I
nte
rna
t
io
na
l J
o
urna
l o
f
P
o
w
er
E
lect
ro
nics
a
nd
Driv
e
Sy
s
t
e
m
(
I
J
P
E
DS
)
Vo
l.
8
,
No
.
2
,
J
u
n
e
2
0
1
7
,
p
p
.
882
~
8
9
9
I
SS
N:
2
0
8
8
-
8
6
9
4
,
DOI
: 1
0
.
1
1
5
9
1
/i
j
p
ed
s
.
v
8
i2
.
p
p
8
8
2
-
899
88
2
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JP
E
DS
Effec
ts of Sw
itching Freque
ncy
Mo
dula
tion o
n Inpu
t
P
o
w
er
Q
ua
lity o
f
Bo
o
st
Po
w
er F
a
ctor Co
rrect
io
n
Co
nv
erte
r
Denis
s
Ste
pin
s
1
,
J
in H
ua
ng
2
1
De
p
a
rt
m
e
n
t
o
f
El
e
c
tro
n
ics
a
n
d
T
e
le
c
o
m
m
u
n
ica
ti
o
n
s,
Rig
a
T
e
c
h
n
ica
l
Un
iv
e
rsit
y
,
L
a
v
ti
a
2
S
c
h
o
o
l
o
f
El
e
c
tri
c
a
l
a
n
d
El
e
c
tro
n
ic E
n
g
in
e
e
ri
n
g
,
Hu
a
z
h
o
n
g
Un
iv
e
rsit
y
o
f
S
c
ien
c
e
a
n
d
T
e
c
h
n
o
lo
g
y
,
Ch
in
a
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Feb
1
3
,
2
0
1
7
R
ev
i
s
ed
A
p
r
3
0
,
2
0
1
7
A
cc
ep
ted
Ma
y
15
,
2
0
1
7
S
w
it
c
h
in
g
f
re
q
u
e
n
c
y
m
o
d
u
latio
n
(S
F
M
)
a
s
sp
re
a
d
-
s
p
e
c
tru
m
tec
h
n
iq
u
e
h
a
s
b
e
e
n
u
se
d
f
o
r
e
le
c
tro
m
a
g
n
e
ti
c
i
n
terf
e
re
n
c
e
re
d
u
c
ti
o
n
in
sw
it
c
h
in
g
p
o
w
e
r
c
o
n
v
e
rters
.
In
th
is
p
a
p
e
r
,
a
s
witch
in
g
-
f
re
q
u
e
n
c
y
-
m
o
d
u
late
d
b
o
o
st
p
o
w
e
r
f
a
c
to
r
c
o
rre
c
ti
o
n
(
PFC
)
c
o
n
v
e
rter
o
p
e
ra
ti
n
g
i
n
c
o
n
t
in
u
o
u
s
c
o
n
d
u
c
ti
o
n
m
o
d
e
is
a
n
a
l
y
se
d
in
d
e
tail
in
ter
m
s
o
f
it
s
in
p
u
t
p
o
w
e
r
q
u
a
li
t
y
.
In
it
ially
,
th
e
e
ff
e
c
t
o
f
SFM
on
t
h
e
in
p
u
t
c
u
rre
n
t
t
o
tal
h
a
rm
o
n
ic
d
isto
rti
o
n
,
p
o
w
e
r
f
a
c
to
r
a
n
d
l
o
w
-
f
re
q
u
e
n
c
y
h
a
r
m
o
n
ics
o
f
th
e
P
F
C
c
o
n
v
e
rter
a
re
stu
d
ied
b
y
u
sin
g
c
o
m
p
u
ter
sim
u
latio
n
s
.
S
o
m
e
a
d
v
i
c
e
s
o
n
c
h
o
o
sin
g
p
a
ra
m
e
ters
o
f
S
F
M
a
re
g
i
v
e
n
.
T
h
e
n
th
e
th
e
o
re
ti
c
a
l
re
su
lt
s
a
re
v
e
ri
f
ie
d
e
x
p
e
rime
n
tall
y
.
It
is
sh
o
w
n
th
a
t,
f
ro
m
a
p
o
w
e
r
q
u
a
li
ty
p
o
in
t
o
f
v
ie
w
,
S
F
M
c
a
n
b
e
h
a
r
m
f
u
l
(it
c
a
n
si
g
n
if
ica
n
t
ly
w
o
rse
n
th
e
p
o
w
e
r
q
u
a
li
ty
o
f
th
e
P
F
C
c
o
n
v
e
rter)
o
r
a
lm
o
st
h
a
r
m
l
e
ss
.
Th
e
re
su
lt
s
d
e
p
e
n
d
o
n
h
o
w
p
ro
p
e
rly
th
e
m
o
d
u
latio
n
p
a
ra
m
e
ters
a
re
s
e
lec
ted
.
K
ey
w
o
r
d
:
E
lectr
o
m
a
g
n
etic
i
n
ter
f
er
e
n
ce
Fre
q
u
en
c
y
m
o
d
u
latio
n
P
o
w
er
f
ac
to
r
co
r
r
ec
tio
n
P
o
w
er
q
u
ali
t
y
T
o
tal
h
ar
m
o
n
ic
d
i
s
to
r
tio
n
Co
p
y
rig
h
t
©
201
7
In
s
t
it
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Den
is
s
Step
i
n
s
,
Dep
ar
t
m
en
t o
f
E
lectr
o
n
ics a
n
d
T
elec
o
m
m
u
n
icatio
n
s
,
R
ig
a
T
ec
h
n
ical
Un
iv
er
s
it
y
,
1
2
A
ze
n
es
s
tr
ee
t,
R
i
g
a,
L
a
tv
ia
.
E
m
ail:
d
en
is
s
.
s
tep
in
s
@
r
t
u
.
l
v
1.
I
NT
RO
D
UCT
I
O
N
No
w
ad
a
y
s
,
s
w
i
tch
ed
-
m
o
d
e
p
o
w
er
s
u
p
p
lies
(
SMP
S)
ar
e
v
er
y
p
o
p
u
lar
f
o
r
ef
f
icie
n
t
elec
tr
ic
p
o
w
er
co
n
v
er
s
io
n
i
n
elec
tr
o
n
ic
eq
u
i
p
m
e
n
t.
A
co
n
v
e
n
tio
n
al
A
C
-
m
ai
n
s
-
co
n
n
ec
ted
SMP
S
u
s
u
a
ll
y
h
as
a
f
u
ll
-
w
av
e
d
io
d
e
r
ec
tif
ier
w
it
h
a
lar
g
e
ca
p
ac
itiv
e
o
u
tp
u
t
f
ilter
.
T
h
is
r
es
u
lts
in
s
i
g
n
i
f
ica
n
t
AC
li
n
e
c
u
r
r
en
t
(
w
h
ic
h
i
n
an
id
ea
l
ca
s
e
s
h
o
u
ld
b
e
s
i
n
u
s
o
i
d
al)
d
is
to
r
tio
n
an
d
,
co
n
s
eq
u
e
n
tl
y
,
n
o
ticea
b
le
d
eg
r
ad
atio
n
o
f
th
e
in
p
u
t
p
o
w
er
q
u
alit
y
(
P
Q)
o
f
th
e
S
MP
S
[
1
]
-
[
2
]
.
P
o
o
r
p
o
w
er
q
u
alit
y
c
an
lead
n
o
t
o
n
l
y
to
in
e
f
f
ec
ti
v
e
u
ti
lis
at
io
n
o
f
t
h
e
elec
tr
ical
g
r
id
b
u
t c
a
n
a
ls
o
ca
u
s
e
d
a
m
a
g
e
to
elec
tr
o
n
ic
eq
u
ip
m
en
t [
1
]
-
[
4
]
.
T
h
e
m
ai
n
p
ar
a
m
eter
s
ch
ar
ac
ter
izi
n
g
p
o
w
er
q
u
alit
y
ar
e
th
e
p
o
w
er
f
ac
to
r
(
P
F)
an
d
to
tal
h
ar
m
o
n
ic
d
is
to
r
tio
n
(
T
HD)
o
f
th
e
in
p
u
t
cu
r
r
en
t
[
5
]
.
P
F,
b
y
d
ef
in
i
tio
n
,
is
t
h
e
r
ea
l p
o
w
er
P
r
eal
r
atio
to
ap
p
a
r
en
t p
o
w
er
P
app
P
F
= P
real
/P
app
= P
real
/(
V
inrms
∙I
i
nrms
)
,
(
1
)
w
h
er
e
V
inrms
an
d
I
inrms
ar
e
th
e
in
p
u
t
v
o
lta
g
e
an
d
c
u
r
r
en
t
R
M
S
v
a
lu
e
s
,
r
esp
ec
ti
v
el
y
.
T
h
e
P
F
is
t
h
e
f
u
n
ctio
n
o
f
p
h
ase
a
n
g
le
φ
b
et
w
ee
n
in
p
u
t
v
o
ltag
e
an
d
c
u
r
r
en
t
f
u
n
d
a
m
e
n
tal
h
ar
m
o
n
ics
as
w
ell
as
t
h
e
T
HD
o
f
t
h
e
i
n
p
u
t
cu
r
r
en
t [
5
]
)
c
o
s
(
2
1
T
H
D
PF
.
(
2
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
E
ffects o
f S
w
itch
in
g
F
r
eq
u
en
c
y
Mo
d
u
la
tio
n
o
n
I
n
p
u
t
P
o
w
er Qu
a
lity o
f B
o
o
s
t
….
(
Den
is
s
S
tep
in
s
)
883
As
t
h
e
T
HD
o
f
th
e
SMP
S
i
n
p
u
t
c
u
r
r
en
t
in
cr
ea
s
es,
P
F
d
ec
r
e
ases
,
lead
i
n
g
to
d
eg
r
ad
atio
n
o
f
i
n
p
u
t
P
Q.
I
n
an
id
ea
l
ca
s
e,
i
n
p
u
t
v
o
ltag
e
is
in
p
h
a
s
e
w
it
h
i
n
p
u
t
c
u
r
r
en
t
an
d
i
s
p
u
r
el
y
s
in
u
s
o
id
al,
s
o
it
h
as
o
n
l
y
o
n
e
s
p
ec
tr
u
m
co
m
p
o
n
e
n
t
a
t
t
h
e
m
ain
s
f
r
eq
u
e
n
c
y
(
f
mains
)
.
I
n
a
r
e
al
ca
s
e,
t
h
e
i
n
p
u
t
A
C
cu
r
r
e
n
t
is
d
is
to
r
ted
an
d
th
e
h
ar
m
o
n
ics o
f
f
mains
ap
p
ea
r
in
it
s
s
p
ec
tr
u
m
.
B
y
d
ef
i
n
itio
n
,
th
e
T
HD
o
f
th
e
SMP
S in
p
u
t c
u
r
r
en
t is a
s
f
o
llo
w
s
T
H
D
2
2
1
2
M
m
m
I
I
,
(
3
)
w
h
er
e
I
m
i
s
t
h
e
a
m
p
lit
u
d
e
o
f
t
h
e
i
n
p
u
t
cu
r
r
en
t
m
-
t
h
h
ar
m
o
n
ic;
I
1
is
th
e
in
p
u
t
c
u
r
r
en
t
f
u
n
d
am
e
n
tal
h
ar
m
o
n
i
c
a
m
p
lit
u
d
e
(
at
f
mains
)
;
M
i
s
an
in
te
g
er
w
h
o
s
e
v
a
lu
e
d
ep
en
d
s
o
n
P
Q
in
ter
n
atio
n
al
s
ta
n
d
ar
d
s
r
eq
u
ir
e
m
e
n
ts
.
Fo
r
ex
a
m
p
le,
ac
co
r
d
in
g
to
I
E
C
1
0
0
0
-
3
-
2
,
th
e
lo
w
-
f
r
eq
u
en
c
y
h
ar
m
o
n
ic
s
s
h
o
u
ld
b
e
m
ea
s
u
r
ed
u
p
to
M
=
4
0
.
T
h
u
s
,
if
f
mains
=
5
0
Hz,
th
en
t
h
e
P
Q
an
al
y
s
er
m
ea
s
u
r
e
s
h
ar
m
o
n
ic
s
u
p
to
f
max
=
2
k
Hz.
I
t
is
in
ter
esti
n
g
to
n
o
te
th
at
i
n
ter
n
at
io
n
al
P
Q
s
tan
d
ar
d
s
ar
e
u
s
u
a
ll
y
m
o
r
e
co
n
ce
r
n
ed
n
o
t
w
it
h
T
HD
an
d
P
F
b
u
t
w
it
h
t
h
e
lo
w
-
f
r
eq
u
en
c
y
co
n
te
n
t
o
f
t
h
e
i
n
p
u
t
c
u
r
r
en
t.
W
h
e
n
p
er
f
o
r
m
i
n
g
co
m
p
li
an
ce
m
ea
s
u
r
e
m
e
n
t
s
in
o
r
d
er
to
m
ee
t
s
tan
d
ar
d
r
eq
u
ir
e
m
e
n
t
s
,
SMP
S
in
p
u
t
c
u
r
r
en
t
h
ar
m
o
n
ics
m
u
s
t
b
e
lo
w
er
t
h
an
t
h
e
m
ax
i
m
a
ll
y
p
er
m
i
s
s
ib
le
v
al
u
e
s
s
et
b
y
th
e
s
tan
d
ar
d
.
Fo
r
ex
a
m
p
le,
p
er
I
E
C
1
0
0
0
-
3
-
2
f
o
r
clas
s
-
D
eq
u
ip
m
en
t,
lo
w
-
f
r
eq
u
en
c
y
h
ar
m
o
n
ics
(
t
h
e
R
MS
v
al
u
es
o
f
o
d
d
h
ar
m
o
n
ic
s
)
m
u
s
t
b
e
l
o
w
er
t
h
an
3
.
4
m
A/W
f
o
r
t
h
e
3
rd
h
ar
m
o
n
ic,
1
.
9
m
A/W
f
o
r
th
e
5
th
h
ar
m
o
n
ic,
1
m
A/W
f
o
r
th
e
7
th
h
ar
m
o
n
ic,
0
.
5
m
A
/W
f
o
r
th
e
9
th
h
ar
m
o
n
ic,
an
d
3
.
8
5
/
m
m
A
/W
f
o
r
1
1
≤
m
≤
3
9
[
6
]
.
T
o
r
ed
u
ce
th
e
T
HD
o
f
th
e
S
MP
S
in
p
u
t
c
u
r
r
en
t
a
n
d
i
m
p
r
o
v
e
th
e
P
F,
u
s
u
al
l
y
ac
ti
v
e
p
o
w
er
f
ac
to
r
co
r
r
ec
tio
n
(
P
FC
)
co
n
v
er
ter
s
ar
e
u
s
ed
[
7
]
–
[
1
0
]
.
A
lth
o
u
g
h
ac
tiv
e
P
F
C
co
n
v
er
ter
s
ar
e
v
er
y
u
s
e
f
u
l
f
o
r
i
m
p
r
o
v
i
n
g
t
h
e
P
Q,
th
e
P
FC
co
n
v
er
ter
s
ar
e
s
w
itc
h
ed
-
m
o
d
e
in
n
at
u
r
e
an
d
ar
e
th
er
e
f
o
r
e
m
aj
o
r
s
o
u
r
ce
s
o
f
elec
tr
o
m
ag
n
etic
i
n
ter
f
e
r
e
n
ce
(
E
MI
)
.
R
ed
u
ctio
n
o
f
co
n
d
u
cte
d
E
MI
ca
n
b
e
ac
h
iev
ed
b
y
u
s
i
n
g
E
MI
s
u
p
p
r
ess
io
n
f
ilter
s
,
s
n
u
b
b
er
s
,
p
r
o
p
e
r
d
esi
g
n
o
f
p
r
in
ted
cir
cu
it
b
o
ar
d
s
,
s
o
f
t
-
s
w
itc
h
i
n
g
tech
n
iq
u
e
s
,
in
ter
leav
in
g
,
s
p
r
ea
d
-
s
p
ec
tr
u
m
tech
n
iq
u
e,
etc.
[
10
]
–
[
1
5
]
.
I
n
f
ac
t,
th
e
s
p
r
ea
d
-
s
p
ec
tr
u
m
tec
h
n
iq
u
e
h
as
b
ec
o
m
e
v
er
y
p
o
p
u
lar
tech
n
iq
u
e
f
o
r
SMP
S
E
MI
r
ed
u
ctio
n
i
n
th
e
s
cien
t
if
ic
co
m
m
u
n
i
t
y
o
w
i
n
g
to
its
g
o
o
d
E
MI
r
ed
u
ctio
n
p
o
ten
tial
alo
n
g
w
it
h
ea
s
i
n
ess
o
f
i
m
p
le
m
en
tatio
n
a
n
d
ad
d
in
g
litt
le
o
r
n
o
ad
d
itio
n
al
co
s
t
to
SMP
S
[
1
2
]
,
[
1
4
]
,
[
1
6
]
–
[
1
9
]
.
Sp
r
ea
d
in
g
t
h
e
s
p
ec
tr
u
m
o
f
S
MP
S
v
o
ltag
es
a
n
d
cu
r
r
en
ts
a
n
d
E
MI
n
o
is
e
r
ed
u
ctio
n
(
Fi
g
u
r
e
1
)
ca
n
b
e
ac
h
iev
ed
b
y
m
o
d
u
lati
n
g
o
n
e
o
f
th
e
p
u
ls
e
-
w
id
t
h
-
m
o
d
u
lated
(
P
W
M
)
co
n
tr
o
l
s
ig
n
al
p
ar
a
m
eter
s
s
u
c
h
as
th
e
p
u
l
s
e
p
o
s
itio
n
[
2
0
]
,
d
u
ty
r
atio
[
2
1
]
,
o
r
f
r
eq
u
en
c
y
[
2
2
]
.
P
er
io
d
ic
s
w
itc
h
i
n
g
f
r
eq
u
en
c
y
m
o
d
u
la
tio
n
(
SF
M)
is
o
f
te
n
u
s
ed
in
p
r
ac
tical
d
esig
n
s
b
ec
au
s
e
it
h
a
s
s
o
m
e
i
m
p
o
r
tan
t
ad
v
a
n
ta
g
es
o
v
er
o
th
er
s
p
r
ea
d
-
s
p
ec
tr
u
m
tech
n
iq
u
es
[
2
2
]
-
[
2
4
]
.
Si
m
ila
r
l
y
to
o
th
er
E
M
I
r
ed
u
ctio
n
tech
n
iq
u
e
s
,
SF
M
al
s
o
h
as
s
o
m
e
d
is
ad
v
an
ta
g
es
:
it
ca
n
in
cr
ea
s
e
o
u
tp
u
t
v
o
ltag
e
an
d
in
p
u
t
cu
r
r
en
t
r
ip
p
les
o
f
SMP
S,
as
w
ell
as
w
o
r
s
e
n
t
h
e
P
Q
o
f
P
F
C
co
n
v
e
r
ter
s
an
d
r
e
s
o
n
a
n
t
i
n
v
er
ter
s
f
o
r
in
d
u
ctio
n
h
ea
ti
n
g
ap
p
lian
ce
s
[
1
6
]
,
[
1
9
]
,
[
2
2
]
-
[
2
8
]
.
Fig
u
r
e
1
.
Sp
ec
tr
a
o
f
SMP
S in
p
u
t c
u
r
r
en
t b
ef
o
r
e
an
d
af
ter
t
h
e
u
s
e
o
f
s
p
r
ea
d
-
s
p
ec
tr
u
m
tec
h
n
i
q
u
e
P
FC
co
n
v
er
ter
s
ca
n
o
p
er
ate
in
eith
er
co
n
ti
n
u
o
u
s
co
n
d
u
ctio
n
m
o
d
e
(
C
C
M)
o
r
d
is
co
n
tin
u
o
u
s
co
n
d
u
ctio
n
m
o
d
e
(
DC
M)
.
P
FC
co
n
v
er
ter
s
ar
e
d
esig
n
ed
to
o
p
er
ate
in
DC
M
f
o
r
lo
w
-
p
o
w
er
ap
p
licatio
n
s
,
b
u
t
i
n
C
C
M
f
o
r
m
id
-
o
r
h
i
g
h
-
p
o
w
er
ap
p
licatio
n
s
.
A
co
m
r
e
h
en
s
i
v
e
s
tu
d
y
o
f
t
h
e
e
f
f
ec
t
o
f
SF
M
o
n
th
e
P
Q
o
f
f
l
y
b
ac
k
P
FC
co
n
v
er
ter
s
o
p
er
atin
g
in
DC
M
w
as
p
r
ese
n
ted
in
[
1
6
]
.
An
i
m
p
r
o
v
ed
co
n
tr
o
l
m
e
th
o
d
t
o
r
ed
u
ce
th
e
T
HD
o
f
in
p
u
t
c
u
r
r
en
t
an
d
i
m
p
r
o
v
e
P
F
o
f
DC
M
P
FC
co
n
v
er
ter
s
w
ith
SF
M
w
as
p
r
o
p
o
s
ed
in
[
1
6
]
.
D
esp
ite
th
e
f
ac
t,
t
h
at
th
e
e
f
f
ec
t
o
f
S
FM
o
n
P
Q
o
f
P
FC
co
n
v
er
ter
s
o
p
er
atin
g
i
n
DC
M
i
s
e
x
a
m
in
ed
v
er
y
w
ell,
th
er
e
ar
e
o
n
l
y
f
e
w
2
4
6
8
10
12
14
x
1
0
5
40
60
80
1
0
0
1
2
0
1
4
0
f
r
e
q
u
e
n
c
y
W
i
t
h
o
u
t
s
p
r
e
a
d
s
p
e
c
t
r
u
m
W
i
t
h
s
p
r
e
a
d
s
p
e
c
t
r
u
m
A
m
p
l
i
t
u
d
e
f
sw
2
f
sw
3
f
s
w
4
f
sw
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
8
,
No
.
2
,
J
u
n
e
2
0
1
7
:
8
8
2
–
8
9
9
884
p
ap
er
s
[
2
2
]
,
[
2
3
]
c
o
n
s
id
er
in
g
t
h
e
ef
f
ec
t
o
f
SF
M
o
n
th
e
P
Q
o
f
P
FC
co
n
v
er
ter
s
o
p
er
atin
g
in
C
C
M
.
I
n
[
2
2
]
-
[
2
3
]
s
o
m
e
e
x
p
er
i
m
e
n
tal
r
esu
lts
ar
e
p
r
esen
ted
s
h
o
w
in
g
th
at
th
e
T
HD
o
f
in
p
u
t
c
u
r
r
en
t
o
f
b
o
o
s
t
C
C
M
P
FC
co
n
v
er
ter
in
cr
ea
s
es
o
w
i
n
g
to
u
s
e
o
f
SF
M.
Ho
w
e
v
er
,
th
e
s
t
u
d
y
p
r
ese
n
ted
in
th
e
p
ap
er
s
is
p
u
r
el
y
ex
p
er
i
m
e
n
tall
y
b
ased
,
h
as
s
o
m
e
a
m
b
i
g
u
itie
s
an
d
is
n
o
t
co
m
p
r
eh
e
n
s
i
v
e,
n
o
r
d
o
es
it
ex
p
lai
n
h
o
w
t
h
e
c
h
o
ice
o
f
SF
M
p
ar
a
m
eter
s
af
f
ec
ts
C
C
M
b
o
o
s
t
P
FC
i
n
p
u
t
cu
r
r
en
t
T
HD
an
d
lo
w
-
f
r
eq
u
e
n
c
y
co
n
ten
t.
Mo
r
eo
v
er
ca
u
s
es
o
f
w
o
r
s
e
n
i
n
g
P
Q
o
w
i
n
g
to
u
s
e
o
f
SF
M
ar
e
n
o
t
r
ev
ea
led
in
t
h
e
p
ap
er
s
.
T
h
is
p
ap
er
f
o
cu
s
es
o
n
th
is
is
s
u
e.
T
h
e
m
ai
n
n
e
w
r
e
s
ea
r
ch
in
t
h
is
p
ap
er
is
an
o
r
ig
in
al
a
n
a
l
y
s
i
s
o
f
t
h
e
e
f
f
ec
t
o
f
SF
M
o
n
b
o
o
s
t
P
FC
co
n
v
er
ter
in
p
u
t
cu
r
r
en
t
lo
w
-
f
r
eq
u
e
n
c
y
co
n
ten
t,
T
HD,
an
d
th
e
p
o
w
e
r
f
ac
to
r
.
T
h
is
p
ap
er
also
in
clu
d
es
d
etailed
d
escr
ip
tio
n
o
f
SIM
UL
I
NK
m
o
d
el,
th
o
r
o
u
g
h
ex
p
er
i
m
en
tal
v
er
i
f
ic
atio
n
o
f
t
h
e
s
i
m
u
latio
n
r
es
u
lt
s
an
d
s
o
m
e
ad
v
ice
o
n
ch
o
o
s
i
n
g
SF
M
p
ar
a
m
eter
s
.
T
h
is
p
ap
er
is
o
r
g
a
n
ized
a
s
f
o
l
lo
w
s
.
I
n
Sectio
n
2
,
o
p
er
atin
g
p
r
in
cip
le
o
f
b
o
o
s
t
P
FC
co
n
v
er
ter
is
p
r
ese
n
ted
.
I
n
Sectio
n
3
,
SIM
UL
I
NK
m
o
d
el
o
f
th
e
b
o
o
s
t
P
FC
co
n
v
er
ter
is
ex
p
lai
n
ed
in
d
etails.
I
n
Se
ctio
n
4
,
a
r
ig
o
r
o
u
s
th
eo
r
etica
l
a
n
al
y
s
is
o
f
t
h
e
e
f
f
ec
t
o
f
S
FM
p
ar
a
m
eter
s
o
n
i
n
p
u
t
cu
r
r
e
n
t
lo
w
-
f
r
eq
u
en
c
y
h
ar
m
o
n
ic
s
a
n
d
T
HD
is
p
r
esen
ted
.
C
au
s
es
o
f
t
h
e
in
cr
ea
s
e
in
T
HD
ar
e
r
ev
ea
led
.
A
d
d
itio
n
all
y
,
a
s
u
m
m
ar
y
o
f
th
e
an
al
y
s
is
a
n
d
s
o
m
e
p
r
ac
tical
ad
v
ice
f
o
r
ch
o
o
s
i
n
g
ef
f
ec
tiv
e
SF
M
p
ar
a
m
eter
s
ar
e
g
iv
e
n
a
t t
h
e
e
n
d
o
f
Sectio
n
4
.
Sectio
n
5
p
r
ese
n
ts
a
d
ee
p
ex
p
er
im
e
n
tal
s
tu
d
y
o
f
t
h
e
PQ
o
f
th
e
SF
M
P
FC
co
n
v
er
t
er
an
d
v
er
if
ie
s
th
e
s
i
m
u
la
tio
n
r
esu
lt
s
.
2.
B
O
O
ST
P
F
C
CO
NVER
T
E
R
O
P
E
RAT
I
N
G
P
RINNC
I
P
L
E
B
o
o
s
t
co
n
v
er
ter
o
p
er
atin
g
in
C
C
M
is
v
er
y
p
o
p
u
lar
f
o
r
p
o
w
er
f
ac
to
r
co
r
r
ec
tio
n
w
h
en
p
o
w
er
le
v
els
ex
ce
ed
3
0
0
W
[
7
]
,
[
8
]
,
[
2
9
]
.
T
h
er
e
ar
e
tw
o
co
n
tr
o
l
m
et
h
o
d
s
o
f
b
o
o
s
t
C
C
M
P
FC
co
n
v
er
ter
s
:
p
ea
k
cu
r
r
en
t
co
n
tr
o
l
an
d
av
er
ag
e
cu
r
r
en
t
c
o
n
tr
o
l
m
e
th
o
d
s
.
T
h
e
latter
m
u
ch
m
o
r
e
o
f
te
n
u
s
ed
in
p
r
ac
tical
P
FC
co
n
v
er
ter
s
b
ec
au
s
e
o
f
h
ig
h
er
i
m
m
u
n
it
y
t
o
n
o
is
es
[
3
0
]
.
Si
m
p
lifie
d
s
ch
e
m
atic
d
iag
r
a
m
m
o
f
t
h
e
b
o
o
s
t
P
FC
co
n
v
er
ter
w
it
h
av
er
ag
e
c
u
r
r
en
t
co
n
tr
o
l
is
s
h
o
w
n
i
n
Fi
g
u
r
e
2
.
I
t
co
n
s
is
t
s
o
f
b
o
o
s
t
p
o
w
er
s
tag
e
a
n
d
t
w
o
c
o
n
tr
o
l
lo
o
p
s
:
i
n
p
u
t
cu
r
r
en
t
a
n
d
o
u
tp
u
t
v
o
lta
g
e
co
n
tr
o
l
lo
o
p
s
.
I
n
o
r
d
er
to
g
et
h
ig
h
P
F
a
n
d
lo
w
T
HD,
av
er
ag
e
d
in
p
u
t
c
u
r
r
en
t
m
u
s
t
b
e
in
p
h
ase
w
it
h
i
n
p
u
t
v
o
ltag
e
an
d
i
t
m
u
s
t
h
a
v
e
t
h
e
s
a
m
e
s
h
ap
e
as
i
n
p
u
t
v
o
lta
g
e.
T
h
er
ef
o
r
e,
th
e
m
a
in
p
u
r
p
o
s
e
o
f
th
e
cu
r
r
en
t
co
n
tr
o
l
lo
o
p
is
to
co
m
p
a
r
e
P
FC
in
p
u
t
c
u
r
r
en
t
w
a
v
ef
o
r
m
w
i
th
P
FC
i
n
p
u
t
v
o
ltag
e
w
a
v
ef
o
r
m
i
n
o
r
d
er
f
o
r
th
e
in
p
u
t
cu
r
r
en
t
wav
ef
o
r
m
to
f
o
llo
w
th
e
i
n
p
u
t
v
o
ltag
e
w
a
v
e
f
o
r
m
[
3
0
]
.
I
n
p
u
t
cu
r
r
en
t
co
n
tr
o
l
ler
co
n
s
it
s
o
f
cu
r
r
en
t
er
r
o
r
am
p
li
f
ier
w
it
h
co
m
p
en
s
atio
n
n
et
w
o
r
k
(
R
5
,
R
6
,
C
2
,
C
3
)
,
m
u
ltip
l
ier
an
d
in
p
u
t
c
u
r
r
en
t
s
en
s
e
r
esi
s
to
r
R
s
.
C
u
r
r
en
t
co
n
tr
o
l
lo
o
p
h
as
m
u
c
h
w
id
er
b
an
d
w
id
t
h
t
h
an
v
o
lta
g
e
co
n
tr
o
l
l
o
o
p
.
T
h
e
m
u
ltip
lier
co
u
ld
b
e
co
n
s
id
er
ed
as
p
r
o
g
r
a
m
m
ab
le
cu
r
r
en
t
s
o
u
r
ce
w
it
h
o
u
tp
u
t
cu
r
r
e
n
t
p
r
o
p
o
r
tio
n
al
to
th
e
d
iv
id
er
o
u
tp
u
t
v
o
ltag
e
a
n
d
s
ca
led
r
e
ctif
ied
i
n
p
u
t
v
o
ltag
e
(
v
o
lta
g
e
ac
r
o
s
s
r
esis
to
r
R
2
)
[
3
1
]
.
T
h
e
v
o
ltag
e
ac
r
o
s
s
th
e
cu
r
r
en
t
s
en
s
e
r
esis
to
r
R
s
(
w
h
ic
h
is
p
r
o
p
o
r
tio
n
al
to
th
e
P
FC
co
n
v
er
ter
r
ec
tif
ied
in
p
u
t
cu
r
r
en
t)
is
s
u
b
tr
ac
ted
f
r
o
m
th
e
v
o
ltag
e
ac
r
o
s
s
R
4
(
w
h
ich
is
p
r
o
p
o
r
tio
n
al
to
th
e
m
u
ltip
lier
o
u
tp
u
t
c
u
r
r
en
t
a
n
d
t
h
er
ef
o
r
e,
to
t
h
e
s
ca
led
r
ec
ti
f
ied
in
p
u
t
v
o
lta
g
e)
an
d
t
h
e
n
it
i
s
a
m
p
li
f
ied
w
it
h
t
h
e
cu
r
r
e
n
t
er
r
o
r
a
m
p
lifie
r
.
T
h
e
p
u
ls
e
w
id
t
h
m
o
d
u
lato
r
(
P
W
M)
th
en
cr
ea
te
s
r
ec
tan
g
u
lar
co
n
tr
o
l sig
n
al
w
it
h
v
ar
iab
le
d
u
t
y
c
y
cle
in
o
r
d
er
to
s
h
ap
e
th
e
in
p
u
t c
u
r
r
en
t.
Fig
u
r
e
2
.
Si
m
p
li
f
ied
s
c
h
e
m
a
ti
c
d
iag
r
a
m
m
o
f
t
h
e
b
o
o
s
t P
FC
co
n
v
er
ter
L
C
out
l
o
a
d
+
-
Divi
d
e
r
V
r
ef
X
/
X
2
Squarer
RC f
ilt
e
r
X
-
+
-
+
Current error
am
pl
if
ie
r
R
s
PWM
V
ol
ta
ge
c
on
tr
ol
loop
in
p
u
t
R
7
R
8
R
3
C
1
R
4
R
5
R
6
C
2
R
1
R
2
V
o
lt
a
g
e
error
a
mp
lifie
r
C
3
b
o
o
st
p
o
we
r
st
a
g
e
Cu
r
r
e
n
t
co
n
t
r
o
l
lo
o
p
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
E
ffects o
f S
w
itch
in
g
F
r
eq
u
en
c
y
Mo
d
u
la
tio
n
o
n
I
n
p
u
t
P
o
w
er Qu
a
lity o
f B
o
o
s
t
….
(
Den
is
s
S
tep
in
s
)
885
Ou
tp
u
t v
o
lta
g
e
co
n
tr
o
l
ler
is
n
e
cc
ess
ar
y
in
o
r
d
er
to
g
et
r
eg
u
la
ted
o
u
tp
u
t
v
o
lta
g
e.
I
t c
o
n
s
is
t
s
o
f
v
o
lta
g
e
er
r
o
r
am
p
lif
ier
w
it
h
co
m
p
e
n
s
atio
n
n
et
w
o
r
k
(
R
3
,
R
7
,
C
1
)
,
s
q
u
ar
er
,
d
iv
id
e
r
,
R
C
f
ilter
an
d
r
ef
er
en
ce
v
o
lta
g
e
s
o
u
r
ce
.
Vo
lta
g
e
co
n
tr
o
l
lo
o
p
u
s
u
all
y
h
a
s
m
u
c
h
n
ar
r
o
w
er
b
an
d
w
id
th
th
a
n
c
u
r
r
en
t
co
n
tr
o
l
lo
o
p
,
b
ec
au
s
e
cr
o
s
s
o
f
er
f
r
eq
u
e
n
c
y
o
f
t
h
e
lo
o
p
m
u
s
t
b
e
m
u
ch
lo
w
er
t
h
a
n
t
wice
m
ai
n
s
f
r
eq
u
e
n
c
y
(
f
main
s
)
in
o
r
d
er
f
o
r
th
e
in
p
u
t
cu
r
r
en
t
d
i
s
to
r
tio
n
to
b
e
lo
w
[
3
1
]
.
Usu
all
y
cr
o
s
s
o
v
er
f
r
eq
u
e
n
c
y
o
f
t
h
e
v
o
ltag
e
co
n
tr
o
l
lo
o
p
is
c
h
o
s
en
to
b
e
ab
o
u
t
1
0
Hz
[
3
1
]
.
Ou
tp
u
t
v
o
lt
ag
e
o
f
t
h
e
R
C
f
ilter
(
w
h
ic
h
,
i
n
f
ac
t,
i
s
D
C
v
o
lta
g
e
w
i
th
v
er
y
s
m
a
ll
AC
r
ip
p
les)
is
p
r
o
p
o
r
tio
n
al
to
P
FC
co
n
v
er
ter
in
p
u
t
v
o
ltag
e
a
m
p
lit
u
d
e
V
inm
.
Sq
u
ar
er
,
d
iv
id
er
,
R
C
f
i
lter
an
d
m
u
ltip
lier
ar
e
n
ec
es
s
ar
y
i
n
o
r
d
er
f
o
r
t
h
e
v
o
lt
ag
e
co
n
tr
o
l
lo
o
p
g
ain
to
b
e
i
n
d
ep
en
d
en
t
o
n
P
FC
b
o
o
s
t
co
n
v
er
ter
in
p
u
t
v
o
lta
g
e
a
m
p
lit
u
d
e.
3.
DE
SCR
I
P
T
I
O
N
O
F
B
O
O
ST
P
F
C
SI
M
UL
I
NK
M
O
DE
L
Fo
r
th
e
an
a
l
y
s
is
SIM
U
L
I
NK
m
o
d
el
o
f
t
h
e
b
o
o
s
t
P
FC
co
n
v
e
r
ter
is
cr
ea
ted
an
d
ex
p
lai
n
ed
.
T
h
e
m
o
d
el
(
Fig
u
r
e
3
)
ca
n
b
e
u
s
ed
f
o
r
s
i
m
u
latio
n
o
f
b
o
o
s
t
P
FC
co
n
v
e
r
ter
w
it
h
an
d
w
i
th
o
u
t
SF
M.
T
h
e
m
o
d
el
is
p
ar
tl
y
b
ased
o
n
th
e
s
c
h
e
m
atic
d
ia
g
r
a
m
m
s
h
o
w
n
i
n
F
ig
u
r
e
2
w
it
h
s
o
m
e
s
i
m
p
li
f
icatio
n
s
.
I
n
o
r
d
er
f
o
r
s
i
m
u
latio
n
r
esu
lt
s
to
b
e
co
m
p
ar
ab
le
w
it
h
ex
p
er
i
m
e
n
tal
r
es
u
lt
s
,
v
alu
e
s
o
f
p
o
w
er
in
d
u
cto
r
s
’
in
d
u
cta
n
ce
,
o
u
tp
u
t
ca
p
ac
ito
r
’
s
ca
p
ac
itan
ce
as
w
ell
a
s
n
u
m
er
i
ca
l
v
al
u
es
o
f
co
e
f
f
ic
ien
t
s
o
f
S
I
MU
L
I
NK
b
lo
ck
tr
a
n
s
f
er
f
u
n
c
tio
n
s
ar
e
ca
lcu
l
ated
b
ased
o
n
3
6
0
W
b
o
o
s
t P
FC
co
n
v
er
ter
d
esrib
ed
in
[
3
1
]
.
I
n
t
h
e
m
o
d
el
p
ar
asi
tic
eq
u
i
v
al
en
t
s
er
ies
r
esi
s
ta
n
ce
s
o
f
o
u
tp
u
t
ca
p
ac
ito
r
an
d
p
o
w
er
i
n
d
u
c
to
r
ar
e
tak
e
n
in
to
ac
co
u
n
t.
Ho
w
e
v
er
th
e
i
n
d
u
cto
r
is
ass
u
m
ed
to
b
e
li
n
ea
r
.
I
n
o
r
d
er
to
tak
e
i
n
to
ac
co
u
n
t
r
ea
l
p
o
w
er
MO
SF
E
T
an
d
its
co
n
tr
o
l
cir
cu
it
(
i
n
cl
u
d
in
g
P
W
M)
tu
r
n
-
on
s
w
itc
h
in
g
d
ela
y
s
(
t
d
on
)
an
d
tu
r
n
-
o
f
s
w
itc
h
in
g
d
elay
s
(
t
doff
)
(
w
h
ic
h
i
n
f
ac
t
ca
n
h
a
v
e
m
aj
o
r
in
f
lu
e
n
ce
o
n
lo
w
-
f
r
eq
u
e
n
c
y
co
n
te
n
t
o
f
s
w
itc
h
i
n
g
-
f
r
eq
u
e
n
c
y
m
o
d
u
lated
d
c/d
c
p
o
w
er
co
n
v
e
r
etr
s
v
o
ltag
e
s
[
1
6
]
,
[
1
9
]
,
[3
2
]
-
[
3
3
]
)
,
tu
r
n
-
o
n
an
d
t
u
r
n
-
o
f
f
d
ela
y
b
lo
ck
s
co
n
s
is
t
in
g
o
f
t
w
o
“
T
r
an
s
p
o
r
t
Dela
y
”
b
lo
ck
s
,
lo
g
ic
o
p
er
ato
r
s
A
ND
a
n
d
OR
ar
e
ad
d
ed
to
t
h
e
m
o
d
el
(
Fi
g
u
r
e
3
)
.
U
s
i
n
g
t
h
at
b
lo
ck
s
w
e
ca
n
i
n
d
ep
en
d
en
tl
y
e
n
ter
t
don
a
n
d
t
do
ff
v
a
l
u
es.
Fig
u
r
e
3
.
B
o
o
s
t
P
FC
co
n
v
er
ter
SIM
UL
I
NK
m
o
d
el.
No
te
th
e
m
o
d
el
ca
n
b
e
u
s
ed
w
it
h
an
d
with
o
u
t
SF
M
F
M
s
a
wto
o
th
s
ig
n
a
l ge
n
e
ra
to
r
Co
nti
nu
ou
s
load
Vo
l
ta
g
e
M
e
a
s
u
re
m
e
n
t
1
v
+
-
Vo
l
ta
g
e
M
e
a
s
u
re
m
e
n
t
v
+
-
Un
i
v
e
rs
a
l
Bri
d
g
e
A
B
+
-
Tra
n
s
p
o
rt
De
l
a
y
1
Tra
n
s
p
o
rt
De
l
a
y
Tra
n
s
fe
r Fc
n
1
1
0
.
33
s
+
6
.
89
Tra
n
s
fe
r Fc
n
63
.
36
e
-
6
s
+
1
32
.
6
e
-
12
s
+
7
.
26
e
-
6
s
2
Si
g
n
a
l
G
e
n
e
ra
to
r
Se
ri
e
s
RL
C Bra
n
c
h
1
Se
ri
e
s
RL
C Bra
n
c
h
Re
l
a
ti
o
n
a
l
O
p
e
ra
to
r
>
=
Pro
d
u
c
t
L
o
g
i
c
a
l
O
p
e
ra
to
r
1
OR
L
o
g
i
c
a
l
O
p
e
ra
to
r
AND
In
te
g
ra
to
r
1
s
G
a
i
n
3
2
*
pi
*
30
e
3
G
a
i
n
2
0
.
05
G
a
i
n
1
2
*
pi
*
100
e
3
G
a
i
n
2
.
28
e
-
3
Fc
n
1
.
15
+
5
*(
a
c
o
s
(
c
o
s
(
u
)))/
pi
Di
o
d
e
Da
ta
T
y
p
e
Co
n
v
e
rs
i
o
n
1
double
Da
ta
T
y
p
e
Co
n
v
e
rs
i
o
n
double
Cu
rr
e
n
t M
e
a
s
u
re
m
e
n
t
1
i
+
-
Co
n
s
ta
n
t
5
1
.
28
Co
n
s
ta
n
t
4
410
Co
n
s
ta
n
t
0
.
059
Cl
o
c
k
Ab
s
1
|
u
|
AC V
o
l
ta
g
e
So
u
rc
e
Swi
tc
h
g
1
2
0
.
5
e
-
3
H
co
mp
e
n
sa
tio
n
circu
it
co
mp
e
n
sa
tio
n
circu
it
tu
rn
-
on
d
e
la
y
b
lo
c
k
t
d
on
t
d
off
tu
rn
-
o
ff
d
e
la
y
b
lo
c
k
c
u
rren
t co
n
tro
l
le
r
P
WM
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
8
,
No
.
2
,
J
u
n
e
2
0
1
7
:
8
8
2
–
8
9
9
886
R
C
f
ilter
,
s
q
u
ar
er
an
d
d
iv
id
e
r
(
s
h
o
w
n
i
n
Fi
g
u
r
e
2
)
ar
e
s
u
b
s
titu
ted
w
it
h
b
lo
ck
„
C
o
n
s
ta
n
t”
i
n
th
is
m
o
d
el
in
o
r
d
er
to
s
p
ee
d
u
p
t
h
e
s
i
m
u
latio
n
s
.
A
ct
u
all
y
,
t
h
e
b
l
o
ck
„
C
o
n
s
ta
n
t”
n
u
m
er
ical
v
a
l
u
e
o
f
0
.
0
5
9
is
eq
u
al
to
1
/(
4
.
1
)
2
,
w
h
er
e
4
.
1
V
is
D
C
v
o
lta
g
e
at
t
h
e
o
u
tp
u
t
o
f
R
C
f
ilter
.
C
u
r
r
en
t
s
e
n
s
e
r
es
is
to
r
R
s
is
m
o
d
eled
u
s
in
g
t
w
o
SIM
U
L
I
NK
b
lo
c
k
s
:
„
C
u
r
r
en
t
m
ea
s
u
r
e
m
en
t
1
”
a
n
d
„
Gai
n
2
”.
I
n
p
u
t
c
u
r
r
en
t
co
n
tr
o
l
o
p
e
n
lo
o
p
g
a
in
ca
n
b
e
d
escr
ib
ed
b
y
f
o
r
m
u
la
[
3
4
]
:
T(s)
=
H
s
(
s
)
H
P
WM
(
s
)
H
c
(
s
)
H
c
i
c
(
s
)
,
(
4
)
w
h
er
e
H
s
(
s
)
is
th
e
c
u
r
r
en
t
s
e
n
s
o
r
g
ai
n
;
H
PWM
(
s
)
is
th
e
P
W
M
g
ain
;
H
c
(
s
)
is
th
e
c
u
r
r
en
t
lo
o
p
co
m
p
en
s
atio
n
cir
cu
it g
a
in
a
n
d
H
c
i
c
(
s
)
i
s
t
h
e
co
n
tr
o
l
-
to
-
in
p
u
t c
u
r
r
en
t g
ai
n
.
F
o
r
th
is
m
o
d
el
th
e
tr
a
n
s
f
er
f
u
n
c
tio
n
s
ar
e:
H
s
(
s
)=
0
.
0
5
;
H
P
W
M
(
s)
=
0
.
2
;
H
c
ic
(
s)
=
V
out
/(
sL)=
0
.
8
/s;
H
c
(
s)
=
(6
3
.
3
6
∙
1
0
-
6
s+
1
)/(
3
2
.
6
·1
0
-
12
s
2
+
7
.
2
6
∙
1
0
-
6
s)
(
5
)
B
ased
o
n
(
4
)
an
d
(
5
)
in
p
u
t c
u
r
r
en
t c
o
n
tr
o
l o
p
en
lo
o
p
g
ain
T
(
s
)
v
er
s
u
s
f
r
eq
u
en
c
y
is
d
ep
icte
d
in
Fig
u
r
e
4
.
Fig
u
r
e
4
.
I
n
p
u
t c
u
r
r
en
t c
o
n
tr
o
l o
p
en
lo
o
p
g
ain
o
f
b
o
o
s
t P
FC
co
n
v
er
ter
m
o
d
el
s
h
o
w
n
i
n
Fi
g
u
r
e
3
Gen
er
ato
r
o
f
f
r
eq
u
e
n
c
y
-
m
o
d
u
l
ated
s
a
w
to
o
t
h
s
i
g
n
al
i
s
s
h
o
w
n
in
Fi
g
u
r
e
5
.
I
t
co
n
s
is
t
s
o
f
m
o
d
u
lati
n
g
s
i
g
n
al
m
(
t
)
(
w
it
h
u
n
i
tar
y
a
m
p
lit
u
d
e)
g
en
e
r
ato
r
,
in
teg
r
ato
r
,
ad
d
er
,
am
p
li
f
ier
s
“
Gai
n
1
”
an
d
“
Gai
n
3
”
an
d
f
u
n
c
tio
n
b
lo
ck
“
Fc
n
”.
O
u
tp
u
t
s
ig
n
al
o
f
“
Ga
i
n
1
”
b
lo
ck
is
2
πf
s
w
0
t
,
b
u
t
o
u
tp
u
t
s
i
g
n
al
o
f
“
Gai
n
3
”
b
lo
ck
is
2
π
Δ
f
sw
m
(
t
)
.
W
h
er
e
f
s
w
0
is
ce
n
tr
al
s
w
i
tch
i
n
g
f
r
eq
u
en
c
y
a
n
d
Δ
f
sw
i
s
s
w
i
tch
i
n
g
f
r
eq
u
en
c
y
d
ev
iatio
n
.
T
h
e
o
u
t
p
u
t
v
o
lta
g
e
o
f
F
M
s
a
w
to
o
th
s
i
g
n
al
g
e
n
er
ato
r
ca
n
b
e
d
escr
ib
ed
b
y
f
o
r
m
u
la:
/
))
)
(
2
2
(
c
o
s
(
a
c
o
s
5
15
.
1
)
(
0
0
m
o
d
t
sw
sw
d
m
f
t
f
t
v
(
6
)
Fu
n
ctio
n
“
ac
o
s
”
i
s
n
ec
es
s
ar
y
i
n
o
r
d
er
to
g
e
t
s
a
w
to
o
th
v
o
lta
g
e
f
r
o
m
co
s
i
n
e.
T
h
e
m
o
s
t
i
m
p
o
r
tan
t
w
a
v
e
f
o
r
m
s
o
f
FM
s
a
w
to
o
th
s
ig
n
al
g
en
er
ato
r
ar
e
s
h
o
w
n
i
n
Fi
g
u
r
e
6
.
Fig
u
r
e
5
.
SIM
UL
I
NK
Mo
d
e
l o
f
FM
Sa
w
to
o
th
Sig
n
al
Ge
n
er
ato
r
10
1
10
2
10
3
10
4
10
5
-
5
0
0
50
100
150
f
r
e
q
u
e
n
c
y
(
H
z
)
T
(
s
)
(
d
B
)
S
i
gnal
G
enerator
Integrator
1
s
G
ai
n
3
G
ai
n
1
Fcn
1
.
15
+
5
*(
ac
os
(
c
os
(
u
)))/
pi
Cl
oc
k
v
mo
d
(
t
)
t
f
sw
0
2
0
2
sw
f
M
odul
ati
on
m
(
t
)
)
(
2
t
m
f
sw
sw
f
2
u
to
P
WM
t
sw
sw
d
m
f
t
f
u
0
0
)
(
2
2
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
E
ffects o
f S
w
itch
in
g
F
r
eq
u
en
c
y
Mo
d
u
la
tio
n
o
n
I
n
p
u
t
P
o
w
er Qu
a
lity o
f B
o
o
s
t
….
(
Den
is
s
S
tep
in
s
)
887
Fig
u
r
e
6
.
Si
m
u
lated
in
s
ta
n
tan
e
o
u
s
s
w
i
tch
i
n
g
f
r
eq
u
e
n
c
y
f
sw
(
t
)
an
d
o
u
tp
u
t s
ig
n
al
(
v
mod
(
t
)
)
o
f
F
M
s
a
w
to
o
th
s
ig
n
al
g
en
er
ato
r
.
(
P
ar
am
eter
s
:
s
w
itc
h
in
g
f
r
eq
u
en
c
y
d
ev
ia
tio
n
Δf
sw
=3
0
k
Hz;
m
o
d
u
lat
io
n
f
r
eq
u
en
c
y
f
m
=1
0
k
Hz;
ce
n
tr
al
s
w
itc
h
i
n
g
f
r
eq
u
e
n
c
y
f
s
w
0
=1
0
0
k
Hz)
4.
T
H
E
O
R
E
T
I
CA
L
ANA
L
YS
I
S O
F
I
NP
UT
CUR
RE
N
T
T
h
is
s
ec
tio
n
p
r
esen
t
s
a
co
m
p
r
eh
en
s
iv
e
t
h
eo
r
etica
l
an
al
y
s
is
o
f
th
e
ef
f
ec
t
s
o
f
SF
M
o
n
b
o
o
s
t
P
FC
co
n
v
er
ter
in
p
u
t c
u
r
r
en
t lo
w
-
f
r
eq
u
en
c
y
co
n
te
n
t a
n
d
T
HD.
Fo
r
th
e
an
al
y
s
i
s
SIM
U
L
I
NK
m
o
d
el
(
Fig
.
3
)
is
u
s
ed
.
4
.
1
.
Wit
ho
ut
SF
M
I
f
SF
M
is
n
o
t
u
s
ed
,
t
h
en
t
h
e
P
FC
co
n
v
er
ter
in
p
u
t
AC
cu
r
r
en
t
i
acin
s
p
ec
tr
u
m
i
s
m
ad
e
o
f
f
mains
h
ar
m
o
n
ics
w
it
h
f
r
eq
u
en
cie
s
mf
mains
(
w
h
er
e
m
=
1
,
2
,
3
…)
as
w
ell
a
s
h
i
g
h
-
f
r
eq
u
e
n
c
y
co
m
p
o
n
e
n
ts
w
it
h
f
r
eq
u
en
c
ies
nf
sw
0
±
k
f
mains
(
w
h
e
r
e
n
=
1
,
2
,
3
…,
k
=
1
,
2
,
3
)
.
T
h
is
i
s
d
ep
icted
in
Fig
u
r
e
7
(
c)
.
4
.
2
.
Wit
h SF
M
T
o
s
tu
d
y
th
e
ef
f
ec
t
o
f
S
FM
o
n
b
o
o
s
t
P
FC
co
n
v
er
ter
in
p
u
t
P
Q,
d
if
f
er
en
ce
b
et
w
ee
n
t
h
e
s
w
i
tch
t
u
r
n
-
o
n
an
d
tu
r
n
-
o
f
f
s
w
ich
in
g
d
ela
y
s
(
|
Δt
d
|
=
|
t
d
off
-
t
don
|
)
i
s
tak
e
n
in
to
ac
co
u
n
t.
A
s
it
ca
n
b
e
d
ed
u
ce
d
f
r
o
m
Fig
u
r
e
7
(
c)
an
d
Fig
u
r
e
8
(
c)
,
SF
M,
f
r
o
m
o
n
e
h
an
d
,
h
as
an
ad
v
a
n
ta
g
e
i
n
te
r
m
s
o
f
co
n
d
u
cted
E
MI
r
ed
u
c
tio
n
,
b
ec
au
s
e
h
i
g
h
-
f
r
eq
u
en
c
y
s
id
e
-
b
an
d
s
w
it
h
n
o
ticea
b
l
y
lo
w
er
a
m
p
lit
u
d
es
th
a
n
f
o
r
u
n
m
o
d
u
lated
P
F
C
co
n
v
er
ter
ap
p
ea
r
ar
o
u
n
d
f
s
w
0
a
n
d
its
h
ar
m
o
n
ics,
b
u
t
f
r
o
m
o
th
er
h
an
d
,
it
h
as
d
is
ad
v
a
n
tag
e,
b
ec
au
s
e
m
o
d
u
l
atio
n
f
r
eq
u
e
n
c
y
f
m
s
u
b
h
ar
m
o
n
ics
(
w
it
h
f
r
eq
u
e
n
ci
es
f
m
-
(
2
y
-
1
)
·
f
mains
,
w
h
er
e
y
=1
,
2
,
3
,
.
.
.
)
an
d
in
ter
h
ar
m
o
n
ics
(
w
it
h
f
r
eq
u
e
n
cie
s
f
m
+(
2
y
-
1)
f
ma
ins
an
d
z
f
m
±
(
2
y
-
1)
f
mains
,
w
h
er
e
z
=2
,
3
,
4
,
.
.
.
)
ap
p
ea
r
in
i
acin
s
p
ec
tr
u
m
[
F
ig
u
r
e
8
(
c)
]
.
First
o
r
d
er
s
u
b
h
ar
m
o
n
ic
A
1,
1
an
d
in
ter
h
ar
m
o
n
ic
A
1,
2
ar
e
th
e
h
ig
h
e
s
t
an
d
th
e
y
ar
e
m
o
s
t
r
esp
o
n
s
ib
le
f
o
r
th
e
in
p
u
t
c
u
r
r
en
t
i
acin
d
is
to
r
tio
n
.
Ob
v
io
u
s
l
y
t
h
e
s
u
b
h
ar
m
o
n
ics
an
d
in
ter
h
ar
m
o
n
ics
ca
n
s
ig
n
i
f
ica
n
tl
y
in
cr
ea
s
e
T
HD
o
f
P
FC
in
p
u
t
cu
r
r
en
t
an
d
r
ed
u
ce
P
F
.
Mo
r
e
o
v
er
s
in
ce
PQ
s
tan
d
ar
d
s
ar
e
m
o
r
e
co
n
ce
r
n
ed
w
it
h
lo
w
-
f
r
e
q
u
en
c
y
co
n
ten
t
o
f
SMP
S
in
p
u
t
c
u
r
r
en
t
,
th
e
s
e
lo
w
-
f
r
eq
u
en
c
y
co
m
p
o
n
e
n
ts
ca
n
ex
ce
ed
m
a
x
i
m
all
y
p
er
m
i
s
s
ib
l
e
v
al
u
es
s
et
b
y
th
e
P
Q
s
tan
d
ar
d
s
an
d
as
a
r
esu
lt
P
FC
co
n
v
er
ter
u
n
d
er
test
w
ill
f
ail
th
e
h
ar
m
o
n
ics
tes
t
(
o
f
co
u
r
s
e,
if
f
r
eq
u
en
cie
s
o
f
th
ese
u
n
d
esira
b
le
lo
w
-
f
r
eq
u
e
n
c
y
co
m
p
o
n
e
n
t
s
ar
e
b
elo
w
p
o
w
er
an
al
y
ze
r
m
a
x
i
m
u
m
an
a
l
y
s
i
s
f
r
eq
u
e
n
c
y
f
m
ax
,
e.
g
2
k
Hz
)
.
E
f
f
ec
t
o
f
SF
M
o
n
co
n
d
u
cted
E
MI
r
ed
u
ctio
n
(
in
ter
m
s
o
f
r
ed
u
ctio
n
o
f
th
e
a
m
p
litu
d
es
o
f
t
h
e
h
i
g
h
-
f
r
eq
u
en
c
y
co
m
p
o
n
en
t
s
)
in
b
o
o
s
t
P
FC
co
n
v
er
ter
h
as
b
ee
n
a
d
d
r
ess
ed
i
n
[
5
]
.
I
n
th
is
p
ap
er
w
e
w
i
ll
s
t
u
d
y
t
h
e
ef
f
ec
t o
f
SF
M
o
n
th
e
T
HD
o
f
i
acin
an
d
f
m
s
u
b
h
ar
m
o
n
ics a
n
d
in
ter
h
ar
m
o
n
ic
s
in
d
etail
s
.
As
it
is
d
ep
icted
in
Fi
g
u
r
e
8
(
a)
,
i
acin
b
ec
o
m
es
h
ig
h
l
y
d
is
to
r
ted
in
ti
m
e
d
o
m
ai
n
.
Fil
ter
ed
v
er
s
io
n
s
o
f
i
acin
s
h
o
w
d
is
ti
n
ct
lo
w
-
f
r
eq
u
e
n
c
y
r
ip
p
les
w
it
h
m
o
d
u
latio
n
f
r
eq
u
e
n
c
y
f
m
(
Fi
g
u
r
e
8
(
b
)
)
.
Am
p
lit
u
d
es
o
f
th
e
s
u
b
h
ar
m
o
n
ics
a
n
d
in
ter
h
ar
m
o
n
ics
ar
e
ap
p
r
o
x
i
m
atel
y
li
n
ea
r
l
y
d
ep
en
d
an
t
o
n
Δ
f
sw
,
a
s
s
h
o
wn
i
n
Fi
g
u
r
e
9
(
b
)
.
A
s
Δ
f
sw
i
n
cr
ea
s
es,
t
h
e
T
HD
o
f
i
aci
n
also
in
cr
ea
s
e
s
(
Fi
g
u
r
e
9
(
a)
)
.
Hig
h
er
v
al
u
es
o
f
|
Δt
d
|
lead
to
h
ig
h
er
T
HD
o
f
i
acin
an
d
th
e
a
m
p
lit
u
d
es
o
f
t
h
e
f
m
s
u
b
h
ar
m
o
n
ics
a
n
d
in
ter
h
ar
m
o
n
ics
(
t
h
e
y
in
cr
ea
s
e
ap
p
r
o
x
i
m
atel
y
li
n
ea
r
l
y
w
it
h
|
Δt
d
|
)
as
it
i
s
s
h
o
w
n
in
Fi
g
u
r
e
1
0
.
T
h
e
a
m
p
lit
u
d
es
o
f
t
h
e
u
n
d
esira
b
le
co
m
p
o
n
n
et
s
d
ep
en
d
also
o
n
f
m
:
a
s
f
m
in
cr
ea
s
es
t
h
e
a
m
p
l
itu
d
e
s
also
in
cr
ea
s
e
as
i
t
ca
n
b
e
d
ed
u
ce
d
f
r
o
m
Fig
u
r
e
1
1
.
T
h
e
T
HD
an
d
P
F
o
f
i
acin
f
o
r
d
if
f
er
e
n
t
f
m
ar
e
s
h
o
w
n
i
n
T
ab
le
1
.
No
te
th
e
T
HD
o
f
i
acin
i
n
t
h
is
tab
le
is
ca
lc
u
lated
u
s
i
n
g
(
3
)
w
h
e
n
M
=4
0
(
as
it
is
r
eq
u
ir
ed
b
y
t
h
e
in
ter
n
atio
n
a
l
s
tan
d
ar
d
s
)
.
As
s
h
o
w
n
i
n
T
ab
le
1
,
w
h
e
n
f
m
=1
0
k
Hz
n
e
g
ati
v
e
ef
f
ec
t
o
f
SF
M
o
n
th
e
lo
w
-
f
r
eq
u
e
n
c
y
co
n
te
n
t
a
n
d
th
e
T
HD
is
co
m
p
letel
y
n
e
u
tr
alize
d
(
th
e
y
ar
e
th
e
s
a
m
e
as
in
u
n
m
o
d
u
la
ted
ca
s
e)
.
T
h
is
i
s
b
ec
au
s
e
f
r
eq
u
e
n
cies
o
f
f
m
s
u
b
h
ar
m
o
n
ic
s
ar
e
h
i
g
h
er
th
a
n
40
f
mains
(
s
o
t
h
e
y
ar
e
o
u
t
o
f
t
h
e
s
co
p
e
o
f
th
e
P
Q
an
al
y
ze
r
,
b
ec
au
s
e
M
=
4
0
)
.
Ho
w
e
v
er
,
if
w
e
ca
lc
u
late
th
e
T
HD
u
s
in
g
(
3
)
w
h
e
n
M
=
2
1
0
(
T
a
b
le
2
)
,
th
en
T
HD
f
o
r
f
m
=1
0
k
Hz
is
e
v
e
n
w
o
r
s
e
th
a
n
f
o
r
lo
w
er
f
m
.
I
m
p
o
r
tan
t
co
n
clu
s
io
n
ap
p
ea
r
s
h
er
e:
if
w
e
w
an
t
to
0
0
.
1
0
.
2
x
10
50
100
0
0
.
1
0
.
2
0
2
4
6
8
150
T
ime
(
ms
)
T
ime
(
ms
)
v
m
o
d
(
t
)
(
V
)
f
s
w
(
t
)
(
k
H
z
)
sw
f
sw
f
m
f
/
1
0
sw
f
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
8
,
No
.
2
,
J
u
n
e
2
0
1
7
:
8
8
2
–
8
9
9
888
n
eu
tr
al
ize
th
e
n
e
g
at
i
v
e
ef
f
ec
t
o
f
SF
M
o
n
th
e
lo
w
-
f
r
eq
u
en
c
y
co
n
ten
t
f
r
o
m
n
o
r
m
at
iv
e
p
o
in
t
o
f
v
ie
w
,
th
e
n
w
e
s
h
o
u
ld
ch
o
o
s
e
f
m
s
li
g
t
h
tl
y
h
i
g
h
er
th
an
4
0
f
mains
.
(
a)
(
b
)
(
c)
Fig
u
r
e
7
.
Si
m
u
lated
i
acin
o
f
C
C
M
b
o
o
s
t P
FC
co
n
v
er
ter
: (
a)
in
ti
m
e
d
o
m
ai
n
w
it
h
o
u
t
SF
M;
(
b
)
in
ti
m
e
d
o
m
ain
w
it
h
o
u
t SFM
(
f
ilter
ed
)
; (
c)
in
f
r
eq
u
en
c
y
d
o
m
ai
n
w
it
h
o
u
t
SF
M.
(
P
ar
am
eter
s
:
f
mains
=
5
0
Hz,
V
inrms
=
2
4
0
V,
L
=
5
0
0
μ
H,
V
out
=
4
0
0
V,
R
out
=
4
8
5
Ω
,
P
out
=3
3
0
W
;
|
Δt
d
|
=6
0
0
n
s
.
No
te:
f
ilter
ed
v
er
s
io
n
o
f
i
acin
[
in
Fig
.
7
(
b
)
]
is
o
b
tain
ed
u
s
i
n
g
2
nd
-
o
r
d
er
lo
w
-
f
r
eq
u
en
c
y
f
ilter
w
i
th
c
u
to
f
f
f
r
eq
u
en
c
y
o
f
2
k
Hz)
Fig
u
r
e
8
.
Si
m
u
lated
i
acin
o
f
S
F
M
b
o
o
s
t P
FC
co
n
v
er
ter
:
(
a)
in
ti
m
e
d
o
m
ai
n
; (
b
)
in
ti
m
e
d
o
m
a
in
(
f
il
ter
ed
)
; (
c)
in
f
r
eq
u
en
c
y
d
o
m
ai
n
.
(
Mo
d
u
latio
n
p
ar
a
m
eter
s
:
m
(
t
)
is
s
in
e,
f
m
=
1
k
Hz,
Δ
f
sw
=
3
0
k
Hz,
f
s
w
0
=
1
0
0
k
Hz.
Oth
er
p
ar
am
eter
s
th
e
s
a
m
e
a
s
in
F
ig
u
r
e
7
)
.
0
.
2
5
0
.
2
6
0
.
2
7
0
.
2
8
0
.
2
9
-2
-1
0
1
2
Time
(
ms
)
Time
(
s
)
i
a
c
i
n
(
t
)
(
A
)
0
.
2
6
0
.
2
7
0
.
2
8
0
.
2
9
-2
-1
0
1
2
i
a
c
i
n
(
t
)
(
A
)
10
1
10
2
10
3
10
4
10
5
0
0
.
5
1
1
.
5
2
f
mains
fun
d
a
m
e
n
tal
harmonic
f
mains
harmonic
s
A
m
p
l
i
t
u
d
e
,
A
fre
q
u
e
n
cy
,
Hz
High
-
fre
q
u
e
n
cy
co
m
p
o
n
e
n
ts
f
mains
10
1
10
2
10
3
10
4
10
5
0
0.
5
1
1.
5
2
0
.
2
6
0
.
2
6
0
.
2
6
0
1
0
.
2
6
0
1
0
.
2
6
0
2
0
0
.
0
5
0
.
1
0
.
1
5
0
.
2
0
.
2
6
2
0
.
2
6
4
0
.
2
6
6
0
.
2
6
8
1
1
.
5
2
1
/
f
m
0
.
2
6
0
.
2
7
0
.
2
8
0
.
2
9
0
.
3
0
.
3
1
-2
-1
0
1
2
0
.
2
6
0
.
2
7
0
.
2
8
0
.
2
9
0
.
3
-3
-2
-1
0
1
2
T
im
e
(
s
)
T
im
e
(
s
)
i
a
c
i
n
(
t
)
(
A
)
i
a
c
i
n
(
t
)
(
A
)
f
mai
ns
fu
n
d
a
m
e
n
ta
l
h
a
rm
o
n
ic
f
mai
ns
h
a
rm
o
n
ic
s
A
m
p
l
i
t
u
d
e
(
A
)
Fr
e
q
u
e
n
cy
(
Hz
)
Hi
g
h
-
fre
q
u
e
n
cy si
d
e
-
b
a
n
d
s o
wi
n
g
to SFM
f
mai
ns
Opera
te
s
in
DCM
10
3
0
.
0
2
0
.
0
4
0
.
0
6
0
.
0
8
f
m
inter
h
a
rm
o
n
ic
s
and
su
b
h
a
rm
o
n
ic
s
o
wi
n
g
to SFM
f
m
-
f
m
a
i
n
s
f
m
+
f
m
a
i
n
s
f
m
su
b
h
a
rm
o
n
ic
s
f
m
in
te
rh
a
rm
o
n
ic
s
A
1
,
1
A
1
,
2
(
a
)
(
b
)
(
c
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
E
ffects o
f S
w
itch
in
g
F
r
eq
u
en
c
y
Mo
d
u
la
tio
n
o
n
I
n
p
u
t
P
o
w
er Qu
a
lity o
f B
o
o
s
t
….
(
Den
is
s
S
tep
in
s
)
889
0
2
4
6
8
10
0
5
10
15
20
25
30
Δ
f
s
w
(
k
H
z
)
T
H
D
(
%
)
f
m
=
1
k
H
z
f
m
=
1
.
8
k
H
z
0
20
40
60
80
100
120
0
5
10
15
20
25
30
Δ
f
s
w
(
k
H
z
)
A
1
,
1
(
m
A
)
f
m
=
1
k
H
z
f
m
=
1
.
8
k
H
z
(
a)
(
b
)
Fig
u
r
e
9
.
Si
m
u
lated
T
HD
o
f
th
e
P
FC
in
p
u
t c
u
r
r
e
n
t
i
acin
an
d
A
1,
1
v
er
s
u
s
Δ
f
s
w
f
o
r
d
if
f
er
en
t
f
m
.
(
Mo
d
u
latio
n
p
ar
am
eter
s
:
m(
t)
i
s
s
i
n
e;
o
th
er
p
ar
am
eter
s
o
f
th
e
P
F
C
co
n
v
er
t
er
th
e
s
a
m
e
a
s
in
Fig
.
7
)
.
No
te
T
HD
o
f
i
acin
is
o
b
tain
ed
u
s
i
n
g
(
3
)
w
h
e
n
M
=4
0
0
2
4
6
8
10
0
100
200
300
400
500
600
T
H
D
(
%
)
|
Δ
t
d
|
(
n
s
)
0
20
40
60
80
100
120
140
0
100
200
300
400
500
600
|
Δ
t
d
|
(
n
s
)
A
1
,
1
(
m
A
)
(
a)
(
b
)
Fig
u
r
e
1
0
.
Si
m
u
lated
T
HD
o
f
th
e
P
FC
i
n
p
u
t c
u
r
r
en
t
i
acin
a
n
d
A
1,
1
v
er
s
u
s
|
Δ
t
d
|
.
(
Mo
d
u
latio
n
p
ar
am
eter
s
:
m(
t)
i
s
s
in
e;
f
m
=1
.
8
k
Hz;
Δ
f
sw
=3
0
k
Hz;
o
th
er
p
ar
am
eter
s
o
f
t
h
e
P
FC
c
o
n
v
er
ter
th
e
s
a
m
e
a
s
in
F
ig
.
7
)
.
No
te
T
HD
o
f
i
acin
is
o
b
tain
ed
u
s
i
n
g
(
3
)
w
h
en
M
=
4
0
(
a)
(
b
)
Fig
u
r
e
1
1
.
Si
m
u
lated
s
p
ec
tr
a
o
f
i
acin
f
o
r
d
if
f
er
e
n
t
m
o
d
u
latio
n
f
r
eq
u
en
c
ies:
(
a)
f
m
=1
.
8
k
Hz;
(
b
)
f
m
=1
0
k
Hz.
(
Mo
d
u
latio
n
p
ar
a
m
eter
s
:
m
(
t
)
is
s
i
n
e;
Δ
f
sw
=3
0
k
Hz;
o
th
er
p
ar
a
m
eter
s
o
f
t
h
e
P
FC
co
n
v
er
ter
t
h
e
s
a
m
e
as i
n
Fig
u
r
e
7
)
.
T
h
e
T
HD
o
f
i
acin
an
d
a
m
p
lit
u
d
es
o
f
t
h
e
f
m
s
u
b
h
ar
m
o
n
ic
s
an
d
in
ter
h
ar
m
o
n
ic
s
ca
u
s
ed
b
y
SFM
d
ep
en
d
also
o
n
m
o
d
u
latio
n
w
a
v
e
f
o
r
m
m(
t
)
[
Fi
g
u
r
e
1
2
(
c
)
,
T
a
b
le
3
an
d
T
ab
le
4
]
.
Sa
w
to
o
th
m
(
t)
is
m
o
r
e
b
en
ef
icial
th
a
n
s
in
e
b
ec
au
s
e
it g
iv
e
s
a
lo
w
er
T
HD
an
d
a
m
p
lit
u
d
es o
f
t
h
e
u
n
d
esira
b
le
lo
w
-
f
r
eq
u
en
c
y
co
m
p
o
n
en
t
s
.
10
1
10
2
10
3
10
4
10
5
0
0
.
5
1
1
.
5
2
10
1
10
2
10
3
10
4
10
5
0
0
.
5
1
1
.
5
2
10
3
.
2
10
3
.
3
0
0
.
0
5
0
.
1
10
4
0
0
.0
5
0
.
1
0
.1
5
A
m
p
l
i
t
u
d
e
(
A
)
A
m
p
l
i
t
u
d
e
(
A
)
Fre
q
u
e
n
cy
(
Hz
)
Fre
q
u
e
n
cy
(
Hz
)
f
main
s
fun
d
a
me
n
tal
h
a
rm
o
n
ic
f
main
s
fun
d
a
me
n
tal
h
a
rm
o
n
ic
f
main
s
h
a
rm
o
n
ics
f
main
s
h
a
rm
o
n
ics
f
main
s
f
main
s
Hig
h
-
freq
u
e
n
cy
sid
e
-
b
a
n
d
s
Hig
h
-
freq
u
e
n
cy
sid
e
-
b
a
n
d
s
f
m
int
e
r
h
a
rm
o
n
ics a
n
d
su
b
h
a
rm
o
n
ics o
win
g
t
o
S
FM
f
m
int
e
r
h
a
rm
o
n
ics a
n
d
su
b
h
a
rm
o
n
ics o
win
g
t
o
S
FM
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
8
,
No
.
2
,
J
u
n
e
2
0
1
7
:
8
8
2
–
8
9
9
890
T
ab
le
1
.
Sim
u
lated
T
HD
an
d
P
F v
er
s
u
s
f
m
(
Δf
s
w
=
3
0
k
Hz,
f
s
w
0
=
1
0
0
k
Hz,
m(
t
)
is
s
in
e
)
f
m
(
k
H
z
)
T
H
D
(
%
)
PF
0
.
2
5
5
.
6
0
.
9
9
7
0
.
5
7
0
.
9
9
6
1
1
.
5
1
.
8
2
10
8
.
1
9
.
1
9
.
9
8
.
3
4
.
8
0
.
9
9
5
0
.
9
9
5
0
.
9
9
5
0
.
9
9
5
0
.
9
9
7
T
ab
le
2.
Sim
u
lated
T
HD
an
d
A
1,
1
v
er
s
u
s
Δf
sw
(
f
m
=
10
k
Hz,
f
s
w
0
=
1
0
0
k
Hz,
m(
t
)
is
s
in
e
)
Δf
sw
(
k
H
z
)
T
H
D
*
(
%
)
T
H
D
*
*
(
%
)
A
1,
1
(
mA
)
0
10
4
.
8
4
.
8
4
.
9
6
.
4
3
.
7
53
20
4
.
7
9
.
8
1
0
8
30
4
.
7
1
3
.
9
1
6
5
*
T
HD
o
f
i
acin
is
ca
lcu
lated
u
s
i
n
g
(
3
)
w
h
e
n
M
=4
0
;
*
*
T
HD
o
f
i
acin
is
ca
lc
u
lated
u
s
i
n
g
(
3
)
w
h
en
M
=2
1
0
.
(
a)
(
b
)
(
c)
Fig
u
r
e
1
2
.
Si
m
u
lated
i
acin
o
f
S
FM
b
o
o
s
t P
FC
co
n
v
er
ter
:
(
a)
in
ti
m
e
d
o
m
ain
; (
b
)
in
ti
m
e
d
o
m
ai
n
(
f
ilter
ed
)
; (
c)
in
f
r
eq
u
e
n
c
y
d
o
m
ai
n
.
(
Mo
d
u
latio
n
p
ar
a
m
eter
s
:
m
(
t
)
is
s
a
w
to
o
th
,
f
m
=
1
.
8
k
Hz,
Δ
f
sw
=
3
0
k
Hz,
f
s
w
0
=
1
0
0
k
Hz.
Oth
er
p
ar
a
m
eter
s
t
h
e
s
a
m
e
as
in
Fi
g
u
r
e
7
)
.
T
ab
le
3.
Sim
u
lated
T
HD
an
d
A
1,
1
f
o
r
d
if
f
er
en
t
m
(
t
)
(
f
m
=
1
k
Hz,
Δf
sw
=3
0
k
Hz,
f
s
w
0
=
1
0
0
k
H
z
)
m
(
t
)
T
H
D
(
%
)
A
1,
1
(
mA
)
si
n
e
t
r
i
a
n
g
u
l
a
r
8
.
1
6
.
8
7
6
.
2
62
saw
t
o
o
t
h
6
.
6
46
0
.
2
8
0
.
2
9
0
.
3
0
.
3
1
0
.
3
2
-3
-2
-1
0
1
2
T
im
e
(
s
)
i
a
c
i
n
(
t
)
(
A
)
Ti
m
e
(
s
)
0
.
27
0
.
2
8
0
.
2
9
0.
3
0.
3
1
0.
32
0.
33
-2
-1
0
1
2
i
a
c
i
n
(
t
)
(
A
)
10
1
10
2
10
3
10
4
10
5
0
0
.
5
1
1
.
5
2
f
mai
ns
f
un
da
men
t
al
ha
rmo
nic
f
mai
ns
ha
rmo
nics
A
m
p
l
i
t
u
d
e
(
A
)
Fre
qu
en
cy
(
Hz
)
High
-
f
re
qu
en
cy
side
-
ba
nd
s
owin
g t
o S
FM
f
mai
ns
f
m
in
te
r
ha
rmo
nics
and
subh
ar
mon
ics
owin
g t
o S
FM
10
3
.
2
10
3
.
5
10
3
.
8
0
0
.
0
2
0
.
0
4
0
.
0
6
0
.
0
8
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
E
ffects o
f S
w
itch
in
g
F
r
eq
u
en
c
y
Mo
d
u
la
tio
n
o
n
I
n
p
u
t
P
o
w
er Qu
a
lity o
f B
o
o
s
t
….
(
Den
is
s
S
tep
in
s
)
891
T
ab
le
4.
Sim
u
lated
T
HD
an
d
A
1,
1
f
o
r
d
if
f
er
en
t
m
(
t
)
(
f
m
=
1
.
8
k
Hz,
Δf
sw
=3
0
k
Hz,
f
s
w
0
=
1
0
0
k
Hz
)
Δf
sw
(
k
H
z
)
T
H
D
(
%
)
A
1,
1
(
mA
)
si
n
e
t
r
i
a
n
g
u
l
a
r
1
0
.
2
8
.
3
1
1
2
.
6
90
saw
t
o
o
t
h
7
.
1
7
0
.
3
4
.
3
.
Su
m
m
a
ry
o
f
t
he
T
heo
re
t
ica
l A
na
ly
s
is
An
a
n
al
y
s
i
s
o
f
t
h
e
e
f
f
ec
t
s
o
f
SF
M
p
ar
a
m
e
ter
s
o
n
t
h
e
i
n
p
u
t
PQ
o
f
t
h
e
PFC
co
n
v
er
ter
r
ev
ea
ls
m
a
n
y
in
ter
esti
n
g
f
ac
ts
.
L
et
u
s
s
u
m
m
ar
i
s
e
th
e
m
o
s
t i
m
p
o
r
ta
n
t
f
ac
t
s
:
1.
Fro
m
n
o
r
m
at
iv
e
p
o
in
t
o
f
v
ie
w
,
t
h
e
ef
f
ec
t
o
f
S
FM
o
n
in
p
u
t
PQ
of
th
e
P
FC
co
n
v
er
ter
ca
n
b
e
eith
er
h
ar
m
f
u
l
o
r
al
m
o
s
t
h
ar
m
le
s
s
.
T
h
is
d
ep
en
d
s
o
n
t
h
e
v
alu
e
of
f
m
:
a.
I
f
f
m
-
f
mains
>
M
f
ma
ins
(
w
h
er
e
M
is
t
h
e
h
ar
m
o
n
ic
n
u
m
b
er
u
p
to
w
h
ic
h
t
h
e
f
mains
h
ar
m
o
n
i
cs
s
h
o
u
ld
b
e
m
ea
s
u
r
ed
)
,
th
en
th
e
S
FM
is
h
ar
m
les
s
f
r
o
m
th
e
n
o
r
m
ati
v
e
p
o
in
t
o
f
v
ie
w
.
(
T
ab
le
1
an
d
T
a
b
le
2
s
h
o
w
th
at
if
f
m
=1
0
k
Hz,
t
h
en
t
h
e
T
HD
is
al
m
o
s
t
t
h
e
s
a
m
e
as
f
o
r
P
FC
co
n
v
er
ter
w
it
h
o
u
t
SF
M
.
)
b.
I
f
f
m
+
f
mains
<
M
f
ma
ins
,
th
e
n
th
e
SF
M
is
h
ar
m
f
u
l
f
r
o
m
t
h
e
P
Q
p
o
in
t
o
f
v
ie
w
b
ec
au
s
e
th
e
T
HD
an
d
th
e
a
m
p
lit
u
d
es
o
f
f
m
i
n
ter
h
ar
m
o
n
i
cs
an
d
s
u
b
h
ar
m
o
n
ics
i
n
cr
ea
s
e
(
T
ab
le
1
an
d
Fig
u
r
e
9
)
.
I
n
t
h
is
ca
s
e,
T
HD
an
d
t
h
e
a
m
p
lit
u
d
es
o
f
f
m
i
n
ter
h
ar
m
o
n
ics
an
d
s
u
b
h
ar
m
o
n
ics
in
cr
ea
s
e
ap
p
r
o
x
i
m
atel
y
l
in
ea
r
l
y
as
Δf
sw
an
d
|
Δt
d
|
in
cr
ea
s
e.
2.
P
r
ac
tical
ad
v
ices:
a.
I
n
o
r
d
er
to
g
et
lo
w
T
HD
an
d
th
e
a
m
p
lit
u
d
es
o
f
f
m
in
te
r
h
ar
m
o
n
ic
s
a
n
d
s
u
b
h
ar
m
o
n
ic
s
,
th
e
p
o
w
er
MO
SF
E
T
tu
r
n
-
o
n
a
n
d
t
u
r
n
-
o
f
f
s
w
itc
h
in
g
d
ela
y
s
s
h
o
u
ld
b
e
as
clo
s
e
as
p
o
s
s
ib
le.
So
ca
r
ef
u
l
atte
n
tio
n
s
h
o
u
ld
b
e
p
aid
o
n
d
esig
n
i
n
g
p
o
w
er
MO
SF
E
T
co
n
tr
o
l c
ir
cu
it
.
b.
I
f
f
m
is
c
h
o
s
en
to
b
e
lo
w
er
t
h
an
Mf
mains
,
t
h
en
Δf
sw
s
h
o
u
ld
b
e
ch
o
s
en
s
o
th
a
t
f
m
in
ter
h
ar
m
o
n
ics
a
n
d
s
u
b
h
ar
m
o
n
ics
a
m
p
li
tu
d
es
d
o
n
o
t
ex
ce
ed
th
e
m
a
x
i
m
all
y
p
er
m
is
s
ib
le
le
v
els
ac
co
r
d
in
g
to
t
h
e
P
Q
s
tan
d
ar
d
.
I
n
o
r
d
er
to
esti
m
ate
t
h
e
co
r
r
ec
t v
alu
e
o
f
Δf
sw
,
p
r
o
p
o
s
ed
SIM
UL
I
NK
m
o
d
el
ca
n
b
e
u
s
ed
.
3.
T
h
e
ch
o
ice
o
f
m
o
d
u
latio
n
w
a
v
ef
o
r
m
m
(
t
)
is
also
v
er
y
i
m
p
o
r
tan
t.
A
s
a
w
t
o
o
t
h
m(
t
)
g
i
v
es
a
lo
w
er
T
HD,
A
1,
1
an
d
A
1,
2
b
u
t
a
s
in
e
m
(
t
)
g
i
v
es
a
h
i
g
h
er
T
HD
,
A
1,
1
an
d
A
1,
2
(
T
ab
le
3
an
d
T
a
b
le
4
)
.
I
t
is
in
ter
esti
n
g
to
n
o
te
th
at
a
s
a
w
to
o
th
also
ex
h
ib
its
b
etter
E
MI
r
e
d
u
ctio
n
th
a
n
th
e
s
i
n
e
an
d
tr
ian
g
u
lar
m(
t
)
[2
8
]
.
T
h
is
is
w
h
y
th
e
s
a
w
to
o
th
m
(
t
)
is
t
h
e
b
est ch
o
ice
f
r
o
m
b
o
th
p
o
in
ts
o
f
v
ie
w
.
4.
I
f
f
m
is
c
h
o
s
e
n
to
b
e
lo
w
er
t
h
a
n
Mf
mains
,
t
h
e
n
t
h
er
e
is
a
tr
ad
e
-
o
f
f
b
et
w
ee
n
t
h
e
E
MI
a
tten
u
at
io
n
an
d
in
p
u
t
P
Q
o
f
th
e
P
FC
co
n
v
er
ter
b
ec
au
s
e
a
h
i
g
h
er
Δf
sw
g
i
v
es
a
h
ig
h
er
E
MI
atten
u
atio
n
,
b
u
t
th
e
T
HD
a
ls
o
in
cr
ea
s
es.
Ho
w
e
v
er
,
w
h
en
f
m
is
ch
o
s
en
to
b
e
s
li
g
h
tl
y
h
i
g
h
e
r
th
an
Mf
main
s
,
th
e
n
o
t
h
er
SF
M
p
ar
am
e
ter
s
s
h
o
u
ld
b
e
ch
o
s
e
n
o
n
l
y
f
r
o
m
th
e
E
MI
atte
n
u
atio
n
p
o
in
t
o
f
v
ie
w
,
b
ec
a
u
s
e
i
n
th
i
s
ca
s
e
S
FM
d
o
es
n
o
t
w
o
r
s
e
n
th
e
P
Q
f
r
o
m
n
o
r
m
at
iv
e
p
o
in
t o
f
v
ie
w
.
Fig
u
r
e
1
3
.
T
h
e
b
o
o
s
t P
FC
co
n
v
er
ter
m
o
d
el
(
Fig
u
r
e
3
)
tr
an
s
f
er
f
u
n
ctio
n
1
/(
1
+
T
(
s
)
)
m
a
g
n
itu
d
e
v
er
s
u
s
f
r
eq
u
en
c
y
5.
E
XP
E
R
I
M
E
NT
S
5
.
1
.
E
x
peri
m
ent
a
l S
et
up
I
n
th
e
e
x
p
er
i
m
e
n
ts
a
3
6
0
W
b
o
o
s
t
P
FC
co
n
v
er
ter
d
e
m
o
b
o
ar
d
f
r
o
m
ST
Mic
r
o
elec
tr
o
n
ics™
i
s
u
s
ed
[
3
1
]
.
T
h
e
P
FC
co
n
v
er
te
r
p
r
o
d
u
ce
d
b
y
th
e
ST
Mic
r
o
el
ec
tr
o
n
ics
is
b
ased
o
n
P
W
M
co
n
tr
o
ller
L
4
9
8
1
A
an
d
it
d
o
es
n
o
t
h
a
v
e
SF
M.
T
o
p
er
f
o
r
m
t
h
e
SFM
,
t
h
e
m
o
d
u
lat
in
g
s
ig
n
al
f
r
o
m
a
s
i
g
n
al
g
en
er
ato
r
is
f
ed
i
n
to
p
i
n
1
7
o
f
th
e
co
n
tr
o
ller
v
ia
R
C
cir
cu
it
a
s
d
escr
ib
ed
in
[
5
]
.
T
o
m
e
asu
r
e
Δf
sw
a
s
p
ec
tr
u
m
an
a
l
y
ze
r
(
Ag
ile
n
t E
4
4
0
2
B
)
10
1
10
2
10
3
10
4
10
5
-
1
5
0
-
1
0
0
-
5
0
0
50
F
r
e
q
u
e
n
c
y
(
H
z
)
|
1
/
(
1
+
T
(
s
)
)
|
(
d
B
)
Evaluation Warning : The document was created with Spire.PDF for Python.