Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
4, N
o
. 3
,
Sep
t
em
b
e
r
2014
, pp
. 31
4
~
32
0
I
S
SN
: 208
8-8
6
9
4
3
14
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Desi
gn, Simulation and Hardware
Implementation of a Multi
Device Interleaved Bo
o
st Co
nv
er
te
r for
Fu
el Cell Applications
R. Seyez
h
ai
Renewa
ble E
n
ergy C
o
nve
r
sion La
bo
ratory, Depa
rtm
e
nt
of EEE, SS
N
Co
ll
ege
of Engine
e
r
ing, C
h
ennai
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Feb 25, 2014
Rev
i
sed
Ap
r
29
, 20
14
Accepted
May 15, 2014
This
pap
e
r pr
es
ents
th
e an
al
ys
i
s
and im
plem
en
tation
of
a two-
phas
e
M
u
lt
i
Device Interleav
ed Boost Converter
(MDIBC). Among the various DC-DC
topologies
, Multi dev
i
ce Interleaved
c
onv
erter
is consid
ered
as a b
e
tter
solution for fuel cell h
y
brid v
e
hicles as
it redu
ces the input
current ripple,
output voltag
e
r
i
pple and
the size of
pa
ssive co
mponents. Detailed
analy
s
is
has been don
e to investig
ate
the bene
fits of Multi dev
i
ce
Inter
l
eaved boost
converter b
y
co
mparing it with
the c
onv
ention
a
l Interleav
ed boo
st converter
topolog
y
.
Moreover, in
this p
a
per,
power los
s
analy
s
is (switching loss,
conduction loss, inductor loss) of the prop
osed converter
has been
perform
ed. Sim
u
lation stud
y of
Multi devi
ce int
e
rle
a
ved conv
ert
e
r has been
studied using M
A
TLAB/SIMULINK. Hardwa
re
prototy
p
e
is built to valid
ate
the r
e
sults.
Keyword:
Efficiency
Int
e
rl
ea
ve
d B
o
ost
c
o
n
v
ert
e
r
Mu
lti Dev
i
ce
Power l
o
ss
R
i
ppl
e
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
R. Seyezhai
R
e
newa
bl
e E
n
ergy
C
o
n
v
e
r
si
o
n
La
b
o
rat
o
ry
Depa
rtm
e
nt
of EEE, SS
N
Coll
ege of
Engine
e
r
ing
C
h
en
nai
,
In
di
a
Em
a
il: seyezh
air@ssn
.
ed
u.in
1.
INTRODUCTION
Fu
el Cell is a p
r
o
m
isin
g
altern
ativ
e sou
r
ce
o
f
en
erg
y
. Th
e
m
a
j
o
r ch
alleng
e inv
o
l
v
e
d in d
e
sign
ing
a
fuel
c
el
l
sy
st
e
m
i
s
t
o
choose
a pro
p
e
r
bo
ost
DC
-
D
C
con
v
e
r
t
e
r t
o
han
d
l
e
t
h
e hi
gh cu
rre
nt
at
t
h
e i
nput
an
d hi
g
h
vol
t
a
ge at
t
h
e
out
put
.
An i
n
t
e
rl
eave
d
b
oost
DC
-DC
c
o
n
v
e
rt
er seem
s t
o
be a sui
t
a
bl
e candi
dat
e
fo
r
cur
r
ent
sh
ari
n
g
and
st
ep
p
i
n
g
up
th
e
v
o
ltag
e
[1
]-[2
]. Th
e m
a
in
o
b
j
ectiv
e of th
is
p
a
p
e
r is to
p
r
op
o
s
e a m
u
lti d
e
v
i
ce
b
o
o
s
t con
v
e
rter
with
in
terleav
ed co
n
t
ro
l
wh
ich red
u
c
es
t
h
e i
n
pu
t cu
rren
t an
d ou
tpu
t
v
o
ltag
e
ri
p
p
l
e. Mu
lti
device Inte
rleaved
boost
c
o
nve
r
ter
has
been propose
d to re
duce the size and
weight
of t
h
e
passive
com
pone
nts s
u
ch as t
h
e i
n
duc
t
or, capacitor a
n
d input/o
utput electrom
a
gnetic interfere
nce
(EMI)
filter.
Also,
th
e inp
u
t
cu
rren
t an
d
ou
tpu
t
vo
ltag
e
ri
pp
le can
b
e
min
i
mized
wi
th
h
i
gh
effici
en
cy and
reli
ab
ility.
Fu
rt
h
e
rm
o
r
e,
th
e p
r
op
o
s
ed
co
nv
erter will
be
co
m
p
ared
wi
th
th
e conv
en
ti
o
n
a
l i
n
terleav
ed
b
o
o
s
t con
v
e
rter to
investigate its characteristics. Mathem
atic
al analysis of th
e current ri
pple and t
h
e design
param
e
ters are
i
n
cl
ude
d i
n
t
h
i
s
st
udy
. Si
m
u
l
a
t
i
on st
udi
es
have
bee
n
ca
rri
ed
o
u
t
t
o
i
nve
st
i
g
at
e t
h
e
po
wer l
o
sses
of t
h
e
p
r
op
o
s
ed
con
v
erter.
A
pro
t
o
t
yp
e of t
h
e two
-
p
h
a
se MD
IBC h
a
s b
e
en
b
u
ilt
to
v
a
lid
ate
th
e
si
m
u
latio
n
resu
l
t
s.
2.
OPERATIO
N
OF
MULTI
D
E
VICE
INTERLEAVED
B
OOST
CONVER
TER
Th
e
p
r
op
o
s
ed
stru
cture
o
f
m
u
lti d
e
v
i
ce IBC co
n
s
ists
o
f
two
-
p
h
a
se in
terleaved
with
two
switch
e
s and
t
w
o di
o
d
es co
nnect
e
d
i
n
pa
r
a
l
l
e
l
per phas
e
[3]
.
Fi
g
u
r
e
1
sho
w
s t
h
e ci
rc
ui
t
di
agram
of
M
D
IB
C
.
O
n
e
of t
h
e
way to
reduce
the size of t
h
e
passive
com
p
onents
nam
e
ly the size
of th
e i
n
ductor,
capac
itor a
nd i
n
put/
out
put
filter is b
y
in
creasing
th
e freq
u
e
n
c
y
of th
e
in
du
ctor curren
t
and
th
e ou
t
p
u
t
v
o
ltag
e
ripp
le. To
ach
i
eve th
e
ab
ov
e m
e
n
tio
ned
con
t
ro
l strateg
y
th
e ph
ase-sh
i
f
t in
terl
eaved
con
t
ro
l is propo
sed.
Th
is
strateg
y
will giv
e
a
do
u
b
l
e
d ri
p
p
l
e
freq
u
e
n
cy
i
n
i
nduct
o
r cu
rr
ent
at
t
h
e sam
e
swi
t
c
hi
ng fre
que
ncy
,
w
h
i
c
h pr
ovi
des a hi
gh
e
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Design,
Si
mul
a
tion and Hardware
Impleme
n
tation
of a M
u
lti Device In
t
e
rleaved Boost
…
(R. Seyezhai)
31
5
sy
st
em
bandwi
d
t
h
. T
h
e reas
o
n
f
o
r hi
gh
er ba
nd
wi
dt
h i
s
t
h
at
a fast
er dy
na
m
i
c respon
se i
s
achi
e
ve
d an
d
al
so t
h
e
size of the
pass
ive com
p
one
n
t re
duces
.
Fi
gu
re
1.
C
i
rcu
i
t
di
agram
of
M
D
IB
C
Also, t
h
e se
quence of the
dri
v
ing signals is very
im
p
o
r
tan
t
w
h
ich
pr
ov
id
es a d
oub
le r
i
pple f
r
e
qu
en
cy
in
in
du
ctor curren
t at th
e same switc
hi
n
g
f
r
e
que
ncy
an
d t
o
achi
e
ve t
h
e i
n
t
e
rl
eave
d
co
nt
r
o
l
.
W
i
t
h
t
h
e he
l
p
o
f
th
is strateg
y
, t
h
e switch
i
ng
p
a
ttern is sh
i
f
ted
b
y
360
◦
/(
n ×
m
),
wh
er
e
m
is th
e nu
mb
er
of
p
a
rallel po
wer
switch
e
s p
e
r ch
ann
e
l, wh
ile
n
i
s
t
h
e
n
u
m
b
er
of
cha
n
nel
s
o
r
phas
e
s.
The
i
n
p
u
t
c
u
r
r
e
n
t
ri
ppl
e
i
s
(
n ×
m
) ti
m
e
s
of t
h
e s
w
i
t
c
hi
n
g
f
r
e
que
ncy
.
S
i
m
i
l
a
rl
y
,
t
h
e o
u
t
p
ut
v
o
l
t
a
ge
r
i
ppl
e i
s
(
n × m
) t
i
m
es of t
h
e swi
t
c
hi
n
g
fre
que
nc
y
.As a
res
u
lt, the size of the
passive c
o
m
pone
nts
will be reduce
d by
m
tim
e
s co
m
p
ared with t
h
e
n
-
pha
se
interleave
d
dc/
d
c converters
. In th
i
s
pr
op
ose
d
co
nve
rt
er st
r
u
ct
u
r
e,
m
is selected
to
b
e
2, wh
ile
n
is chos
en t
o
b
e
2. Figur
e 2
sh
ow
s t
h
e g
a
ti
n
g
p
a
ttern
fo
r
in
ter
l
eav
ed
boo
st conv
er
ter.
I
t
is also
assumed
th
at th
e pr
opo
sed
conve
r
ter ope
r
ates in the cont
inuous conduct
i
on m
ode
(CC
M
). All switches h
a
ve id
en
tical d
u
t
y cycles wh
ich
means
d
1
=
d
2
=
d
3
=
d
4
=
d
.
Fi
gu
re 2.
Se
qu
ence of
t
h
e dri
v
i
n
g gat
e
si
g
n
a
l
s
fo
r
M
D
IB
C
swi
t
c
hes f
o
r
d
≥
Ts/
4
The
desi
g
n
a
s
p
ect
s of
M
D
IB
C
are
di
scus
se
d i
n
t
h
i
s
sect
i
o
n
[4]
-
[
5]
:
a
.
Boo
s
t
ra
tio
Th
e
vo
ltag
e
g
a
in
o
f
th
e con
v
erter is a fu
n
c
ti
o
n
of t
h
e
d
u
t
y
ratio
an
d it is defin
e
d
as:
(1)
Whe
r
e
is th
e
ou
tpu
t
vo
ltag
e
,
is th
e i
n
pu
t
v
o
l
t
a
g
e
an
d D is the du
ty ratio
.
b
.
In
pu
t
cu
rrent
Th
e i
n
pu
t cu
rren
t
can b
e
calcu
lated
b
y
th
e in
pu
t
p
o
wer and
th
e inp
u
t
v
o
ltag
e
(2)
Whe
r
e
is th
e i
n
pu
t
p
o
wer,
is th
e inpu
t vo
ltag
e
.
c. I
n
duct
o
r c
u
r
r
ent
ri
p
p
l
e
pea
k
-t
o-
pe
ak
am
pl
i
t
ude:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
3
,
Sep
t
em
b
e
r
2
014
:
31
4 – 320
31
6
Th
e i
n
du
ctor
cu
rr
en
t
r
i
pp
le
p
eak-
p
ea
k am
pl
it
ude i
s
gi
ven
b
y
:
∆
,
(3)
Whe
r
e
is the s
w
itching
fre
quency,
D is t
h
e
duty cycle,
is th
e inpu
t vo
ltage and
L is th
e in
du
ctan
ce.
d. Rel
a
t
i
ons
hi
p bet
w
ee
n i
n
p
u
t
curre
nt
ri
p
p
l
e
pe
ak-t
o-
pe
ak a
m
pl
i
t
ude
an
d i
n
d
u
ct
or c
u
rre
nt
ri
ppl
e
peak
-t
o
-
pe
ak am
pl
i
t
ude
M
o
st
l
y
t
h
e
m
i
ni
m
u
m
i
nput
ri
ppl
e occ
u
rs at
a dut
y
rat
i
o
of
0.5 d
u
e t
o
t
h
e
18
0 de
gree p
h
a
se shi
f
t
e
d
gat
i
n
g
si
g
n
al
s
bet
w
ee
n t
h
e
de
vi
ces.
The
r
e a
r
e t
w
o
ope
rat
i
n
g m
odes
w
h
i
c
h
can
be
d
e
fi
ne
d
by
t
h
e i
n
d
u
ct
o
r
[
6
]
-
[7]
:
(i)
Mo
d
e
1, D>0.5: o
v
e
r
a p
a
r
ticular
p
e
r
i
od
o
f
time th
e cur
r
e
n
t
in
bo
th th
e i
ndu
ctor
s
r
i
ses.
(ii)
M
ode
2,
D<
0.
5
:
ove
r a
speci
fi
ed
peri
od
o
f
t
i
m
e
bot
h
t
h
e
i
n
duct
o
rs
di
sc
har
g
e.
Hence
t
h
e i
n
p
u
t
cur
r
ent
ri
p
p
l
e
pea
k
-t
o
–pea
k
am
pl
i
t
ude i
s
gi
ve
n
by
,
∆
∙
∙
0
.
5
1
0
.
5
(4)
The
desi
g
n
o
f
IB
C
an
d M
D
I
B
C
i
nvol
ves s
e
l
ect
i
on o
f
i
n
d
u
ct
o
r
,
out
put
c
a
paci
t
o
r
,
n
u
m
b
er o
f
p
h
ases
, d
e
vi
ce
selectio
n
an
d th
e freewh
eeling
d
i
od
es.
Th
e in
du
ctors and
dio
d
e
s
h
a
v
e
to be sam
e
in
all th
e p
a
rallel p
a
th
s o
f
an
IBC an
d MDIBC.
e.
S
e
lection
o
f
in
du
cto
r
and
ca
pa
cito
r:
No
wa
day
s
i
n
t
h
e
po
wer
el
ect
ro
ni
c sy
st
em
s
t
h
e m
a
gnet
i
c
com
pone
nt
s pl
a
y
a m
a
jor r
o
l
e
fo
r e
n
er
gy
sto
r
ag
e an
d filtering
.Th
e
v
a
lue of th
e ind
u
c
t
o
r can b
e
fo
und
o
u
t
b
y
th
e fo
l
l
o
w
ing
fo
rm
u
l
ae [8
]:
∆
(5)
Whe
r
e
Vs re
presents the s
o
urce volta
ge and
∆
represen
ts the in
du
ctor cu
rren
t
ripp
le,
D rep
r
esen
ts th
e
duty
ratio. T
h
e
val
u
e of the
capacit
o
r is gi
ven by t
h
e
form
ulae:
∆
(6)
Whe
r
e Vo re
presents the
output voltage (V),
D re
pres
en
ts th
e du
ty ratio
, F represen
ts th
e frequ
en
cy, R
represe
n
ts the
resistance and
∆
Vo
re
pre
s
ent
s
t
h
e c
h
an
ge i
n
t
h
e
out
put
v
o
l
t
a
ge
(V
).
f. Cho
o
s
i
n
g th
e nu
mb
er
o
f
ph
ases:
The
fact
o
r
w
h
i
c
h
deci
des i
n
cho
o
si
ng t
h
e
n
u
m
b
er o
f
phas
e
s i
s
t
h
at
t
h
e
r
i
ppl
e c
ont
e
n
t
r
e
duce
s
wi
t
h
the increa
ses i
n
the
num
b
er
of phases
. T
h
ere
is a restriction to the in
cr
e
a
s
e in
nu
mb
e
r
of
p
h
a
s
e
s
b
e
ca
u
s
e if
th
e
num
ber
of
p
h
a
s
es i
s
i
n
cre
a
se
d f
u
rt
her
wi
t
h
out
m
u
ch
red
u
c
t
i
on i
n
ri
p
p
l
e
cont
e
n
t
t
h
e si
z
e
of
t
h
e c
o
m
pone
nt
s
increases a
n
d
hence
inc
r
ease
s
the c
o
st
of
p
e
rf
or
m
a
n
ce [9
]. I
t
is to b
e
no
ted
that the nu
m
b
er
of
in
du
ctor
switches and diodes are sam
e
as the num
ber of phases an
d t
h
e swi
t
c
hi
n
g
f
r
eq
ue
ncy
sho
u
l
d
be sam
e
for al
l
t
h
e
pha
ses.
g
.
Du
ty
ra
tio
:
Th
e du
ty ratio
selectio
n
is b
a
sed
on
th
e num
b
e
r o
f
p
h
a
ses, th
e ripp
le is
m
i
n
i
m
u
m at
a
certain
d
u
t
y
ratio
.
Here in
t
h
e
ripp
le is m
i
n
i
m
u
m
at d
u
t
y ratio
in th
e
rang
e
o
f
0.45
.
h. Selection of the
devices
:
Th
e
d
e
v
i
ce
wh
ich
is cho
s
en for th
e m
u
ltid
ev
ice
i
n
terleav
e
d
boo
st
conv
erter is power MOSFET
because of
its high
c
o
mm
utation spee
d
a
n
d
high e
fficiency
at low voltage
s.
3.
SIMULATION
RESULTS
Based
on
th
e d
e
sig
n
eq
u
a
ti
o
n
s
, th
e p
r
opo
sed
in
ter
l
eaved
bo
o
s
t conver
t
er
is d
e
sign
ed
an
d
th
e
sim
u
l
a
t
i
on pa
r
a
m
e
t
e
rs are s
h
ow
n i
n
Ta
bl
e
1
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Design,
Si
mul
a
tion and Hardware
Impleme
n
tation
of a M
u
lti Device In
t
e
rleaved Boost
…
(R. Seyezhai)
31
7
Tab
l
e
1
.
Sim
u
l
a
tio
n
Param
e
te
rs
Of M
u
ltid
evice Bo
o
s
t C
onv
erter At
0
.
45
Du
ty Ratio
PARAMETERS
MULTIDEVICE I
B
C
Vin 24V
Vout
43.
63V
Switching fr
equen
c
y
25khz
Output voltage r
i
pple
3.
63%
I
nput cur
r
e
nt r
i
pple
0.
055%
I
nductor
cur
r
e
nt r
i
pple
0.
1246%
I
nput cur
r
e
nt r
i
pple fr
equency
100k
hz
I
nductor
cur
r
e
nt r
i
pple fr
equency
50khz
Fi
gu
re
3.
St
ead
y
and
t
r
a
n
si
ent
resp
o
n
se
of
M
D
IB
C
Fi
gu
re
4.
O
u
t
p
ut
v
o
l
t
a
ge
ri
p
p
l
e
o
f
M
D
IB
C
The st
ea
dy
an
d t
r
a
n
si
ent
res
p
o
n
se
of
m
u
l
t
i
devi
ce i
n
t
e
rl
e
a
ved
b
o
o
st
co
n
v
ert
e
r
i
s
sh
o
w
n i
n
Fi
g
u
re
3.
The
o
u
t
p
ut
v
o
l
t
age ri
ppl
e
wa
vef
o
rm
of
m
u
l
t
i
devi
ce i
n
t
e
rl
e
a
ved
b
o
o
st
c
o
n
v
ert
e
r
i
s
s
h
o
w
n
i
n
Fi
gu
re
4.
Tabl
e 2 sh
o
w
s
t
h
e com
p
ari
s
on bet
w
ee
n co
n
v
ent
i
o
nal
b
o
o
s
t
conve
rt
er an
d m
u
l
t
i
devi
ce i
n
t
e
rl
eave
d
bo
ost
c
o
nve
rt
er at
0.
45
d
u
t
y
r
a
t
i
o
.
Tabl
e
2. C
o
m
p
ari
s
o
n
bet
w
ee
n
co
nve
nt
i
o
nal
i
n
t
e
rl
eave
d
b
o
o
s
t
co
nve
rt
er a
n
d M
D
IB
C
f
o
r
0.
45
d
u
t
y
rat
i
o
P
ARAMET
ERS
IBC
MDIBC
I
nput Voltage
24V
24V
Output Voltage
42.
212
8V
44.
25V
I
nput Cur
r
e
nt Ripple
3.
28%
0.
055%
I
nductor
Cur
r
e
nt
Ripple
36.
095%
0.
1246%
Switching Fr
equency
25Khz
25Khz
Output Voltage Ripple Fr
e
quency
50Khz
100Khz
I
nput cur
r
e
nt Ripple Fr
e
quency
50Khz
100Khz
I
nductor
Cur
r
e
nt R
i
pple Fr
equency
25Khz
50Khz
From
the results, it
is found that the input
curre
nt
and output voltage ripp
le are re
duced i
n
the
pr
o
pose
d
i
n
t
e
rl
eaved
b
o
o
st
c
o
nve
rt
er c
o
m
p
ared
to th
e conv
en
tio
n
a
l t
o
po
l
o
gy.
4.
POWER
LOSS
AN
ALY
S
IS
The power los
s
analysis of t
h
e converter i
n
cludes power loss of t
h
e MOSFE
Ts,
diodes and m
a
in
in
du
ctor u
s
ed in
th
e conv
erter circu
it. Th
e switch
i
ng
l
o
sses, c
o
nd
uct
i
on l
o
s
s
es
and in
du
ctor
lo
sses ar
e
calcu
lated
an
d th
e
resu
lts are tabu
lated
.
Th
e
po
we
r l
o
ss of M
O
SFET con
s
ists
o
f
th
e switch
i
ng
loss
(
P
SW
(
M
O
S
FET)
)
an
d
th
e con
d
u
c
tion
lo
ss
(PCO
ND(
MO
SFET))
[1
0
]-[11
]
.
Th
e
d
r
ain
cu
rr
en
t
w
a
v
e
for
m
o
f
M
O
SFET
obt
a
i
ned
as a
res
u
l
t
of
M
A
T
L
AB
si
m
u
l
a
ti
on i
s
con
s
i
d
ere
d
f
o
r
cal
cul
a
t
i
n
g
c
o
nd
uct
i
o
n l
o
ss.
The
MOSFET
current duri
ng eac
h tim
e
interval
as shown i
n
Fi
gure
5 is used i
n
calculating t
h
e rm
s value
of drain
current.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
3
,
Sep
t
em
b
e
r
2
014
:
31
4 – 320
31
8
Fi
gu
re
5.
D
r
ai
n
cu
rre
nt
wa
ve
f
o
rm
of M
O
SF
ET
The PSW(MOSFET
)
is calculated on the
basis of the
overla
p
area of the
drain-
sou
r
ce v
o
ltage (VD
S
)
and
drai
n c
u
r
r
ent
(I
Drai
n) a
s
s
h
o
w
n i
n
Fi
g
u
r
e
6.
The s
w
i
t
c
hi
n
g
fre
que
ncy
use
d
i
s
2
0
k
Hz
.
Fi
gu
re
6.
S
w
i
t
c
hi
n
g
c
h
ar
acteristics o
f
Po
wer
MOSFET
Tab
l
e
3
.
Sw
itch
i
ng
an
d Condu
ctio
n Lo
ss
o
f
Pow
e
r M
O
SFET fo
r Mu
ltiD
ev
ice in
terleav
e
d
b
o
o
s
t con
v
e
rter
POWE
R L
O
SS
PARAMETER
V
A
LUE
Psw(
MOSFET
)
×4
15.
947W
PCOND(
MOSF
ET
) ×4
16.3772W
PM
OSFE
T
×
4
32.
3242W
A fast
rec
ove
r
y
di
ode wa
s u
s
ed as t
h
e m
a
in di
o
d
e. T
h
e reverse
recovery curre
nt is alm
o
st zero.
Thu
s
, alth
ough
th
e f
s
w
is in
creased
, th
e
switch
i
ng
lo
ss is n
o
t
increased. T
h
e power loss of the
diode
(PD
I
ODE
) c
o
n
s
ists of
the
re
v
e
rse
reco
very
l
o
ss
(Ptr
r(
DI
O
D
E
)
) and
th
e co
ndu
ctio
n lo
ss
(PCOND(DIODE
)
).
Tab
l
e
4
.
Power Lo
ss Of
Diod
es Of Mu
lti
Device In
terleav
e
d Boo
s
t Conv
ert
e
r
POW
E
R L
O
SS P
A
RAME
TER
VAL
UE
(
P
tr
r)
*4
0 W
(
P
RD)
*4 84.
8
m
W
(
P
VF )
*4
1.
7987
6W
(PS
W
(D
IOD
E
))*
4
1
.
0
8
W
(PCOND
(DI
ODE
)
)
*4
4.
2W
PM
DI
ODE
7.
1635
6W
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Design,
Si
mul
a
tion and Hardware
Impleme
n
tation
of a M
u
lti Device In
t
e
rleaved Boost
…
(R. Seyezhai)
31
9
The powe
r los
s
es of the m
a
in in
ductor (PML) consist of the core
loss
es (PMfe) a
n
d the coppe
r
losses (PMcu).
Tabl
e
5.
Po
wer
Loss
o
f
M
a
i
n
In
d
u
ct
or
INDUC
TOR P
O
WER LO
SS
VALU
E
(
P
M
f
e)
×2
0.
0594W
(
P
M
c
u)×2 6.
114W
Th
erefo
r
e, t
h
e
to
tal lo
ss o
f
m
a
in
in
du
ctor is
foun
d
to
b
e
PML = 6
.
1
734
W.
Hen
ce t
h
e
p
o
wer lo
ss
o
f
in
terleav
ed
boo
st con
v
e
rter
an
d
m
u
lti d
e
v
i
ce in
terleav
ed b
o
o
s
t con
v
e
rt
er are calcu
lated
and
tabu
lated
as
sho
w
n i
n
Ta
bl
e 6.
Tabl
e
6. C
o
m
p
ari
s
o
n
of
p
o
w
e
r
l
o
ss
b
e
t
w
ee
n
IB
C
an
d M
D
I
B
C
DEVIC
E
S
IBC
MDIBC
M
O
SFE
T
38.
181
5W
32.
325
2W
DI
ODE
S
7.
0184
4W
7.
1635
6W
INDUC
TORS
6.539W
6.539W
T
O
T
A
L 51.
738
9W
46.
029
8W
Fr
o
m
th
e ab
ove tab
l
e, it
is o
b
v
i
ou
s th
at th
e p
o
w
e
r
lo
ss fo
r
m
u
lti
d
e
v
i
ce in
ter
l
eav
ed
boost co
n
v
er
ter
are less th
an
t
h
e conv
en
tional IBC. Hen
c
e
m
u
lti d
e
v
i
ce in
terleav
ed
boo
st con
v
e
rter
is i
m
p
l
e
m
en
te
d
fo
r
practical purposes.
5.
HA
RD
WA
RE
IMPLEME
N
TATION
Th
e h
a
rdware i
m
p
l
e
m
en
tati
o
n
o
f
Mu
ltid
ev
ice in
terleav
ed
bo
o
s
t conv
erter b
a
sically co
nsists o
f
p
o
wer supp
ly circu
it, g
a
ting
circu
it and
th
e p
r
o
p
o
s
ed
in
terleav
ed
boo
st co
nv
erter. Th
e p
o
wer sup
p
l
y
to
th
e
4N
3
5
opt
oco
u
p
l
e
r i
s
s
u
ppl
i
e
d
by
de
vel
o
pi
ng
a p
o
w
er
su
ppl
y
boa
rd
co
nsi
s
t
i
n
g
o
f
12
V,
1m
A t
r
ans
f
orm
e
r,
B
r
i
dge
rect
i
f
i
e
r an
d a 1
2
V
r
e
gul
at
o
r
. T
o
r
e
duce t
h
e swi
t
chi
n
g l
o
sses
[
12]
,
IR
FP
46
0
po
we
r M
O
SF
ET i
s
em
pl
oy
ed as
t
h
e m
a
i
n
swi
t
c
h
and
FR
-
1
07
i
s
use
d
as
free
w
h
eel
i
ng
di
o
d
es.
The
gat
i
n
g
pul
ses are
ge
ner
a
t
e
d
by
PIC
c
ont
r
o
l
l
e
r
18
F4
5
5
0
an
d
gi
ve
n as i
n
p
u
t
t
o
o
p
t
o
c
o
upl
e
r
.
The
p
u
l
s
e
gen
e
rat
i
o
n
f
r
om
PIC
ci
rc
ui
t
fo
r
f
i
ri
n
g
MD
I
BC sw
itches is show
n in
Fig
u
r
e
8
.
Figu
re
7.
O
u
tp
ut o
b
taine
d
fr
o
m
PIC circuit f
o
r
firi
ng
MD
I
B
C
Fi
gu
re
8.
A
Pr
ot
ot
y
p
e
o
f
M
u
l
t
i
devi
ce
Int
e
rl
eaved
B
oost
c
o
nve
rt
e
r
wi
t
h
opt
oco
u
p
l
e
rs a
n
d P
I
C
c
i
rcui
t
Fig
u
r
e
8
shows th
at
f
o
r
an
i
n
p
u
t
vo
ltag
e
of
6
.
5
V
, an
ou
tput o
f
12
.9
4V
is ob
tain
ed
as p
e
r
th
e d
e
sign
and t
h
e si
m
u
l
a
t
i
on re
sul
t
s
are
veri
fi
e
d
.
Fi
g
u
r
e 9
sh
o
w
s t
h
e
out
put
v
o
l
t
a
g
e
of
1
1
.
4
2
V
fo
r an i
n
p
u
t
of
6
.
1
2
V
measured using PQ a
n
alyzer.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
3
,
Sep
t
em
b
e
r
2
014
:
31
4 – 320
32
0
Fi
gu
re
9.
O
u
t
p
ut
v
o
l
t
a
ge
o
f
M
D
IB
C
m
easured
usi
n
g
P
Q
a
n
al
y
zer
6.
CO
NCL
USI
O
N
In
t
h
is p
a
p
e
r,
a no
v
e
l M
u
lti Dev
i
ce
In
terleav
ed Boo
s
t C
o
nv
erter
h
a
s
been
d
e
sign
ed fo
r
fu
el cell
appl
i
cat
i
o
ns.
The si
m
u
l
a
t
i
o
n an
d ex
peri
m
e
nt
al
resul
t
s
have
dem
onst
r
at
ed t
h
at
t
h
e
i
ndu
ct
or si
ze
and t
h
e
capacitor size of the MDIBC are redu
ced
by two tim
e
s
c
o
m
p
ared to the
co
nv
en
tion
a
l
I
BC. Mo
r
e
over
,
th
e
current
and
voltage ripples a
r
e re
duce
d
by t
w
o tim
es
co
mp
ared
with th
e IBC topo
logy. The
power losses
of
t
h
e pr
o
pose
d
bo
ost
co
nv
ert
e
r have
been a
n
al
y
zed an
d
th
e resu
lts were tab
u
l
ated
. Th
e po
wer lo
ss resu
lts
sho
w
s t
h
at
sw
i
t
c
hi
ng a
nd c
o
nd
uct
i
o
n l
o
sse
s are l
e
ss f
o
r
M
D
IB
C
com
p
ared t
o
t
h
e c
o
nve
nt
i
o
nal
IB
C
.
Th
e
maxim
u
m
efficiency of the
propose
d
in
terleav
ed
co
nv
ert
e
r is fou
n
d
to
b
e
96.4%. T
h
e
r
efore
,
the propos
ed
con
v
e
r
t
e
r see
m
s
t
o
be
ve
ry
pr
om
i
s
i
ng f
o
r
hi
g
h
-
p
ow
er
fu
el cell system
s
to
ex
ten
d
th
eir lifesp
a
n
as well as
b
a
ttery systems. It is im
p
o
r
tan
t
to
po
in
t
o
u
t
th
at th
e
pr
op
os
ed c
o
n
v
e
r
t
e
r ca
n i
m
prov
e efficiency and reduce the
size o
f
th
e
p
a
ssiv
e co
m
p
on
en
ts, lead
i
n
g to
h
i
g
h
reliab
ility co
m
p
ared
with
o
t
h
e
r
d
c
/d
c con
v
e
rter t
o
po
l
o
gies.
ACKNOWLE
DGE
M
ENT
Th
e au
t
h
or wi
sh
to
th
an
k
the
m
a
n
a
g
e
m
e
n
t
o
f
SSN In
stitu
tio
ns for prov
id
ing
th
e fi
n
a
n
c
ial su
ppo
rt
for carrying
o
u
t th
is proj
ect.
REFERE
NC
ES
[1]
Dwa
ri S,
Pa
rsa
L
.
A Novel High
Efficien
cy High
Power Interlea
ved
Coupled
-Ind
u
ctor Boost DC-DC Converter for
Hybrid and Fuel Cell
Electric Vehicle.
Vehi
cle P
o
wer and Propulsion Conferenc
e
. VPPC. IEEE. 2
007: 399-404, 9-
12.
[2]
Jun Wen, Jin T,
Smedley
K
. A new interleaved is
olated boost con
verter
for high p
o
wer applica
tion
s
.
Applied
Power
Electronics
Conf
erence and Expo
sition.
APEC '
0
6
.
Twen
ty
-First A
nnual I
EEE. 200
6; 6: 19-23.
[3]
Omar Hegazy
,
Joeri Van Mierlo
,
Philippe L
a
ta
ire. Anal
ysis,
Modeling, and
Im
plem
entation
of a Multi devi
ce
Interleaved DC/DC Converter for Fuel
Cell H
y
br
id Electric vehicles.
IEEE transactions on power electronics
. 201
2;
27(11).
[4]
G
y
u-Yeong Ch
oe, H
y
un-Soo
Kang, B
y
oung-
Kuk Lee, Won-Yong Lee.
Design Consideration of Interlea
ved
Converters for Fuel Ce
ll App
l
i
c
ations.
P
r
oc
ee
dings
of Intern
ation
a
l Confer
e
n
ce on El
ec
tric
al M
achin
es
an
d
S
y
stems, Seoul,
Korea. 2007; 23
8-243.
[5]
Haiping Xu, Xuhui Wen, Qiao
E, Xin Guo
,
Li
Kong.
High Po
wer Interlea
ved
Boost Con
vert
e
r in Fu
el C
e
ll
Hy
brid
Ele
c
tric
V
e
hic
l
e
. Electr
i
c Machin
es and Dr
ives, I
EEE In
tern
ation
a
l Conf
eren
ce o
n
. 2005; 1814-1
819.
[6]
HB Shin, JG Par
k
, SK Chung, HW Lee, TA Lipo
. General
i
sed stead
y
-st
a
t
e
anal
y
s
i
s
of
m
u
ltiphase i
n
terl
eaved boost
converter with coupled
inductors
.
IE
EE
El
ec
troni
cs
Power Application
. 2005; 152
(3): 584-594
.
[7]
PA
Dahono, S
Ri
y
a
di
, A Muda
wari, Y Haroen. Output
ripple anal
y
s
is of m
u
ltiphase DC–DC c
onverter
.
IEEE Int.
Conf. Power Electric
al and Drive Systems
, Hong
Kong. 1999
: 62
6–631.
[8]
P Thounthong, P Sethakul
, S R
a
el, B
Davat.
Design and implementation o
f
2-
pha
se
interleaved b
oost converter for
fuel
ce
ll
power
s
our
ce
.
Int. Conf. Power Elec
tronics, Machines, an
d Dr
ives, PEMD. 2008: 91–95.
[9]
R Sey
e
zhai, BL Mathur. Analy
s
is, desi
gn
and experimentation of
Interleav
ed
B
oost Converter f
o
r fuel cell pow
er
Source.
IJRRIS Journal
. 2011; 1(
2).
[10]
Jae-H
y
ung Kim, Yong-Chae Jung, Su-Won L
ee, Tae-Won Lee, Chung-Yuen Won.
Power Loss Analysis of
Interlea
ved So
ft
Switching
Boost
C
onverter
for Single-Phase PV-
PCS.
I
EEE 6th
I
n
ternational Con
f
erence on
Power
Electronics and
Motion Control.
2009: 428-432.
[11]
John Shen Z, Y
a
li Xiong
, Xu C
h
eng, Yue Fu,
Kumar P.
Power MOSFET switching lo
ss analysis: A new
insig
h
t.
IEEE Industr
y
A
pplications Conf
er
ence R
ecord
. 2
006; 3: 1438-14
42.
[12]
KS Oh. FAIRCHILD Semiconductors MOSFET Basics. 2000.
Evaluation Warning : The document was created with Spire.PDF for Python.