Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l. 5,
N
o
.
1
,
Ju
ly 20
14
, pp
. 11
9
~
12
8
I
S
SN
: 208
8-8
6
9
4
1
19
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Wind Energy Conversion Ba
sed On Matrix Converter
Mu
tha
r
as
an
A*
, Rame
shk
u
mar
T
*
*, A
j
i
t
ha
A
*
**
*
,
** Dep
a
rtem
e
n
t of
El
ectr
i
ca
l
& E
l
ec
troni
cs
E
ngi
neer
ing, VelTech
HighTech
Engineering Co
llege
Che
nna
i,
T
a
mi
lNadu, India
*** Departmen
t
of Electr
i
cal
and
Electron
i
cs
Eng
i
neer
i
ng, Vel
Tech University
, C
h
ennai, TamilNadu,
India
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Mar 27, 2014
Rev
i
sed
May 24
, 20
14
Accepte
d
J
u
n 2, 2014
In recent
y
e
ars r
e
newable sources such
as
s
o
lar,
wave and
wind
are us
ed
for
the gener
a
tion of electricity
.
Wind is
one of the major renewable sources
.
The amount of energ
y
from a Wind Energ
y
C
onversion S
y
stem (WEC
S
)
depends not only
on th
e wind at
the site,
but also on the contro
l strateg
y
used
for the W
E
CS
.
In as
s
i
s
t
anc
e
to
get
the
approp
riat
e wind en
er
g
y
from
th
e
conversion s
y
st
em
, wind turbine genera
tor will be run in variabl
e
speed
mode. The variable speed
cap
ability
is achieved through th
e use of an
advanced power electronic co
nverter
. F
i
x
e
d
s
p
eed wind
tur
b
ines
an
d
induction g
e
ner
a
tors are often used in
wind farms. But the
limitations of such
generators are
lo
w efficiency
and
poor
power quality
which n
e
cessitates th
e
variab
le speed
wind turbine g
e
nera
tors such as Doubly
Fed
Induction
Generator
(DFIG) and Permanent Ma
gnet S
y
n
c
hronous Generator (PMSG).
A high-performance
configuration can be
obtained b
y
using
a
PMSG and a
converter in
co
mbination AC-DC-AC c
onnect b
e
tween stator
&
rotor points
for providing
th
e requir
e
d v
a
riable speed
oper
a
tio
n.
Keyword:
DFI
G
PMSG
R
e
newa
bl
e S
o
urce
WT
G
WECS
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Mu
tha
r
as
an
.
A
,
Depa
rt
m
e
nt
of
El
ect
ri
cal
and
El
ect
roni
cs
E
n
gi
nee
r
i
n
g,
VelTech High
Tech Eng
i
neering
College
,
Chennai, TamilNadu,
India.
Em
a
il:
m
u
th
arasan
m
@
g
m
ai
l.co
m
1.
INTRODUCTION
The
ba
si
c
co
m
ponent
s o
f
w
i
nd ene
r
gy
co
n
v
ersi
on
sy
st
em
are sh
o
w
n
i
n
t
h
e
Fi
gu
re1
.
It
co
nsi
s
t
s
o
f
wind
tu
rb
in
e co
up
led
to
a p
e
rm
an
en
t
m
a
g
n
e
t syn
c
h
r
o
nous
generat
o
r a powe
r electronic converter c
o
nnecte
d
t
o
t
h
e gri
d
[
1
]
.
The wi
n
d
t
u
r
b
i
n
e pr
od
uces
o
u
t
put
t
o
r
que re
q
u
i
r
e
d
t
o
d
r
i
v
e
t
h
e perm
anent
m
a
gnet
sy
nc
hr
on
o
u
s
gene
rat
o
r de
pe
ndi
ng
up
o
n
t
h
e wi
nd
vel
o
ci
t
y
. The out
put
vol
t
a
ge ge
ne
r
a
t
e
d fr
om
t
h
e perm
anent
m
a
gnet
syn
c
hr
ono
us
gen
e
r
a
t
o
r is f
e
d
to
th
e gr
id th
rou
g
h
a m
a
trix
co
nv
erter. Th
e
co
n
t
ro
l
of th
e
p
o
wer fed to
t
h
e
g
r
i
d
is do
n
e
b
y
con
t
ro
lling
th
e du
t
y
ratio
o
f
t
h
e
matrix
con
v
e
rt
er [2
].
Fi
gu
re
1.
W
i
nd
ene
r
gy
c
o
nve
r
s
i
o
n
sy
st
em
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
119
–
1
28
12
0
Wheele
r
et.al
[
2
]
ha
ve
dem
o
n
s
t
r
at
ed a
f
o
u
r
out
put
l
e
g m
a
tri
x
c
o
nve
rt
er a
n
d
a
vari
a
b
l
e
s
p
eed
di
ese
l
g
e
n
e
rator in
tegrated
t
o
g
e
t
h
er t
o
p
r
o
d
u
ce a three ph
as
e
p
l
u
s
neu
t
ral
u
tility p
o
w
er sup
p
l
y.
Harm
o
n
i
cs redu
ctio
n
was al
so
car
ri
ed
out
[2]
.
M
odel
i
n
g
of
a c
o
n
v
e
r
t
e
r c
o
n
n
e
c
t
e
d si
x
p
h
ase
PM
SG i
s
d
o
n
e
by
usi
n
g dy
nam
i
c
equat
i
o
ns
o
f
t
h
e m
achi
n
e and t
h
e
n
real
i
z
at
i
on
usi
n
g d
e
fi
na
bl
e S f
u
nc
t
i
on i
n
M
A
TL
AB
/
sim
u
l
i
n
k
.
The
interface is done with m
easurem
ent blocks
in MATLA
B
itself [3]. The overall circuit for whic
h variable
sp
eed
wind
tu
rb
in
e alon
g
conn
ected
with
p
e
rm
an
en
t
m
a
g
n
e
t syn
c
h
r
o
nou
s g
e
n
e
rato
r
will b
e
u
s
ed
to
con
n
ect
an
A
C
gr
id alon
g w
ith Vo
ltage Sou
r
ce Conver
t
er
at
H
V
D
C
b
y
u
s
i
n
g conv
er
ter
s
w
a
s
d
e
sign
ed and
sim
u
latio
n
s
results
were
ex
plained
[
4
]
.
A m
e
t
hod t
o
a
n
al
y
ze t
h
e st
eady
st
at
e perf
o
r
m
a
nce of a st
a
ndal
one
PM
S
G
d
r
i
v
e
n
by
a
di
esel
en
gi
ne
is prese
n
ted
[5]. The fundam
ental pr
i
n
ciple
of m
a
trix converter, the m
o
du
l
a
t
i
on t
ech
n
o
l
ogi
es a
n
d t
h
e c
ont
rol
strateg
i
es are discu
ssed
b
y
. Th
e u
s
e
o
f
p
r
o
t
ectio
n
circu
its
,
filters are p
r
esen
ted
[6
]. The main
o
b
j
ectiv
e o
f
th
e
pr
o
j
ect
i
s
t
o
devel
o
p a co
nt
rol
st
rat
e
gy
t
o
reg
u
l
a
t
e
po
wer
fl
o
w
t
h
r
o
ug
h t
h
e
gri
d
by
ad
just
i
ng t
h
e
dut
y
rat
i
o of
t
h
e
m
a
t
r
i
x
conve
rt
er an
d h
e
nce t
o
de
vel
op a m
a
t
h
em
at
i
cal
m
odel
for t
h
e sam
e
[7]
.
The
m
a
gni
t
ude
o
f
fu
n
d
am
ent
a
l
freq
u
e
n
cy
com
p
o
n
e
n
t
i
s
co
n
t
rol
l
e
d
by
ad
j
u
st
i
n
g t
h
e m
odul
at
i
o
n r
a
t
i
o
[8]
.
Ne
ft
et.al
[9
]
devel
ope
d se
v
e
ral
i
ndi
rect
m
odul
at
i
on t
echni
que
s i
n
whi
c
h M
C
i
s
consi
d
ere
d
a
s
a t
w
o st
age
po
wer
co
nv
er
sion
un
i
t
(
a
r
ectif
ier
stag
e to
pr
ov
id
e a v
i
r
t
u
a
l
dc l
i
nk a
nd a
n
i
n
v
e
rt
er st
age t
o
pr
o
duce t
h
ree
out
put
vol
t
a
ge
s).
Th
e first sectio
n
p
r
ov
id
es the b
a
sic in
trodu
ctio
n
o
f
th
e
p
r
oj
ect wh
ich
d
eals with
th
e in
form
atio
n
in
feren
ce fro
m
th
e v
a
ri
o
u
s
referen
ces and
also
th
e literature rev
i
ew.
T
h
e
m
odel
i
ng of wi
n
d
gene
rat
o
r
s
a
n
d
their ass
o
ciated the
o
ry.
The s
ection
d
eals wi
th
th
e
o
f
m
a
tri
x
conv
erter fo
r p
o
wer regu
latio
n. Th
e section
d
eal
s
with the technique used to
regulate th
e fl
ow of po
wer to th
e g
r
id
t
h
ro
ug
h
th
e m
a
trix
co
nv
erter in
variab
le
spee
d [1
0]
. La
szl
o
Hu
be
r et
al
(19
9
5
)
de
ve
l
ope
d a desi
g
n
for i
m
pl
em
en
t
a
t
i
on of t
h
e t
h
ree p
h
ases t
o
t
h
ree
pha
ses M
C
wi
t
h
po
we
r fact
o
r
c
o
r
r
ect
i
on at
i
nput
[
1
1]
. It
consi
s
t
s
o
f
t
h
e sim
u
l
a
t
i
on resul
t
s
and
gi
v
e
s t
h
e
concl
u
si
o
n
.
2.
DYN
AMIC
OF WIND
TU
R
B
IN
E
Fi
gu
re 1
W
i
n
d
ener
gy
con
v
e
r
si
on
devi
ces ca
n be
br
oadl
y
cl
assi
fi
ed i
n
t
o
t
w
o t
y
pes acc
or
di
n
g
t
o
t
h
ei
r
ax
is align
m
en
t
i.
Horiz
o
ntal
axi
s wind turbines.
ii.
Vertica
l
ax
is
wind turbines.
The
wind turbi
n
es c
o
nver
t
t
h
e ener
gy
co
nt
a
i
ned i
n
t
h
e wi
nd i
n
t
o
m
echanical energy which is the
n
conve
r
ted into
electrical energy by
m
eans of ge
nerat
o
rs
. T
h
e wi
n
d
t
u
rbi
n
e ext
r
act
s p
o
w
e
r fr
om
wi
nd a
nd t
h
en
con
v
e
r
t
s
i
t
i
n
t
o
m
echani
cal
po
wer
.
The am
ount
of aer
ody
na
m
i
c
t
o
rq
ue i
s
rel
a
t
e
d t
o
t
h
e wi
nd spee
d as fo
l
l
o
ws
[1]
.
0
.
5
,
/
(1)
whe
r
e
is th
e air d
e
n
s
ity, R is th
e turb
i
n
e rad
i
u
s
, V
w
i
s
t
h
e wi
nd
spee
d
and C
P
is th
e p
o
wer
co
efficien
t,
0
i
s
th
e
p
itch
ang
l
e of ro
tor, A is
tu
rb
in
e
ro
tor area.
Th
e
tip
sp
eed
ratio
is
λ
= Rw
m
/V
w
,
where
m
t
h
e t
u
r
b
i
n
e
r
o
t
o
r
spee
d an
d ae
r
o
dy
nam
i
c powe
r
[
1
0]
is,
(2
)
Power coe
ffici
ent,
p
C
is g
i
v
e
n by,
0
.
2
2
0
.
4
5
(
3
)
Whe
r
e
θ
is th
e
p
itch
an
g
l
e and
is related to
λ
as
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Wi
nd
Ene
r
gy
C
onver
si
o
n
B
a
sed
On
M
a
t
r
i
x
C
onvert
e
r
(
M
u
t
har
as
an
A)
12
1
.
.
(
4
)
The rel
a
t
i
ons
hi
p bet
w
ee
n
P
C
and
f
o
r
t
h
e
gi
ve
n
val
u
es
o
f
pi
t
c
h
angl
e i
s
sh
o
w
n
i
n
Fi
gu
re
2.
`
0.
5
0.
45
0.
4
0.
35
0.
3
0.
25
0.
2
0.15
0.
1
0.05
0
0
2
4
6
8
10
Figure
2.
Power
c
o
efficient
P
C
(
,
) c
u
r
v
es
The rate
of c
h
ange in m
echanical a
n
gula
r spee
d
related
to
eq
u
i
v
a
lent in
ertia o
f
g
e
n
e
rat
o
r and
tu
rb
in
e,
eq
J
is as fo
llo
ws
/
∝
(
5
)
Whe
r
e
e
T
is th
e electro
m
a
g
n
e
tic to
rqu
e
,
wg
T
is th
e aerod
yn
am
ic
to
rqu
e
tran
sferred
to
th
e
g
e
nerator
and
m
is th
e ro
tatin
g
d
a
m
p
in
g
.
Th
e t
o
rq
u
e
inpu
t to
g
e
n
e
rat
o
r
related
to g
e
ar
ratio
,
g
n
as
/
(
6
)
Accord
ing
to
th
e relatio
n
between
Cp
an
d
λ
gi
ven
by
Fi
g
u
re 2 as t
h
e t
u
rbi
n
e spee
d ch
ange
s fo
r a
g
i
v
e
n
wind
v
e
lo
city th
ere
will b
e
a certain turb
i
n
e sp
eed th
at g
i
v
e
s a m
a
x
i
m
u
m
p
o
w
er outp
u
t
.
3.
MA
THEM
A
T
ICA
L
MOD
ELING
OF MC
The Matrix C
o
nve
r
ter
used
here a
direct t
h
ree
ph
ase to t
h
ree
phase
variable fre
quenc
y
& varia
b
l
e
voltage c
o
nve
rter. The three-pha
se Ma
trix Converte
r m
a
k
e
s an nine
bidi
rectional s
w
itches,
whic
h are
each
com
posed
of
back t
o
bac
k
con
n
ect
ed i
n
su
l
a
t
e
d gat
e
bi
p
o
l
a
r t
r
a
n
si
st
or
s
(IGB
T
),
resul
t
i
ng i
n
a t
o
t
a
l
of
1
8
devi
ces
.
Each
of
t
h
ese
swi
t
c
hes c
a
n
e
i
t
h
er
bl
oc
k
or
con
d
u
ct
t
h
e
cu
rre
nt
i
n
b
o
t
h
d
i
rect
i
ons
de
pe
ndi
ng
o
n
t
h
e
gat
e
cont
rol
si
gnal
s
, t
hus al
l
o
wi
ng a
n
y
i
n
p
u
t
phase t
o
be
con
n
ect
ed t
o
any
out
put
p
h
a
se at
any
tim
e [6]
.
Fi
gu
re 3
depi
ct
s t
h
e gene
ra
l
t
opol
ogy
o
f
t
h
e M
a
t
r
i
x
C
o
nve
rt
er. Eac
h
of t
h
e
ni
ne s
w
i
t
c
hes de
pi
ct
ed i
s
com
p
rised of back-t
o-back
IGBTs config
u
r
ed
as sho
w
n
if Fig
u
re 3
also
allo
ws an
un
i
d
irectio
n
a
l cu
rrent with
bi
di
rect
i
o
nal
v
o
l
t
a
ge bl
oc
ki
n
g
&
co
nt
r
o
l
l
e
d bi
di
rect
i
o
nal
p
o
we
r fl
o
w
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
119
–
1
28
12
2
Fi
gu
re
3.
Si
m
p
l
i
f
i
e
d re
pres
ent
a
t
i
on
of
M
a
t
r
i
x
co
nve
rt
er
The m
a
t
h
em
ati
cal
m
odel
i
ng
of M
C
com
p
ri
ses of t
h
ree se
ct
i
ons. T
h
ey
a
r
e p
r
i
n
ci
pl
e a
n
d swi
t
c
hi
ng
al
go
ri
t
h
m
,
po
w
e
r ci
rc
ui
t
an
d l
o
ad
m
odel
[
1
]
.
The m
a
t
h
em
at
ical
m
odel
i
n
g
o
f
M
C
i
s
s
h
o
w
n
i
n
Fi
gu
re
4.
Fi
gu
re
4.
M
a
t
h
em
at
i
cal
m
odeli
ng
o
f
m
a
t
r
i
x
con
v
e
r
t
e
r
3.
1
Switchi
n
g an
d Contr
o
l
Al
gori
t
hm
The t
h
ree
phas
e input
volta
ge
s
of the
converter [7] are,
cos
cos
2
3
cos
4
3
(7)
The
output vol
t
age vect
ors
of
the MC are
,
cos
cos
cos
(8
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Wi
nd
Ene
r
gy
C
onver
si
o
n
B
a
sed
On
M
a
t
r
i
x
C
onvert
e
r
(
M
u
t
har
as
an
A)
12
3
whe
r
e
i
and
o
are the fre
quencies of input and
out
put vo
ltag
e
of MC resp
ectiv
ely. Th
e relatio
n
s
hi
p
bet
w
ee
n i
n
p
u
t
and
o
u
t
p
ut
vol
t
a
ges i
s
gi
ve
n a
s
f
o
l
l
o
ws
,
M
.
(
9
)
t
M
is th
e tran
sfer
matrix
g
i
v
e
n
by
(10)
Suc
h
that,
dut
y cycle of s
w
itch
Aa
S
.
s
T
is th
e samp
lin
g p
e
riod
. Th
e inpu
t current is g
i
v
e
n
b
y
,
(
1
1)
Du
ty cycles mu
st satisfy th
e fo
llo
wi
n
g
cond
itio
n
s
i
n
o
r
d
e
r to
av
o
i
d
sho
r
t circu
it on
t
h
e inp
u
t
sid
e
[6
].
1
1
1
(
1
2)
Duty cycles for the
transfe
r
ra
tio of
0.5 are
,
1
2
1
2
1
2
(
1
3)
1
2
1
2
1
2
(14)
1
2
1
2
1
2
(15)
s
o
m
t
h
e m
odul
at
i
o
n
fre
q
u
ency
is
th
e relativ
e p
h
ase o
f
th
e ou
tpu
t
an
d
q
is th
e v
o
ltag
e
tran
sfer ratio
. Th
e
switch
i
ng
ti
m
e
s
fo
r
vo
ltag
e
tran
sfer
ra
tio
o
f
0.866
ar
e
1
sin
s
i
n
3
(16)
correspo
n
d
s
to
th
e inpu
t ph
ases
A, B,
C resp
ectiv
ely,
m
q
i
s
t
h
e ma
x
i
mu
m
v
o
ltag
e
rati
o
(0
.8
66),
q
is the req
u
i
red vo
lt
ag
e
ratio
,
im
V
is th
e i
n
pu
t
v
o
ltag
e
v
ector m
a
g
n
itu
d
e
,
s
T
is th
e
sam
p
l
i
ng peri
o
d
a
n
d
V
i
s
gi
ve
n
by
cos
cos
3
3
(
1
7)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
119
–
1
28
12
4
Whe
r
e
∶
0,2
/3,4
/
3
c
o
r
r
es
po
n
d
s t
o
t
h
e
o
u
t
put
pha
ses a,
b, c
res
p
ect
i
v
el
y
.
4.
CONT
ROL SCHEME
TO
REGUL
A
TE POWER FLOW
The control voltages are phas
e delayed, or a
dva
nce
d
,
by an angle
δ
with refere
nce to t
h
e ac supply
vol
t
a
ge V
i
, the conve
r
ter ac term
inal voltage will be delaye
d, or advance
d
, accordingl
y, making the conve
rter
fu
nct
i
o
n as a rect
i
f
i
e
r or an i
nve
rt
er. T
h
e m
a
gni
t
u
de o
f
f
u
ndam
e
nt
al
freq
u
ency
com
p
o
n
e
nt
i
s
cont
r
o
l
l
e
d by
adj
u
st
i
n
g t
h
e
m
odul
at
i
on
rat
i
o
[8]
.
The
vect
or
co
nt
r
o
l
sc
he
m
e
t
o
re
gul
at
e
po
we
r fl
ow
i
s
det
a
i
l
e
d i
n
Fi
g
u
re
5
.
Th
e u
tility sys
t
e
m
v
o
ltag
e
V
abc,s
i
s
t
r
ansfo
r
m
e
d sy
nchr
o
n
ousl
y
r
o
t
a
t
i
ng
refe
rence f
r
am
e by
Parks
t
r
ans
f
o
r
m
a
ti
on.
Parks T
r
an
sf
orm
a
tion computes the
dire
ct axis
, q
u
a
dratic ax
is
in
a two
ro
tating
refe
rence
frame accordi
n
g to
the following e
quations
sin
sin
sin
(
1
8)
cos
cos
cos
(19
)
Whe
r
e
ro
tation
sp
eed
o
f
t
h
e
ro
tating
fram
e
P* is obtained fr
o
m
the
m
a
xi
m
u
m
p
o
wer
point tr
acker.
Fi
gu
re
5.
C
o
nt
r
o
l
sc
hem
e
t
o
re
gul
at
e
po
we
r fl
ow
.
The act
ual active
powe
r (P) a
n
d reactiv
e
power (Q)
are c
o
m
puted by,
i
d
*
i
qs
e
M
C
a-b-c to
Power
calculato
r
Reactive power
calculator
PI
a-b-c to
+
+
+
-
+
-
V
abc
,
s
I
abc,s
V
ds
e
V
qs
e
i
ds
e
Q*
V
qI
*
e
Q
PI
-
ω
eL
ω
eL
+
-
to a
-
b
-
c
V
abc,
I
P
i
q
*
V
dI
*
e
Gri
d
P*
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Wi
nd
Ene
r
gy
C
onver
si
o
n
B
a
sed
On
M
a
t
r
i
x
C
onvert
e
r
(
M
u
t
har
as
an
A)
12
5
P=
v
e
ds
i
e
ds
+ v
e
qs
i
e
qs
(2
0)
Q =
v
e
qs
i
e
ds
+
v
e
ds
i
e
qs
(
2
1)
These powe
rs are
c
o
m
p
ared
with the
re
fere
nce
values
P
*
and
Q
*
t
o
gene
rate the
refe
re
n
ce value
s
of t
h
e
termin
al v
o
ltages v
e*
d1
and v
e*
q1
in accorda
n
c
e
with
followi
ng e
quations
,
v
e
ds
=
Ri
e
d
+ Lpi
e
d
–
Lwi
e
q
+v
e
dl
(22)
v
e
qs
=
Ri
e
q
+ Lpi
e
q
–
Lwi
e
d
+v
e
ql
(2
3)
These are then seque
ntially proces
sed to the
gene
ra
te sig
n
als fo
r th
e m
a
t
r
ix
conv
erter ap
p
lications
[10
]
, fo
rci
n
g
t
h
e
m
a
trix
co
nv
erter ac term
in
al
s to
tak
e
v
a
lu
es with
requ
ired p
h
a
se sh
i
f
t from th
e su
pp
ly fo
r t
h
e
necessa
ry power fl
ow.
4.
1.
Maxim
u
m P
o
wer P
o
int Tr
acking
For
e
x
t
r
act
i
n
g
m
a
xim
u
m
pow
er f
r
o
m
t
h
e
WES, t
h
e fi
ring
angle
of the
inverter is a
d
just
ed in close
d
l
o
o
p
.
The
m
a
xim
u
m
power
av
ai
l
a
bl
e of
WES
i
s
gi
ven
by
,
3.0
1.08
0
.125
0
.842
(24)
Whe
r
e
w
V
is
th
e wind
v
e
lo
city, th
e
v
a
l
u
e
is 6
m/sec.
The refe
ren
ce po
we
r
is,
(
2
5)
Whe
r
e
g
conversion efficiencies of th
e
ge
ne
rat
o
r
,
t
h
e
val
u
e i
s
0.
8.
Fi
gu
re
6.
M
P
P
T
Trac
ker
.
5.
SIMUL
A
TION
MODE
L & RESULT
S
Th
e setup
was si
m
u
lated
fo
r a ch
ang
e
in
wind
v
e
l
o
city
an
d
t
h
e resu
lts with
resp
ect to
v
o
ltage,
current, power
an
d du
ty ratio
are
p
r
esen
ted [1
].
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
119
–
1
28
12
6
Fi
gu
re
7.
Si
m
u
l
i
nk m
odel
.
The va
ri
at
i
on
o
f
gri
d
v
o
l
t
a
ge
whe
n
t
h
e
wi
n
d
vel
o
ci
t
y
i
s
change
d f
r
om
15
m
/
s t
o
10m
/
s
at
1sec sh
ow
n
i
n
Fi
g
u
re
8
.
T
h
e
gri
d
v
o
l
t
a
ge
i
s
hi
g
h
e
r
f
o
r
h
i
ghe
r wi
nd
vel
o
ci
t
y
and
vi
ce
–ve
rsa.
The
g
r
i
d
vol
t
a
ge
re
du
ces at
ti
m
e
t=1
s
ec b
e
cau
se t
h
e
wind v
e
lo
city redu
ces to
10
m
/
s.
Th
e
g
r
i
d
cu
rren
t also ch
ang
e
s owing
to th
e ch
ang
e
i
n
th
e wi
n
d
v
e
l
o
city to
facilitate th
e p
o
wer
t
r
ansm
i
ssi
on.
The
res
u
l
t
s
are
sho
w
n i
n
Fi
gu
r
e
9.
Fi
gu
re 8.
Va
ri
at
i
on of
g
r
i
d
v
o
l
t
a
ge.
Fi
gu
re
9.
Va
ri
at
i
on
of
g
r
i
d
c
u
r
r
ent
.
Th
e
v
a
riation
of
d
u
t
y ratio is also
sim
u
lated
as s
how
n in
Figu
r
e
10
. Th
e du
t
y
r
a
tio
d
ecr
eases fr
o
m
0.
55
t
o
0.
2
5
at
1sec
d
u
e t
o
t
h
e
cha
nge
i
n
t
h
e
wi
n
d
vel
o
ci
t
y
.
Th
e m
a
x
i
m
u
m an
d
referen
c
e p
o
wer fo
r t
h
e win
d
v
e
lo
cities co
rrespon
d
i
n
g
to
1
5
m
/s a
n
d
1
0
m
/s is
sh
own
in
Figur
e 11
. Th
ese ref
e
r
e
n
ce po
w
e
r
co
rr
esp
ond
s
to
th
e v
a
lu
e of
4
000W
and
11
00W
at th
eir w
i
nd
spee
ds
15m
/s and 10m
/
s respe
c
tively.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Wi
nd
Ene
r
gy
C
onver
si
o
n
B
a
sed
On
M
a
t
r
i
x
C
onvert
e
r
(
M
u
t
har
as
an
A)
12
7
Fi
gu
re 1
0
. Vari
at
i
on of
d
u
t
y
ra
t
i
o
.
Fi
gu
re
1
1
. M
a
xi
m
u
m
and re
f
e
rence
p
o
w
er t
r
acke
d
The above simulation re
sults
clearly
port
r
ay
t
h
at
by
vary
i
n
g t
h
e d
u
ty cycle ratio, we ca
n track t
h
e
max
i
m
u
m
p
o
w
e
r po
in
t
at ev
er
y i
n
stan
t
of p
e
ak
vo
ltag
e
s
with resp
ect t
o
tim
e. Th
e m
e
rits of t
h
e
p
r
o
p
o
s
ed
m
odel are:
Syste
m
efficiency is im
prove
d
Im
pl
em
ent
a
ti
on
of
p
o
w
e
r
fact
or
co
nt
r
o
l
i
s
l
e
ss ex
pe
nsi
v
e
Activ
e & Reactiv
e po
wer is co
m
p
letely co
n
t
ro
lled
The
gri
d
p
o
w
e
r i
s
ap
pr
oxi
m
a
t
e
l
y
equal
t
o
t
h
e refe
re
nce
po
we
r t
h
ere
f
or
e as sh
ow
n i
n
Fi
gu
re 1
2
,
hence
f
ort
h
we
can c
oncl
u
d
e
t
h
at
t
h
e
p
o
we
r
r
e
gul
at
o
r
bl
oc
k
i
s
wo
r
k
i
n
g sat
i
sfact
o
r
i
l
y
.
Figure
12.
Act
u
al power cont
rolled in t
h
e
grid.
7.
CONC
LU
SION
In th
is st
u
d
y
,
th
e m
a
th
e
m
at
i
cal m
o
d
e
l for th
e m
a
trix
co
nv
erter
h
a
s
been
d
e
velop
e
d to
p
r
od
u
c
e
con
s
t
a
nt
f
r
eq
u
e
ncy
f
o
r c
h
a
n
gi
n
g
wi
nd
spe
e
ds a
nd a
co
nt
rol
l
e
r
fo
r m
a
xi
m
u
m
ut
il
i
zati
on o
f
wi
n
d
e
n
e
r
gy
i
s
desi
g
n
e
d
. T
h
e cont
rol
sc
hem
e
i
s
pro
p
o
sed
t
o
reg
u
l
a
t
e
t
h
e
po
wer
fl
o
w
b
y
generat
i
n
g t
h
e ref
e
re
nce v
o
l
t
a
ge.
The
propose
d
syste
m
appe
ars to
produc
e
efficient
resu
lts and
h
a
s go
od
co
heren
ce
with
statistical
expe
ri
m
e
nt
al
dat
a
.
ACKNOWLE
DGE
M
ENT
We th
ank
our in
stitu
te & in
du
stry p
e
o
p
l
e wh
o
h
e
lp
ed
with th
e stu
d
y
and an
alysis o
f
the p
a
p
e
r for
p
r
ov
id
ing
techn
i
cal assistan
ce. Th
is
p
a
p
e
r
will p
r
o
v
i
d
e
the b
a
sic id
eas t
o
th
e abou
t th
e
co
nv
erter selectin
g
fo
r
th
e d
i
fferen
t
m
e
th
od
o
l
o
g
i
es to i
m
p
r
ov
e t
h
e
win
d
en
erg
y
conv
ersi
o
n
s u
n
d
e
r Ind
i
an
cli
m
ate
co
nd
itio
ns.
REFERE
NC
ES
[1]
S.Vaishali
and
A.Jam
n
a, “
Design
and Simula
tion
of Matrix Con
verter for Wind
Mill
Applications
"
International Journal of
Advanced
Trend
s
in Computer
Scien
ce
and Eng
i
neering
,
Vol.2 ,
No.2, Pages
: 1
81-186
(2013)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
119
–
1
28
12
8
[2]
P
.
W
.
W
h
eeler
, P
.
Zanch
e
tt
a, J
.
Cla
r
e, “
A utility po
wer supply based on a f
our-output leg matrix converter
"
IEEE
Transactions on
Industrial App
lications, vol.44, p
p174 184, 2008.
[3]
Kai Zhang,
Hossein M.
Kojaba
di, Peter Z.Wang,Liuch
e
n Chang “
Modeling of a converter connected six phas
e
permanent magn
et syn
c
hronous g
e
nerator
”, IEEE
PEDS, pp1096-
1100, 2005
.
[4]
Ming Yin, Geng
y
i
n
,
Ming Zho
u
, Cheng
y
ong Zhao, “
Modeling
of the wind tur
b
ine with a per
m
anent magnet
synchronous gen
e
rator for in
tegr
ation
”, I
EEE Tr
ansactions, 2007.
[5]
M.A.Rahman,
E.S.Abdin,
“
Mod
e
ling and con
t
roller design of
an isolated
diesel engine perma
n
ent magnet
synchronous gen
e
rator
”,
I
E
EE
tr
ansactions
o
n
energ
y
conv
ersions, vol.11
,
N
o
.2, pp.324-329
, 1996
[6]
Patrick W
.
W
h
ee
ler Jose Rodrigu
ez,
Le
e Em
pring
h
am
“
Matr
ix Conver
ter
T
echn
o
logy R
evi
ew
”
,
I
EEE Transac
tion
on Industrial
Electronics, vo
l.49
, No.2,
pp
.276-28
9,2002.
[7]
M.
Ra
shid “
Pow
e
r electronics ha
ndbook
”, Acad
emic press, pp
. 32
6-334
[8]
H
uber.L
.
Boroje
vic.D
,
Bur
a
n
y
.N
,
“
Analysis Design and
Implementation of th
e space v
ector modulator for Forced
-
Commutated Cyclocon
verter
”,
I
EEE Proc B
,
13
9 (2), pp 103-11
2, 1992
.
[9]
C.L.Nef
t
and
Scauder
“
Theory a
nd Design of a 30Hp Matrix Converter
”
, I
E
EE –IAS annual meeting
,
PP 931-
939, 1998
.
[10]
L Zhang
,
C
Watthan
asarn,
and
W. Shepherd,
"
Applica
tion o
f
a
matrix con
vert
e
r for the
powe
r
control of
a
variable-speed wind-turbine drivi
ng a doubly-
fed induction generator
”,
IECON97,
Vol.
2
, pp.
906 – 911
,
Nov.1997.
[11]
Huber, L
.;
Borojevic, D. , “
Space Vector Modulated Three- Phase to
Three-phase Matrix Converter with
Input
Power Factor Correction
”
, IEEE Transactions on Industr
y
Applicat
ions, Vol.31,
no 6, pp.1234-1246, November
Decem
ber 1995
.
BIOGRAP
HI
ES OF
AUTH
ORS
Mutharasan A
(D.O.B-09.11.19
87) Assi
stant Professor, De
partment of Electrical and Electronics
Engineering, V
e
lTech HighTech Engin
eering
Colleg
e
, Chennai. Gradu
a
ted M.Tech-Pow
er
Electroni
cs from
VelTech Ran
g
araj
an Dr.saku
n
th
al
a R&D Institut
e
of Scien
c
e & Technolog
y
,
Chennai, TamilNadu,
India in
2
012
Rame
shkumar
T
(D.O.B-31.0
5
.1983), Assistant Professo
r, Department
of Electr
ical
and
Electronics Eng
i
neer
ing, V
e
lT
ech HighTech
Engineer
ing College
,
Chenn
a
i.
Graduated
M
.
T
e
ch-
Em
bedded S
y
s
t
em
Technolog
ies
fro
m
VelTech R
a
ngarajan
Dr.sak
untha
l
a
R&D
In
stitute of Scien
c
e
&
Technolog
y
,
Chennai, Ta
milNadu, India
in 2
011.
Ajitha A
(D.O.B-09.09.1990)
, P
G
Student, Department of
Electr
i
cal an
d
Electronics
Engin
eerin
g,
VelTech R
a
ngar
a
jan
Dr.sakunth
a
la R
&
D Institu
te of
Sci
e
nce &
T
e
chnolog
y
,
Chen
nai, T
a
m
ilNadu,
India in
2014
.
Evaluation Warning : The document was created with Spire.PDF for Python.