Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
5, N
o
. 3
,
Febr
u
a
r
y
201
5,
pp
. 42
4
~
43
2
I
S
SN
: 208
8-8
6
9
4
4
24
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Buck-Boost Control
of
F
o
ur
Quadrant Chopper using
Symmetrical Impedanc
e Net
w
ork
for Adj
u
stable Speed Drive
Sa
swat
i Sw
a
p
na
Da
sh*
,
B
yama
k
esh
N
ayak**
* Department of
Electrical Eng
i
n
eering
,
YMCA
University
of
science an
d
technolog
y
,
Farid
a
bad
** School of
Electrical Eng
i
neer
i
ng, KIIT Univer
sity
, Bhub
aneswar
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Nov 7, 2014
Rev
i
sed
Jan 13, 201
5
Accepte
d
Ja
n 29, 2015
This paper prop
oses buck-boost capabi
lities of four quadrant chopper for
wide rang
e speed control of DC moto
r drives using s
y
mmetrical impedan
c
e
network called Z-source network. B
y
contro
lling
the shoot through duty
ratio
from 0 to 0.5 an
d non-shoot through techniqu
es,
the Z-source fou
r
quadrant
choppers can pr
oduce an
y
desir
e
d DC voltag
e
across the DC
motor. The
switching patter
ns for both buck and
boost o
p
erations are p
r
esented
to
achieve four modes of operation of DC
moto
r. As a result, the proposed
m
odel will have ride through capabili
t
y
dur
ing voltag
e
sags, m
a
nage during
voltag
e
s
w
ells
, us
ed in an
y
t
y
pes
of DC voltage s
ources
s
u
ch as
fuel ce
ll and
solar ce
ll and
i
m
p
rove the rel
i
a
b
ilit
y b
y
r
e
duc
i
ng EMI noise.
Anal
y
s
is and
simulation r
e
sults are presented
to
demonstrate th
ese new
findings
.
Keyword:
Battery
Bu
ck-boo
st cap
a
b
ilities
DC m
o
tor
dri
v
es
Fo
ur q
u
a
d
ra
nt
ope
rat
i
o
n
Sh
oot
t
h
r
o
ug
h dut
y
rat
i
o
Z-s
o
u
r
ce net
w
or
k
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Saswati Swap
na Dash
,
Depa
rt
m
e
nt
of
El
ect
ri
cal
Engi
neeri
n
g
,
Y
M
CA
Un
iv
ersity o
f
Scien
ce
an
d Tech
no
logy, Far
i
d
a
b
a
d
Em
a
il: reachtoswapna
@gm
a
i
l
.com
1.
INTRODUCTION
DC
m
o
t
o
r/
per
m
anent
m
a
gnet
DC
m
o
t
o
r ha
s been
pl
ay
i
ng
an i
m
port
a
nt
r
o
l
e
i
n
di
f
f
ere
n
t
appl
i
cat
i
ons
because of ea
sy and
wide
range
of s
p
eed and torque
c
ont
rol.
In all above a
p
p
lications four
qua
d
ra
nt
ope
rat
i
o
ns o
f
DC
m
o
t
o
r are
req
u
i
r
e
d
i
n
o
r
de
r t
o
achi
e
v
e
fo
rwa
r
d m
o
t
o
ri
ng m
ode, f
o
r
w
ar
d re
ge
ne
rat
i
v
e
bra
k
i
n
g m
ode
t
o
fee
d
back
t
h
e ene
r
gy
t
o
sy
st
em
, reve
rse
m
o
t
o
ri
ng m
o
d
e
an
d
reve
rse
rege
nerat
i
ve
b
r
aki
n
g
m
ode. It
i
s
a buck (
o
r st
ep-
d
ow
n) c
o
n
v
e
r
t
e
r
t
h
at
can onl
y
pr
o
duce an
out
put
v
o
l
t
a
ge acr
oss arm
a
t
u
re l
i
m
i
t
e
d
b
y
th
e inpu
t dc lin
k
v
o
ltag
e
. Th
erefo
r
e, th
e v
o
ltag
e
rating o
f
m
o
to
r m
u
st b
e
sam
e
as t
h
e inpu
t vo
ltag
e
. Th
e
selectio
n
o
f
mo
tor
v
o
ltag
e
ratin
g
is b
a
sed on
t
h
e i
n
pu
t v
o
ltag
e
. Vo
ltag
e
sag
is
th
e p
o
wer q
u
a
lity related
pr
o
b
l
e
m
s
whi
c
h i
s
m
o
m
e
nt
ary
i
n
nat
u
re
(a
b
out
2
seco
n
d
s)
an
d a
m
a
xim
u
m
reduct
i
o
n
of
i
n
put
v
o
l
t
a
ge
by
abo
u
t
5
0
%
ca
n
i
n
t
e
rru
pt
fo
ur
qua
d
r
ant
ch
op
per ba
sed ad
j
u
st
abl
e
speed d
c
dri
v
e sy
st
em
and s
hut
d
o
w
n c
r
i
t
i
cal
l
o
ads a
nd p
r
oc
esses. The
dc l
i
nk capaci
t
o
r o
n
i
n
p
u
t
si
de
is a relatively s
m
all energy stora
g
e elem
ent
and is
n
o
t
cap
a
b
l
e to
k
eep
t
h
e vo
ltag
e
con
s
tan
t
. Lack
of ri
d
e
-thro
ugh
cap
ab
ility is a serio
u
s
p
r
ob
lem
fo
r sen
s
itiv
e
l
o
ads
d
r
i
v
e
n
b
y
fo
ur
q
u
a
d
ra
nt
ch
o
ppe
r ci
r
c
ui
t
[
1
]
-
[
3
]
.
E
M
I n
o
i
s
e i
s
t
h
e m
a
jor
pr
obl
em
i
n
f
o
u
r
qu
adra
nt
ch
opp
er circu
it in
term
s o
f
reliab
ility an
d
p
e
rform
a
n
ce
[4
]. A recen
tly d
e
velo
p
e
d
n
e
w sy
mme
trical i
m
p
e
d
a
n
ce
net
w
or
k
nam
e
d as
Z-s
o
urce
i
nve
rt
er i
s
use
t
o
ove
rc
om
e the a
f
o
r
em
ent
i
oned
p
r
obl
em
s. It
s cl
assi
cal
c
ont
rol
tech
n
i
qu
e an
d
th
e p
a
rasitic el
e
m
en
t lik
e ESR are an
aly
zed fo
r t
h
e b
e
tter
p
e
rform
a
n
ce an
d
wid
e
ap
p
licatio
n
s
like centri
f
ugal
pum
p
[5]-[8]
.
Because
of
buck ca
pability of four
qua
d
ra
nts choppe
r
base
d a
d
justa
b
le speed
dc dri
v
e, fuel cell /solar cell cannot be use
d
as a so
urce of the system
.
This is because fuel cells usually
pr
o
duce
a
vol
t
a
ge t
h
at
cha
n
g
e
s wi
del
y
(2:
1
rat
i
o
)
de
pen
d
i
n
g
on
cu
rre
nt
dr
awn
f
r
om
t
h
e s
t
acks.
Al
so
, t
h
e sol
a
r
cel
l
vol
t
a
ge
v
a
ri
at
i
on i
s
7
0
t
o
8
5
%
of t
h
e
nom
i
n
al
t
e
m
p
erat
ure a
nd
r
a
di
at
i
on
de
pen
d
i
n
g o
n
M
P
P
poi
nt
te
m
p
eratu
r
e and
rad
i
ation
[9
]
-
[1
4
]
. Perfo
r
m
a
n
ce and
re
liab
ility are affected
b
y
th
e fo
ur q
u
a
dran
t chop
p
e
r
circuit beca
use
of m
i
ss-gating from
EMI can cause
shoo
t-
thr
oug
h(
two
semico
nd
u
c
t
o
r sw
i
t
ch
es of
on
e leg
are
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Buck-
Bo
ost
C
o
nt
rol
of
F
o
u
r
Qu
a
d
ra
nt
C
h
o
ppe
r
usi
n
g
Sy
mmet
r
i
c
al
I
m
p
e
da
nce…
(
S
as
w
a
t
i
Sw
a
p
n
a
D
a
sh)
42
5
o
n
at th
e sam
e
ti
m
e
) th
at d
a
mag
e
s th
e chop
p
e
r circu
it
[15
]
-
[
19
].
To
o
v
er
co
m
e
th
e fi
rs
t three a
f
orem
entione
d
pr
o
b
l
e
m
s
, a boost
dc-
d
c c
o
n
v
e
rt
er (st
e
p
-
up
con
v
e
r
t
e
r) ca
n be i
n
co
r
p
o
r
at
e
d
i
n
bet
w
een i
n
p
u
t
so
urce a
n
d f
o
u
r
qua
d
r
ant
c
h
op
per
.
H
o
weve
r,
use
of
o
n
e e
x
t
r
a sel
f
c
o
m
m
utat
ed sem
i
cond
uct
o
r s
w
i
t
c
h i
n
creases c
o
st
a
n
d EM
I
noi
se [
2
0]
-[
2
2
]
.
Thi
s
pa
per
u
s
es sym
m
et
ri
cal
im
pedance net
w
or
k co
nsi
s
t
i
ng o
f
t
w
o e
q
ual
val
u
e
d
i
n
d
u
ct
o
r
s
and capacitors
arra
nged in
Z-form
and
b
a
t
t
e
ry
as i
n
p
u
t
sou
r
ce,
an
d
pr
o
poses
t
h
e
cont
rol
t
e
c
hni
que
o
f
semico
n
d
u
c
tor switch
e
s to
op
erate th
e dc
machine in all the four qua
d
rant
s at
desi
re
d spee
d. A Z
-
sou
r
ce
base
d f
o
ur
q
u
a
d
ra
nt
dc
ch
o
p
p
e
r f
o
r
ad
j
u
st
abl
e
spee
d
dc m
o
tor
d
r
i
v
e ca
n
pr
od
uce a
n
y
de
si
red
o
u
t
p
ut
arm
a
t
u
r
e
d
c
v
o
ltag
e
, ev
en
g
r
eater or less th
an
th
e inp
u
t d
c
v
o
ltage. Th
is im
p
lies th
at th
e circu
it sho
w
n
i
n
Fi
g
u
re
1
h
a
s
b
o
t
h
b
u
c
k
and bo
o
s
t
cap
ab
ilities. Pro
v
i
d
e
rid
e
-throug
h dur
ing
v
o
ltag
e
sag
s
and
co
m
p
en
sate
v
o
ltag
e
swell
with
ou
t an
y ad
d
ition
a
l sem
i
co
ndu
ctor
switch
an
d
Redu
ce EMI
n
o
i
se.
Th
e eq
u
i
v
a
len
t
circu
it in
b
u
ck
an
d
bo
ost
m
ode
has al
s
o
b
een
anal
y
zed.
Si
m
u
l
a
t
i
on ha
s
bee
n
car
ri
ed
o
u
t
t
o
pr
o
v
e
t
h
e c
once
p
t
usi
n
g
MATLAB/S
I
MULINK.
2.
AN
ALY
S
IS
O
F
Z
-
SOU
RCE
FO
UR
Q
U
A
D
R
A
N
T C
H
O
PPER F
O
R
B
OOST
MO
DE
As see
n
i
n
Fi
g
u
re
1, t
h
e Z-
s
o
u
r
ce
based
f
o
ur
q
u
ad
rant
dc
cho
p
p
er
f
o
r a
d
j
u
st
a
b
l
e
spee
d co
nt
r
o
l
dc
m
o
t
o
r dri
v
e ut
i
l
i
zes sym
m
e
t
r
i
cal
im
pedance
net
w
or
k c
onsi
s
t
i
ng
of t
w
o i
n
duct
o
rs a
n
d t
w
o capaci
t
o
rs t
o
l
i
nk
t
h
e fo
ur q
u
a
d
r
a
nt
dc ch
op
per
t
o
i
nput
dc su
ppl
y
.
He
re bat
t
e
ry
i
s
used as t
h
e i
n
p
u
t
.
The
4 di
f
f
ere
n
t
m
odes
o
f
ope
rat
i
o
ns
a
r
e expl
ai
ne
d [
23]
-
[
2
5
]
.
Fi
gu
re 1.
F
o
u
r
qua
d
r
ant
of
ch
op
pe
r usi
n
g
Z
-
sou
r
ce
i
m
peda
nce net
w
or
k
2.
1.
Forwar
d Motoring
Mode
Ope
r
at
i
o
n of t
h
e ci
rcui
t
ass
u
m
i
ng cont
i
n
u
ous c
o
nd
uct
i
o
n m
ode can b
e
expl
ai
ne
d t
h
ro
u
gh t
w
o
m
odes. The
ac
tive state occ
u
rs
whe
n
SW
1
an
d SW
2 ar
e t
u
rn
ed
on
. In
t
h
is m
o
d
e
, th
e
d
i
od
e
D
5
is for
w
ar
d
biased and t
h
e
r
efore
input is
conn
ected to load. T
h
e
shoot through st
ate occurs when
SW
1,
SW
4 and
SW
2
are turne
d
on.
Due
to s
u
dde
n cha
nge
of swi
t
ch
in
g actio
n,
th
e d
i
o
d
e
D5
i
s
re
verse
biase
d
a
n
d therefore the
in
pu
t is
d
i
sconn
ected
fro
m
th
e lo
ad.
The voltage relations unde
r
ac
tive
state
are:
(1)
2
(2)
The v
o
l
t
a
ge rel
a
t
i
ons u
nde
r
s
h
oot
-t
hr
o
u
g
h
st
at
e
are:
(3)
0
(4
)
Whe
r
e
,
,
,
and
ar
e ind
u
c
t
o
r
,
cap
acito
r, b
a
ttery, in
pu
t to
fo
ur q
u
a
d
r
an
t chopp
er
an
d non
-
z
er
o po
r
tion
o
f
v
o
ltag
e
s resp
ectiv
ely.
The a
v
era
g
e
v
o
l
t
a
ge i
n
p
u
t
t
o
fo
ur
q
u
a
d
ra
nt
c
h
o
p
p
er
o
v
er
t
h
e swi
t
c
hi
ng
pe
r
i
od i
s
:
1
(5)
Whe
r
e
is the
duty cycle of the
SW
2
or
SW4
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
3
,
Feb
r
uar
y
201
5 :
4
24 –
43
2
42
6
It
i
s
al
so show
n usi
n
g st
eady
-
st
at
e
analysis that the avera
g
e
voltage in
put
t
o
fo
u
r
q
u
ad
ran
t
chop
pe
r i
s
eq
u
a
l t
o
cap
aci
to
r
vo
ltag
e
.
Sub
s
titu
tin
g (2
) in
(5) an
d rep
l
acin
g
by
,
(6)
Whe
r
e
a
v
era
g
e voltage ac
ros
s
the a
r
m
a
ture.
Th
e
p
e
ak
v
o
ltag
e
acro
ss arm
a
tu
re is:
(7)
In th
e ra
nge
,
0
≤
d
≤
0.5
, Z-source conve
r
ter will act as boost
chopp
er a
n
d a
b
ove
0.5 to
1 it will act as
b
o
t
h
b
u
c
k
and bo
o
s
t cho
p
p
e
r with
rev
e
rse
p
o
l
arity o
f
ou
tp
u
t
vo
ltag
e
. Th
e
b
u
c
k
and
bo
o
s
t cap
a
b
iliti
es of Z-
so
urce conv
ert
e
r is sh
own
in
Fig
u
re 2
.
Th
e
b
u
c
k
and
boo
st cap
ab
ilities o
f
Z-sou
r
ce co
nverter can
b
e
ach
i
ev
ed
onl
y
w
h
e
n
di
o
d
e
D5
is rep
l
aced
b
y
self
commu
tated
se
mico
nd
u
c
t
o
r contro
l switch. To ach
iev
e
t
h
e ab
ov
e
m
e
ntioned ca
pabilities the shoot
-through s
w
itch and re
plac
ed switch m
u
st be com
p
li
m
e
n
t
arily triggered. But
the valid ra
nge of duty cycle of Z-
so
urce
con
v
e
r
t
e
r usi
n
g di
o
d
e
t
o
co
n
n
ect or
disconnect source to
load is
0
≤
d
≤
0.
5
.
A
b
ov
e 0.
5 t
h
e
di
o
d
e
i
s
f
o
r
w
ar
d
bi
a
s
ed
beca
use
of
reve
rse
p
o
l
a
ri
t
y
of
o
u
t
p
ut
v
o
l
t
age an
d t
h
ere
f
ore
,
the
s
o
urce gets
connecte
d
during shoot
thr
oug
h state wh
ich
may d
a
m
a
g
e
the sw
itch
e
s.
Fig
u
re
2
.
Bu
ck and
B
o
o
s
t capab
ilities o
f
Z-so
urce C
o
nv
erter
W
i
t
h
ou
t shoo
t-th
ro
ugh
state (
d=
0
) Z
-
s
o
u
r
ce
im
pedance ne
t
w
o
r
k
has n
o
i
m
pact
on t
h
e inp
u
t
v
o
l
t
a
g
e
t
o
t
h
e
fo
u
r
q
u
a
dra
n
t
c
h
o
p
p
er
an
d i
t
i
s
sam
e
as t
h
e
bat
t
e
r
y
vol
t
a
ge
, s
o
t
h
at
b
u
c
k
m
ode
usi
n
g
di
o
d
e c
a
n
be
easily ach
iev
e
d
u
s
ing
d
i
fferen
t p
a
ttern
s. Du
e to
para
si
tic ele
m
ents inhe
re
nt in inductor, capacit
o
r and
switch
e
s t
h
e
ou
tpu
t
vo
ltag
e
i
s
li
m
ited
to
5
t
o
1
0
tim
es o
f
i
n
pu
t
v
o
ltag
e
dep
e
nd
ing
up
on th
e valu
e
o
f
parasitic
el
em
ent
s
. The peak
vol
t
a
g
e
across t
h
e arm
a
ture (
r
at
e of c
h
a
nge
of
vol
t
a
ge
)
depe
nd
s u
p
o
n
sho
o
t
-
t
h
r
o
ug
h
rat
i
o
.
Let u
s
con
s
id
er th
e sh
oo
t-t
h
rou
g
h
ratio
is
0
.
45
to
boo
st th
e av
erag
e vo
ltag
e
to
5
.
5
ti
m
e
s th
e in
pu
t v
o
ltage. Th
e
rate o
f
ch
ang
e
o
f
th
e arm
a
tu
re vo
ltag
e
is 10
ti
m
e
s o
f
in
pu
t v
o
ltag
e
wh
i
c
h
creates th
e
d
e
leteriou
s effect o
f
cau
sing
h
i
g
h
dielectric lo
ss i
n
th
e in
su
latio
n
and
th
erefo
r
e redu
ced
life.
In
ad
d
ition
,
it p
r
od
u
ces
h
i
gh
stresses
on
swi
t
c
hes.
In t
h
i
s
m
ode t
h
e s
p
ee
d o
f
t
h
e m
o
t
o
r can
b
e
co
nt
r
o
l
l
e
d a
b
o
v
e t
h
e s
p
ee
d
pr
od
uce
d
by
t
h
e
bat
t
e
ry
v
o
ltag
e
b
y
contro
llin
g th
e
du
ty ratio
in th
e
ran
g
e
of
0
≤
d
≤
0.5
.
2.
2.
Forw
ar
d Rege
nera
ti
ve
B
r
ak
i
n
g Mo
de
In
th
is m
o
d
e
, th
e d
i
rection
of ar
m
a
tu
re cu
rren
t
rev
e
rses and there
f
ore, the
m
o
tor acts as a generat
o
r.
Here one of
t
h
e
swi
t
c
h
SW
4
or
SW
3
i
s
t
u
r
n
ed-
o
n an
d o
ff t
o
m
ove fr
om
one st
at
e t
o
an
ot
her
.
When
SW
4
is on
the arm
a
ture current is
circulated through
SW
4
and
D2
.
In this state, the ene
r
gy
stored in the arm
a
ture
inductance
rele
ases
through the arm
a
ture resi
stance.
When
SW
3
is turn
ed-o
ff
,
th
e
d
i
od
es
D1
and
D2
c
o
nd
uct
and
p
o
w
er
i
s
fe
d
back
t
o
i
m
pedance
net
w
o
r
k.
The
v
o
l
t
a
ge
re
l
a
t
i
ons are:
0
(
SW
3
tur
n
ed-on)
(8)
(Di
odes
D1
and
D2
conducti
ng)
(9)
2.
3.
Rever
s
e Mo
to
ring Mo
de
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Buck-
Bo
ost
C
o
nt
rol
of
F
o
u
r
Qu
a
d
ra
nt
C
h
o
ppe
r
usi
n
g
Sy
mmet
r
i
c
al
I
m
p
e
da
nce…
(
S
as
w
a
t
i
Sw
a
p
n
a
D
a
sh)
42
7
In re
ver
s
e
m
o
t
o
ri
ng m
ode fo
r
bo
ost
ope
rat
i
o
n, t
h
e act
i
v
e st
at
e occurs w
h
e
n
SW
3
and
SW
4
are turne
d
on
. T
h
e di
ode
D5
is
f
o
r
w
ard b
i
ased
and
ther
efo
r
e, th
e load
is conn
ected
to
inpu
t. The sh
oo
t thr
ough
state
occurs when
SW2
,
SW
3
an
d
SW4
a
r
e t
u
rne
d
on
w
h
i
c
h
re
ver
s
e bi
ase
d
t
h
e
d
i
ode
D5
, t
h
e
r
e
b
y
,
di
sc
o
nnect
i
ng t
h
e
load
from
the input. T
h
e m
a
them
ati
cal analysis is sa
m
e
as
the forwar
d m
o
t
o
ri
n
g
m
ode.
The a
v
era
g
e v
o
l
t
a
ge
acro
s
s th
e armatu
re is:
fo
r
0
0
.
5
(10)
The ne
gat
i
v
e s
p
eed
of t
h
e m
o
t
o
r can be c
ont
rol
l
e
d a
b
o
v
e t
h
e speed p
r
od
uc
ed by
t
h
e bat
t
e
ry
vol
t
a
ge
b
y
con
t
ro
llin
g
th
e du
ty ratio in
th
e rang
e
o
f
0
≤
d
≤
0.
5
.
2.
4.
Rever
s
e B
r
a
k
i
n
g
M
o
de
To se
nd the
power t
o
the
source th
e m
o
t
o
r m
u
st
act
as
gene
r
a
t
o
r
by
re
versi
ng t
h
e
di
rect
i
o
n o
f
reve
rse
m
o
t
o
ri
ng arm
a
t
u
re cu
rre
nt
. T
h
i
s
i
s
achi
e
ve
d
by
t
u
r
n
i
n
g o
n
and
of
f ei
t
h
er
one
of t
h
e s
w
i
t
c
hes
SW
1
or
SW
2
.
Whe
n
SW
2
is
o
n
th
e arm
a
tu
re cu
rren
t is circu
l
ated
thro
ugh
SW2
and
D4
.In
th
is state, en
erg
y
stored
in
the
inductance
of
arm
a
ture discharges
.
When
SW1
i
s
t
u
r
n
e
d
-
o
ff,
di
ode
s
D3
and
D4
cond
uct an
d
p
o
w
e
r i
s
f
e
d
back
t
o
t
h
e i
m
peda
nce
net
w
o
r
k
.
T
h
e
vol
t
a
ge
rel
a
t
i
ons
are:
0
(
SW
1
tur
n
ed-on)
(11)
(Di
odes
D3
and
D4
c
o
nducting)
(12)
3.
AN
ALY
S
IS
O
F
Z
-
SOU
RCE
FO
UR
Q
U
AD
RAN
T CHOPPER
FOR BU
CK
M
O
D
E
As di
ode
D5
is u
s
ed
i
n
th
is
pap
e
r, th
e
v
a
lid
rang
e
o
f
d
is 0 to
0
.
5
.
B
u
ck
cap
a
b
ility can
be ach
iev
e
d
with
ou
t
u
s
ing
sh
oo
t t
h
ro
ugh
tech
n
i
qu
e. In
b
u
c
k
m
o
d
e
, the im
p
e
d
a
n
ce
network rem
a
in
s in
activ
e to
vo
ltag
e
i
n
p
u
t
t
o
t
h
e f
o
ur
q
u
ad
ra
nt
ch
op
pe
r. T
h
e
o
p
e
r
at
i
ons
o
f
fo
rw
ard m
o
t
o
ri
ng
m
ode and
re
ve
rse m
o
t
o
ri
n
g
m
ode
are
bri
e
fl
y
descri
b
e
d re
fe
rrin
g
Figu
re 1.
3.
1.
Forwar
d Motoring
Mode
In t
h
i
s
m
ode t
h
ere a
r
e t
w
o st
at
es (ass
um
i
ng co
nt
i
n
u
o
u
s c
o
nd
uct
i
o
n m
ode
). T
h
e s
w
i
t
c
h
SW
1
or
SW2
i
s
al
way
s
o
p
e
r
at
ed by
gat
i
n
g
on
i
n
b
o
t
h
t
h
e
st
at
es as l
o
ng
a
s
f
o
r
w
ar
d m
o
t
o
ri
ng
m
ode i
s
r
e
qui
red
.
Ass
u
m
e
t
h
at
SW
2
is on i
n
both t
h
e states.
By switching
on and
off
SW
1
,
we ca
n t
r
a
n
sfer
fr
om
one
st
at
e t
o
an
ot
he
r. T
h
e
in
pu
t so
urce is
co
nn
ected to
t
h
e arm
a
tu
re of t
h
e m
o
to
r term
in
als throug
h the
SW
1
and
SW
2
in active stat
e. By
rem
ovi
ng t
h
e g
a
t
e
pul
se i
n
sw
i
t
c
h
SW
1
(non-active state), the arm
a
ture
current is circ
ulated through
SW
2
and
D4
an
d
in
armatu
re wind
ing
.
In
th
is state th
e en
erg
y
stor
ed
in
th
e arm
a
tu
re is released
. The v
o
ltag
e
relatio
n
in
active state is:
(13)
Th
e
vo
ltag
e
relatio
n
in non
-activ
e state is:
0
(1
4)
Th
e av
erag
e vo
ltag
e
acro
ss t
h
e arm
a
tu
re is:
(15)
Wh
ere d
is th
e d
u
t
y ratio
o
f
SW2
. T
h
e s
p
eed
of t
h
e m
o
t
o
r c
a
n be c
ont
rolle
d bel
o
w the s
p
eed produced
by the
b
a
ttery vo
ltag
e
b
y
co
n
t
ro
lling
th
e du
ty ratio.
3.
2.
Forw
ar
d Rege
nera
ti
ve
B
r
ak
i
n
g Mo
de
The procedure is sa
m
e
as the forwa
r
d m
o
toring m
ode
ex
cept th
at th
e p
o
l
arity o
f
arm
a
tu
re v
o
ltag
e
i
s
negat
i
v
e
.
Thi
s
m
ode i
s
achi
e
ved by
swi
t
c
hi
n
g
o
n
an
d o
ff t
h
e swi
t
c
hes
SW
3
and
SW
4
.
On
e of th
e switch
e
s is
al
way
s
o
p
e
r
at
ed as
l
o
ng
as
re
verse
m
ode i
s
req
u
i
r
e
d
.
B
y
s
w
i
t
c
hi
n
g
o
n
a
n
d
of
f
SW
4
, i
f
SW
3
is con
tinu
o
u
s
ly
on, the state ca
n be
cha
n
ged.
In active
stat
e, the curre
nt flows through t
h
e
load
via
SW3
and
SW
4
.T
he c
u
r
r
ent
is circulated in
the loa
d
by
SW3
an
d
D1
i
n
non-active
state.
Th
e
vo
ltag
e
relatio
n
in activ
e
state is:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
3
,
Feb
r
uar
y
201
5 :
4
24 –
43
2
42
8
(16)
Th
e
vo
ltag
e
relatio
n
in non
-activ
e state is:
0
(1
7)
Th
e av
erag
e vo
ltag
e
acro
ss t
h
e arm
a
tu
re is:
(18)
The
ne
gat
i
v
e s
p
eed
o
f
t
h
e m
o
t
o
r ca
n
be c
o
nt
rol
l
e
d
bel
o
w
t
h
e spee
d
pr
o
duc
ed
by
t
h
e
bat
t
e
ry
v
o
l
t
a
ge
b
y
con
t
ro
llin
g
th
e du
ty ratio.
Fo
rward reg
e
nerativ
e
b
r
ak
ing and
rev
e
rse
reg
e
n
e
rativ
e
brak
ing
are sam
e
as th
e
bo
ost
m
ode.
4.
SIMULATION RESULTS
Sim
u
l
a
t
i
on ha
s
bee
n
p
e
r
f
o
r
m
e
d i
n
b
u
c
k
an
d
b
oost
m
odes
usi
n
g se
parat
e
l
y
exci
t
e
d m
o
t
o
r t
o
c
o
nfi
r
m
the above a
n
al
ysis. The val
u
e
s
of
param
e
ter are set base
d
on
th
e limitat
i
o
n
of ripp
le in
cu
rren
t (L) an
d
ripp
le
in
v
o
ltag
e
(C). Th
e si
m
u
lati
o
n
is set u
p
u
s
ing
MATLAB/SIMULINK env
i
ron
m
en
t with
th
e fo
llo
wing
param
e
ters.
1)
B
a
t
t
e
ry
v
o
l
t
a
ge
(n
om
i
n
al
):
52
.2
6
V.
2
)
Prim
e
m
o
v
e
r: Sep
a
ratel
y
ex
cited
d
c
m
o
to
r 5HP, 2
40V with
R
a
=2
.581
oh
m
,
L
a
=0
.0
28H
,
L
af
=0
.9
483
H, V
f
=300
V, R
F=
28
1.
3
ohm
, L
f
=1
56H
, J(
M
o
men
t
o
f
in
er
tia)
=
0.221
5
Kg-m
2
, B
(
Vi
scous
fri
ct
i
o
n
coefficient)=
0
.002953N-s/
r
ad, T
c
(c
o
u
l
o
m
b
f
r
i
c
t
i
on)=
0
.
5
16
1N
-m
and
N
o
-
l
oad
spee
d=
18
3.
16
ra
d/
sec.
3)
Z-s
o
urce
net
w
o
r
k:
L=
10
m
H
a
n
d
C
=
1m
F
4)
Swi
t
c
hi
n
g
f
r
e
que
ncy
:
1
0
k
H
z.
The
gat
i
n
g
pat
t
erns
f
o
r
t
h
e s
w
i
t
c
hes t
o
ope
rat
e
t
h
e m
achi
n
e i
n
f
o
ur
q
u
a
d
ra
nt
buc
k a
n
d
b
o
o
s
t
m
ode
ar
e sh
own
in Fig
u
r
e
3
an
d Figu
r
e
4 r
e
sp
ectively.
Fi
gu
re
3.
Gat
i
n
g
pat
t
e
rns
f
o
r
b
u
ck
f
o
ur
q
u
ad
r
a
nt
o
p
e
r
at
i
o
n
o
f
dc m
o
t
o
r
dri
v
e usi
n
g
M
A
TL
AB
/
S
IM
U
L
I
N
K
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Buck-
Bo
ost
C
o
nt
rol
of
F
o
u
r
Qu
a
d
ra
nt
C
h
o
ppe
r
usi
n
g
Sy
mmet
r
i
c
al
I
m
p
e
da
nce…
(
S
as
w
a
t
i
Sw
a
p
n
a
D
a
sh)
42
9
Fi
gu
re
4.
Gat
i
n
g
pat
t
e
rns
f
o
r
b
oost
f
o
u
r
q
u
ad
r
a
nt
o
p
e
r
at
i
o
n
o
f
dc m
o
t
o
r
dri
v
e usi
n
g
M
A
TL
AB
/
S
IM
U
L
I
N
K
Fi
gu
re
5.
Si
m
u
l
a
t
i
on res
u
l
t
s
o
f
f
o
ur
q
u
a
d
ra
nt
o
p
erat
i
o
n
of
d
c
m
o
t
o
r i
n
b
u
c
k
m
ode
usi
n
g
d
u
t
y
rat
i
o
0.
7
0
0.
5
1
1.
5
2
2.
5
3
3.
5
4
4.
5
5
5.
5
6
6.
5
7
7.
5
8
8.
5
9
9.
5
10
10
.
5
11
11
.
5
12
-1
0
0
-5
0
0
50
100
A
r
m
a
t
u
r
e
V
o
lt
a
g
e
in
V
o
lt
0
0.
5
1
1.
5
2
2.
5
3
3.
5
4
4.
5
5
5.
5
6
6.
5
7
7.
5
8
8.
5
9
9.
5
10
10
.
5
11
11
.
5
12
-5
0
-2
5
0
25
30
S
p
e
ed i
n
r
ad/
s
e
c
0
0.
5
1
1.
5
2
2.
5
3
3.
5
4
4.
5
5
5.
5
6
6.
5
7
7.
5
8
8.
5
9
9.
5
10
10
.
5
11
11
.
5
12
-5
-2
.
5
0
2.
5
5
A
r
m
a
t
u
r
e
c
u
r
r
ent
i
n
am
p
.
0
0.
5
1
1.
5
2
2.
5
3
3.
5
4
4.
5
5
5.
5
6
6.
5
7
7.
5
8
8.
5
9
9.
5
10
10
.
5
11
11
.
5
12
-5
-2
.
5
0
2.
5
5
Ti
m
e
i
n
s
e
c
o
n
d
To
r
q
u
e
i
n
N
-
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
3
,
Feb
r
uar
y
201
5 :
4
24 –
43
2
43
0
Fi
gu
re
6.
Enl
a
r
g
e
fi
g
u
re
o
f
ar
m
a
t
u
re v
o
l
t
a
ge
i
n
bo
ost
a
n
d
b
u
ck
m
ode
Fi
gu
re
7.
Si
m
u
l
a
t
i
on res
u
l
t
s
o
f
f
o
ur
q
u
a
d
ra
nt
o
p
erat
i
o
n
of
d
c
m
o
t
o
r i
n
b
o
o
s
t
m
ode usi
n
g
sho
o
t
-
t
h
r
o
ug
h
dut
y
ratio
0
.
4
For
w
a
r
d m
o
t
o
ri
n
g
m
ode up
t
o
3 seco
n
d
i
s
fol
l
o
wed
b
y
for
w
ar
d
bra
k
i
n
g m
ode. T
h
en
reve
rse
m
o
t
o
ri
ng m
ode up t
o
7 sec
o
nds i
s
f
o
l
l
o
we
d by
reve
rse b
r
aki
ng m
ode. R
e
verse b
r
a
k
i
n
g an
d fo
rw
ar
d bra
k
i
n
g
m
o
d
e
s are ap
plied
to
co
n
f
i
r
m th
e
m
o
d
e
s
o
f
op
eratio
n
an
d
b
u
c
k
and
bo
o
s
t capab
ilities o
f
propo
sed co
n
t
ro
l
t
echni
q
u
es
. Fi
gu
re 5 sh
o
w
s t
h
e arm
a
t
u
re vo
l
t
a
ge, spee
d, ar
m
a
t
u
re cur
r
ent
and t
o
r
q
ue as dc m
o
t
o
r ope
ra
t
e
s i
n
all th
e f
o
u
r
r
e
gio
n
s
in
b
u
c
k
mo
d
e
. Th
e tim
e
o
f
for
w
ar
d
m
o
to
r
i
ng
is 0
to
3 seco
nd
and
7.1
to
12
second. Th
e
f
o
r
w
ard
r
e
g
e
ner
a
tiv
e br
ak
ing
and
r
e
v
e
r
s
e r
e
g
e
n
e
r
a
ti
v
e
b
r
ak
ing
tim
e
i
s
on
ly 0
.
1
seco
nd
(
3
t
o
3.1
second
fo
rwa
r
d m
o
t
o
ri
ng
an
d
7 t
o
7.
1
seco
nd
re
vers
e bra
k
i
n
g
)
. T
h
e t
i
m
e
of re
ver
s
e m
o
t
o
ri
ng i
s
3.
1 t
o
7 sec
o
n
d
. T
h
e
enl
a
r
g
e fi
g
u
re
of arm
a
t
u
re v
o
l
t
a
ge i
s
show
n
i
n
Fi
gu
re 6 s
h
o
w
s t
h
e b
u
c
k
an
d b
oost
ca
pabi
l
i
t
y
of fou
r
q
u
a
d
ra
nt
cho
p
p
er
. Fi
g
u
r
e
7 sh
o
w
s t
h
e
arm
a
t
u
re vol
t
a
ge, ca
paci
t
o
r
vol
t
a
ge
, s
p
eed
and a
r
m
a
t
u
re cur
r
ent
of
dc
m
o
t
o
r
o
p
e
rates in
all
th
e fo
ur
reg
i
o
n
s in
boo
st m
o
de. Du
ri
n
g
brak
i
n
g
m
o
d
e
, th
e
vo
ltag
e
acro
s
s th
e cap
acito
r
falls b
y
l
a
rge am
ount
and t
r
a
n
s
f
ers e
n
er
gy
t
o
t
h
e i
n
d
u
ct
o
r
. T
h
e a
r
m
a
t
u
re curre
n
t
al
so ri
ses sh
arpl
y
t
o
4
8
A
.
As t
h
e
b
r
ak
ing
ti
m
e
i
n
creases, th
e cap
acito
r starts
b
u
ild
i
n
g
u
p
the v
o
ltag
e
and
arm
a
tu
re cu
rren
t
starts fallin
g
.
The
f
o
r
w
ard
an
d r
e
v
e
r
s
e br
ak
ing
i
s
abou
t 0.2 seco
nd
.
2
2
.
000
5
2.
001
2
.
0015
2.
002
2.
00
25
2.
0
0
3
0
50
10
0
15
0
20
0
25
0
30
0
35
0
40
0
45
0
50
0
T
i
m
e
i
n
s
e
c
ond
Ar
m
at
ur
e
v
o
l
t
age (
V
ol
t
)
i
n
boo
s
t
m
ad
e
0
0.
5
1
1.
5
2
2.
5
3
3.
5
4
4.
5
5
5.
5
6
6.
5
7
7.
5
8
8.
5
9
9.
5
10
10
.
5
11
11
.
5
12
-5
0
0
-2
5
0
0
25
0
50
0
A
r
m
a
t
u
r
e
vo
l
t
a
g
e
i
n
vo
l
t
0
0.
5
1
1.
5
2
2.
5
3
3.
5
4
4.
5
5
5.
5
6
6.
5
7
7.
5
8
8.
5
9
9.
5
10
10
.
5
11
11
.
5
12
0
54
10
8
16
2
21
6
27
0
C
a
pac
i
t
o
r
v
o
l
t
a
ge i
n
v
o
l
t
0
0.
5
1
1.
5
2
2.
5
3
3.
5
4
4.
5
5
5.
5
6
6.
5
7
7.
5
8
8.
5
9
9.
5
10
10
.
5
11
11
.
5
12
-3
6
0
-2
4
0
-1
2
0
0
12
0
24
0
36
0
S
pee
d i
n
r
a
d/
s
e
c
0
0.
5
1
1.
5
2
2.
5
3
3.
5
4
4.
5
5
5.
5
6
6.
5
7
7.
5
8
8.
5
9
9.
5
10
10
.
5
11
11
.
5
12
-9
0
-4
5
0
45
90
T
i
m
e
i
n
se
co
n
d
A
r
m
a
t
u
r
e
c
u
r
r
ent
i
n
am
p.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Buck-
Bo
ost
C
o
nt
rol
of
F
o
u
r
Qu
a
d
ra
nt
C
h
o
ppe
r
usi
n
g
Sy
mmet
r
i
c
al
I
m
p
e
da
nce…
(
S
as
w
a
t
i
Sw
a
p
n
a
D
a
sh)
43
1
5.
CO
NCL
USI
O
N
Thi
s
pa
pe
r ha
s pr
o
p
o
s
ed
ne
w swi
t
c
hi
n
g
p
a
t
t
e
rns t
ech
ni
q
u
es f
o
r co
nt
r
o
l
l
i
ng t
h
e s
p
ee
d o
f
t
h
e
d
c
mach
in
e in
wi
d
e
rang
e an
d
op
erated
in
four p
o
ssib
l
e m
o
d
e
s ev
en
thou
gh
in
pu
t d
c
vo
ltage is less th
an vo
ltag
e
rat
i
n
g
o
f
dc m
achi
n
e
usi
n
g
Z
-
so
ur
ce i
m
pedance
net
w
or
k.
The Z
-
s
o
u
r
ce
f
o
u
r
qua
d
r
ant
d
c
ch
op
pe
rs em
pl
oy
s a
sym
m
et
ri
cal
im
pedance net
w
o
r
k
t
o
c
o
upl
e t
h
e f
o
ur
q
u
a
dra
n
t
c
h
o
p
p
e
r
ci
rc
ui
t
t
o
d
c
p
o
we
r s
o
ur
ce t
hus
p
r
ov
id
ing
un
iqu
e
featu
r
es th
at can
no
t
b
e
o
b
tain
ed
in th
e trad
ition
a
l vo
ltag
e
-sou
rce and curren
t
-so
u
rce four
q
u
a
dr
an
t chopp
er
s. Th
e co
n
t
r
o
l, co
nf
igu
r
ati
o
n
an
d
o
p
e
r
a
tin
g
p
r
i
n
cip
l
es of
th
e m
o
d
e
l ar
e an
alyzed
in
d
e
tail.
Si
m
u
latio
n
resu
lts are
presen
t
e
d
th
e app
licabilit
y
o
f
t
h
is
p
r
op
o
s
ed nob
le con
t
ro
l techn
i
qu
e.
REFERE
NC
ES
[1]
A. von Jouann
e,
P. N.
Enjeti, and
B. B
a
ner
j
ee, “A
ssessment of rid
e
through
alte
rn
atives for
ad
justable-speed
driv
es,”
IEEE Transactio
ns in
Industry Applica
tion
, vol. 35, no. 4, pp.
90
8–916, Jul./Aug. 1999.
[2]
B.
K.
Nay
a
k,
Saswati Swapna Dash,
”
Batt
er
y Oper
ated Clos
ed L
o
op Speed C
ontrol of DC Separat
ely Excited Motor
by Boost-
Buck C
onverter
”, I
EEE
International
con
f
erence on
power
electronics (
I
I
C
PE-2012), December 6-8, 2012
.
[3]
H. G. Sarmiento and E. Estr
ada,
"A voltage sag stud
y
in
an industr
y
with adjustab
le sp
eed driv
es",
IEE
E
Transactions in
Industr
y App
l
ication, Mag.
, vo
l. 2, no. 1, pp.
16–
19, Jan
.
/Feb. 19
96.
[4]
F
.
Z. P
e
ng, X. Yuan, X. F
a
ng, an
d Z. Qian, “
Z
-s
ource inver
t
er for
adjus
t
abl
e
s
p
eed
drives
,”
IE
EE
Powe
r E
l
e
c
t
r
oni
c
s
Letter
, vol. 1
,
no
. 2
,
pp
. 33–35
, J
un. 2003
.
[5]
F. Z. Peng, “Z-source inver
t
er
,”
IEEE Transactio
ns in Industry
Applica
tion
, vol. 39, no.2, pp. 50
4–510, Mar./Apr
.
2003.
[6]
B
.
Nay
a
k a
n
d S. S.
Da
sh
, "
Transient mod
e
ling
of Z-source chopp
er used
for ad
ju
stable speed con
t
rol of DC moto
r
drive
", IEEE Fif
t
h Power India C
onference
, pp. 1-
6,
Dec. 2012
, N
e
w Delhi.
[7]
B.K.Nay
a
k
,
Saswati Swapna Dash,”Tran
sient modeling of Z-sou
r
ce chopp
er with
and without ESR used for control
of cap
ac
itor vo
lt
age.
”
WS
EAS
Transactions on C
i
rcuit and
system
s
, vol.13
,
pp
.175
-187, 2014
.
[8]
S
a
s
w
ati S
w
apn
a
Das
h
,
B.K.N
a
yak,
S
ubrat
Kum
a
r,”F
eedb
ack
Control and
D
y
namic Behaviour of
Z-source
Converter
Fed Separately
Ex
cited DC
Motor and
Centr
i
fugal pu
mp set,”
In
terna
tional
Journal of Engineering an
d
Technology
, vo
l.6,no.3
,
pp.1601-
1613,jun-ju
ly
20
14.
[9]
Xupeng Fang and Xingquan Ji, "
Bidirectiona
l power
flow
Z
-
s
our
ce DC-DC co
nver
ter
", I
E
E
E
Vehicl
e P
o
wer
and
Propulsion Conference VPPC, 2
008, Harbin
, China.
[10]
J. Liu, J. Hu, and L. Xu, "D
y
n
amic
modeling
and analy
s
is of Z source c
onv
er
ter der
i
vation of
AC small signal
m
odel and design-orien
t
ed an
al
y
s
is", IEEE
Transac
tions in
Po
wer Elect
ronics, vol.22
,
no.5, pp 1786-
1796,Sept.2007
[11]
F. Z. Peng, M
Shen, and Z. Quin, "Max
imum
boost control of
Z-source inverter,”
IEEE Transactions in Power
Electronics
, vo
l. 20
, no
. 4
,
pp
88
3-838, July
/Aug
.2005
[12]
Gokhan Sen and Malik Elbu
luk
,
"Volta
ge
and current program
med modes in control of th
e Z-
source conver
t
er
”,
IEEE Transactio
ns in
Industry Application
, vol-4
6, issue-2
,
pp
. 6
80-686, Mar
c
h/April, 2010
.
[13]
C. J. G
a
jan
a
y
a
k
e
, D
.
Mahind
a
and P
oh. Chiang
Loh, "Small si
gnal
and signal f
l
ow graph modeling of switched
Z-
source imped
a
nc
e network",
I
E
E
E
Pow
e
r
El
ec
tr
onics
L
e
t
t
er
, vol.
3, no
.3, Sept. 20
05.
[14]
Poh. Chiang
Lo
h, D. M. Vilath
gamuwa
, C. J.
Gajanay
a
keand,
C. W. Teo, "
T
ransient
modeling and
analy
s
is
of
pulse-width modulated Z-source inver
t
er
”
IEEE Transactions in Power Electr
onics
, Vol.22, n
o
. 2, pp
. 498-50
7,
March, 2007.
[15]
K. Smedley
,
an
d S. Cuk, "Switching fl
ow graph nonlinear modeling techniq
u
e",
IEEE T
r
ansactions in Power
Electronics
, Vol. 9, no. 4, pp. 405
-413, Jul. 1994
.
[16]
R. D. Middlebro
ok and S. Cuk, "
A
gene
ral unified approach
to modeling switch
in
g converter pow
er stages",
in Pro
c
.
IEEEPESC’76, June
1976, pp. 18
-34.
[17]
M.G.Villalva, J.R. Gazoli
, E.F.Ruppe
rt: “Comprehensive appr
oach to m
odeli
ng and sim
u
lation of photovoltai
c
array
s
”,
IEEE Transactions in
Po
wer
El
ectr
oni
cs
,
2009, 25
, (5)
,
pp
. 1198–1208
.
[18]
P.
Kre
i
n,
Elements
of Power Electronics
, New Y
o
rk, Oxford Univ. Press, 1998
.
[19]
J
.
T
.
H
u
m
phries
,
and
L.
P
.
S
h
e
e
ts
,
Industrial Electronics
, 1983
, Delmar publishers
.
[20]
R. Krishnan
,
Electric Motor Drives Mode
ling, An
alysis and Con
t
rol
, 2003
, Pearson Education
(Sin
gapore) Pvt.
ltd
.
[21]
L. Um
anand
,
Po
wer Electronic
Essen
tials and
Ap
plications
, 2009
, Wiley
publisher
s
.
[22]
P. C. Loh
,
P. C
.
Tan, F. Blaabjer
g,
and
T. K
.
Lee, "Topolog
ic
al
d
e
velopment and operationa
l analy
s
is of buck
-
boo
st
current source inverter for
ener
g
y
c
onv
ersion applications", Po
wer Electroni
cs
Specialists Conference, 2006
. PESC
'
06. 37th
IEEE,
pp. 1-6
,
June 20
06
[23]
Bos
e
, B.
K
.
,
Mo
dern
Power Electronics
and AC Drives
, 2002; Pr
entice H
a
ll Inc.
[24]
B.K.Na
yak
,
S
a
s
w
ati S
w
apna Das
h
.” P
e
rform
ance Anal
ys
is
of
Different Contr
o
l Strategi
es
in Z-s
ource Invert
e
r
”,
ETASR -
Engin
e
ering, Technolo
g
y
&
Applied Science Research
. 2
013; 3(2): 391-3
95.
[25]
B.K.Nay
a
k
,
Saswati Swapna Dash, S
ubrat Kumar,” Proposed method for sho
o
t-through in th
ree phase ZSI and
comparison of d
i
fferen
t
con
t
rol techniqu
es,”
In
ternational Journ
a
l of Pow
e
r Electronics and Drive S
y
stem
. 201
4;
5(1): 32-44.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
3
,
Feb
r
uar
y
201
5 :
4
24 –
43
2
43
2
BIOGRAP
HI
ES OF
AUTH
ORS
Saswati Swapna Dash was born in Odisha, India
in 1981. She received the b
ach
elo
r
degree
in E&I
engine
ering and
m
a
s
t
er degree
in electr
i
c
a
l engineer
ing from B
P
UT, Rourkela and KIIT
University
, Bhu
b
aneswar, Ind
i
a
respectively
.
Sin
ce 2008, she
is working as Assi
stant Professor in
Department of
Electrical
Engin
eering
,
YMCA Un
iversity
of science and techn
o
log
y
, Farid
a
bad,
India.
Her res
e
a
r
ch int
e
res
t
s
a
r
e
in power
ele
c
tr
onics
,
ele
c
tri
c
a
l
drives
, r
e
newa
ble en
erg
y
and
power conv
erter
s
design.
B.K.Nay
a
k w
a
s
born in Odisha,
India in
1965. He re
ceiv
e
d th
e m
a
ster d
e
gree and
Ph.D. degree
in
electrical engin
e
ering from Ins
titute of techno
log
y
from the Banaras Hindu University
(
I
T-BHU),
Banaras and KIIT University
,
Bhubaneswar, I
ndi
a respectively
.
Sin
ce 1999,
he is working as
Associate Professor in school of
Electrical Eng
i
n
eering
,
KIIT University
, Bhub
an
eswar. He has
a
vast knowledge of electr
i
cal en
gineer
ing with i
ndustr
y
exposur
e. His main research ar
eas are
power elec
tronic
s
and electr
i
ca
l drives
, h
y
brid vehic
l
e, ren
e
wabl
e energ
y
and ap
plic
ation of P
I
C
Microcontro
llers
in spec
ial dr
ive
applications.
Evaluation Warning : The document was created with Spire.PDF for Python.