Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
7, N
o
. 1
,
Mar
c
h
20
16
,
pp
. 85
~93
I
S
SN
: 208
8-8
6
9
4
85
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
A Review on Performance Analys
is of Matrix Converter Fed
AC Motor Drive
D.
Sri Vid
h
y
a
,
T. V
e
nk
ates
a
n
Department o
f
Electrical and
El
ectronics Engin
e
ering, K
.
S. R
a
ngasamy
College of
Techno
log
y
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Cct 11, 2015
Rev
i
sed
D
ec 12
, 20
15
Accepte
d Ja
n
5, 2016
This
pape
r pres
e
n
ts
a rev
i
ew on
t
h
e an
al
ys
is
of ch
arac
teris
t
ics
th
at
determ
ine
s
the performance of the Matrix Converter (MC) fed AC motor dri
v
e. Review
is made based on the analy
s
is of the di
ffer
e
nt
ch
arac
teris
t
ics
a
c
hi
eved in th
e
liter
a
tur
e
. Diffe
r
e
nt char
ac
terist
i
c
para
m
e
t
e
rs considered in this
paper are
total harmonic distortion,
common mode
voltage, voltage transf
er ratio an
d
effic
i
enc
y
.
Com
p
aris
on and ana
l
y
s
is
of thes
e c
h
arac
teris
t
ic par
a
m
e
ters
is
done based on various semi
conductor switches, topolog
y
,
and
control an
d
modulation tech
niques.
Keyword:
C
o
m
m
on m
o
d
e
v
o
l
t
a
ge
Efficiency
Matrix
conv
ert
e
r
Tot
a
l
ha
rm
oni
c di
st
o
r
t
i
o
n
Vo
ltag
e
tran
sfer ratio
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
D. Sri Vid
h
y
a
,
Depa
rt
m
e
nt
of
El
ect
ri
cal
and
El
ect
roni
cs
E
n
gi
nee
r
i
n
g,
K.S
.
R
a
n
g
asa
m
y
C
o
l
l
e
ge o
f
Tech
nol
ogy
,
KSR
Kal
v
i
Na
gar
,
Ti
r
u
c
h
en
g
ode
6
3
7
21
5,
T
a
m
i
l
Nadu,
I
n
d
i
a.
Em
a
il: v
i
d
h
y
asriram
e
sh
@g
m
a
il.co
m
1.
INTRODUCTION
Vital ro
le
o
f
the v
a
riab
le sp
eed
ac m
o
to
r
d
r
i
v
es is
d
u
e
t
o
its eno
r
m
o
u
s
app
licatio
n
in
i
n
d
u
s
t
r
ial and
h
o
u
s
e ho
ld app
licatio
n
s
su
ch as lifts, pu
m
p
s, co
m
p
re
ssor, tex
tile m
i
lls an
d wash
i
n
g mach
in
es [1
].
AC-AC
con
v
e
r
t
e
r sy
st
e
m
provi
des t
h
e
vari
a
b
l
e
s
p
eed
dri
v
es
wi
t
h
re
qui
red
v
o
l
t
a
ge
am
pl
i
t
ude an
d
fre
que
ncy
base
d
o
n
its syste
m
, lo
ad
an
d env
i
ro
nmen
t co
nd
itio
ns [2
]. Am
o
n
g
AC-AC
conv
erters Vo
lta
g
e
Sou
r
ce In
v
e
rter
(VSI)
and
Cu
rre
nt S
o
u
r
ce
In
verte
r
(CSI
) o
ccu
py
the in
d
u
stry
more t
h
an a dec
a
de [3]. T
h
e main drawbac
k
of
VSI
an
d CSI is its
d
c
link
co
m
p
on
en
t
wh
ich
m
a
k
e
s it a bu
l
k
y
an
d li
m
ited
o
p
eratin
g
lifetime [4
].
In
197
6,
co
n
c
ep
t
of t
h
e
AC
-
A
C
con
v
e
r
t
e
r
wi
t
h
o
u
t
dc-l
i
n
k c
o
m
pone
nt
was
de
vel
o
p
e
d f
r
o
m
t
h
e fo
rce
d
com
m
u
t
a
t
e
d
cy
cl
ocon
ve
rt
er
by
t
h
e
aut
h
o
r
s
Gy
u
g
i and Pelly [5
].
Ven
t
urin
i an
d
Al
esin
a
[6
] i
n
trod
u
c
ed
t
h
e
Matrix
Co
nv
er
ter
in 19
80
and
th
ey
pr
ov
id
ed
t
h
e r
i
go
rou
s
m
a
th
e
m
a
tical b
ackg
r
o
u
n
d
.
Fi
gu
re
1.
B
a
si
c St
r
u
ct
ure
o
f
M
a
t
r
i
x
C
o
n
v
ert
e
r
3
Φ
AC load
3
Φ
AC
Su
pp
l
y
3x3 M
a
tr
ix Conver
t
er
I
nput
Filter
Bidirectional Swit
ch
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
:
85
–
9
3
86
VSI a
n
d C
S
I
p
r
o
v
i
d
e t
w
o st
a
g
e co
n
v
ersi
on
pr
ocess
.
Fi
rst
stag
e is th
e rectifier th
at co
nv
erts
AC to
DC. Sec
o
nd stage is the i
n
verter that c
o
nverts DC t
o
AC. T
h
e
Matri
x
Co
nv
erter (M
C) is a sing
le-stage
con
v
e
r
t
e
r
whi
c
h h
a
s an
ar
r
a
y
of m
X n
bi
-
d
i
r
ect
i
o
nal
po
we
r s
w
i
t
c
h
e
s. Th
e m
phase v
o
l
t
a
ge s
o
urce i
s
connected to
n pha
se loa
d
.
Fi
gu
re
1 s
h
o
w
s t
h
e st
r
u
ct
u
r
e
of
whi
c
h re
p
r
ese
n
t
t
h
e a
rra
nge
m
e
nt
of
bi
di
re
ct
i
onal
switch
e
s i
n
m
a
trix
fo
rm
. Matrix
C
o
nv
erter
d
i
rectly co
nve
r
t
s AC
t
o
AC
,
t
hus
av
oi
di
n
g
t
w
o
st
age c
o
nv
ersi
o
n
pr
ocesses
.
Prom
i
s
i
ng C
h
a
r
act
eri
s
t
i
c
s of
M
C
[7-
1
3]
m
a
kes i
t
very
po
p
u
l
a
r am
ong
res
earche
r
s a
nd i
n
d
u
st
ri
al
i
s
t
.
Th
e po
sitiv
e ch
aracteristics
o
f
MC are: 1) High
po
wer
d
e
nsity 2
)
Bidirectio
n
a
l power flow 3) Si
nu
so
i
d
al
i
n
p
u
t
and
out
p
u
t
wave
f
o
rm
s
4) R
e
d
u
ce
d v
o
l
um
e and wei
g
ht
5) O
p
e
r
at
i
o
n wi
t
h
u
n
i
t
y
powe
r
fact
o
r
6
)
Lon
g
l
i
f
et
im
e and 7
)
R
e
l
i
a
bl
e i
n
adve
rse c
o
ndi
t
i
ons
. I
nve
nt
i
o
n o
f
new
bi
di
rect
i
onal
po
we
r el
ect
ro
ni
c s
w
i
t
c
hes,
t
o
p
o
l
o
gi
es an
d
cont
rol
m
e
t
h
o
dol
ogi
es
o
p
en
s
up
t
h
e a
r
ea o
f
research
in the
m
a
trix
conve
rter to
overc
o
me its
li
mitatio
n
s
. Limita
tio
n
s
o
f
MC are, 1
)
Max
i
m
u
m v
o
lta
ge t
r
ans
f
er r
a
t
i
o
i
s
0.8
6
2
)
Inc
r
ease
d
n
u
m
ber of
switch
e
s 3) Po
or rid
e
throug
h
cap
a
b
ility
4
)
Co
m
p
lex
co
n
t
ro
l and
mo
du
latio
n
techn
i
qu
es 5) Com
p
lex
pr
ot
ect
i
o
n
ci
rc
ui
t
s
an
d
6)
Hi
g
h
c
o
m
m
on
m
ode
vol
t
a
ge
.
An
i
n
t
e
n
s
i
v
e
r
e
vi
ew
o
n
t
h
e
AC
-
A
C
c
o
n
v
er
t
e
r t
o
pol
ogy
w
a
s d
o
n
e
by
K
o
l
a
r et
al
[1
4]
. T
h
ey
p
r
ovi
de
d
t
h
e va
ri
o
u
s ci
r
c
ui
t
s
t
o
p
o
l
o
gi
e
s
of M
C
s a
n
d
i
t
s
fun
d
am
ent
a
l
m
odul
at
i
o
n a
nd c
o
m
m
ut
at
i
o
n sc
hem
e
s. Au
t
h
o
r
s
[1
5]
ha
d a
n
al
y
zed t
h
e
vari
o
u
s
co
nt
rol
a
n
d
m
odul
at
i
on t
e
c
hni
que
s suc
h
a
s
scal
ar, ca
rri
e
r
base
d
p
u
l
s
e
wi
dt
h
m
odulation, s
p
ace vector m
odulation,
di
rect
torque c
ont
rol
and
pre
d
ictive
cont
rol.
A re
view on technol
ogical
issu
es
o
f
MC its stan
d
in th
e
in
du
stry app
licatio
n
along
wit
h
th
e
p
r
od
u
c
ts
in
th
e m
a
rk
ets h
a
s
b
een
p
r
esen
ted
by
Em
pri
n
g
h
a
m
et
al
[1
6]
.
M
C
can be
ap
pl
i
e
d i
n
va
ri
ab
l
e
speed
d
r
i
v
es
, i
n
duct
i
o
n
hea
t
i
ng, ae
rospace
, wi
nd t
u
rbine
syste
m
etc.
The [
1
7]
and
[1
8]
had
revi
e
w
ed t
h
e ap
pl
i
cat
i
on o
f
M
C
t
o
i
n
d
u
ct
i
o
n and
perm
anent
m
a
gnet
sy
nch
r
on
o
u
s
m
o
t
o
r dri
v
e
.
M
C
s are hi
ghl
y
a
p
p
r
op
ri
at
e fo
r
si
nus
oi
dal
l
o
ad
. Pul
s
at
i
n
g l
o
a
d
de
g
r
ades t
h
e
per
f
o
r
m
a
nce o
f
M
C
.
M
C
i
s
t
h
e best
sui
t
a
bl
e for i
n
duct
i
o
n an
d pe
rm
anent
m
a
gnet
sy
nchr
on
o
u
s
m
o
t
o
r dri
v
e w
h
i
c
h are o
p
e
r
at
ed i
n
con
s
t
a
nt
po
wer
re
gi
o
n
[
1
9-
2
1
]
.
Perform
a
nce a
n
alysis of eve
r
y syste
m
estimates it
s v
a
lu
e, rank
ing
and ap
p
licatio
n. Desp
ite all th
e
intensive revie
w
s, perform
a
nce
com
p
ar
iso
n
is n
eed
ed
to select th
e MC fo
r its app
l
icatio
n
s
.
Aim
o
f
all
electrical
m
o
tor drives
is to a
c
hieve
hi
g
h
pe
rf
orm
a
nce al
o
n
g
wi
t
h
m
i
ni
at
uri
zat
i
on,
hi
gh
e
ffi
ci
ency
, l
o
w
THD
,
fast respon
se an
d fau
lt to
leran
ce. Th
e aim
o
f
th
is p
a
p
e
r
is t
o
revie
w
t
h
e
perform
a
nce of
the MC fe
d to
dri
v
e
s
base
d
on
T
H
D
,
C
M
V,
vol
t
a
g
e
t
r
an
sfe
r
rat
i
o
an
d e
ffi
ci
en
c
y
. Thi
s
pa
pe
r
pr
o
v
i
d
es
t
h
e
b
a
si
c re
qui
rem
e
nt
s
of
each
param
e
ters
whic
h a
r
e a
n
alyzed, c
o
m
p
ared and m
e
thods
to im
prove the c
h
aracte
r
istics by the
various
au
tho
r
in
t
h
e literatu
re.
The
or
ga
ni
zat
i
o
n
o
f
t
h
e
pa
p
e
r i
s
:
Sect
i
o
n
II i
n
t
r
od
uces
t
h
e f
u
ndam
e
nt
al
of
M
C
al
on
g
wi
t
h
i
t
s
cl
assi
fi
cat
i
on a
nd c
o
nt
r
o
l
m
e
tho
d
s,
Sect
i
o
n
II
I p
r
o
v
i
d
e
s
t
h
e i
n
t
e
nsi
v
e st
u
d
y
o
n
ha
rm
oni
c di
st
ort
i
o
n,
S
ect
i
on
IV d
e
als with
th
e Co
mm
o
n
mo
d
e
v
o
ltag
e
, Sectio
n
V illu
stra
tes th
e v
o
ltage tran
sfer ra
tio
, Sectio
n
VI p
r
esen
ts
the efficiency
of MC, a
n
d finally, c
oncl
u
si
o
n
s a
r
e m
a
de i
n
Sect
i
on
V
I
I
2.
CLAS
SIFI
C
A
T
IONS
OF
M
C
Ori
g
in
o
f
t
h
e
MC h
a
s started
with th
e imp
r
ov
em
ent
m
a
de i
n
t
h
e f
r
eq
uency
c
o
nve
rt
ers wi
t
h
DC
ener
gy
st
ora
g
e.
El
im
i
n
at
i
on o
f
t
h
e DC
ene
r
gy
st
ora
g
e res
u
l
t
e
d i
n
M
C
. C
l
assi
fi
cat
i
on o
f
M
C
was sh
ow
n i
n
t
h
e
Fi
gu
re 2.
Fi
gu
re 2.
C
l
as
si
fi
cat
i
on of
M
C
M
a
tr
ix Conver
t
er (M
C)
Direct
I
ndir
ect
Othe
r
Voltage
Sour
ceM
C
Cu
rren
t
Sour
ceM
C
Sp
arse MC
Ver
y
Sp
arse
MC
Ultra Spa
r
se
MC
M
a
tr
ix Resonance
Fr
equency
Convereter
Z
S
our
ce M
C
Quasi Z Source
M
C
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A Review on
P
e
rformance A
n
alysis of
Matri
x
Converter Fe
d AC
Mot
o
r
Dr
ive
(D
.
S
r
i
Vidh
ya
)
87
MC is
m
a
inly
classified as di
rect MC and i
ndi
r
ect MC.Di
r
ect MC is cla
ssified as
volt
a
ge sources
MC an
d
cur
r
e
n
t
sour
ces MC
.D
ir
ect MC as
sh
own
in Figur
e 3 do
esno
t need
an
y two
st
ag
e co
nv
er
sion f
r
o
m
AC to DC and
DC to AC.
It direc
tly conve
rts AC to AC, thus elim
ina
ting the unneces
sary conversi
on
proces
s
.Bid
irection
a
l semico
n
d
u
c
tor switch
e
s are sy
m
b
o
lized
as S
11
to
S
33
. Indi
rect
M
C
as show
n i
n
Fi
g
u
re
4 has
rectification (AC to
DC) a
nd i
nve
rsion
(DC to
AC)
process sim
ilar to VSI
with re
placem
ent of dc-li
nk
capaci
t
o
r
wi
t
h
cl
am
p ci
rcui
t
.
In
di
rect
M
C
as
sh
ow
n i
n
Fi
gu
re
4 h
a
s
bot
h r
ect
i
f
i
e
r an
d i
n
v
e
rt
er st
a
g
e
but
do
e
s
not
ha
ve t
h
e
D
C
ener
gy
st
o
r
a
g
e.
In
di
rect
M
C
i
s
cl
assi
fi
ed
base
d o
n
t
h
e t
o
pol
ogy
a
n
d
nu
m
b
er of
de
vi
ces use
d
.
Int
e
rm
edi
a
t
e
cat
ego
r
y
bet
w
ee
n wi
t
h
an
d
wi
t
h
o
u
t
DC
e
n
e
r
g
y
st
orage
i
s
gi
ven a
s
hy
bri
d
M
C
. 18 a
c
t
i
v
e
devi
ces
are use
d
in indirect MC. Reducing th
e number
of active
device
t
o
1
5
,
12
and
9 i
s
i
n
t
r
o
duce
d
as s
p
ars
e
M
C
[
2
2
]
,
v
e
r
y
sp
ar
se MC [
2
3
]
and u
ltr
a sp
ar
se MC [
2
4
]
r
e
sp
ectiv
ely. N
e
w
ar
r
i
v
a
l in
t
h
e conver
t
er
f
a
m
ily is
th
e Z-
so
urce MC. Z-so
urce MC u
s
es 2
1
activ
e d
e
vices b
u
t
h
a
s the ad
v
a
n
t
ag
e
o
f
si
m
u
ltan
e
o
u
s
bu
ck
b
o
o
s
t cap
ab
ility
[2
5]
.
Fi
gu
re 3.
Th
re
e
Pha
s
e 3 X 3 Di
rect
M
C
Figure
4. Classical Indirect T
h
ree
Phase MC
3.
HA
RM
ON
IC AN
ALY
S
IS
Harm
onics is an anxiety because they can ca
use ex
ce
ssive
heating a
n
d pulsati
ng, and re
duce
s
torque
i
n
m
o
t
o
rs
an
d gene
rat
o
rs;
i
n
c
r
eased heat
i
ng and vol
t
a
ge
stress in
cap
acitors; an
d
d
i
so
per
a
t
i
on i
n
el
ect
ro
ni
cs,
sw
itchg
ear
and
r
e
laying
. In
sh
or
t,
h
a
rm
oni
cs can lead to reduce
d equipm
en
t life, if a syste
m
is d
e
sig
n
e
d
with
ou
t co
nsideratio
n fo
r h
a
rm
o
n
i
cs an
d
i
f
equi
pm
ent
i
s
n
o
t
p
r
ope
rl
y
rat
e
d a
n
d
a
ppl
i
e
d
.
It
i
s
,
t
h
ere
f
ore
,
u
s
ef
ul
t
o
m
easure an
d
l
i
m
i
t
harm
oni
cs i
n
el
ect
ri
c p
o
we
r sy
st
em
s. A st
an
dar
d
fo
r
l
i
m
i
t
a
t
i
on of
h
a
rm
oni
cs i
s
pr
ovi
ded
by IEEE ST
D 519-1992 and it is now updat
e
d as IEEE ST
D 519-2014.H
a
rm
onics is distinguis
h
e
d
as voltage
and
cu
rre
nt
ha
rm
oni
cs. P
r
ed
om
i
n
ant
l
y
Vol
t
a
ge ha
rm
oni
c di
st
o
r
t
i
o
n
s
ar
e al
way
s
l
e
ss t
h
an
cu
rre
nt
ha
rm
oni
c
di
st
ort
i
o
ns
[
24]
.
3.
1. V
o
l
t
age
H
a
rm
oni
c
s
To
tal h
a
rm
o
n
i
c d
i
stortio
n fo
r
v
o
ltag
e
is sp
ecified
in th
e
(1
)
∑
100
(
1
)
Whe
r
e V
n
=
ha
rm
oni
c V
o
l
t
a
g
e
, n
=
harm
oni
c o
r
de
r
(3
,
5,
7
…
),
V
1
=
f
u
ndam
e
nt
al
har
m
oni
c or
der
Table
1, s
p
ecifies the voltage
harm
onic lim
its d
eclare
d
by IEEE ST
D
519.Most
of
the
application
uses t
h
e voltage lim
it below 69kV.
Acc
o
rding to th
e IEEE,
ST
D 519
for bus voltage
below 69kV
t
h
e
i
ndi
vi
dual
v
o
l
t
a
ge di
st
o
r
t
i
o
n
l
i
m
i
t
and t
o
t
a
l
harm
oni
c di
st
ort
i
o
n l
i
m
it
sho
u
l
d
be
wi
t
h
i
n
3% a
n
d 5
%
respectively.
i
b
S
1
S
3
S
5
S
2
S
4
S
6
S
7
S
9
S
11
S
8
S
10
S
12
I
nput
filter
3
Φ
AC
Mo
to
r
3
Φ
supply
i
a
i
c
i
Bidirectional Swit
ch
3
Φ
AC
Mo
to
r
3
Φ
supply
i
a
i
b
i
c
S
11
S
21
S
31
S
12
S
13
S
22
S
23
S
32
S
33
i
A
i
B
i
C
I
nput
filter
Bidirectional Swit
ch
I
nver
t
er
Rectifier
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
:
85
–
9
3
88
Table 1. Voltage Distortion Li
m
i
ts
from
IEEE
519
(For con
d
ition
s
lastin
g
m
o
re t
h
an on
e
ho
ur.
Sho
r
ter p
e
riod
s in
crease limits
b
50
%)
Bus Volt
age at
P
o
int
of
Co
m
m
o
n Coupling
Individual Volt
age Dist
ort
i
on (%)
Tot
a
l Volt
age Dist
ort
i
on THD (%)
1.
0 kV and below
5.
0
8.
0
Below 69 kV
3.
0
5.
0
69 kV
V
rm
s
161 k
V
1.
5 2.
5
V
rm
s
>161 kV and
above
1.
0
1.
5
Note: High Voltage syste
m
s can have
up to 2.
0% THD where the cause is a High Voltage
DC term
inal which will attenuate by the
ti
m
e
it
is tapped for a user.
3.
2. Curre
nt
Harm
oni
c
s
There is a cont
radiction in the cu
rrent ha
rmonics s
p
ecified by the
m
o
st of the aut
h
ors a
nd the IEE
E
51
9.
A
u
t
h
ors
sp
eci
fy
t
h
ei
r cu
rr
ent
ha
rm
oni
cs i
n
TH
D
wh
ile t
h
e IEEE
5
1
9
sp
ecify it in
to
tal d
e
m
a
n
d
d
i
stortion
(TD
D
)
.
T
h
e e
q
uation
(
2
)
an
d
(3
)
rep
r
ese
n
t th
e f
o
rm
ula fo
r T
H
D
an
d
TD
D
of
cu
rre
nt re
sp
ectively
[2
4]
.
∑
100
(
2
)
∑
100
(
3
)
I
n
= ha
rm
oni
c c
u
r
r
ent
,
I
1
=
fundam
ental curre
nt and
I
L
= m
a
xim
u
m
dem
a
nd
l
o
ad c
u
rre
nt
The diffe
r
ence
between T
H
D and TDD is the denom
i
nator I
1
and I
L
.
For
harm
oni
c
m
easuri
n
g
pu
r
pose t
h
e I
1
measu
r
ed
will always b
e
less th
an
I
L
m
easu
r
ed
. Th
erefore,
THD cal
cu
lated
will always g
r
eater
than TDD calculated. Ta
ble 2 spe
c
ifies the curre
nt
di
stortion lim
its according t
o
t
h
e
IEE
E
STD 519.T
h
is
sho
w
s t
h
e cu
rr
ent
harm
oni
c l
i
m
i
t
s
for i
ndi
v
i
dual
ha
rm
oni
cs and i
t
s
TDD
.
For cu
rre
nt
l
i
m
i
t
wi
t
h
i
n
20
A an
d
vol
t
a
ge
bel
o
w
69
k
V
, t
h
e al
l
o
wed T
D
D i
s
5
%
. Tabl
e 3 s
p
eci
fi
es t
h
e cur
r
ent
an
d
vol
t
a
ge TH
D o
f
di
f
f
ere
n
t
meth
o
d
o
l
g
i
es
of MC. Lowest
cu
rren
t
THD
was reco
rd
ed
in th
is stud
y
v
a
ri
ou
s au
tho
r
s.
Tabl
e 2. Harm
oni
c
C
u
r
r
e
n
t
D
i
st
ort
i
o
n
Li
m
its
i
n
perce
n
t
of
I
L
from
IEEE S
T
D
519
Line No.
I
SC
/I
L
h<11
TDD
v
rm
s
69kV
1 <20*
4.
0
2.
0
1.
5
0.
6
0.
3
5.
0
2 20-
50
7.
0
3.
5
2.
5
1.
0
0.
5
8.
0
3 50-
100
10.
0
4.
5
4.
0
1.
5
0.
7
12.
0
4 100-
10
00
12.
0
5.
5
5.
0
2.
0
1.
0
15.
0
5 >1000
15.
0
7.
0
6.
0
2.
5
1.
4
20.
0
69kV
v
rm
s
161kV
6 <20*
2.
0
1.
0
0.
75
0.
3
0.
15
2.
5
7 20-
50
3.
5
1.
75
1.
25
0.
5
0.
25
4.
0
8 50-
100
5.
0
2.
25
2.
0
0.
75
0.
35
6.
0
9 100-
10
00
6.
0
2.
75
2.
5
1.
0
0.
5
7.
5
10
>1000
7.
5
3.
5
3.
0
1.
25
0.
7
10.
0
v
rm
s
>161kV
11
<25*
1.
0
0.
5
0.
38
0.
15
0.
1
1.
5
12
25<50
2.
0
1.
0
0.
75
0.
3
0.
15
2.
5
13
>50
3.
0
1.
5
1.
15
0.
45
0.
22
3.
75
Tabl
e 3.
C
u
r
r
e
n
t
an
d V
o
l
t
a
ge Harm
oni
cs
Sl.
N
O Met
h
odology
Low
e
st Current
THD
report
e
d in
the paper
Lo
w
e
st
Volt
age TH
D
report
e
d in
the
Pa
per
1.
Dir
ect
T
o
r
que Contr
o
l [25]
7.
33%
-
2.
Dir
ect
T
o
r
que Contr
o
l [26]
7.
74%
46.
23%
3.
Pr
edictive contr
o
l
dir
ect M
C
[27]
17.
8%(
i
nput)
-
4.
I
ndir
ect M
C
[28]
2%(
i
nput)
0
.
52% (
output)
-
5.
Ventur
ini [29]
9.
8%(
output)
-
6.
I
ndir
ect conver
t
er
with boost fu
nc
tio
n [30]
4%(
i
nput)
3
.
7
%(
ou
tput)
-
7.
Vector
contr
o
lled
dir
ect M
C
[31]
5%(m
ax)
(
input)
5%(m
ax)
8.
Pr
edictive contr
o
l
[32]
23.
8%(
i
nput)
-
9.
Space vector
m
odulation
[33]
17.6%(input)
64.8%
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A Review on
P
e
rformance A
n
alysis of
Matri
x
Converter Fe
d AC
Mot
o
r
Dr
ive
(D
.
S
r
i
Vidh
ya
)
89
4.
CO
MM
ON
M
O
DE
VOLT
A
G
E
Co
mm
o
n
Mo
de Vo
ltag
e
(C
MV) is on
e
o
f
th
e m
a
in
cau
ses for th
e early
m
o
to
r wi
n
d
i
n
g
i
n
su
lation
dam
a
ge fai
l
u
r
e
an
d
beari
n
g
det
e
ri
orat
i
o
n
w
h
i
c
h i
n
turn
re
duces
the m
achine operational life
.
High
p
e
rform
a
n
ce is ach
iev
e
d
with lo
wer v
a
l
u
e of CMV wh
ic
h
in
tu
rn
s also
red
u
c
es dv
/d
t.
CMV at th
e mo
tor’s
n
e
u
t
ral po
in
t
V
CM
is d
e
f
i
ned as (4
)
b
y
t
h
e au
th
or
s
[
3
4
]
.
3
)
(
cN
bN
aN
CM
V
V
V
V
(
4
)
Pre
d
i
c
t
i
on of V
cm
i
s
done
by
kn
o
w
i
n
g t
h
e o
u
t
p
ut
v
o
l
t
a
ge p
e
r p
h
ase t
h
at
e
ach swi
t
c
hi
n
g
st
at
e und
er e
v
a
l
uat
i
o
n
wo
ul
d
p
r
od
uce
.
T
h
ere a
r
e
di
f
f
e
rent
m
e
t
hod
s
t
o
re
d
u
ce C
M
V,
nam
e
l
y
:
1) Rotating ve
ctor a
p
plie
d in
double side
d s
p
ace
vector m
odulation
[35]
2) Correct ze
ro vector
which
prese
n
ts sm
a
l
l
e
st
am
pl
it
ude at
al
l
out
p
u
t
p
h
as
es [
36]
.
3)
Tw
o o
p
p
o
si
t
e
act
i
v
e vect
or
[3
7]
4)
O
n
l
y
r
o
t
a
t
i
ng
vect
o
r
[
3
8,
3
9
]
Fi
rst
m
e
t
hod
r
ecor
d
s
4
2
.
3
%
C
M
V. T
h
e l
a
st
m
e
t
hod
achi
e
ves
4
0
% C
M
V
.
Eve
n
t
h
o
u
g
h
r
o
t
a
t
i
ng
vect
or
appl
i
e
d
in double side
d space
vector
m
odulation re
duces CMV th
a
n
rotating vect
or, the THD was increase
d
from
6%
to 21 %. P
r
oposed m
e
thod ha
s better THD
only whe
n
th
e
m
odulation index is greater than 0.5. S
p
ace
Vector
Mo
du
latio
n p
a
ttern
redu
ces th
e
u
n
wan
t
ed leakage
c
u
rrent
that fl
ows thro
u
g
h
st
at
o
r
s
w
i
ndi
n
g
s
an
d
be
ari
n
gs
,
wi
t
h
o
u
t
cha
n
gi
ng t
h
e fu
n
d
am
ent
a
l
out
put
v
o
l
t
a
ges an
d
inp
u
t
cu
rren
ts.
Si
m
u
latio
n
results sh
o
w
a
p
o
t
en
tial
C
o
m
m
on
m
o
d
e
de
ri
vat
i
v
e
v
o
l
t
a
ge
red
u
ct
i
o
n
ran
g
e
f
r
om
11
% t
o
3
3
.
3
4
%
,
depe
n
d
i
n
g
of
t
h
e
i
n
put
v
ect
or’
s
p
o
s
ition
.
Th
is
redu
ction
is
n
o
t en
oug
h to
so
l
v
e th
e pr
ob
lem with
m
ach
in
e
lifeti
m
e red
u
c
t
i
o
n
bu
t it is a
g
ood
o
u
t
set t
o
so
lv
e
it [40
]
.
5.
VOLTAGE T
R
ANSFE
R
RATIO
R
a
t
i
o
bet
w
ee
n out
put
v
o
l
t
a
ge and
i
n
put
v
o
l
t
a
ge
i
s
called
as
Vo
ltag
e
Tran
sfer Ratio
. Th
e
max
i
m
u
m
th
eoretically p
r
ov
en
v
o
ltag
e
tran
sfer ratio fo
r a MC is
0.8
6
6
prov
id
ed
b
y
ven
t
u
r
in
i. Fig
u
re
5
illu
strates th
e
fittin
g
of ou
tpu
t
targ
et vo
ltag
e
with
i
n
th
e in
pu
t vo
ltag
e
[1
3
]
. Main
h
i
nder of MC wh
en
app
lied
to
ind
u
s
t
r
y i
s
its li
mited
v
o
ltag
e
tran
sfer ratio
. Limitat
i
o
n
in
v
o
ltag
e
tra
n
sfe
r
ratio i
n
crease the ou
t
p
u
t
curre
nt
f
o
r c
onst
a
nt
powe
r applications
. Inc
r
ease in the ou
t
p
ut
cu
rre
nt
causes hi
ghe
r l
o
sses
bot
h i
n
load side as well as converter
si
de [
4
1,
4
2
]
.
Vol
t
a
ge
sa
g at
i
n
p
u
t
po
we
r l
i
ne cau
ses t
w
o t
o
f
o
u
r
t
i
m
es re
duct
i
o
n i
n
t
h
e el
ect
r
o
m
a
gnet
i
c
to
rq
u
e
. Thu
s
,
v
o
ltag
e
t
r
an
sfer ratio
g
r
eater
th
an
will h
e
lp
th
e MC fed
d
r
i
v
e system
fu
ll
to
rq
u
e
at
h
eavy lo
ad
co
nd
itio
ns [43
]
.
Fig
u
re. 5. Illustratin
g
Vo
ltag
e
Tra
n
sfe
r
Ratio as
0.866
Meth
od
s to imp
r
ov
e th
e vo
ltag
e
tr
an
sfer
ratio
are listed
b
e
l
o
w:
1
)
Feed
ing
co
nv
er
ter fr
o
m
th
e po
w
e
r
sup
p
l
y
th
ro
ugh
tr
an
sfor
m
e
r
[
4
4
]
2)
O
p
erat
i
n
g
M
C
i
n
o
v
e
r
m
odul
at
i
o
n
regi
on
[
4
5
,
46]
3)
M
a
t
r
i
x
R
e
s
o
nant
Fre
q
uenc
y
C
o
n
v
ert
e
r (
M
R
F
C
)
[
47]
4)
Z s
o
urce M
C
[4
8,
4
9
]
a
n
d
Quasi
Z s
o
urce
M
C
[5
0]
Fi
rst
and si
m
p
l
e
m
e
t
hod t
o
i
m
prove t
h
e v
o
l
t
a
ge t
r
ansfe
r
r
a
t
i
o
i
s
t
o
boo
s
t
by
t
r
ansf
orm
e
r b
u
t
i
t
i
s
bul
ky
, e
xpe
nsi
v
e an
d a
ffect
s
t
h
e sy
st
em
effici
ency
. Sec
o
n
d
m
e
t
hod i
s
t
o
ope
rat
e
t
h
e M
C
i
n
o
v
er m
o
d
u
l
a
t
e
d
regi
on
. The
vo
l
t
a
ge t
r
ansfe
r
r
a
t
i
o
i
s
0.9
2
f
o
r
t
h
e squa
re wa
ve m
odul
at
i
o
n
and 0
.
8
8
f
o
r t
h
e t
r
apez
oi
dal
wav
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
:
85
–
9
3
90
m
odulation. T
hus
, t
h
is m
e
thod does
not al
low
voltage tr
ansfe
r
ratio greater
tha
n
one
. Ne
xt possi
bility is to
use a MRFC, whic
h consists
of a MC adde
d with a re
s
o
nant com
pone
nt
, and
will provide volta
ge transfe
r
rat
i
o
great
er
t
h
an
one
. T
h
e M
R
FC
has
t
o
sy
nch
r
oni
ze t
h
e
MC an
d th
e r
e
so
nan
t
co
m
p
on
en
t
op
er
ation
.
Thus
cont
rol
bec
o
m
e
s com
p
l
e
x.
Th
e M
R
FC
has
l
e
ss i
n
put
p
o
we
r
fact
or
.
The l
a
st
but
t
h
e l
a
t
e
st
m
e
t
hod i
s
t
o
use
Z-
so
urce
net
w
or
k.Z
-
s
o
u
r
ce Di
r
ect
M
C
, i
s
devel
o
ped
by
addi
ng t
h
ree i
n
duct
o
r
,
capaci
t
o
r
,
swi
t
c
hes a
n
d di
o
d
es
. As
ZSDMC p
e
rm
its
th
e sh
ort circuit, th
e co
mm
u
t
atio
n
process
bec
o
mes sim
p
le and easy. T
h
is also
reduces
t
h
e vo
ltag
e
an
d
cu
rren
t st
ress
o
n
th
e switch
.
The
ZSDMC can reach voltage gain up to
1.15 but its inherited phase shi
f
t
makes the control inaccurate. W
i
t
h
Quasi
Z-s
o
urce
Direct MC, the voltage
gain
can
be rai
s
ed
t
o
fo
ur
o
r
fi
ve
t
i
m
e
s
hi
g
h
er.
6.
EFFICIE
N
CY
En
erg
y
con
s
umed
b
y
th
e ac
m
o
to
r d
r
iv
e during
life ti
m
e
i
s
6
0
-100
ti
m
e
s
m
o
re th
an
in
itial co
st o
f
th
e
m
o
t
o
r
[
51]
.
Ef
fi
ci
ency
i
s
def
i
ned
as
t
h
e rat
i
o
of o
u
t
p
ut
p
o
we
r
t
o
i
n
p
u
t
po
we
r. Ef
fi
ci
ency
depe
n
d
s o
n
t
h
e
swi
t
c
hi
n
g
l
o
ss
, con
d
u
ct
i
on l
o
ss an
d d
r
i
v
e
l
o
ss. A c
o
m
p
rehen
s
i
o
n com
p
ari
s
on i
s
m
a
de i
n
pa
per [
5
2, 5
3
]
betwee
n t
h
e cl
assical conve
rter (VSI/CSI)
and MC (w
ith
I
G
BT a
n
d
R
B
-IGB
T
).
The
significa
nt effi
ciency
achi
e
vem
e
nt
of
9
7
.
5
%
was
p
r
ove
n.
Pri
m
ary
swi
t
c
hi
n
g
de
vi
ces
use
d
i
n
M
C
s
i
n
cl
ude
, MOSFET, th
e
g
a
te tu
rn
off t
h
yristo
r (GTO),
in
teg
r
ated
g
a
t
e
co
mm
u
t
ated
th
yristo
r (IGCT), MO
S turno
f
f th
yristor (MTO) and
th
e MOS contro
lled
th
yristo
r (MC
T
)
[55
,
56
]. Th
e en
tire ab
ove sp
ecified
d
e
v
i
ce has less
rev
e
rse b
l
o
c
k
i
ng
cap
a
b
ility an
d h
a
s
l
o
we
r s
w
i
t
c
hi
n
g
fre
que
ncy
.
B
i
di
rect
i
onal
gat
e
i
n
s
u
l
a
t
e
d t
r
a
n
si
st
o
r
(
I
G
B
T
)
an
d
reve
rse
b
l
ocki
n
g
I
G
B
T
(R
B
-
IGB
T
) sem
i
con
d
u
ct
o
r
swi
t
c
h i
s
pri
m
ari
l
y
used i
n
M
C
t
o
ha
ve hi
gh
swi
t
c
hi
n
g
f
r
eq
uency
a
nd i
n
c
r
eased
rev
e
rse
b
l
o
c
k
i
n
g
cap
a
b
ility [5
7
]
. Ev
en
wh
en
th
e
IGBT
and
RB-IGBT
red
u
c
es th
e
p
o
wer/vo
lu
m
e
rati
o
,
the
classical IGBTs are con
s
id
ered
as t
h
e
h
i
gh
er
switch
i
ng
l
o
sses will lead
to th
e redu
ce
d
ou
t
p
u
t
po
wer in a
g
i
v
e
n
design.
The
silicon ca
rbide
(SiC) switc
hes
[58-60] can
be
use
d
to inc
r
ea
se the s
w
itching fre
que
ncy
without
sacrificing
too
m
u
ch
o
f
th
e t
h
erm
a
l b
u
d
g
e
t to
switch
i
ng
l
o
sses.
Tabl
e
4. C
o
m
p
ari
s
o
n
of
Si
I
G
B
T
an
d Si
C
De
vi
ces
Sl.No Devices
Efficiency
1 SiC
JFE
T
97.
5%
2 SiC
BJT
97%
3 SiC
M
O
SFE
T
96.
5%
4 SiC
I
G
B
T
96%
5 RB-
I
G
BT
97.
5%
6 I
G
BT
91.
5%
W
i
t
h
the
SiC JFET e
fficienc
y
of the MC is m
a
in
tain
ed
ab
ov
e
96
% fo
r all frequ
en
cy. Selection
m
odul
at
i
on t
echni
que
s si
gni
fi
cant
l
y
affect
t
h
e l
o
ss. Ta
bl
e
4 sh
o
w
s t
h
e c
o
m
p
ari
s
i
on
of
di
ffe
re
nt
swi
t
h
chi
n
g
devi
ces
use
d
i
n
t
h
e M
C
a
n
d
i
t
s
effi
ci
e
n
cy
.
A
m
ong al
l
swi
t
c
hi
n
g
devi
ces
Si
C
JFET a
n
d R
B
-IGB
T
acc
hi
ves t
h
e
highest e
fficiency of
97.5%
.
T
h
e e
fficenc
y
of th
e M
C
de
pen
d
s
o
n
t
h
e d
e
vi
ce,
t
o
pol
ogy
,
co
nt
r
o
l
an
d
m
odul
at
i
on t
e
c
hni
c
h
i
e
s
used
.
7.
CO
NCL
USI
O
N
In
t
h
i
s
pa
per
,
a com
p
rehe
nsi
v
e
revi
e
w
o
n
t
h
e c
h
aract
e
r
i
s
t
i
c
s of
t
h
e
M
C
i
s
m
a
de. T
h
i
s
re
vi
ew
ha
s
co
m
p
ared
d
i
verse literatu
re av
ailab
l
e in
area of MC
. Th
e rev
i
ew sh
owed
th
e existen
ce o
f
contin
u
o
u
s
devel
opm
ent
of t
h
e M
C
i
n
t
e
r
m
s of t
o
p
o
l
o
gy
, de
vi
ces
, cont
rol
m
e
t
h
od a
nd a
ppl
i
c
at
i
on t
o
i
m
prove t
h
e
per
f
o
r
m
a
nce i
n
t
e
rm
s of
t
o
t
a
l
harm
oni
c
di
st
ort
i
o
n,
co
m
m
on m
ode vol
t
a
ge
,
vol
t
a
ge t
r
a
n
s
f
er
ra
t
i
o
an
d
effi
ci
ency
.
Thi
s
o
p
ens
t
h
e sc
ope
o
f
i
m
prov
em
ent
i
n
t
h
e
M
C
for
i
n
du
st
r
i
al
and
ho
use
hol
d a
ppl
i
cat
i
o
ns.
Wi
t
h
th
e resu
lts reported
i
n
th
is
p
a
per, t
h
e sev
e
ral
o
p
tion
s
fo
r sp
ecific app
licatio
n
wh
ic
h
neede
d
s
p
ecific c
h
aracters
in MC can be
s
e
lected. Howe
ver, the
best
o
p
t
i
on need
s dee
p
er
resea
r
ch
.
REFERE
NC
ES
[1]
Bose BK, “Modern Power
Electr
onics and
AC Dr
iv
es”, Eng
l
ewoo
d Cliffs,
NJ: Prentice-Hall, 2002
.
[2]
Blaabjerg F and Thoegersen P, "Adjusta
ble speed drives - future challenges
and
applications", Power Electronics
and Motion Control Conferen
ce, 2004, IPEMC
2004. The 4th In
ternational, vol. 1, no., pp. 36,
45 Vol. 1, 14-16
Aug. 2004.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A Review on
P
e
rformance A
n
alysis of
Matri
x
Converter Fe
d AC
Mot
o
r
Dr
ive
(D
.
S
r
i
Vidh
ya
)
91
[3]
Paul C. Krause, Oleg Wasy
n
c
zuk and Scott D. Sudhoff, “Anal
y
sis of
Electrical Machiner
y
and
Drive Sy
stems”,
IEEE Power En
gineer
ing Societ
y
,
Sponser, IEEE press, Wile
y
I
n
terscience, A
J
ohn Wiley
& So
ns. Inc. Publication.
[4]
Chen L, Bald
a J.C.,
and Olejniczak
K.J, “Implementation
of a
High Performance Induction Motor Drive using a
Three-ph
ase Inv
e
rter Module,
a
PWM
AS
IC and
a DSP”, in Proc. IEEE Appl.
Power Electron
.
Conf, Vol. 1
,
pp
.
217–223, 1995
.
[5]
G
y
ugi L, and Pelly
B
,
“Static Powe
r Frequency
Changers, Theor
y
, Perform
ance and Application
”
, John Wiley
&
Sons, New York, USA, 1970.
[6]
Venturini M, “A new sine wa
ve
in sine wave out, convers
ion tech
nique which
eliminates
reactive elements,” Proc.
POWERCON 7, pp. E3_1-E3_15
, 1980
.
[7]
Alesina A and
Venturini M.
G.B,
"A
naly
s
i
s and Design of Optimum-Amp
litude Nine-Switch Direct AC-AC
Converters", IEEE
Transactions
on Power
Electr
oni
cs Vol. 4, No
. 1
,
pp
101-112,
Januar
y
1989
.
[8]
Klumpner C and Blaabjerg F,
"Experimental ev
aluation of ride-
t
hrough
capab
ilities for a matrix
converter under
short power
interruptions", Indus
trial
Electronics, IEEE
Transactions on Vol.
49,
No. 2, pp. 315, 3
24, Apr 2002
.
[9]
Klumpner C, Blaabjerg F, Boldea I a
nd Nielsen P, "New
mod
u
lation met
hod
for matrix converters", Industr
y
Applications, IEEE Tr
ansactions
on, Vol. 42, No.
3, pp. 797, 806,
May
-
June 2006.
[10]
Iimori K, Shino
h
ara K
and Yamamoto K, "Stud
y
of dead
time o
f
PWM rectifier
o
f
Volta
g
e
-source inverter without
DC-link components and its operating
char
acter
i
stics of in
duction moto
r", Industr
y
Applications, IEEE
Transactions on
, Vol. 42, No. 2
,
pp. 518
, 525
, M
a
rch-April 2006.
[11]
K
y
o-Beum Lee
and Blaab
jerg F, "Simple Po
wer Control
for Sensorless Induction
Motor Drives Fed b
y
a Matr
ix
Converter"
,
En
er
g
y
Conversion, I
EEE Trans
action
s
on, Vol. 23
, N
o
. 3
,
pp
. 781
, 78
8, Sept. 2008
.
[12]
Antoni Arias, Carlos Ortega, Jordi Zarago
za, Jordi Espi
na and Josep Pou, “Hy
b
r
i
d sensorless permanent magnet
s
y
nchronous machine four
quad
r
ant driv
e based
on direct ma
tr
ix converter”, In
ternati
onal Jour
nal of
Electrical
Power & En
erg
y
S
y
stems, Volu
me 45,
Issue 1,
Pages 78-86, Februar
y
2013
.
[13]
Wheeler P.W, R
odriguez J, C
l
ar
e J.C, Empringh
am L and
Weinstein A, "Matr
i
x
convert
ers: a technolog
y
r
e
view",
Industrial Electr
onics, I
E
EE Transactions on
, Vo
l. 49
, No
. 2
,
pp
.
276, 288
, Apr 20
02.
[14]
Kolar J.W, Friedli
T, Rodr
ig
uez J and
Wheeler P.
W, "Review of Thr
ee-
Phase PWM AC–AC Converter
Topologies", Ind
u
strial El
ectronics, IEEE
Tr
ansactions on
, Vol. 5
8
, No
. 11, pp. 49
88, 5006
, Nov. 2
011.
[15]
Rodriguez J, Rivera M, Kolar J.W a
nd Wheeler P.W, "A Review of Contro
l and Modulation Methods for Matrix
Converters”, Ind
u
strial El
ectronics, IEEE
Tr
ansactions on
, Vol.
59, No. 1, pp. 58
, 70
, Jan
.
2012
.
[16]
Empringham L, Kolar J.W, Rodriguez J and
Wheeler P.
W, Clare J.C, "Technological
Issues and Industrial
Application of
Matrix Conver
t
ers: A Re
view", I
ndustrial Electro
n
ics, IEEE Tr
an
sactions on, Vol. 60, No. 10
, pp.
4260, 4271
, Oct. 2013.
[17]
El-Khour
y
C.N, Kanaan H
.
Y,
Mougharbel
I
and Al-Haddad
K, "A review of
ma
trix conv
erters applied
to P
M
SG
based wind ener
g
y
conv
ersion sy
stems,
" Industr
ial Electronics Society
,
IECON
2013 - 39th Annual Confer
ence
of
the I
EEE , Vol.,
No., pp
. 7784
, 7
789, 10-13
Nov.
2013.
[18]
Gupta R.
A and Rajesh Kumar,
Virendr
a Sa
ngt
a
ni,
Aj
ay
Kuma
r Ba
nsa
l
,
“D
irect Torque C
ontrol of Matr
ix
ConverterFed In
duction Motor
Drive: A Review”,
Proc. of th
e Intl. Conf
. on
Adva
nces
in Co
m
puter, El
ect
ron
i
cs
and Electrical Engineer
ing, pp. 3
87-393, 2012
.
[19]
Casadei D, Serr
a G and Tani A
,
"The
use of matrix
converters in direct to
rqu
e
control of indu
ction machin
es",
Industrial Electr
onics, I
E
EE Transactions on
, Vol. 48
, No
. 6
,
pp
. 1057, 1064, Dec 2001.
[20]
Kolar J W, Baumann M, Scha
fm
eister F and Ertl H, “
N
ovel three-phase AC-D
C-AC sparse matrix conv
ert
e
r”
,
Proceedings of IEEE app
lied po
wer elec
troni
cs confer
en
ce and
exposition
,
APEC’02, Vol 2, Dallas, US, pp 777–
791, 2002
.
[21]
Schafmeister F,
Herold S and K
o
la
r JW, "Evalu
ation of
1200 V
-
Si-IGBTs a
nd 1
300 V-SiC-JFE
T
s for applicatio
n
in three-ph
ase ver
y
sparse matrix AC-AC converter
s
y
s
t
ems", Applied Power
Electronics Conference
an
d
Exposition
,
200
3. APEC
'
0
3
.
E
i
ghteen
th Annual
IEE
E
,
Vol. 1, No., pp. 241, 255
vol. 1
,
9-13
Feb. 2003.
[22]
Schonberger J,
Friedli
T, Roun
d SD and Kolar
JW, “An ultr
a
sparse matrix
co
nverter
with
a n
ovel active
clam
p
circu
it”,
Proceedings of power
conversion c
onf
er
ence, PCC’07, N
a
go
y
a
, Japan
,
pp
784–791, 2007.
[23]
Baoming Ge, Qin Lei, Wei Qi
an and Fang Zheng Peng, "A Fa
mily
of
Z-Source Matrix Converters", Industrial
Electronics, I
E
EE Tr
ansactions o
n
, Vo
l. 59
, No. 1
,
pp
. 35
, 46
, Jan
.
2012.
[24]
Blooming TM and Carnovale D
J, "Application o
f
IEEE
STD 519-1992 Harmonic Limits", Pulp an
d Paper Industr
y
Techn
i
cal Conf
erence, 2006
. Co
nference R
ecord
of
Annual, Vo
l., No., pp. 1, 9, 18
-23 June 2006
.
[25]
Ortega C,
Arias A,
Caruana C, Balc
ells J and
Asher G.M, "I
mproved Waveform Quality
in
the Direct Torq
ue
Control of Matrix-Converter-Fed
PMSM Drives",
Industrial
Electr
onics, I
EEE Tr
ansactions on
, Vo
l. 57
, No. 6, pp
.
2101, 2110
, Jun
e
2010.
[26]
Changliang
Xia, Jiaxin
Zhao
and
Yan Yan
,
Ting
na Shi,
"A Novel Direct
Torque
Cont
rol of
Matrix Converter-Fed
PMSM Drives Using Duty
C
y
c
l
e Control for
Torque Ripp
le R
e
duction", Industr
ial
Elect
ron
i
cs, I
EEE Transactio
ns
on, Vol. 61
, No.
6, pp
. 2700
, 271
3, June 2014.
[27]
Vargas R, Rodriguez J, Rojas CA
and Rivera
M, "Predictiv
e Control of
an In
duction M
ach
in
e F
e
d b
y
a M
a
tr
ix
Converter With
Increas
ed Eff
i
ciency
and
R
e
duced
Common-Mode Voltag
e
", En
erg
y
Co
nversion, IEEE
Transactions on
, Vol. 29, No. 2
,
pp. 473
, 485
, Ju
ne 2014.
[28]
Alireza Jahangir
i
and Ahmad R
a
dan, “Indi
rect
matrix converter
with unity
voltage transfer r
a
tio for AC to
AC
power conv
ersio
n
”,
Electr
i
c Power S
y
s
t
ems
Research, Vol. 96, Pa
ges 157-169, March 2013.
[29]
Metidji B
,
Taib
N, Baghli L, Rekioua T
and Bacha S,
"Novel Single Current Sensor Topolog
y
for Ventur
in
i
Controlled
Direct Matrix Conv
er
ters",
Power Electronics, IEEE
Transactions on
, Vol. 28
, No. 7
,
pp. 3509, 3516
,
July
2013
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
:
85
–
9
3
92
[30]
Goh Teck Ch
ian
g
and Itoh JI
, "DC/DC Boost Converter Func
tion
a
lity
in a
Thr
ee-
Phase
I
ndirect Matrix
Conver
t
er",
Power Electron
ics, IEEE Tr
ansactions on
, Vol.
26, No. 5, pp. 15
99, 1607
, May
2
011.
[31]
Podlesak TF, K
a
tsis DC,
Wheeler PW, Clar
e J
C
, Empringham L and
B
l
and
M, "A 150-kVA vector-
c
ontrolled
m
a
trix conver
t
er
induction m
o
tor
drive", Industr
y Applica
tions, I
EEE
Transac
tion
s
on, Vol. 41, N
o
. 3, pp
. 841,847
,
May
-
June 2005.
[32]
Vargas R, Ammann U, Rodriguez J and
Pontt J,
"Predictiv
e Strateg
y
to
C
ontrol
Common-
Mode Voltage in
Load
s
Fed b
y
Matrix
Converters", Ind
u
strial
Electronics, IEEE
Tr
ansactions on, Vol.
55,
No. 12, pp
.
4372, 4380, Dec.
2008.
[33]
Wheeler PW, Clare JC, Apap M, Brad
ley
KJ, "Harmonic Loss Due to
Oper
ation of Induction
Machines Fro
m
Matrix Conv
erters", Industr
ial Electron
i
cs, IEEE
Transactions on
,
Vol. 55, No. 2
,
pp. 809
, 816
, Feb. 2008
.
[34]
Rodríguez J, Pontt J, Correa P, Cortés P, and S
ilva C, “A new modulation me
thod to reduce common-
mod
e
voltag
e
s in multilevel inv
e
rters”,
IEEE Tr
ans. Ind
.
Electron
.
, Vol.
51, No.
4, pp. 83
4–839, Aug. 200
4.
[35]
Espina J, Orteg
a
C, de Lillo L
,
Em
pringham
L
,
Balc
ells J and Arias A, "Red
uction of Output Com
m
o
n
Mod
e
Voltage Using
a Novel SVM Implementation
in Matrix
Converters for Improved Mo
tor Lifetime", Industrial
Electronics, I
E
EE Tr
ansactions o
n
, Vol.
61
, No. 1
1
, pp
. 5903
, 591
1, Nov. 2014.
[36]
Han Ju C and
Enjeti PN, "An ap
proach to
redu
ce common-
mode
voltag
e
in matr
ix converter", I
E
EE Tr
ans. on In
d.
Appli., Vol. 39,
pp. 1151-1159
,
2003.
[37]
Ortega C,
Arias
A,
Caruana C,
and
Apap M, "
R
eduction of th
e common
mod
e
voltag
e
of a matrix conv
erter f
e
d
direct torqu
e
con
t
rol",
IEICE Electron., Vol. 7
,
pp
. 1044-1050
, 20
10.
[38]
Hong-Hee L, N
g
u
y
en H
.
M, and
Eui-Heon J, "A
stud
y
on
r
e
duction of common-mode voltage
in
matrix conver
t
er
with unity
input power factor
and si
nusoidal
in
put/output waveforms", in
31st
Annual Confer
ence of
IEEE In
d.
Electron. Society
,
2005
.
[39]
Ahm
e
d, Moin SK, Salam
,
Zaina
l
, Abu-
Rub and Haitham, "Common-mode voltage
elim
inat
ion i
n
a three-to-s
ev
en
phase dual matrix conver
t
er f
eedi
ng
a seven
phase open-en
d induction
mo
tor drive",
Energ
y
Conversio
n
(CENCON), 2014 IEEE Conf
erence on
, Vo
l., N
o
., pp. 207, 212,
13-14 Oct. 2014
.
[40]
Ngu
y
en
T.D
an
d Lee HH, "A
New SVM Method for an
I
ndir
ect Matrix
Conv
erter
with Com
m
on-Mode Voltage
Reduction"
, I
E
EE Tr
ans. on
Ind.
In
formatics, Vol. 10
, pp
. 61-72
,
2014.
[41]
Gennadiy
Z and
Leonid
Z, “Matrix converters with voltag
e
tr
an
sfer ratio
greater
th
an one”, 17
th Int. Confer
ence on
Electrical Drives
and Power
Electr
onics, Slov
akia
28–30 September, 2011
.
[42]
Zinoviev GS, “Structures of power converters with an
y
voltage transfer ratio
”,
Sc. Bulletin of NSTU,
№
3,
Novosibirsk: NSTU, pp
. 71-76
, 1
997.
[43]
Goh Teck Chian
g
and Itoh JI, "V
oltag
e
transfer r
a
tio impr
ovement of an Indir
e
ct
Matrix Conver
t
er b
y
Single puls
e
m
odulation", En
erg
y
Conversion
Congress and E
xpositi
on (ECCE), IEE
E
, Vol., No., pp. 1830, 1837, 12-16 Sept
.
2010
[44]
Wang L, Zhou
D, Sun K, and Hu
ang L, “A novel method to enhance the vo
ltag
e
transfer ratio of matrix conver
t
er
”,
in Proc. IEEE TENCON, Vo
l. 4
,
pp. 81–84, Nov. 2004.
[45]
Thuta S, Mohap
a
tra S and Mohan N,
“Matrix converter over-mo
dulation usi
ng carrier-b
ased control: Maximizing
the vo
ltag
e
trans
f
er r
a
tio
”, in Pro
c
. I
E
EE Po
wer
Electron. Spec. C
onf
., pp. 1727–1
733, Jun. 2008.
[46]
Tamai Y, Ohgu
chi H, Sato I
,
O
d
aka A, Min
e
H and Itoh
JI, “A Novel Control
Strateg
y
for Matrix Converters in
Over-modulatio
n Range”, in
Power Conversion
C
onference, Nag
o
y
a, pp
. 1049
-10
55, April 2007.
[47]
Pa
we
ł
S
zcz
e
ś
niak, "Three-phase
AC-AC Power
Converters Based on Matrix Con
v
er
ter Topolog
y
,
Matrix-reactance
frequency
conv
erters
con
cep
t", S
p
ringer-Verlag
London 2013.
[48]
Kiwoo Park, Eun-Sil Le and K
y
o-Beum Lee, "
A
Z-source
sparse matrix converter with a fuzzy
logic contro
ller
based com
p
ens
a
tion m
e
th
od u
nder abnorm
a
l
input vol
tag
e
conditions", Indu
strial
El
ectron
i
cs (ISIE), IE
EE
International S
y
mposium on, Vol., No., pp
. 614
,
619, 4-7
July
20
10.
[49]
Weizhang Song, Yanru Zhong,
"A stud
y
of z-source matr
ix
co
nverter with hig
h
voltag
e
tr
ansfer ratio", Veh
i
cle
Power and Prop
ulsion Confer
en
ce, VPPC I
EEE,
vol., no., pp
. 1
,
6
,
3-5
Sept. 2008.
[50]
Ellabb
an O, Abu-Rub H and B
a
oming G,
"Field oriented contr
o
l of an i
nduction motor fed by
a quasi-Z-source
direct matrix co
nverter"
,
Industr
ial Electronics Societ
y
,
IECON 2
013 - 39th Annual Confer
ence o
f
the IEEE , vo
l.,
no., pp. 4850, 48
55, 10-13
Nov. 2
013.
[51]
Manoharan S, Devarajan
N, Deivasah
ay
am S.M and Ranganathan G,
“Review on efficiency improvement in
squirrel C
a
ge
in
duction motor
b
y
using
DCR technolog
y
”
, J
our
nal of
electrical
engineer
ing, Vol. 60, No. 4
,
227
–
236, 2009
.
[52]
Thomas Friedli, Johann W Kol
a
r, Jose Rodrig
uez, Pa
trick
and
W
h
eeler W
,
"Com
pa
rative Ev
aluation of Three-
Phase AC–AC
Matrix Conver
t
er and Voltag
e
DC-Link Back
-to-
Back Conver
t
er
S
y
stems"
, IEEE Trans., Vol. 5
9
,
No. 12, pp. 4487
-4510, 2012
.
[53]
Bernet S, Ponnaluri S and
Teich
m
ann
R, "Design and loss comparison of ma
trix converters,
an
d voltag
e
-source
converters for modern AC drives", Industrial Electronics,
IEEE Tr
ansactions on , Vol.
49, No. 2, p
p
. 304, 314, Apr
2002.
[54]
Siy
oung Kim, S
e
ung-Ki Sul
and
Lipo
TA, "AC/AC power c
onv
ersion based
on
matrix
converter topolog
y
with
unidirection
a
l s
w
itches", Industr
y
App
lic
ations, I
EEE Trans
action
s
on, Vol.
36
, N
o
. 1
,
pp
. 139
, 14
5, Jan/Feb
2000.
[55]
Wheeler
P, Clar
e JC and
Empringham L,
"A vector
controlled
MCT matrix
co
nverter
indu
ctio
n motor driv
e w
ith
minimized com
m
utation times
and enhan
ced
waveform quality
"
,
Industr
y
Applications Conf
erence, 2002
. 37
th IA
S
Annual Meeting
.
Conferen
ce Record of th
e, Vo
l.
1, No., pp
. 466
,
472 vol. 1, 13-1
8
Oct. 2002.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
A Review on
P
e
rformance A
n
alysis of
Matri
x
Converter Fe
d AC
Mot
o
r
Dr
ive
(D
.
S
r
i
Vidh
ya
)
93
[56]
Jun Koo
Kang,
Hara H,
Yamamoto E a
nd Watanabe E, "Analy
s
i
s and evalua
t
i
o
n
of bi-direction
a
l power switch
losses for matrix converter driv
e", I
ndustr
y
Applications Conference, 2002
.
37th
IAS Annual Meeting
.
Confer
ence
Record of
th
e, Vol. 1
,
No
., pp.
43
8, 443
vol. 1, 13
-18 Oct. 2002
.
[57]
Itoh J, Iida
T an
d Odaka A, " Realization of High Effi
ciency
A
C
link Converter S
y
stem based
on AC/AC Direct
Conversion Techniques with
RB
-IGBT", Industrial
Electron
ics C
onference, Paris, PF-012149, 200
6.
[58]
S
a
fari S
,
Cas
t
e
l
laz
z
i A
and W
h
eel
er P
,
"
E
xpe
rim
e
ntal
and A
n
al
yti
c
a
l
P
e
rfor
m
ance Ev
alua
ti
on of S
i
C P
o
wer
Devices in
the
Matrix Conver
t
er”, Power
Electr
onics, I
EEE Transactions on
, Vol. 29
, No. 5
,
pp.
2584, 2596,
M
a
y
2014.
[59]
Koiwa K and I
t
oh JI, "Ev
a
luation of a maximum power de
nsity
d
e
sign metho
d
for matrix
co
nverter
using SiC-
MOSFET", En
er
g
y
Conversion C
ongress and
Exp
o
sition (
E
CCE
),
IEEE
, Vol
.
, No., pp. 563, 570, 14
-18 Sept. 2014.
[60]
Moghe R, Kand
ula RP, I
y
er A and Divan D, "Lo
ss comparis
on b
e
tween SiC
,
h
y
b
r
id Si/SiC, and S
i
devices indir
e
ct
AC/AC converters", ECCE, pp
. 3
848-3855, 2012
.
BIOGRAP
HI
ES OF
AUTH
ORS
D. Sri Vidhy
a was born in India, in 1982. She receiv
e
d B.E degr
ee in El
ectr
i
c
a
l and Ele
c
troni
cs
Engineering fro
m
Bannari Amman Institut
e
of
Technolog
y
,
Sath
y
a
m
a
ng
alam
, In
dia in 2004 and
M.E. degr
ee
in
Power Electronics and drives
fr
om K.S. Rangasamy
Co
lleg
e
o
f
Techno
log
y
,
Tiruch
engode, India in 2008. Cu
rrently
he
is work
ing as a Assistant Professor in KS Rangasamy
College of Tech
nolog
y
,
Tiruchengode, India. H
e
r
research in
ter
e
stsare
Intelligence techniqu
es,
Matrix Conv
erters and Intelligen
t Techniques
.
T. Venkatesan,
was born in
Salem, India, in 19
71. He receiv
ed
B.E degree in
Electrical
and
Electronics Eng
i
neer
ing from NIT, Tiruch
y
,
in
1997, the M.E
degr
ee in
Power
S
y
stem
Engineering fro
m Annamalai Univer
sity
, India,
in 2002,
and receiv
es Ph.D.
in A
nna University
,
Chennai, in 20
13. Currently
h
e
is working
as a Professor in KS Rangasamy
Co
lleg
e
of
Techno
log
y
,
Tir
u
chengode, Ind
i
a. His r
e
sear
ch
interests ar
e
Economic Disp
atch
and Unit
Com
m
itm
ent problem
solution
u
s
i
ng soft computing techniqu
es.
Evaluation Warning : The document was created with Spire.PDF for Python.