1
3
s
h
o
w
s q
Z
SC
o
u
t
put
v
o
l
t
a
ge an
d di
vi
ded
vol
t
a
ge t
o
t
w
o i
d
e
n
t
i
cal
v
o
l
t
a
ges t
h
at
ea
ch di
vi
de
d v
o
l
t
a
ge i
s
6
2
V
d
u
r
i
ng
0-
1 sec,
4
5
V
d
u
ri
ng
1
-
2 s
ec and
fr
om
2-
3 sec
is al
m
o
st 5
7
V.
W
ith
d
e
creasi
n
g in
so
latio
n fro
m
1
000
to 50
0
W
/
m
2
t
h
e q
Z
SC
o
u
t
p
ut
vo
l
t
a
ge i
s
re
d
u
ce
d
by
reducing duty
cycle.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
48
9 – 498
49
6
Fi
gu
re 1
2
. PV
panel
o
u
t
p
ut
s
(a)
(b
)
Fi
gu
re
1
3
.
(a)
Each ca
paci
t
o
r
di
vi
ded
v
o
l
t
a
g
e
, (
b
)
q
Z
SC
ou
t
put
vol
t
a
g
e
Figu
re
1
4
. T
h
e
refe
re
nce a
n
d
carrier
s sign
als fo
r
5-
lev
e
l stru
ctur
e.\
Fi
gu
re
1
4
s
h
o
w
s t
h
e re
fere
nc
e an
d ca
rri
ers
s
i
gnal
s
fo
r
5-l
e
v
e
l
P
W
M
usi
n
g
AP
OD
t
ech
ni
q
u
e.
(
a
)
L
o
ad
vo
lta
g
e
an
d F
F
T
ana
l
ys
is
(
T
HD
=
2
6
.
6
4
%
)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
N
e
w
St
ruct
ure
f
o
r P
hot
ovol
t
a
i
c
Syst
e
m
Ap
pl
i
c
at
i
o
n
s
w
i
t
h
M
a
xi
mu
m P
o
w
e
r
…
(
M
ost
a
f
a
B
a
rzeg
a
r K
a
l
a
s
h
ani
)
49
7
(
b
)
Lo
ad
cu
rr
en
t a
n
d
F
F
T
a
n
alys
is
(
T
HD
=
5.
74
%
)
Fig
u
re 15
. Simu
latio
n
resu
lts for 5
-
lev
e
l
structu
r
e with
furt
h
e
r
en
larg
ed
d
i
sp
lay
of
th
em
Fig
u
re 15
illu
strates th
e lo
ad
v
o
ltag
e
and
curren
t
with
th
ei
r Fast Fo
urier
Transfo
r
m
(FFT) an
alysis
wave
form
s. For m
o
re detail in viewi
n
g the curves,
an
e
n
l
a
r
g
ed
di
spl
a
y
i
s
expl
o
r
e
d
i
n
fi
g
u
re
s. B
a
sed
on
analysis, THD of the l
o
ad
voltage
and c
u
rrent a
r
e
26.46% and
5.74% res
p
ectivel
y. The l
o
ad c
u
rrent
wave
form
is alm
o
st sinusoi
da
l because the
load ha
s
inductive
property tha
t
pl
ays a low
pass filter
role.
6. CO
N
C
L
U
S
I
ON
In t
h
i
s
pa
pe
r, a
new st
r
u
ct
u
r
e fo
r p
hot
ov
ol
t
a
i
c
sy
st
em
prese
n
t
e
d.
At
t
h
e fi
r
s
t
,
a PV panel
m
odel
was
descri
bed
wi
t
h
det
a
i
l
s
.Fo
r
b
o
o
st
i
n
g an
d t
r
ac
ki
n
g
m
a
xim
u
m
powe
r
o
f
P
V
pa
nel
,
a q
u
a
s
i
-
Z-s
o
urce c
o
nve
rt
er
use
d
.
Due t
o
nonlea
nearty of PV
pa
nel cha
r
acterstic
, pro
p
o
r
tion
a
l-in
teg
r
al in
crem
ental condu
ctance m
e
thod
appl
i
e
d t
o
t
h
e pr
o
pose
d
sy
st
em
and t
r
acki
n
g
of m
a
xim
u
m
po
we
r wasac
h
i
e
ved
.
Fo
r l
o
a
d
con
n
ect
i
n
g P
V
pane
l
,
a n
e
w m
u
ltile
v
e
l inv
e
rter top
o
l
o
g
y
p
r
esen
t
e
d
with
redu
cin
g
t
h
e
n
u
m
b
e
r o
f
po
wer electron
ic co
m
p
on
en
ts.
APOD M
u
lti-carrier m
e
th
o
d
was ap
p
lied
for trigg
e
ri
n
g
inv
e
rter switch
e
s. Fin
a
lly, sim
u
latio
n
resu
lts of th
e
structu
r
e
veri
fied the
pe
rformance
of the sys
t
e
m
.
REFERE
NC
ES
[1]
J Selvaraj, NA Rahim
.
Multil
ev
el inver
t
er for g
r
id-c
onnected P
V
sy
stem
em
pl
o
y
ing dig
i
t
a
l PI controll
er
.
IEEE
Trans. on Ind.
Electron
., 2009
; 5
6
(1): 149-158
.
[2]
Renewable En
er
g
y
Policy
N
e
tw
ork for th
e 21st
Cent
ur
y
(R
EN21). Ren
e
wable 2
010 global statu
s
report.
Deutsche
Gesellschaftfür Technische
Zusammenarbeit (
G
TZ)
GmbH
. 2010; 19.
[3]
Z Yan,
L Fei, Y
Jinjun, D Shan
xu.
Stud
y
on r
e
alizing MPPT by
improved
incr
emental
conductance method with
variab
le s
t
ep-s
iz
e.
Proc. IEEE IC
IEA
. 2008: 547–
550.
[4]
R Faranda, S Leva, V
Maugeri.
M
P
P
T
technique
s
for P
V
s
y
s
t
em
s
:
Energ
e
ti
c and
Cos
t
Com
p
aris
on.
Milano, I
t
aly:
Ele
c
t.
Eng
.
Dep
t
. Po
lit
ecn
ico d
i
Milano
, Jul. 200
8, pp
. 1–6
.
[5]
T Esram, PL Ch
apman. Comparis
on of photovoltaic
array
max
i
mum pow
er point
track
ing techniq
u
es.
IE
EE T
r
ans.
on Energy Conversion
. 2007; 22
(2): 439–449.
[6]
N Fermia, G Petrone, G Spagnuo
lo, M V
itelli. Optimization of per
t
urb and obs
erve maximum po
wer point tr
ackin
g
method
. I
EEE Trans. on Pow
e
r
Electron
., 2005;
20(4): 963–973.
[7]
C Hua, J Lin, C
Shen. Impleme
n
tation of a DSP-contro
lled photovoltaic s
y
stem w
ith peak power track
ing.
IEEE
Trans. on Ind.
Electron
., 1998
; 4
5
(1): 99–107.
[8]
A Al
Nabulsi,
R Dhaouadi.
E
fficien
cy
optimization of a DSP-based sta
ndalone
PV
sy
stem using fuzzy
log
i
c an
d
dual-MPPT control.
I
E
EE Trans. on Ind
.
Informatics
. 2012
; 8(3)
:
573–584.
[9]
M Veerach
ar
y
,
T Senjy
u
, K Uezato
.
Neur
al-network ba
sed maximum power point tr
ack
ing of
coupled
-inducto
r
interleav
ed-boost converter-supplied PV
sy
stem using fuzzy
controller
.
IEEE Tra
n
s. on Ind. Electron
. 2003; 50(4):
749-758.
[10]
S
y
afaruddin,
E
Karatep
e
,
T Hiy
a
ma. Artif
icial neural n
e
twork
-
polar coord
i
nated point
trackin
g
control und
er
partially
sh
aded
conditions
.
IET
Renewab
l
e Pow
e
r
Generation
. 2
009; 3(2): 239–2
53.
[11]
YC Kuo, TJ Liang, JF Chen. No
vel
maximum-p
o
wer-point-tr
ack
ing controller
for photovoltaic energ
y
conv
ersio
n
sy
s
t
e
m
.
I
E
EE Trans. on Ind
.
Electron
., 2001
; 48(3
)
: 594–601.
[12]
A Nabae,
I Takahashi,
H Akagi.
A ne
w neutral-p
o
int-clamped PWM inverter.
I
E
EE Trans. on Ind. Appl
., 1981;
I
A
-
17(5): 518–523.
[13]
X Kou, KA Cor
z
ine
,
YL
Fam
ili
ant.
A uniqu
e f
a
ult-tol
e
ran
t
d
e
sign for fl
yi
ng
ca
paci
tor m
u
lti
lev
e
l
invert
er.
IEEE
T
r
ans. Power El
ectron
., 2004
; 1
9
(4): 979–987.
[14]
LM Tolbert, F
Z
Peng, T Cun
n
y
ngham, JN Chiasson. Ch
arge balan
ce con
t
ro
l schemes for cascade multilev
e
l
converter
in h
y
b
r
id electric v
e
hicles.
I
E
EE Trans. Ind. Electron
., 2
002; 49(5): 1058
–1064.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
48
9 – 498
49
8
[15]
C Feng, J Liang
,
VG Agelidis. Modified phase-
s
hifted
PWM c
ontrol for fly
i
ng
capac
itor multilevel conver
t
ers
.
IEEE
T
r
ans. Po
wer El
ectron
., 2
007; 1(22): 178–
185.
[16]
Y Hinago, H Koizum
i. A single-phase
m
u
ltilev
e
l inverte
r
using switched series/
p
aral
lel dc vol
ta
ge sources.
IEEE
Trans. Ind. Electron
., 2010; 57(8
)
: 2643–2650.
[17]
MF Kangarlu, E Babae
i
, M Sabahi
. Cascad
ed
cross-switc
hed m
u
ltileve
l inve
rter in s
y
m
m
e
tr
ic and as
y
m
m
e
t
r
i
c
conditions
.
IET
Power
E
l
ec
tr
oni
cs
. 2013; 6(6): 1
041-1050.
[18]
R Shalchi Al
ishah, D Nazarpour
, SH Hosse
ini,
M Sabahi. New
h
y
brid
structur
e
for m
u
ltilev
e
l
in
verter wi
th f
e
wer
number of comp
onents for h
i
gh-
voltag
e
levels
. I
E
T Power
Electr
onics
. 2014
; 7(1)
: 96 –
104.
[19]
R S
h
alchi Alishah, D Nazarpou
r, S
H
Hosseini. Design of new
m
u
ltileve
l volt
a
ge source invert
er structure usin
g
fundamental frequency
-
switch
i
n
g
strateg
y
.
Transaction on electrical and el
ectronic circuits and systems
. 2013
;
1(1): 1-7.
[20]
R S
h
alchi
Alis
h
a
h, D Na
zarpou
r, S
H
Hosseini,
M Sabahi. D
e
sign of new pow
er el
ec
tronic
co
nverter
(P
EC) f
o
r
photovoltaic s
y
s
t
ems and investiga
tion of switch
e
s control technique
. Proc. 28th
Power System Conf. (
P
SC)
, 2013
;
1-8.
[21]
R Shalchi Alish
a
h, D Naz
a
rpou
r, SH
Hosseini, M Sabahi. Swit
ched-diod
e
struc
t
ure for m
u
lti
lev
e
l conv
erte
r wit
h
reduced
number
of power
electro
n
ic d
e
vices.
IET
Power
E
l
ec
tr
oni
cs
. 2014; 7(3): 6
48-656.
[22]
MG Villalva, JR Gazoli
, ER F
ilho.
Com
p
rehensive approach t
o
m
odeling an
d
sim
u
lation of p
hotovoltaic
array
s
.
IEEE Transactio
ns
on Power
Electronics
. 2009; 2
4
(5): 1198,1208
.
[23]
ZB Ibrahim, Md L Hossaion, IB
Budi
s, JM Lazi,
NM Yaakkop. C
o
mparative
analy
s
is of PWM techniques for thr
e
e
level diode clamped vo
ltage sour
ce inver
t
er.
Int. Journal of Power Electroni
cs
an
d Dr
ive Sys
t
em (
I
JPEDS)
.
2014;
5(1): 15-23.
[24]
OD Mo
moh. Modeling and sim
u
lation of
a aarr
i
er-based PWM voltag
e
source i
nverter for
a nin
e
phase inductio
n
m
achine dr
ive
.
I
n
t.
Journal o
f
Po
wer Electroni
cs
and Drive S
y
stem (
I
JPEDS)
.
2014;
5(1): 1-14.
[25]
ZB Ibrahim, Md L Hossain, IB
Bugis, JM Lazi, NM Y
aakop. C
o
mparative analy
s
is
of PWM techniques for
thr
e
e
level diode
clam
ped voltag
e
source inv
e
rter
.
Int.
Journal of Power Electroni
cs and Drive System (
I
JPEDS)
.
S
p
eci
a
l
Issue on Electric Power
Conver
t
er. 2014; 5: 15-23
.
BIOGRAP
HI
ES OF
AUTH
ORS
Mostafa Barz
eg
ar Kalashani
was born in Salmas, Iran in Febr
u
a
r
y
1989
. He received his B.Sc.
degree in power
electrical
engineering from Universi
ty
of Urmia,
Urmia, Iran, in 2
012 and he is
currently
M.Sc.
student in
power
ele
c
tr
ica
l
e
ngi
neering
in Urm
i
a Univers
i
t
y
,
Ur
m
i
a, Iran
.
His
inter
e
st fields
are m
o
stl
y
pho
tovoltaic s
y
st
em
s,
m
u
ltilev
e
l
invert
ers, Z-Source conver
t
ers,
application of
po
wer elec
tronic converters
to r
e
newable
energ
y
s
y
stems.
Murtaz
a Farsadi
was born in
Kho
y
, Iran
in S
e
ptember 1957
.
He receiv
ed his
B.Sc. d
e
gree in
Ele
c
tri
cal
Engin
eering
,
M
.
S
c
. de
gree in El
ec
tri
cal and Electron
ics
Engineer
ing an
d Ph.D. degree
in Electrical En
gineer
ing (High Voltage) fro
m
M
i
ddle Eas
t
T
echni
cal Univ
er
s
i
t
y
(M
ETU)
,
Ankara, Turkey
in 1982, 1984
and 1989,
respectively
. He is no
w an assistan
t p
r
ofessor in th
e
Ele
c
tri
cal
Engin
eering Dep
a
rtm
e
nt of Urm
i
a Univers
i
t
y
, Urm
i
a
,
I
r
an. His
m
a
in re
s
earch in
ter
e
s
t
s
are in high v
o
ltag
e
engin
eer
ing, industria
l
power s
y
stem studies and FACTS, HVDC
trans
m
is
s
i
on s
y
s
t
em
s
,
DC/AC
act
ive power fil
t
ers
,
ren
e
wable
energ
y
, h
y
brid
and ele
c
tri
c
a
l
vehicles, and
new
control metho
d
s.
Evaluation Warning : The document was created with Spire.PDF for Python.