Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
3, N
o
. 1
,
Mar
c
h
20
13
,
pp
. 1
~
8
I
S
SN
: 208
8-8
6
9
4
1
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Novel
AZSPWM Algorithms based VCIMD for Reduced CMV
Variations
J
.
A
m
a
r
na
th*,
A.
Ka
ila
sa
Ra
o**
, K. Satya
n
a
r
aya
na
**
* Depart
em
ent o
f
El
ectr
i
c
a
l
a
nd
Electronics Eng
i
neering
,
JN
TUH, Kukatp
ally
, H
y
derabad
** Depart
em
ent
of El
ectr
i
c
a
l
and
El
ectron
i
cs
Eng
i
neer
ing,
P
r
agat
i
Engin
eering
Co
lleg
e
,
S
u
ram
p
ale
m
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Sep 2, 2012
Rev
i
sed
D
ec 12
, 20
12
Accepte
d
Ja
n 10, 2013
Novel AZSPWM algorithm
s
b
a
sed on th
e con
cept of
im
agin
a
r
y
swit
ching
tim
es (IST) are
presented
in this
paper
for vector
controlled indu
ction motor
drive to redu
ce the common
mo
de voltag
e
(CMV) variations
. The proposed
algorithms did
n
o
t use
the infor
m
ation of
angle and
sector and
h
e
nce
redu
ces
the complexity
involved in the
conve
ntion
a
l space vector PWM (CSVPWM)
approach
. Th
e
proposed AZSPWM algorithms did not use zero voltage
vectors and inv
o
lves utili
zing t
h
e two
adjacent
voltage vectors
along with
two opposing activ
e voltage v
ectors wi
th equ
a
l duty
cy
cle to provid
e
canc
e
ll
ation
and
crea
te
an eff
e
c
tive
zero s
t
a
t
e
.
M
o
reover, th
es
e
algorithm
s
are dev
e
loped
based on the
concept
of im
ag
inar
y switching
tim
es, th
e
computation
a
l
burden involv
e
d in th
e conv
ention
a
l
algorithms can be
decre
a
s
e
d.
To v
e
rif
y
th
es
e
algo
rith
ms, numerical simulation studies hav
e
been car
ried out
and res
u
lts
are
pres
ented and
co
m
p
ared with the
CS
VPWM
algorithm.
Keyword:
AZSP
WM
CMV
CSVPWM
IST
VCIM
D
Copyright ©
201
3 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Pr
of
.K
.Satyan
a
r
a
yan
a
,
Depa
rtem
ent of Electrical a
n
d
El
ect
ro
ni
cs E
n
gi
nee
r
i
n
g,
Prag
ati Eng
i
n
e
ering
Co
lleg
e
,
1
-
37
8, AD
B R
o
ad, Sur
a
m
p
al
e
m
, East Go
d
a
v
a
r
i
D
i
str
i
ct,
An
dhr
a Pr
ad
esh, In
d
i
a
,
5
334
37.
Em
ail: snkola
@
gm
ail.co
m
1.
INTRODUCTION
No
wa
day
s
t
h
e
vect
o
r
co
nt
r
o
l
m
e
t
hods a
r
e w
i
del
y
used
fo
r
t
h
e co
nt
r
o
l
of
i
n
d
u
ct
i
on m
o
t
o
r
dri
v
es i
n
hi
g
h
-
p
er
f
o
rm
ance ap
pl
i
cat
i
o
n
s
.
W
i
t
h
t
h
e
vec
t
or co
nt
r
o
l
m
e
tho
d
[
1
]
,
t
h
e
de
cou
p
l
i
n
g co
nt
r
o
l
of t
o
r
q
ue an
d fl
u
x
of t
h
e i
n
d
u
ct
i
o
n m
o
t
o
r can be
obt
ai
ne
d, a
nd
t
h
e i
n
d
u
ct
i
o
n m
o
t
o
r can be c
ont
rol
l
e
d as a
separat
e
l
y
exci
t
e
d dc
m
o
tor. Howe
ver, the classica
l vector
co
nt
r
o
l
al
go
ri
t
h
m
uses hy
st
eresi
s
c
o
n
t
rol
l
e
rs
fo
r t
h
e
gene
rat
i
o
n
of
g
a
t
i
ng
si
gnal
s
t
o
t
h
e
vol
t
a
ge s
o
urce
i
nvert
e
r
(
V
SI
), w
h
i
c
h
re
su
lt
s in
v
a
r
i
ab
le sw
itch
i
ng
fr
equen
c
y op
er
ation. To
achi
e
ve co
nst
a
nt
swi
t
c
hi
n
g
freq
u
e
n
cy
operat
i
o
n o
f
t
h
e i
nvert
er
, t
h
e
conventional
space vector PW
M
(C
SV
P
W
M
)
a
l
go
ri
t
h
m
[2]
has
bee
n
use
d
f
o
r
vect
or
c
ont
rol
l
e
d
i
n
du
ct
i
on m
o
t
o
r
d
r
i
v
e.
T
h
e C
S
VP
WM
al
go
ri
t
h
m
di
st
ri
but
es t
h
e ze
ro
vol
t
a
ge
vect
o
r
t
i
m
e
equal
l
y
am
ong t
h
e t
w
o zer
o v
o
l
t
a
ge
vect
or
s. D
u
e
t
o
t
h
e
prese
n
ce
of ze
ro
voltage
vec
t
ors t
h
e CSVPWM algo
rith
m
resu
lts in
larg
e co
mm
o
n
-
mo
d
e
vo
ltag
e
(CMV)
v
a
riation
s
.
In
th
e ind
u
c
tion
m
o
to
r d
r
i
v
es,
th
e poo
r CM
V ch
aracteristi
cs lead
t
o
proh
ib
itiv
e am
o
u
n
t
of
co
mm
o
n
-
m
o
d
e
cu
rren
t (CMC
). In
indu
ctio
n
m
o
to
r d
r
iv
e app
licatio
n
s
, t
h
is may lead
to
mo
tor b
e
aring
failu
res,
electrom
a
gnetic interfere
nce (
E
M
I) n
o
ise,
or
interfere
nce
w
i
t
h
ot
her el
ect
r
oni
c eq
ui
pm
en
t in
th
e v
i
cin
ity [3
]-
[4]
.
S
u
c
h
p
r
ob
l
e
m
s
have i
n
c
r
eased rece
nt
l
y
due t
o
i
n
c
r
easi
ng
P
W
M
fre
q
u
enci
es a
n
d fa
st
er swi
t
c
hi
ng
t
i
m
e
s.
Th
e filters can b
e
u
tilized
to
su
pp
ress th
e effect
of th
e CMV fro
m
th
e so
urce. Howev
e
r, th
ese m
e
th
od
s
i
n
v
o
l
v
e a
d
di
t
i
onal
ha
rd
ware
, an
d t
hus
, t
h
ey
si
gni
fi
ca
ntly increase t
h
e
dri
v
e c
o
st an
d co
m
p
lex
ity. An
altern
ativ
e ap
pro
a
ch
is t
o
m
o
d
i
fy th
e pu
lse
p
a
ttern
of th
e
stan
d
a
rd PWM alg
o
rith
m
su
ch th
at th
e C
M
V is
su
bstan
tially red
u
c
ed
fro
m
its
sou
r
ce and
its effects are
m
i
t
i
g
a
ted
at
n
o
cost [5
]-[9
]
.
In
the literatu
re,
sev
e
ral
P
W
M
al
go
ri
t
h
m
s
have bee
n
devel
ope
d
f
o
r
r
e
duce
d
C
M
V a
n
d
anal
y
zed
i
n
det
a
i
l
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 3,
No
.
1,
Mar
c
h
2
013
:
1
–
8
2
Howe
ver, the
conve
n
tional s
p
ace v
ect
or a
p
proach
requires angle
and
sector inform
ation for t
h
e
calcu
latio
n
o
f
g
a
ting
tim
es,
wh
ich
increases th
e co
m
p
le
x
ity o
f
t
h
e alg
o
rith
m
.
to
red
u
c
e th
e com
p
lex
i
t
y
i
n
v
o
l
v
e
d
i
n
t
h
e co
nve
nt
i
o
nal
ap
pr
oac
h
, a
n
ovel
a
p
pr
oac
h
i
s
prese
n
t
e
d i
n
[1
0]
by
usi
n
g
t
h
e co
nce
p
t
o
f
of
fset
t
i
m
e
. Sim
i
l
a
rly
,
anot
her si
m
p
l
i
f
i
e
d ap
p
r
oa
ch i
s
pre
s
ent
e
d i
n
[
1
1]
-[
12]
by
usi
n
g t
h
e
conce
p
t
o
f
i
m
agi
n
a
r
y
switch
i
ng
tim
e
s
.
This pa
per pre
s
ents space ve
ctor base
d Novel
AZSPWM
algorithm
s
for re
duce
d CMV in vector
cont
rol
l
e
d
i
n
du
ct
i
on
m
o
t
o
r d
r
i
v
es by
usi
n
g
the concept
of i
m
agin
ary switch
i
ng
tim
es.
2.
CO
MM
ON
M
O
DE
VOLT
A
G
E
Th
e co
mm
o
n
m
o
d
e
v
o
ltag
e
is th
e p
o
t
en
tial o
f
th
e star po
i
n
t o
f
th
e lo
ad
with
resp
ect to
th
e cen
ter of
the dc
bus
.
A set
of
p
h
a
se vo
ltag
e
eq
uatio
n
s
can
b
e
written
as
g
i
v
e
n
i
n
(1)
co
so
cn
bo
so
bn
ao
so
an
V
V
V
V
V
V
V
V
V
-
-
-
(
1
)
whe
r
e
co
bo
ao
V
V
V
,
,
are
i
n
vert
er
pol
e
v
o
l
t
a
ges an
d
so
V
i
s
com
m
on m
ode
v
o
l
t
a
ge.
Ad
di
n
g
t
h
e se
t
of
equat
i
o
ns
o
f
(1
) a
n
d
si
nce
0
cn
bn
an
V
V
V
,
t
h
e
com
m
on m
ode v
o
l
t
a
ge i
n
t
h
e
m
o
t
o
r i
s
gi
ven
by
3
co
bo
ao
so
com
V
V
V
V
V
(2
)
Hence
,
i
f
t
h
e d
r
i
v
e i
s
fed
by
b
a
l
a
nced t
h
ree
p
h
ase s
u
ppl
y
,
t
h
e com
m
on
m
ode
vol
t
a
ge i
s
z
e
ro
. B
u
t
,
t
h
e
com
m
on
m
ode vol
t
a
ge e
x
i
s
t
s
i
n
evi
t
a
bl
y
wh
en t
h
e d
r
i
v
e i
s
fed f
r
om
an i
nve
rt
er em
pl
oy
i
ng P
W
M
t
e
c
hni
qu
e
because the
voltage source
inverter cannot
produce
pure
si
nus
oi
dal voltages and
has
disc
rete output
volt
a
ges.
3.
CO
NVE
NTI
O
N
A
L AL
GO
RITH
MS
3.
1.
S
V
PW
M AL
GO
RIT
H
M
The t
h
ree
-
p
h
as
e, t
w
o-l
e
vel
vo
l
t
a
ge so
u
r
ce i
n
vert
er
has ei
gh
t
po
ssi
bl
e
v
o
l
t
a
ge
vect
o
r
s,
w
h
i
c
h
can
b
e
r
e
pr
esen
ted
as show
n in Figu
r
e
1(
a).
A
m
o
n
g
th
ese
v
o
ltag
e
v
ector
s, V
1
to
V
6
vectors
are
known a
s
active
vol
t
a
ge
vect
or
s or act
i
v
e
st
at
es and t
h
e re
m
a
i
n
i
ng t
w
o
vectors are
known as ze
ro
s
t
ates or zero
voltage
vectors. T
h
e refere
nce voltage space
vect
or
or sam
p
le, whic
h is as sh
own in Figure 1(a
)
re
prese
n
ts the
cor
r
es
po
n
d
i
n
g t
o
t
h
e desi
re
d val
u
e of
t
h
e fu
ndam
e
nt
al
co
m
ponent
s fo
r
t
h
e out
put
p
h
as
e
v
o
l
t
a
ges. I
n
t
h
e
s
p
ace
vect
o
r
ap
p
r
oac
h
t
h
i
s
ca
n b
e
c
onst
r
uct
e
d i
n
a
n
ave
r
a
g
e se
ns
e. The
refe
re
nc
e vol
t
a
ge vect
or
(
ref
V
) is sam
p
le
d
at eq
u
a
l in
tervals o
f
tim
e,
s
T
re
ferred t
o
as s
a
m
p
ling tim
e
peri
od. Different voltage
ve
ctors that ca
n be
pr
o
duce
d
by
t
h
e i
n
ve
rt
er a
r
e
ap
pl
i
e
d
o
v
er
di
ffe
re
nt
t
i
m
e
du
rat
i
o
ns
wi
t
h
i
n
a
sam
p
l
i
ng t
i
m
e
peri
o
d
s
u
ch
t
h
at
t
h
e ave
r
a
g
e
ve
ct
or
pr
o
duce
d
ove
r t
h
e sam
p
l
i
ng t
i
m
e peri
o
d
i
s
e
qual
t
o
t
h
e sam
p
l
e
d val
u
e of
t
h
e
ref
V
, bot
h i
n
t
e
rm
s of
m
a
gn
i
t
ude an
d a
ngl
e. It
has
bee
n
est
a
bl
i
s
hed t
h
a
t
t
h
e vect
o
r
s t
o
be use
d
t
o
ge
nerat
e
a
n
y
sam
p
l
e
are
t
h
e zer
o
v
o
l
t
a
g
e
vect
ors
an
d t
h
e t
w
o
act
i
v
e
vol
t
a
ge
vect
or
s f
o
rm
i
ng t
h
e
bo
u
nda
ry
of
t
h
e sect
o
r
i
n
w
h
i
c
h t
h
e
sam
p
le lies. As all six
sect
o
r
s
are symmetrica
l
, th
e
d
i
scu
s
sion
is lim
i
t
ed
to
t
h
e
first sector
o
n
l
y.
For the
re
quire
d
refe
rence
vol
t
age
vector, t
h
e activ
e a
n
d ze
ro voltage
vect
ors
tim
e
s can
be calculated
as in
(3
),
(
4
)
an
d
(5
).
s
o
i
T
M
T
)
60
sin(
3
2
1
(
3
)
)
sin(
3
2
2
s
i
T
M
T
(
4
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
N
o
vel
AZ
SPW
M
Al
g
o
ri
t
h
ms
bas
ed
VC
IM
D
f
o
r Re
duce
d
C
M
V V
a
ri
at
i
o
ns
(
P
rof
.
K
.
S
a
t
y
an
ar
ay
an
a)
3
2
1
T
T
T
T
s
z
(
5
)
whe
r
e
i
M
is th
e mo
du
latio
n ind
e
x
an
d d
e
fin
e
d
as in
[1
]. In
th
e
CSVPWM algo
rith
m
,
th
e to
tal zero
vol
t
a
ge
ve
ct
or
t
i
m
e
i
s
equal
l
y
di
vi
de
d
bet
w
ee
n
V
0
an
d V
7
a
n
d
distributed
s
y
mmetrically at the start a
n
d e
n
d
of
t
h
e eac
h sa
m
p
li
ng t
i
m
e peri
o
d
. T
h
us,
S
V
P
W
M
uses
0
1
2
7
-
7
21
0 i
n
sect
or
-I
,
03
2
7
-
7
2
3
0
i
n
sect
o
r
-
I
I
a
n
d
so
on
.
Fi
gure
1
(a)
Figure
1(
b)
Figure
1
(a) Possible voltage
space
vectors a
n
d sector
defi
nition in C
S
VPWM algorithm
(b) Voltage
s
p
ace
vect
ors and form
ation of AZSPWM
al
gorithm
s
3.
2.
AZ
SPW
M
ALGO
RIT
H
M
In t
h
e c
o
nve
n
tional
SVP
W
M
m
e
thod, two a
d
jace
nt st
ates
with two ze
ro
volta
ge
vect
ors
are
utilized
to
pr
ogr
am
th
e ou
tpu
t
vo
ltag
e
. Ev
er
y 60
0
de
grees
the a
c
tive voltage
vect
or
s ch
ange, bu
t th
e zero
state
lo
catio
n
s
are retain
ed
. In
t
h
e AZSPW
M
meth
od
s, th
e
choice a
n
d the
s
e
que
nce
of act
ive
voltage
ve
ctors
are
th
e sam
e
as in
co
nv
en
tion
a
l SVPWM. Howev
e
r,
instea
d of the real
zero v
o
l
t
a
ge ve
c
t
ors (
V
0
and V
7
), two
activ
e opp
o
s
it
e vo
ltag
e
v
ect
o
r
s with eq
u
a
l
du
ration
ar
e u
tilized
. Here,
th
ree
ch
o
i
ces
ex
ist. For AZSPWM
algorithm
s
, any of the pai
r
s
V
1
-V
4
, V
2
-V
5
, or V
3
-V
6
ca
n be utilized.
In each
PW
M m
e
thod,
with a specific
per
f
o
r
m
a
nce o
p
t
i
m
i
zat
i
on cri
t
e
ri
on
,
the vol
t
age vectors a
r
e selected,
and
th
eir
sequ
ences d
e
pend
on th
e
regi
on
o
f
t
h
e
re
fere
nce
vol
t
a
ge
vect
o
r
s
de
fi
ne
d i
n
Fi
g
u
r
e
1(
b
)
.
4.
PROP
OSE
D
AZ
SPWM S
W
ITCHI
N
G
SEQUE
NCES
I
n
th
is section, th
e pr
opo
sed A
Z
SPW
M
hav
e
b
e
en
d
e
v
e
l
o
p
e
d
b
y
u
s
ing th
e
no
tio
n of i
m
ag
in
ar
y
switch
i
ng
tim
e
s
(IST) .Th
e
i
m
ag
in
ary switch
i
ng
tim
es
are p
r
op
ortion
a
l
to
th
e instan
tan
e
ou
s
ph
ase
vo
ltag
e
s
and can be
de
fi
ned as
follows:
cn
dc
s
cn
bn
dc
s
bn
an
dc
s
an
V
V
T
T
V
V
T
T
V
V
T
T
;
;
(
6
)
an
V
,
bn
V
and
cn
V
are the
instantane
ous
refere
nce
pha
se
voltages a
n
d
an
T
,
bn
T
and
cn
T
are the
co
rresp
ond
ing
i
m
ag
in
ary switch
i
ng
ti
m
e
s. As th
ese ti
m
e
s a
r
e propo
rtion
a
l
to
th
e in
stan
tan
e
ou
s
v
o
ltag
e
s, th
ese
tim
e
s could be negative where the voltages are negativ
e. Hence
,
thes
e times are define
d as im
a
g
ina
r
y
switch
i
ng
tim
e
s
. If th
e referen
ce
v
o
ltag
e
v
e
cto
r
falls
in se
ctor-1, the acti
v
e
v
ector switch
i
ng
tim
es T
1
and
T
2,
m
a
y
be ex
pres
sed as
f
o
l
l
o
ws
[1
1]
-[
1
2
]
:
V
1
V
2
V
3
V
4
V
5
V
6
V
0
V
7
A
1
A
3
A
4
A
2
A
5
A
6
V
ref
V
1
(1
00
)
V
2
(1
10
)
V
3
(0
10
)
V
4
(0
11
)
V
5
(0
01
)
V
6
(1
01
)
V
0
(0
00
)
V
7
(1
11
)
I
II
I
II
IV
V
VI
T
1
T
2
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 3,
No
.
1,
Mar
c
h
2
013
:
1
–
8
4
)
,
,
(
max
cn
bn
an
T
T
T
Max
T
(
7
)
)
,
,
(
cn
bn
an
mid
T
T
T
Mid
T
(
8
)
)
,
,
(
min
cn
bn
an
T
T
T
Min
T
(
9
)
In th
e CSVPWM alg
o
rith
m
,
wh
en
t
h
e
refe
rence
volta
ge
vector
falls in t
h
e first sect
or, t
h
e im
aginary
switch
i
ng
tim
e
wh
ich
is p
r
opo
rtion
a
l to
th
e
a-ph
ase (
an
T
)
has
a
m
a
xim
u
m
value, the im
aginary s
w
itching
ti
m
e
wh
ich
is p
r
op
ortio
n
a
l to th
e c-ph
ase (
cn
T
) has a
m
i
nim
u
m
val
u
e and t
h
e i
m
ag
in
ary switch
i
ng
ti
m
e
wh
ich
is pro
p
o
r
tion
a
l to
the b
-
ph
ase (
bn
T
) i
s
nei
t
h
er m
i
nim
u
m
nor m
a
xi
m
u
m
val
u
e. T
hus
, i
n
ge
nera
l
t
o
calculate the active vector
sw
i
t
c
hi
ng t
i
m
es, the m
a
xim
u
m
(
max
T
), m
i
ddl
e (
mid
T
) an
d m
i
nim
u
m
(
min
T
) value
s
o
f
im
ag
in
ary switch
i
ng
ti
m
e
s
are calculated in every sa
m
p
ling tim
e
.
Then the active vector switchi
ng
tim
e
s
T
1
and T
2
m
a
y
be e
x
p
r
esse
d a
s
[
11]
min
2
max
1
-
;
-
T
T
T
T
T
T
mid
mid
(
1
0
)
The ze
ro volta
ge
vectors s
w
itchi
ng tim
e is c
a
lculated as
2
1
-
-
T
T
T
T
s
z
(1
1)
The C
S
VP
W
M
al
go
ri
t
h
m
di
vi
des t
h
e
zero state tim
e
equally between t
h
e two
possibl
e zero voltage
space vectors. The usa
g
e of
z
e
ro
voltage ve
ctors
i
n
creas
e
s
the c
o
mm
on m
ode voltage
variations
[9].
Hence
,
i
n
or
de
r t
o
re
d
u
ce t
h
e c
o
m
m
on m
ode
vol
t
a
ge va
ri
at
i
ons
, t
h
e p
r
o
p
o
se
d A
Z
SP
W
M
al
go
r
i
t
h
m
s
use t
w
o
act
i
v
e
opposite voltage
vectors i
n
place of
ze
ro voltage
vectors
with e
qua
l
tim
e
duration for c
o
m
posing the
refe
rence
voltage vector. T
h
e
s
e two acti
v
e opposite vo
ltag
e
v
ectors
with
eq
u
a
l tim
e create effectively a
zero
vol
t
a
ge
ve
ct
or
.
The
swi
t
c
hi
ng
seq
u
e
n
ces
of
t
w
o
AZ
SP
WM
al
go
ri
t
h
m
s
, wh
i
c
h ha
ve c
o
nsi
d
ere
d
i
n
t
h
i
s
p
a
per
,
are gi
ven
i
n
Ta
bl
e 1
.
I
n
t
h
e
p
r
op
ose
d
AZSP
WM
al
g
o
ri
t
h
m
s
, t
h
e ze
ro
st
at
e t
i
m
e
i
s
di
vi
ded e
qual
l
y
am
on
g t
h
e
two
acti
v
e
v
o
ltag
e
v
ect
o
r
s
in
each
sect
or. Th
e u
tilized
v
o
ltag
e
v
e
cto
r
s and
t
h
eir sequ
en
ces
for th
e
con
v
e
n
t
i
onal
C
S
VP
WM
a
n
d
AZSP
WM
m
e
tho
d
s
are
gi
ve
n
i
n
Ta
bl
e 1
.
Table
1.
Switc
hing se
quences
of CSVPW
M
an
d AZSPWM
alg
o
rith
m
s
in
all secto
r
s
T
y
pe of PW
M
Sector
-
1
Sector
– 2
Sector
– 3
Sector
– 4
Sector
– 5
Sector
- 6
CSVPWM
0127-
7
210
0327-
7
230
0347-
7
430
0547-
7
540
0567-
7
650
0167-
7
610
AZ
SPW
M
1
3216-
6
123
4321-
1
234
5432-
2
345
6543-
3
456
1654-
4
561
2165-
5
612
AZ
SPW
M
2
5122-
2
215
6233-
3
326
1344-
4
431
2455-
5
542
3566-
6
653
4611-
1
164
5.
NO
VEL AZ
SPWM
ALG
O
R
ITH
M
S B
A
SED
VECTO
R
C
O
NT
ROL
LED IN
D
U
C
T
ION
MOTO
R
DRI
VE
I
n
th
e v
ect
o
r
co
n
t
r
o
lled
inductio
n
m
o
to
r
d
r
iv
e, a v
o
ltag
e
so
ur
ce inv
e
r
t
er is su
p
p
o
s
ed
to
d
r
i
v
e th
e
in
du
ctio
n
m
o
tor so
t
h
at th
e slip
frequ
e
n
c
y can
b
e
ch
a
n
g
e
d
acco
rd
ing
to
the p
a
rticu
l
ar
requ
irem
en
t. Assumin
g
the rotor s
p
ee
d is m
easured
,
and
t
h
e
n
t
h
e sl
i
p
s
p
eed
i
s
der
i
ved i
n
t
h
e fee
d
-
f
o
r
w
a
r
d
m
a
nner
.
F
o
r
dec
o
u
p
l
i
n
g
co
n
t
ro
l, it is d
e
sirab
l
e th
at the ro
tor flux
is alig
n
e
d
on t
o
t
h
e d
-
axi
s
o
f
t
h
e sy
nchr
o
n
o
u
sl
y
rot
a
t
i
ng re
fe
rence
fram
e
, then
ds
m
r
dr
qr
i
L
and
0
. The bl
ock
di
ag
r
a
m
of p
r
o
p
o
se
d vect
or c
o
nt
r
o
l
l
e
d i
n
d
u
ct
i
o
n
m
o
t
o
r
d
r
i
v
e is as show
n in
Figu
r
e
2.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
N
o
vel
AZ
SPW
M
Al
g
o
ri
t
h
ms
bas
ed
VC
IM
D
f
o
r Re
duce
d
C
M
V V
a
ri
at
i
o
ns
(
P
rof
.
K
.
S
a
t
y
an
ar
ay
an
a)
5
Fi
gu
re
2.
B
l
oc
k
di
ag
ram
of p
r
o
p
o
sed
A
Z
SP
WM
al
g
o
ri
t
h
m
s
base
d
vect
o
r
cont
rol
l
e
d
i
n
du
ct
i
on m
o
t
o
r
6.
SIM
U
LATI
O
N
RESULTS
AN
D DIS
C
US
SION
S
To
validate the proposed
al
g
o
ri
t
h
m
s
, t
h
e n
u
m
e
ri
cal
sim
u
lat
i
on st
u
d
i
e
s
h
a
ve
been c
a
r
r
i
e
d
out
usi
n
g
MATLAB
.
For the sim
u
lation studies, t
h
e average s
w
itching
f
r
eq
ue
ncy
o
f
t
h
e i
nve
rt
er i
s
t
a
ken a
s
5
k
H
z.
The
i
n
d
u
ct
i
on m
o
t
o
r use
d
i
n
t
h
i
s
c
a
se st
udy
i
s
a
4 k
W
,
4
0
0
V
,
1
4
7
0
rpm
,
4-
pol
e, 5
0
Hz
, 3
-
ph
ase i
n
d
u
ct
i
o
n
m
o
t
o
r
havi
ng t
h
e f
o
l
l
o
wi
ng
par
a
m
e
ters:
R
s
= 1.
57
Ω
, R
r
= 1.
21
Ω
, L
s
= 0
.
17H
, L
r
=
0.
17
H, L
m
= 0.
16
5
H an
d J =
0.
08
9
Kg
.m
2
. The st
eady
st
at
e sim
u
l
a
t
i
on re
sul
t
s
of
C
S
VP
WM
al
g
o
ri
t
h
m
and
pr
o
pos
ed
AZS
P
W
M
al
go
ri
t
h
m
s
bas
e
d
vect
o
r
co
nt
r
o
l
l
e
d i
n
d
u
ct
i
on
m
o
t
o
r dri
v
e ar
e sh
ow
n i
n
f
r
o
m
Fi
gure
3 t
o
Fi
g
u
r
e
7 al
o
ng
wi
t
h
t
h
e
ha
rm
oni
c
spect
ra
o
f
l
i
n
e
cur
r
ent
a
n
d c
o
m
m
on m
ode v
o
l
t
a
ge
vari
at
i
o
ns.
Fi
gu
re 3.
Li
ne vol
t
a
ge
s of
C
S
VP
W
M
, AZS
P
W
M
1
an
d AZ
SP
W
M
2
al
go
ri
t
h
m
s
based vec
t
or
c
o
nt
rol
l
e
d
in
du
ctio
n m
o
to
r
d
r
iv
e resp
ecti
v
ely
S
c
S
b
S
a
i
b
I
a
i
ds
i
q
s
V
*
qs
V
*
ds
i
ds
i
q
s
i
q
s
*
i
ds
*
ω
r
ω
r
Slip
&
An
g
l
e
Calcu
l
atio
n
3-P
h
ase
In
verte
r
3-
p
h
to
2
-
ph
Speed
cont
rol
l
e
r
PI
2-
p
h
to
3
-
ph
A
Z
S
P
W
M
F
i
e
l
d
w
e
ak
en
cont
rol
PI
IM
V
a
V
b
V
c
V
dc
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 3,
No
.
1,
Mar
c
h
2
013
:
1
–
8
6
Fi
gu
re
4.
St
art
i
n
g
t
r
a
n
si
ent
s
o
f
C
S
VP
W
M
,
A
Z
SP
W
M
1 a
n
d
AZSP
WM
2 al
go
ri
t
h
m
s
based
vect
o
r
c
o
nt
rol
l
ed
in
du
ctio
n m
o
to
r
d
r
iv
e resp
ecti
v
ely
Fi
gu
re
5.
St
ead
y
st
at
e pl
ot
s
of
C
S
VP
WM
,
A
Z
SP
W
M
1 a
n
d
AZSP
WM
2 al
go
ri
t
h
m
s
based
vect
o
r
c
o
nt
rol
l
ed
in
du
ctio
n m
o
to
r
d
r
iv
e resp
ecti
v
ely
Fi
gu
re
6.
Ha
rm
oni
c
spect
ra
o
f
l
i
n
e cu
rre
nt
i
n
C
S
VP
WM
,
A
Z
SP
W
M
1 a
n
d
AZSP
WM
2 al
go
ri
t
h
m
s
based
v
ector co
n
t
ro
ll
ed
indu
ction
mo
tor
d
r
iv
e respectiv
ely
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
N
o
vel
AZ
SPW
M
Al
g
o
ri
t
h
ms
bas
ed
VC
IM
D
f
o
r Re
duce
d
C
M
V V
a
ri
at
i
o
ns
(
P
rof
.
K
.
S
a
t
y
an
ar
ay
an
a)
7
Fi
gu
re 7.
C
o
m
m
on
m
ode vol
t
a
ge vari
at
i
o
ns
i
n
C
S
VP
WM
, AZSP
WM
1
a
n
d AZSP
WM
2 al
go
ri
t
h
m
s
based
v
ector co
n
t
ro
ll
ed
indu
ction
mo
tor
d
r
iv
e respectiv
ely
Fro
m
th
e sim
u
latio
n
resu
lts, i
t
can
b
e
o
b
s
erved
th
at t
h
e SVPW
M algorithm
resu
lts in
larg
e co
mm
o
n
m
ode vol
t
a
ge
vari
at
i
o
ns a
n
d t
h
e
pr
o
p
o
s
e
d
A
Z
SP
WM
al
go
ri
t
h
m
s
resul
t
i
n
l
e
ss co
m
m
on m
ode vol
t
a
ge
vari
at
i
o
ns. Ho
weve
r,
t
h
e pr
o
pos
ed AZSP
W
M
al
gori
t
h
m
s
gi
ve m
o
re har
m
oni
c di
st
ort
i
o
n w
h
en c
o
m
p
ared
wi
t
h
the CSVPW
M
algorithm
because
of
opposite pulses i
n
the line
voltages. T
hus
, the
propose
d
AZSPWM
al
go
ri
t
h
m
s
gi
ve red
u
ce
d c
o
m
m
on
m
ode v
o
l
t
a
ges a
n
d
he
nce
red
u
ce
d c
o
m
m
on
m
ode cu
r
r
ent
s
w
h
en c
o
m
p
ared
with
th
e CSVPWM algo
rith
m
witho
u
t
a
n
y
e
x
t
r
a
har
d
ware
r
e
qui
rem
e
nt
s.
7.
CO
NCL
USI
O
N
A N
ovel
AZ
S
P
W
M
al
go
ri
t
h
m
s
based on t
h
e conce
p
t
of i
m
agi
n
ary
swi
t
c
hi
n
g
t
i
m
e
s ar
e prese
n
t
e
d i
n
th
is p
a
p
e
r
fo
r
v
ector con
t
ro
lled
indu
ctio
n
m
o
tor driv
e.
T
h
e
pr
o
pos
ed al
go
ri
t
h
m
s
di
d n
o
t
use t
h
e
i
n
f
o
rm
at
i
o
n
of angle and sector and he
nc
e reduce
s
the com
p
lexity
involve
d
in th
e conve
n
tional s
p
ace vector approac
h
.
From
t
h
e sim
u
l
a
t
i
on res
u
l
t
s
,
i
t
can be obs
erve
d t
h
at
t
h
e
pro
p
o
se
d al
g
o
ri
t
h
m
s
reduc
e t
h
e com
m
on
m
ode
vol
t
a
ge
va
ri
at
i
ons
w
h
en c
o
m
p
are
d
wi
t
h
C
S
VP
W
M
al
go
rith
m
with
slig
h
t
in
creased
ripp
les in
curren
t
and
to
rq
u
e
s w
ithout an
y add
itional h
a
rdw
a
re
req
u
i
rem
e
n
t
s. In th
e
p
r
op
o
s
ed
A
Z
SPWM al
go
rith
m
s
, A
Z
SPWM2
gi
ves
bet
t
e
r
pe
rf
orm
a
nce w
h
e
n
c
o
m
p
ared
wi
t
h
t
h
e
AZ
SP
W
M
1 al
g
o
ri
t
h
m
.
REFERE
NC
ES (
1
0
PT)
[1]
F. Blaschke “The principle
of field orientation
as applied
to th
e new
transvecto
r closed
loop co
ntrol s
y
stem for
rotating
-fie
l
d m
a
chines”
,
S
i
emens
Re
view
, 1972
, p
p
217-220.
[2]
Heinz Willi Vander Broeck
, H
n
as-Christoph Skudeln
y
and Georg Viktor St
an
ke, “Analy
s
i
s and realization o
f
a
pulsewidth m
odulator based on
voltag
e
space v
e
ctors”,
I
EEE T
r
ans. Ind. Appli
c
at
.,
vol. 24, no. 1
,
Jan/Feb 1988, p
p
.
142-150.
[3]
J
.
M
.
Erdm
an,
R
.
J
.
K
e
rkm
a
n, D
.
W
.
S
c
hl
egel
,
an
d G.
L
.
Skib
inski, “
E
ff
ect
ofPW
Minverters on
ACm
o
tor bearin
g
currents
and shaft voltages”,
I
E
EETrans. Ind.
Ap
pl.
, vol. 32
, no
. 2
,
pp
. 250–259
,
Mar./Apr. 1996.
[4]
G
.
L
.
S
k
i
b
i
n
s
k
i
,
R
.
J
.
K
e
r
k
m
a
n
,
a
n
d
D
.
S
c
h
l
e
g
el,
“EMI e
m
issio
n
s of
mode
rn P
W
M
AC drive
s
”
,
IEEE Ind.
App
l
.
Soc. Mag
.
, vol. 5
,
no
. 6
,
pp
. 47–8
1, Nov./Dec. 19
99.
[5]
Y.
S.
L
a
i a
nd F.
S.
Shy
u
,
“Optima
l
common-
mode voltag
e
red
u
ction PWM t
echnique for inv
e
rter con
t
rol with
consideration of
the dead-time
effe
cts—Part I:
Basic dev
e
lopment”,
IEEE Trans. Ind. Appl.
, vo
l. 40, no
. 6, pp
.
1605–1612, Nov
.
/Dec. 2004
.
[6]
Y. S. Lai, P. S
.
Chen,H
.K. Lee, and
J.Chou,
“Op
timal common-mode voltag
e
reduction PWM techniqu
e fo
r
invert
er con
t
rol
with cons
ider
ati
on of the d
ead-
t
im
e effe
ct
s—Pa
rt II: Appl
ica
tio
ns to
IM drives
with diode front
end”,
IEEE Trans. Ind. Appl.
, vol. 40
, no
. 6
,
pp
.
1
613–1620, Nov./Dec. 2004.
[7]
J. Zitzelberg
er
andW. Hofmann, “Re
duction
of bear
ing curr
ents in
invert
er
fed driv
e
applications b
y
using
sequentially
positione
d
pulse mo
dulation
”
,
E
PE J
.
, vol. 14, no. 4,
pp. 19–25
, 2004
.
[8]
Emre Ün and A
.
M. Hava, “A hig
h
pe
rformance P
W
Malgorithmfor common mode voltag
e
r
e
ductio
n
in thr
ee-ph
ase
voltag
e
source inverters”,
in
Proc. I
E
EE PESC 2
008
, pp
. 1528–1
534.
[9]
A. M. Hava,
and Emre Ün, “Perfo
rmance Analy
s
is of Reduced Comm
on-Mode Voltag
e
PWM Methods a
nd
Comparison Wi
th Standard PWM
Methods f
o
r Three-Ph
ase Voltage-Source Inverters”, IEEE Trans. Power
Electron., vo
l. 2
4
, no
. 1
,
pp
. 241
-252, Jan
,
2009
.
[10]
Da
e
-
Woong Chung,
Joohn-She
ok Kim a
nd Se
ung-Ki Sul,
“U
ni
fie
d
volta
ge
modula
tion tec
h
nique
for re
al-time
three-ph
as
e pow
er conv
ers
i
on”
,
I
EEE Trans. Ind.
Applica
t
.,
vo
l. 3
4
, no
. 2
,
Mar/Ap
r 1998, pp. 374-
380.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 3,
No
.
1,
Mar
c
h
2
013
:
1
–
8
8
[11]
T. Br
ahmananda Redd
y
,
J
.
Amarnath
and D. Su
bbaray
udu, “Improvement
of D
T
C performance b
y
using h
y
brid
space ve
ctor Pul
s
ewidth m
odulat
ion algor
ithm
”
,
International Review o
f
Electrical Engin
eering
,
Vol.4, no
. 2, pp
.
593-600, Jul-Au
g, 2007
.
[12]
K. S
a
t
y
anar
a
y
a
n
a1, J
.
Am
arnat
h2, and A. Kai
l
as
a
Rao1, “H
y
b
rid PWM Alg
o
rith
m with Low Computational
Overhead for In
duction Motor Drives for Reduced Current Ripple”,
ICGST-ACSE journ
al, vol. 10,
isue. 1, pp
. 29-
37, Dec, 2010.
BIOGRAP
HI
ES OF
AUTH
ORS
Dr. J. Amarnat
h
graduated fro
m Osmania University
in
th
e
y
e
ar 1982, M.E from Andhra
University
in the
y
e
ar 1984 and Ph.D fro
m J. N. T. University
, H
y
d
e
rab
a
d in
the
y
ear 2001.
He is presently
Professor in the Department of
Ele
c
tri
cal and E
l
ec
tronics
Engin
eering
,
J
N
TU
College of
Engineering
,
H
y
d
e
rabad, India. He
presented more than 300 research papers in
various national and internation
a
l confer
ences
and journals. His research areas include Gas
Insulated
Substa
tions, High
Vo
lt
age
Engine
ering
,
P
o
wer S
y
s
t
em
s
and E
l
ec
tri
cal
D
r
ives
.
Dr.
A.
Kailasa Rao
graduated from
IIT, Kharag
pur in Electr
i
cal Engineering
.
H
e
took his M.
Tech
degree in Power S
y
stems fro
m JNTU, H
y
d
e
rabad
and obtain
e
d
Ph.D
,
from IIT,
Kharagpur
in
Co
ntrol S
y
stems. He has Published
ma
n
y
research p
a
pers in International Journals.
A research
monograph based
o
n
his Ph.D Th
esis
work is published b
y
Springer Verlag
, New
York. Currently
,
he is a Professor and Director
of
P
r
agat
i Engi
neering Col
l
eg
e,
S
u
ram
p
alem
,
Andhra Pradesh, INDIA.
K. Sat
y
anara
yana
obtained
M.Tech
degr
ee in Power
Electronics from J
N
TU Colleg
e
o
f
Engineering, H
yderabad in 2003
. He is presentl
y
working as Professor in the Department of
Ele
c
tri
cal
and E
l
ectron
i
cs
Engin
e
ering, P
r
ag
at
i E
ngineer
ing Coll
e
g
e, S
u
ram
p
al
em
, P
e
ddapuram
,
A.
P.
,
INDIA.
He is presently
pursuing Doctor
al degr
ee from JNTU. College
of Engineering
,
Kakinada. He pr
esented man
y
r
e
search pap
e
rs in
various national and inte
rnational journals and
conferen
ces
.
Hi
s
res
earch
int
e
r
e
s
t
s
includ
e P
o
wer El
ectron
i
c
Drives
, P
W
M
,
F
u
zz
y logi
c
and
Vector Con
t
rol techniqu
es.
Evaluation Warning : The document was created with Spire.PDF for Python.