Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
6, N
o
. 3
,
Sep
t
em
b
e
r
2015
, pp
. 41
5
~
42
2
I
S
SN
: 208
8-8
6
9
4
4
15
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Power Quality E
nhancement Usi
n
g the In
terlin
e P
o
wer Flow
Cont
roll
er
Abdelka
d
er B
e
nslima
n
e, Chelleli Bena
chiba
Department o
f
Electrical Engin
e
eri
ng, Univ
erc
i
t
y
of Bech
ar,
Alger
i
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Nov 24, 2014
Rev
i
sed
Jun
21,
201
5
Accepte
d
J
u
l 19, 2015
Interline power f
l
ow controller (I
PFC) is
one of the latest gen
e
ration Flexible
AC Trans
m
is
s
i
on s
y
s
t
em
(F
ACTS
). It is
abl
e
t
o
control s
i
m
u
lt
aneous
l
y
th
e
power flow of multipl
e
transm
ission lines
.
This paper presen
ts a stud
y
of th
e
impact
the
IPFC on profile of
voltage
, real and reactiv
e po
wer flow in
transmission lin
e in power
s
y
stem. The
results
without
and with IPFC are
compared in ter
m
s of voltage and activ
e power
flows to demo
nstrate th
e
performance of
the IPFC model.
Keyword:
FACTS
In
terlin
e power flow con
t
ro
ller
IPFC
Mu
ltip
le tran
smissio
n
lin
es
Power qu
ality
Transm
ission syste
m
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Abd
e
lk
ad
er Ben
s
lim
an
e
Power qu
ality
In
terlin
e Po
wer Fl
o
w
C
o
n
t
ro
ller (IPFC
)
Distribution sy
ste
m
, FACTs
Em
a
il: Kad
a
slima@yah
o
o
.
fr
1.
INTRODUCTION
Th
e m
o
st p
o
werfu
l
and
v
e
rsatile FACTS dev
i
ces is
In
terl
in
e Power Flow Con
t
ro
ller (IPFC). It is
cap
ab
le to
co
ntro
l at th
e sa
me ti
me
the active and reactive power fl
ow i
n
th
e tran
sm
issio
n
lin
e. It is a n
e
w
m
e
m
b
er o
f
F
A
C
T
S
co
nt
r
o
l
l
e
r
whi
c
h i
s
co
ncei
ve
d
fo
r t
h
e com
p
ensat
i
o
n a
n
d
po
we
r
f
l
ow m
a
nagem
e
nt
of
m
u
l
ti-lin
e tran
smissio
n
system [1
-4
].
In
terlin
e
Power Flow Co
n
t
ro
l
l
er is o
n
e
of the late
st FACTS cont
roller
us
ed to co
ntr
o
l p
o
we
r flo
w
o
f
m
u
l
tip
le tran
smissio
n
lin
e [5]. Th
e sim
p
lest
IPFC co
nsis
t
s
of t
w
o
bac
k
-t
o-
bac
k
,
dc-t
o
-
a
c
con
v
e
r
t
e
rs
n
a
m
e
ly
Static Synchronous
Series
Com
p
ensators
(S
SSC),
which
are co
nn
ected in
series
with
t
w
o tran
sm
issio
n
lin
es
th
ro
ugh
series co
up
lin
g
transform
e
rs, an
d
th
e d
c
term
inals of the converters are
connected togethe
r
via a
com
m
on dc l
i
n
k
as s
h
o
w
n i
n
Fi
gu
re
1. T
h
i
s
pape
r i
n
vest
i
g
at
es t
h
e
per
f
o
rm
ance o
f
I
P
FC
i
n
a
po
we
r
sy
st
e
m
n
e
two
r
k
with
a d
e
tailed
m
a
th
e
m
atical
m
o
d
e
l o
f
IPFC wh
ich
will b
e
referred
as IPFC
p
o
wer i
n
j
ection
m
o
d
e
l
as alread
y
presen
ted
.
Th
is m
o
d
e
l is help
fu
l i
n
u
n
d
e
rsta
nd
ing
th
e im
p
act o
f
th
e
IPFC on
th
e power
syste
m
in
the steady state. Furthe
r, the
IPFC in
jection
m
odel can eas
ily be incorporat
ed in the stea
dy state power flow
m
o
d
e
l an
d
th
e
p
r
op
o
s
ed
m
o
del is u
s
ed
to
d
e
m
o
n
s
trate th
e cap
ab
ilities o
f
IPFC. Th
is p
a
per shows also
t
h
at th
e
IPFC
has the
possibility of re
gulatin
g
voltage bus, active a
n
d reactive
pow
er flow, and
mini
mizing the
powe
r
losses sim
u
ltaneously.
2.
EQUI
VALE
N
T CI
RC
UIT
OF IPF
C
In its
gene
ral form
the IPFC
e
m
ploys a num
ber of
dc to a
c
each
provi
di
ng
series c
o
m
p
ensation for a
diffe
re
nt
line. In othe
r wo
r
d
s,
the IPFC
c
o
m
p
rises
a n
u
m
ber of St
at
i
c
Sy
nc
hr
on
o
u
s
Seri
es C
o
m
p
ensat
o
rs
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
41
5 – 422
41
6
(SSSC
) [4]. The IPFC obtained
by com
b
ing t
w
o
or
m
o
re series-connected conve
rte
r
s working togethe
r
extends the concept of
p
o
w
e
r fl
o
w
co
nt
rol
bey
o
nd
what
i
s
achi
e
va
bl
e w
i
t
h
t
h
e kn
ow
n
one c
o
n
v
e
r
t
e
r seri
es
FACTS
de
vices –SS
S
C. A
sim
p
lest IPFC, with three FACTS buses
–
i, j
and
k
sh
own fun
c
tion
a
lly i
n
Figu
re
1
,
is
u
s
ed
to
illu
strate th
e
b
a
si
c o
p
eration
p
r
i
n
cip
l
e [6
-7
]. Th
e IPFC co
n
s
i
s
ts o
f
t
w
o conv
erters b
e
i
n
g series-
co
nn
ected
with
two
transm
i
ssio
n
lin
es
v
i
a tran
sform
e
rs. It can
con
t
rol th
ree po
wer syste
m
q
u
a
n
t
ities -
i
nde
pen
d
e
n
t
t
h
ree p
o
we
r fl
o
w
s o
f
t
h
e t
w
o l
i
n
es. It
can
be
seen t
h
at
t
h
e s
e
ndi
ng
-e
nds
of
t
h
e t
w
o t
r
a
n
s
m
i
ssi
on
lines
are series connected
w
i
th th
e FA
CT
S bus
es
j
and
k
, res
p
ectively.
Fi
gu
re
1.
Eq
ui
val
e
nt
ci
rc
ui
t
o
f
t
w
o c
o
nve
rt
er
s IP
FC
Fi
gu
re
2.
P
o
we
r i
n
ject
i
o
n m
o
d
e
l
of
t
w
o c
o
n
v
e
rt
ers
IPFC
An
eq
ui
val
e
nt
ci
rcui
t
o
f
t
h
e I
PFC
wi
t
h
t
w
o
cont
rol
l
a
bl
e
se
ri
es i
n
ject
ed
v
o
l
t
a
ge s
o
urces
i
s
sh
ow
n i
n
Fi
gu
re
2 [
8
-
9
]
.
The real
po
we
r
can be e
x
c
h
an
ged
bet
w
ee
n
or
am
ong t
h
e ser
i
es con
v
ert
e
rs
vi
a t
h
e com
m
on DC
l
i
nk w
h
i
l
e
t
h
e sum
of t
h
e rea
l
po
wer e
x
cha
nge s
h
oul
d be
zero
.
Su
p
p
o
s
e i
n
Fi
g
u
re
2, t
h
e seri
es t
r
ans
f
orm
e
r
im
pedance i
s
, and t
h
e control
l
able injecte
d
voltage
source
is
∠
(n
= j, k
). Activ
e
and
reactive
powe
r flows
of the
FA
CTS branc
h
e
s
leaving buses
i, j, k
a
r
e gi
ve
n
by
:
cos
sin
(1
)
sin
cos
(2
)
sin
cos
sin
)
(3
)
sin
co
s
(4
)
jQ
P
ij
ij
jQ
P
ik
ik
Z
se
ij
Z
se
ik
0
ij
dc
se
se
P
PE
PE
ik
V
se
ij
V
se
ik
jQ
P
ji
ji
jQ
P
ki
ki
I
ji
I
ki
V
j
V
k
V
i
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Po
wer
Qu
a
lity
Enh
a
n
c
emen
t
Using
t
h
e In
terlin
e Po
wer Flow Co
n
t
ro
ller
(
A
b
d
el
ka
der Be
nsl
i
m
ane)
41
7
co
s
;
sin
co
s
;
sin
(5
)
sin
;
sin
sin
;
sin
(6
)
W
h
er
e
,
,
(
n=j, k
) are th
e
activ
e and reactiv
e power fl
o
w
s
o
f
two
IPFC branc
h
es
leaving bus
i
wh
ile
,
(
n =
j
,
k
) a
r
e t
h
e act
ive and reacti
v
e
powe
r
flows of the se
ries
FACTS
bra
n
ch
n-
i
l
eavi
n
g bus
n
(
n =
j
,
k
), re
spectively
θ
:
b
u
s a
ngl
e
: Magn
itu
d
e
of inj
ected vo
ltag
e
b
r
an
ch
i-j
: Angle
of inje
cted voltage
branch
i-j
In Fig
u
re 2,
,
and
are t
h
e c
o
m
p
l
e
x bus
vol
t
a
ges at
t
h
e
b
u
ses
i, j
a
nd
k
respectively, define
d
as
∠
,
.
is th
e co
m
p
lex
con
t
ro
llab
l
e
series inj
ected vo
ltag
e
source,
d
e
fi
n
e
d as
∠
(n
=
j,k
)
an
d
(n
=
j,k
)
is th
e
series co
up
ling tran
sfo
r
m
e
r im
p
e
d
a
n
ce.
For the
IPFC, t
h
e
powe
r m
i
s
m
atches at bus
e
s
i, j, k
shou
ld ho
ld
:
∆
0
(7
)
∆
0
(8
)
wh
ere, wit
h
ou
t
lo
ss
o
f
g
e
n
e
rality,
,
(m
=
i, j, k
) a
r
e t
h
e
real a
n
d re
active
power ge
ne
ration ente
ring
th
e bu
s
m
, and
,
(m
=
i, j, k
) are
the real a
n
d re
active powe
r l
o
ad leaving
bus
m
.
,
(
m=i, j, k
) ar
e
the sum
of
rea
l
and
reactive
powe
r flow
s
of the circ
uits c
o
nnected to
bus
m,
w
h
i
c
h i
n
c
l
ude t
h
e p
o
w
er
fl
o
w
cont
ri
b
u
t
i
ons
o
f
t
h
e
F
A
C
T
S
b
r
anc
h
es
gi
ve
n
by
eq
uat
i
o
ns
(
7
)
,
(
8
).
According to t
h
e
operating
princi
ple
of the
IPFC, t
h
e
operating co
n
s
train
t
rep
r
esen
ting
the active
po
we
r e
x
cha
n
g
e
bet
w
ee
n
o
r
a
m
ong t
h
e
seri
e
s
co
n
v
ert
e
rs
vi
a t
h
e c
o
m
m
on DC
l
i
n
k i
s
:
∑
= 0
(9)
Whe
r
e
∗
,
.
∗
means com
p
lex conjugat
e of the c
u
rrent,
(
n
= j
,
k
)
is the c
u
rrent t
h
rough t
h
e se
ries converter.
The IP
FC
sh
o
w
n i
n
Fi
gu
re
1 an
d Fi
g
u
re
2 can co
nt
r
o
l
bot
h act
i
v
e an
d react
i
v
e p
o
w
er fl
ow
s of
p
r
im
ary lin
e 1
b
u
t
on
ly activ
e po
wer
flow (or reactiv
e
power fl
ow) ca
n
be
controlled in s
econda
r
y line
2
.
Th
e
active and
reac
tive powe
r
flow c
ont
ro
l c
o
ns
traints of t
h
e
IPFC are:
∆
0
(1
0)
Whe
r
e
∗
∗
and
a
r
especif
eda
ct
i
v
epow
e
rlowcontr
olr
ef
er
ences
a
r
especif
edr
ea
ti
v
e
pow
er
lowcontr
o
lr
e
f
e
r
e
nces
∆
0
(1
1)
0
2
(1
2)
(1
3)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
41
5 – 422
41
8
(1
4)
Whe
r
e
isthemaximumlimitofthepow
ere
x
c
hangeof
seriescon
v
e
rterwiththeDClink
∗
∗
isthecurr
e
ntr
atingoftheseriecon
v
e
rter
(
n
=j,k)
(1
5)
3.
MO
DELING OF
IPF
C
IN NEWTO
N
P
O
WER
FLO
W
Suppose
for t
h
e IPFC
branches i-j,
th
e active an
d
reactiv
e
p
o
wer
flows
an
d
ca
n
be
c
ont
rol
l
e
d
to p
o
w
er
fl
ow
cont
rol
refe
re
n
ces
and
by t
h
e se
ries c
o
nverter
i-j
while for the
IPFC branche
s
i-k
only on the active power fl
ow and reactive
power fl
o
w
c
a
n be co
nt
r
o
l
l
e
d by
t
h
e seri
es
con
v
ert
e
r
i-k
, and
i
n
th
e
m
ean
ti
m
e
t
h
e activ
e p
o
wer ex
ch
ang
e
b
e
t
w
een
th
e two
series con
v
e
rters sho
u
l
d
b
e
balan
ced
.
In
add
itio
n,
active and
rea
c
tive powe
r ba
lance at buses
i, j, k
shoul
d a
l
so be m
a
intained. Ta
king into account all
these
po
we
r fl
ow
co
nt
r
o
l
co
nst
r
ai
nt
s an
d
bu
s p
o
w
e
r
m
i
sm
at
ch co
nst
r
ai
nt
s
,
t
h
e
c
o
m
p
act
form
o
f
Ne
wt
o
n
p
o
w
e
r fl
ow
eq
u
a
tion
with in
corp
oratio
n of
th
e IPFC m
a
y
b
e
written
as:
00
00
00
00
00
00
00
00
00
00
00
00
00
00
∗
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
∆
(16
)
Hence
∆
,
∆
,
∆
,
∆
,
∆
,
∆
are the active a
n
d re
active
power m
i
s
m
atches at bus
es
i, j, k
respectivel
y
.
,
,
,
,
,
are the
s
u
m
of active a
n
d reactiv
e
pow
er
f
l
ow
s leavin
g
t
h
e bu
ses
i, j, k
re
spectively. In
th
is fo
rm
u
l
atio
n
,
t
h
e term
s of
th
e fi
rst fou
r
ro
ws
o
f
th
e syst
e
m
jacobian matrix c
o
rr
esp
ond
to th
e IPFC
p
o
w
e
r
fl
o
w
c
ont
r
o
l
a
n
d act
i
v
e
p
o
we
r
excha
n
ge
bal
a
nce c
o
n
s
t
r
ai
nt
s
[
10]
.
4.
SIMULATION RESULTS
The si
m
u
l
a
t
i
on i
s
d
o
n
e u
s
i
n
g m
a
t
l
a
b and t
h
e res
u
l
t
s
are
prese
n
t
e
d
.
M
o
del
o
f
0
6
no
de
s (0
2
no
de
s
g
e
n
e
rator)
with
IPFC is sh
own
in
Figu
re
3. Th
e m
a
in
o
b
j
ectiv
e o
f
th
is co
n
t
ribu
tio
n
is to
ev
al
u
a
te th
e i
m
p
act
of the
IPFC
on the volta
ge level,
and
bot
h active and
react
ive losses.
The
Fi
gu
re 4 s
h
ow
s t
h
e l
o
cat
i
on
of t
h
e
I
PFC i
n
th
e n
e
t
w
or
k at th
e bu
s B4
.
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Po
wer
Qu
a
lity
Enh
a
n
c
emen
t
Using
t
h
e In
terlin
e Po
wer Flow Co
n
t
ro
ller
(
A
b
d
el
ka
der Be
nsl
i
m
ane)
41
9
Fi
gu
re
3.
Test
po
we
r sy
st
em
for
analyzing the effect
of the
IPFC
Fi
gu
re 4.
Test
po
we
r
sy
st
em
wi
t
h
IPFC
Fi
gu
re
5.
Test
po
we
r sy
st
em
m
odel
i
n
SIM
U
LI
N
K
wi
t
h
o
u
t
IPFC
L
1
:
80
km
do
ubl
e
ci
r
c
u
i
t
li
n
e
10
0
0
MV
A
23
0
Kv
B1
B4
Tr
1
10
00
M
V
A
B2
50
0
k
v
50
0M
VA
13
.
8
Kv
L
2
:
60
km
li
n
e
B3
T
r
2
8
00
M
V
A
5
0
0
k
v
23
0
Kv
12
0
0
MV
A
B5
13
.
8
Kv
2
00
M
VA
10
00 M
W
<
----
--
I
I
V
1
97 M
W
<
----
--
12
77 M
W
------
>
500
M
W
------>
6
90 M
W
------
>
68
7 M
W
-
27 M
v
ar
---
--->
23
0 k
V
U
P
FC
(P
h
a
s
o
r
M
ode
l
)
C
ontr
o
l
of
P
o
w
e
r
Fl
ow
us
i
ng a
U
n
i
f
i
e
d
P
o
w
e
r
Fl
ow
C
o
ntr
o
l
l
e
r
(U
P
F
C
)
796 M
W
15
M
v
ar
95
MW
500
M
W
10
00 M
W
5
89 M
W
12
79 M
W
8
99 M
W
28
M
v
ar
Na
t
u
r
a
l po
we
r
f
l
ow
s
(
B
y
p
as
s
br
ea
k
e
r
c
l
os
ed
)
ar
e
s
h
ow
n i
n
r
e
d
n
o
t
e
s
.
P
o
w
e
r
fl
o
w
s
w
i
th
U
P
F
C
(
P
r
e
f
=
68
7M
W
,
Q
r
ef
=
-
2
7
M
v
ar
)
a
r
e s
h
o
w
n
i
n
bl
ue
no
t
e
s
.
500
kV
Phas
or
s
po
w
e
r
gui
?
in
f
o
VP
Q
L
i
nes
V P Q
M
e
a
s
ur
e
m
ent
s
A
B
C
a
b
c
T
r
2:
80
0 M
V
A
230
k
V
/
500
k
V
A
B
C
a
b
c
T
r
1
:
1000
M
V
A
230
k
V
/
500
k
V
A
B
C
A
B
C
Thr
e
e
-
P
h
a
s
e
F
a
u
l
t
A
B
C
a
b
c
T
h
r
e
e
-
P
h
as
e B
r
ea
ke
r
1
A
B
C
a
b
c
T
h
ree
-
P
h
as
e B
r
ea
ke
r
Sy
s
t
em
D
o
u
b
le
c
lic
k
t
o
p
l
o
t
UP
F
C
C
o
n
t
r
o
l
l
a
bl
e R
egi
o
n
Q B
1
B
2
B3
B4
B5
A
B
C
Po
w
e
r
Pl
a
n
t #
2
Pnom
=
1200
M
W
A
B
C
Po
w
e
r
Pl
a
n
t #
1
Pnom
=
1000
M
W
V
P2
P3
P
V
M
e
as
ur
em
en
t
s
P B1 B2 B
3
B
4
B
5
L3_
50k
m
L2_
50k
m
L1_
65k
m
dou
bl
e c
i
r
c
ui
t
A
B
C
a
b
c
B_U
P
F
C
A
B
C
a
b
c
B5
A
B
C
a
b
c
B4
A
B
C
a
b
c
B3
A
B
C
a
b
c
B2
A
B
C
a
b
c
B1
Ac
ti
v
e
Po
w
e
r
s
(
M
W
)
B1
B2
B3
B4
B
5
Ac
ti
v
e
Po
w
e
r
s
(
M
W
)
B1 B2 B3 B4 B1
A
B
C
200
M
W
3
A
B
C
200
M
W
2
A
B
C
200
M
W
1
A
B
C
200
M
W
Q
B1
B
2
B
3
B4
B5
(M
v
a
r)
Q
B1
B
2
B
3
B4
B5
(M
v
a
r)
P
B1
B2
B3
B
4
B
5
(M
W
)
Vp
o
s
.
s
e
q
.
B1
B2
B3
B4
B5
V
pos
,
s
eq.
B
1
B2
B3
(p
u
)
Line pow
er (M
W
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
41
5 – 422
42
0
Fi
gu
re
6.
Test
po
we
r sy
st
em
m
odel
i
n
SIM
U
LI
N
K
wi
t
h
I
PFC
Th
e
Figu
r
e
s 5
an
d 6 r
e
p
r
esen
t
res
p
ect
i
v
el
y
t
h
e si
m
u
l
i
nk m
o
del
s
of t
h
e Fi
g
u
res
3
an
d
4.
Fi
gu
re 7.
The
vari
at
i
o
n of v
o
l
t
a
ge
wi
t
h
o
u
t
I
PFC
S
h
un
t
50
0 k
V
,
10
0 M
V
A
S
e
r
i
es
10
0
M
V
A,
10%
i
n
j
e
c
t
i
o
n
100
0 M
W
<
---
---
I
I
V
12
77
M
W
-
----
->
50
0 M
W
-----
->
6
90 M
W
---
--->
6
87
M
W
-
2
7 M
v
ar
--
---->
230 kV
U
P
FC
(
P
ha
s
o
r
M
o
d
e
l
)
C
o
n
t
ro
l
o
f
P
o
w
e
r Fl
ow
us
i
n
g a
U
n
i
f
i
e
d
P
o
w
e
r Fl
o
w
C
ontr
o
l
l
e
r
(U
P
F
C
)
7
9
6
M
W
15
M
v
ar
50
0 M
W
100
0 M
W
5
89 M
W
58
7 M
W
-
2
7
M
v
ar
12
79
M
W
8
99
M
W
2
8
M
v
ar
N
a
t
u
r
a
l
pow
er
f
l
ows
(
B
y
pas
s
br
eak
er
c
l
os
ed)
a
r
e s
how
n i
n
r
ed not
es
.
P
o
w
e
r
fl
o
w
s
w
i
th
U
P
F
C
(
P
r
e
f
=
687
M
W
,
Q
r
ef
=
-
27 M
v
ar
)
a
r
e s
how
n i
n
bl
u
e
not
es
.
500 kV
Ph
as
or
s
po
w
e
r
g
u
i
?
in
f
o
V
P
Q
Li
nes
V P Q
M
e
as
ur
e
m
e
n
ts
A
B
C
a
b
c
T
r
2: 80
0
M
V
A
23
0 k
V
/50
0
k
V
A
B
C
a
b
c
T
r
1
:
10
00
M
V
A
23
0k
V/50
0k
V
A
B
C
A
B
C
T
h
r
ee-
P
h
ase F
a
u
l
t
A
B
C
a
b
c
T
h
r
ee-
P
h
as
e
B
r
eaker
1
A
B
C
a
b
c
T
h
r
e
e-
P
h
ase B
r
ea
ker
Sy
s
t
e
m
D
o
u
b
le
c
lic
k
t
o
p
l
o
t
UP
F
C
Co
n
t
ro
l
l
a
b
l
e
Re
g
i
o
n
Step
Vq
r
e
f
Vq
Si
gn
al
s
& Sc
o
p
e
s
1
Vq
P_
B
3
S
i
gn
al
s
& Sc
o
p
e
s
S
c
op
e2
S
c
op
e1
Q
B1
B2 B3
B4
B5
A
B
C
Po
w
e
r
Pl
an
t #2
Pn
om
=
12
0
0
M
W
A
B
C
Pow
e
r
Pl
an
t
#
1
Pn
om
=
1
00
0 M
W
V
P2
P3
PV M
e
as
ur
e
m
en
ts
P B1
B2 B3
B4 B5
L
3_5
0k
m
L2
_50
k
m
L1
_6
5k
m
do
ub
l
e
c
i
r
c
ui
t
Ia
bc
_
B
3
V
abc
_B
3
B
y
pas
s
Vq
r
e
f
m1
m
A1
B1
C1
A'
1
B'
1
C'
1
A2
B2
C2
A'
2
B'
2
C'
2
IPF
C
P_
B
5
m1
m2
Va
b
c
I
abc
Vq
r
e
f
Vq
re
f
*
P_
M
W
C
o
n
t
r
o
lle
r
By
pa
s
s
1
A
B
C
a
b
c
B_U
P
F
C
A
B
C
a
b
c
B5
A
B
C
a
b
c
B4
A
B
C
a
b
c
B3
A
B
C
a
b
c
B2
A
B
C
a
b
c
B1
Ac
ti
v
e
Po
w
e
r
s
(
M
W
)
B1 B2
B3
B
4
B5
Ac
ti
v
e
Po
w
e
r
s
(
M
W
)
B1
B
2
B3
B
4
B1
A
B
C
20
0 M
W
3
A
B
C
20
0 M
W
2
A
B
C
20
0 M
W
1
A
B
C
20
0 M
W
Q
B1
B2
B
3
B4
B
5
(
M
v
a
r
)
Q
B1
B2
B
3
B4
B
5
(
M
v
a
r
)
P
B1
B2
B
3
B4
B5
(
M
W
)
V
p
o
s
.
s
e
q
.
B1
B
2
B3
B4
B
5
V
q
i
n
j
Vq
re
f
(p
u
)
P_
B
3
(M
W
)
V
q
i
n
j
Vq
re
f
(p
u
)
P_
B
4
(M
W
)
V
pos
,
s
eq.
B1
B
2
B3
(p
u
)
Line pow
er
(
M
W
)
0.
8
1
1.
2
1.
4
1.
6
1.
8
x 1
0
5
0.
45
0.
5
0.
55
0.
6
0.
65
0.
7
0.
75
Ti
m
e
(
S
)
V
o
lt
a
g
e
(p
u
)
v
o
l
t
age
bu
s
4
Vbus
4(:
,
1)
Vbus
4(:
,
2)
Vbus
4(:
,
3)
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
x 1
0
5
-0
.8
-0
.6
-0
.4
-0
.2
0
0.2
0.4
0.6
0.8
Ti
m
e
(
S
)
Vol
t
ag
e (
pu)
vo
ltag
e b
u
s
4
V
bus4
(
:,
1)
V
bus4
(
:,
2)
V
bus4
(
:,
3)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Po
wer
Qu
a
lity
Enh
a
n
c
emen
t
Using
t
h
e In
terlin
e Po
wer Flow Co
n
t
ro
ller
(
A
b
d
el
ka
der Be
nsl
i
m
ane)
42
1
Fi
gu
re 8.
The
vari
at
i
o
n of v
o
l
t
a
ge
wi
t
h
IP
F
C
Accord
ing
to
th
e ob
tain
ed
resu
lts u
s
ing
IPFC, we no
tice
that the IPFC
has an appare
nt
effect on the
voltage
l
e
vel
of t
h
e
ne
t
w
o
r
k
(Fi
g
u
r
e
7 an
d
Fi
g
u
re
8
)
,
despi
t
e
t
h
e
di
st
ur
ba
nces
vi
a t
h
e sh
o
r
t
ci
r
c
ui
t
cur
r
e
n
t
oc
cur
r
ed
bet
w
ee
n t
h
e
b
u
s
B
2
.
Fig
u
re
9
.
Active po
wer
withou
t IPFC
Fig
u
re 10
. Activ
e p
o
wer with
IPFC
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
-400
-200
0
200
400
600
800
Time(S)
Pow
e
r (M
W)
A
cti
v
e Pow
e
r
Bus B1-
B
2-
B3-
B
4
PBu
s
1
PBu
s
2
PBu
s
3
PBu
s
4
PBu
s
5
PBu
s
6
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
x 1
0
5
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
Ti
m
e
(
S
)
Voltage
(pu)
Volta
g
e b
u
s
4
V
bus4
(
:,
1)
V
bus4
(
:,
2)
V
bus4
(
:,
3)
0
500
1000
15
00
200
0
2500
3
000
3500
4000
45
00
500
0
-
600
-
400
-
200
0
200
400
600
800
A
c
ti
v
e
B
u
s
B
1
,B
2
,
B3
,B
4
Ti
m
e
(
S
)
P
o
w
e
r (M
W
)
PBu
s
1
PBu
s
2
PBu
s
3
PBu
s
4
PBu
s
5
PBu
s
6
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
41
5 – 422
42
2
Th
e
p
o
wer fl
ow is m
a
in
tain
ed
co
n
s
tan
t
du
e
to
th
e i
n
ser
tion o
f
th
e
I
PFC as is show
n
r
e
sp
ectiv
ely on
Fi
g
u
r
e
9
and
1
0
des
p
i
t
e
t
h
e
di
st
ur
ban
c
e
.
5.
CO
NCL
USI
O
N
Th
e
IPFC
th
rou
gho
u
t
t
h
e
o
b
t
ain
e
d
h
a
s showe th
at is cap
ab
le to
con
t
ro
l th
e
p
o
wer fl
o
w
in
m
u
ltilin
e
syste
m
s. It is u
s
ed
to
im
p
r
ov
e th
e
po
wer
q
u
a
lity b
y
th
e
i
m
b
a
lan
ce wh
ich
m
a
in
tain
s th
e lev
e
l
v
o
ltage in
th
e
n
o
rm
alized
rang
e its action
h
a
s a
p
o
s
itiv
e im
p
act on
t
h
e
bo
th
activ
e
and
reactiv
e lo
sses.
REFERE
NC
ES
[1]
Indra P
r
akash Mishra, S
a
njiv
Kum
a
r, “
C
ontrol of Activ
e
and
React
ive P
o
we
r F
l
ow in Multiple Lin
e
s throu
gh
Interline Power Flow Controller (IPFC)”,
International Jour
nal of Em
erging Technology and Advanced
Engineering
, ISSN 2250-2459,
Volume 2, Issue
11, November 2
012 .
[2]
A.V. NareshBab
u
, S. Sivanagar
a
ju, Ch
Padm
anabharaju and T
.
Ram
a
na “
M
ulti-Line Power Flow Control using
Interline Power
Flow Controller
(IPFC
) in Powe
r Tra
n
smission Sy
ste
m
s”
,
World
Academy o
f
Science,
Engin
eerin
g
and Technolog
y
, vol 39
2010.
[3]
Charan Sekhar
,
and Ashwani
Kumar,
"Congestion Managem
e
nt in H
y
brid
Electricity
M
a
r
k
ets with FACTS
Devices
wi
th Lo
adabi
lit
y Lim
its"
,
International Journal of
Electrical
and
Computer Engin
eering
(
I
JECE)
, V
o
l
.
2
,
No. 1, pp.75-89
,
2012.
[4]
Prakash Burade
and Jagdish Helonde,
“Optimal Location of FACTS Device on
Enhancing S
y
stem Security
”, in
International Jo
urnal of
Electrical
and Computer Engin
eering
(
I
JECE)
,
Vol. 2, No. 3
,
June 2012,
pp. 309-316
.
[5]
Rajshekarsin
agh
a
m
,
K. Vija
y K
u
m
a
r, “
R
ole of
Inte
l
i
ne Power
Flow Controlle
r for Voltag
e
Qualit
y”
,
IJ
AE
EE
(
i
nternational
jo
urnal of ad
vances in
electrica
l
an
d electronic
Eng
i
neering)
, Volu
me 1 Number 2.
[6]
X.P. Zhang
,
“
M
odelling
of th
e i
n
terlin
e power
fl
ow controll
er
an
d the g
e
ner
a
li
ze
d unified
power
flow contro
ller
i
n
Newton power f
l
ow”,
I
EE proc-
G
enerTransm Di
strib
, Volume 15
0 No 3, May
200
3.
[7]
VSN Narasimbh
a
Raju B.N
.
CH.V., Ch
ak
ravar
t
hi Improvement o
f
Power S
y
st
e
m
Sta
b
ility
Using IPFC a
nd UPFC
Controllers
. Volume 3, Issue 2,
August 2013.
[8]
Xiao-Ping Zhan
g and Christ
ian
Rehtan
z “
F
lexib
l
e AC Tr
ansm
ission s
y
stem
s: Modelling
and Co
ntrol”
, Sringer
–
Verlag B
e
rlin
H
e
idelberg 201
2.
[9]
P. Mar
y
Je
yasee
li, R. Gabri
e
l Ge
rm
ans, “
I
m
p
act of I
PFC on Dist
ance Prote
c
tion
of Multiline Tr
a
n
sm
ission
Sy
ste
m
,
JIRSET
, Volume 3, Issue 3, March 2014.
[10]
Yankuizhang
,
Y
a
n Zh
ang,
and
Chen Chen
, “A Novel Powe
r In
jection Model o
f
IPFC for Power Flow Analy
s
is
Inclusive of Practical Constr
aints
”
,
I
E
EE Transation on power
systems
, Vol. 21, No. 4
November 20
06.
Evaluation Warning : The document was created with Spire.PDF for Python.