Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol
.
6
,
No
. 2,
J
une
2
0
1
5
,
pp
. 34
8~
35
5
I
S
SN
: 208
8-8
6
9
4
3
48
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Fault Ride-Through capability
of DSTATCOM for Distributed
Wind Generation System
Ma
nju
A
g
ga
r
w
al
*
, Mad
hus
udan Sin
g
h
**
,
S
.
K.
Gu
pt
a
***
*De
p
a
r
t
m
ent
of El
ect
ri
cal
E
n
gi
nee
r
i
n
g,
DCR
U
ST, Murthal,
Har
y
ana, India
**
De
part
m
e
nt
of
El
ect
ri
cal
E
ngi
neeri
n
g
,
Delhi Technolog
ical University
, Delhi, Ind
i
a
***Depa
r
tm
ent of Elect
rical Engineeri
n
g,
DCRUST
,
Murt
hal
,
Ha
ry
ana,
Indi
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Ja
n 31, 2015
Rev
i
sed
Mar
27
, 20
15
Accepted Apr 20, 2015
In this paper
,
f
a
ult rid
e
through
analy
s
is of a lo
w voltage d
i
strib
u
tion s
y
stem
augmented with
distributed win
d
ge
neration using squirrel cage induction
generator and distribution static
comp
ensator (DSTATCOM) is
carried ou
t
through modeling and simulation stud
y
in
MATLAB. The impact of
unbalan
ced
(sin
gle
line to
groun
d) fault
in a low
voltage distribu
tion s
y
s
t
em
in normal and severe cond
itions
is studied
and anal
yz
ed in deta
il
s
.
Anal
y
s
is
on s
y
stem
insta
b
ilit
y
is also shown in case o
f
sever faul
t co
ndition.
A
distribution Static Compen
sator (
D
STATCOM) is used to im
prove fault r
i
de
through (FRT)
cap
ability
o
f
wind ge
ner
a
tio
n s
y
stem b
y
compensating
positive sequen
c
e voltag
e
. A co
m
p
arison of d
y
n
a
m
i
c response o
f
the s
y
st
em
with and withou
t DSTATCOM
and e
ffects of DSTATCOM on
voltag
e
and
genera
tor s
p
ee
d are pr
es
ent
e
d.
Th
e
simula
tion re
sults
shows tha
t
DS
TATCOM
is capab
le of red
u
cing
the vo
ltage dips and improving th
e
voltag
e
profiles
b
y
providing
r
eactive power s
upport to d
i
stributed wind
generation s
y
stem under unbalanced fau
lt condition and enh
a
nces the fault
ride
through
cap
ability
of
th
e wind gener
a
tor
.
Keyword:
DST
A
TCOM
Fau
lt ri
d
e
I
ndu
ctio
n g
e
n
e
r
a
to
r
Sq
ui
rrel
ca
ge
W
i
n
d
gene
rat
i
o
n
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
M
a
nj
u A
gga
rw
al
,
Depa
rt
m
e
nt
of
El
ect
ri
cal
Engi
neeri
n
g
,
DCRUST
, M
u
rthal,
Hary
a
n
a,
In
dia
1.
INTRODUCTION
W
i
n
d
ene
r
gy
con
v
e
r
si
o
n
sy
st
em
s (W
EC
S
)
are co
nsi
d
e
r
ed
as di
st
ri
but
e
d
gene
rat
i
ons
(
DGs
) [
1
-
4
]
,
whi
c
h are c
o
n
n
ect
ed t
o
t
h
e
di
st
ri
b
u
t
i
on
ne
t
w
o
r
k
of
a power system
. Unlike conv
enti
onal electric energy
gene
rat
i
n
g sy
st
em
s such as t
h
erm
a
l
,
nucl
ear
and
hy
d
r
o
power pla
n
ts which are ce
ntraliz
ed and a
r
e the
m
a
in
sources
of electric powe
r ge
neration, DGs a
r
e dece
ntraliz
e
d
a
nd l
o
cat
ed i
n
we
ake
r
part
s
of t
h
e
po
wer
gri
d
.
Co
nv
en
tio
n
a
ll
y, win
d
turb
i
n
es are d
e
sign
ed
with
con
t
ro
ller to
g
e
t d
i
scon
n
ected
in
th
e ev
en
t of m
a
j
o
r syste
m
di
st
ur
ba
nces s
u
ch as l
i
g
ht
eni
ng st
ri
kes, e
q
u
i
pm
ent
fai
l
u
res, and
d
o
w
n
e
d
po
we
r l
i
n
es. H
o
we
ve
r, t
h
i
s
l
o
ss o
f
g
e
n
e
ration
affect th
e stab
ilit
y an
d
can
lead
to
cascad
e
d
trip
and
lo
ss
of rev
e
nu
e. Th
ese issu
es lead
to
th
e
necessi
t
y
of a set
of com
p
reh
e
nsi
v
e
gri
d
c
o
des. T
h
e El
ectricity grid code
s [5-7] ar
e th
e
regu
lato
ry stand
a
rd
s
mad
e
b
y
th
e
In
tern
atio
n
a
l El
ectro
tech
an
ical Co
mmissio
n
(IEC) t
o
d
e
v
e
lop
,
m
a
in
tain
, and
o
p
e
rate th
e
po
wer
syste
m
grid i
n
the m
o
st secure
d,
reliable, econom
ical and efficient
m
a
nne
r.
The
g
r
i
d
c
ode
s
defi
n
e
t
h
e
o
p
e
ration
a
l bou
nd
ary of a
win
d
tu
rb
ine conn
ected
t
o
th
e
n
e
two
r
k
in term
s o
f
frequ
ency, vo
ltag
e
to
l
e
ran
c
e,
po
we
r facto
r
a
nd
fault ride t
h
ro
u
gh
(FRT)
.
FRT is rega
rd
ed
as on
e of th
e
m
a
in
ch
allen
g
es to
th
e wind
tu
rb
in
e
man
u
f
act
u
r
ers. Th
e wi
n
d
turb
in
e sh
ou
ld
remain
stab
le
an
d
con
n
ected
d
u
ring
th
e fault, wh
ile v
o
ltag
e
of
W
E
CS at Po
int o
f
Co
mm
o
n
Co
up
ling
(
P
C
C
)
dro
p
s
to 15% of
t
h
e
no
m
i
n
a
l
v
a
lu
e
fo
r 15
0 m
s
[
8
] as sh
own
i
n
th
e Fig
u
re 1
.
Th
e tu
rb
in
e is allo
wed
to
d
i
scon
n
ect fro
m
th
e g
r
id
on
ly wh
en
th
e g
r
i
d
vo
ltag
e
falls b
e
low th
is
poi
nt
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 6,
No
.
2,
Ju
ne 20
15
:
348
–
3
55
3
49
In the past fe
w decade
s
seve
ral type
s of
wind turbi
n
e drive
n
ge
ne
rato
rs are currently
pre
v
alent in the
i
n
d
u
st
ry
i
.
e
.
c
onst
a
nt
s
p
ee
d
wi
t
h
S
q
ui
r
r
el
C
a
ge
I
ndu
ction
Gen
e
rator (IG), Variab
le
Sp
eed g
e
n
e
rators
lik
e
D
oub
ly-
F
ed
In
du
ction
G
e
ner
a
to
rs (D
FI
Gs)
,
D
i
r
ect
D
r
i
v
e Per
m
an
en
t Magn
et Synch
r
on
ou
s
G
e
ner
a
t
o
r
(PMSG), coup
led
with
g
earbox
& fu
ll rating
p
o
wer co
nv
ert
e
rs.
Fig
u
re
1
.
Fau
lt Rid
e
Th
rou
g
h
(FRT) cap
ab
ility
Ho
we
ver
,
i
n
d
u
c
t
i
on ge
nerat
o
r
(IG
) base
d wi
nd e
n
er
gy
con
v
ersi
on sy
st
em
st
i
l
l
represe
n
t
15
% of t
h
e
i
n
st
al
l
e
d wi
n
d
po
wer i
n
Eu
r
ope [
9
]
whi
c
h
i
s
si
gni
fi
cant
l
y
hi
gh an
d he
nce t
h
ere i
s
a need t
o
e
nha
n
ce t
h
e
per
f
o
r
m
a
nce o
f
suc
h
t
y
pe
of
gene
rat
o
rs.
Fi
x
e
d spee
d i
n
d
u
c
t
i
on ge
ne
rat
o
r
con
s
um
es l
a
rg
e am
ount
of
re
act
i
v
e
po
we
r d
u
ri
n
g
vol
t
a
ge
di
ps
, s
o
i
t
can easi
l
y
get
un
st
abl
e
. Earlier fixe
d size
m
echanically switched capacitors
were
use
d
at the term
inal of
SCIG t
o
rec
o
v
e
r the
vo
ltage
d
r
op
.
Howev
e
r, th
ese cap
acito
rs
prov
id
e t
h
e fix
e
d
co
m
p
en
satio
n
an
d th
ey canno
t enh
a
n
ce t
h
e tran
sien
t stab
ility p
e
rfo
r
m
a
n
ce of th
e system
. To
i
m
p
r
ove th
e
tran
sien
t stab
il
ity o
f
th
e syste
m
,
d
y
n
a
mic v
o
ltag
e
co
n
t
ro
l so
lu
tion
s
lik
e SVC (Static VAR Co
m
p
en
sat o
r
) and
STATC
O
M are
m
o
re preval
ent [10-
1
2
]
.
S
T
ATC
O
M
has
an ed
ge
ove
r SVC
i
n
t
e
r
m
s of i
t
s
sup
e
ri
o
r
o
p
e
ration
a
l characteristics, lesser co
st
, smaller size etc, and m
o
reove
r, it
is no
t affected
b
y
th
e
v
o
ltage
variation at PCC. The STATCOM acts as a sink of r
eac
tive power (i
nduct
o
r) an
d source
of reactive powe
r
(cap
acitor)
which
en
ab
les the STATC
O
M to
i
m
p
r
ov
e th
e v
o
ltag
e
pro
f
ile o
f
th
e system an
d
redu
ce
v
o
ltage
fl
uct
u
at
i
o
n i
n
t
e
rm
s of
gri
d
di
st
ur
bance
s
.
In
tr
ansmissi
on
system
STATCOM h
a
s also
b
een
u
s
ed
for im
p
r
o
v
i
n
g
t
r
an
sien
t stab
ilit
y
m
a
rg
in
o
f
wind
farm
s [13, 14
], enh
a
n
c
i
n
g
FRT cap
ab
ility b
y
u
s
i
n
g i
ndirect to
rq
ue con
t
ro
l of indu
ctio
n m
ach
in
es [15
]
.
The use
of DS
TATC
OM in
distribution
sy
ste
m
to
i
m
p
r
o
v
e
po
wer qu
ality i.e. v
o
ltag
e
sag
,
vo
ltag
e
sw
ell and
unbalan
c
in
g of th
e syste
m
is d
e
scrib
e
d
[1
6-1
8
]
. Th
e
p
o
w
e
r quality i
m
p
r
o
v
e
men
t
in
an
in
t
e
g
r
ated
po
we
r sy
st
em
wi
t
h
wi
n
d
fa
r
m
s usi
ng
DST
A
TC
OM
i
s
ex
pl
ai
ned
[
1
9-
21
]
.
The
DST
A
TC
OM
i
s
one
of
t
h
e
cust
om
po
wer
devi
ces
w
h
i
c
h i
n
ject
s a set
of t
h
ree
u
nba
l
a
nced c
o
m
p
ensat
i
n
g cu
rre
nt
s t
o
m
a
ke t
h
e sy
st
em
balance
d
as
com
p
ared to
ST
ATCOM
whic
h injects
balanced c
u
rrents
.
In
t
h
is
p
a
p
e
r carrier less
h
y
steresis cu
rren
t
co
n
t
ro
l tech
n
i
qu
e is
u
s
ed
wh
i
c
h
is the sim
p
l
e
, ro
bu
st as
com
p
ared t
o
o
t
her t
ech
ni
q
u
e
s
[2
2]
. In ad
d
i
t
i
on t
o
im
pro
v
e t
h
e v
o
l
t
a
ge pr
ofi
l
e
o
f
t
h
e sy
st
em
as done
i
n
t
h
e
p
r
ev
iou
s
wo
rk [2
3
]
, vo
ltag
e
stab
ility an
aly
s
is is also
d
o
n
e in
th
is wo
rk b
y
co
n
s
id
ering
lo
w v
a
l
u
e of sh
ort
ci
rcui
t
rat
i
o
(
S
C
R
)
. The
pr
o
p
o
se
d sy
st
em
has bee
n
m
o
d
e
l
e
d an
d si
m
u
lat
e
d usi
n
g M
A
TL
AB
/
S
i
m
uli
nk. T
h
e
si
m
u
latio
n
resu
lts d
e
m
o
n
s
trate effectiv
en
ess o
f
DSTATC
OM in
d
e
v
e
l
o
p
i
ng
fau
lt rid
e
th
ro
ugh
cap
abilit
y o
f
th
e
W
E
CS and
m
a
in
tain
in
g
vo
ltag
e
stab
ility
o
f
lo
w
v
o
ltage d
i
strib
u
tion
syste
m
b
y
co
n
t
ro
llin
g
th
e sp
eed
o
f
t
h
e wi
nd
ge
ne
r
a
t
o
r a
n
d s
u
p
p
l
y
i
ng t
h
e
re
q
u
i
r
ed
react
i
v
e
po
wer
.
2.
SYSTE
M
DESCRIPTIO
N
The p
r
o
p
o
sed
sy
st
em
consi
s
t
s
of 1
1
k
V
,
45
0
k
V
A
,
50
Hz l
o
w v
o
l
t
a
ge di
st
r
i
but
i
o
n sy
st
em
al
ong
wi
t
h
a
wi
n
d
ge
nerat
i
o
n sy
st
em
(
W
GS)
c
o
n
n
ect
ed
di
rect
l
y
t
o
t
h
e
g
r
i
d
an
d
DS
T
A
TC
OM
as s
h
ow
n i
n
Fi
g
u
re
2.
Th
e
lo
w
vo
ltag
e
d
i
str
i
b
u
tion
syst
e
m
is r
a
d
i
al an
d supp
lied
fro
m
1
1
k
V
/
415V
tr
an
sfor
m
e
r
.
Thr
ee ph
ase
b
a
lan
c
ed
lo
ad
r
a
ted
at 20
kW
an
d
1
0kW
,
1
2kv
ar
is c
o
nnected at the
end
of
feede
r
1 an
d 2
res
p
ec
t
i
v
el
y
.
Vol
t
a
ge
at
t
h
e
p
o
i
n
t
of
co
mmo
n coup
lin
g (PCC)
is 415
V.
W
i
nd
g
e
n
e
r
a
tio
n system
co
m
p
r
i
sin
g
of
a
2
2kW
Squ
i
r
r
e
l
Cag
e
I
ndu
ctio
n G
e
ner
a
to
rs
(
S
CIG
)
dr
iv
en
b
y
f
i
xed
sp
ee
d
wind tu
rb
in
e.
A
DSTATC
OM sup
p
lies t
h
e lag
g
in
g or
lead
in
g curren
t
to
m
a
n
a
g
e
t
h
e
co
nstan
t
term
i
n
al vo
ltag
e
at
PCC du
ri
n
g
fau
lt con
d
ition
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Fau
lt Rid
e
-Th
r
o
ugh
ca
pab
ility o
f
DSTATC
OM fo
r
Distribu
ted
Wi
n
d
Gen
e
ra
tio
n S
y
stem
(
M
a
n
j
u
A
g
ga
rw
al
)
35
0
Fi
gu
re
2.
B
a
si
c St
r
u
ct
ure
o
f
T
e
st
Sy
st
em
The s
h
ort
ci
rc
u
i
t
rat
i
o
(SC
R
)
of
t
h
e
di
st
ri
b
u
t
i
on
sy
st
em
i
s
d
e
fi
ne
d as
R
=
(
1
)
Whe
r
e
S
Sh
ort circu
it power lev
e
l of t
h
e
g
r
i
d
S
Rated
t
u
rb
in
e po
wer lev
e
l
Th
e SCR h
a
s
b
een
redu
ced
to
3
to
sim
u
late
th
e sev
e
re
fault co
n
d
ition
in
th
e weak
g
r
i
d
syste
m
. An
y
gri
d
havi
ng
SC
R
l
e
ss t
h
a
n
10
can
be cal
l
e
d
a
s
a w
eak
g
r
i
d
[
24]
.
3.
DSTAT
C
O
M
CO
NTR
O
L
S
C
HE
ME
The p
r
op
ose
d
cont
rol
t
ech
ni
q
u
e has
bee
n
sh
ow
n i
n
Fi
gu
re
3. H
o
weve
r, ca
rri
er l
e
ss hy
st
e
r
esi
s
cur
r
e
n
t
cont
rol
t
ech
ni
que
re
qui
res a
bal
a
nce t
h
ree
pha
se v
o
l
t
a
ge
at
PC
C
.
As i
n
t
h
e case
o
f
un
bal
a
nce
d
fa
ul
t
t
h
i
s
voltage
is no l
o
nge
r
bala
nce
d
, it consists
of positiv
e a
nd
negative
seque
n
ce c
o
m
pone
nts. The
r
efore
,
i
n
the
p
r
op
o
s
ed
m
e
th
o
d
sequ
en
ce
referen
ce
fram
e
(SRF) techn
i
qu
e
is u
s
ed
to
ex
tract p
o
s
itiv
e sequ
en
ce
co
m
p
on
en
ts
[25] for ideal c
o
m
p
ensation.
Pos
itive se
que
n
ce c
o
m
pone
nt
s are
sepa
rated
by the
followi
ng e
quations
1
0
√
√
(
2
)
cos
sin
sin
cos
(
3
)
Whe
r
e
is th
e fu
nd
am
en
tal freq
u
e
n
c
y an
d
and
are positive
sequence
d a
nd q c
o
m
pone
nt of
voltage
Th
ese co
m
p
o
n
en
ts are p
a
ssed
throug
h lo
w p
a
ss filter
and
co
nv
erted
b
a
ck
in
to
,
and a
b
c
coo
r
di
nat
e
t
o
g
e
t
positive
seque
n
ce c
o
m
pone
nt
as
give
n
by eq. (4) and
(5)
re
spectively.
cos
sin
sin
cos
(
4
)
10
√
√
(
5
)
Sim
i
l
a
rl
y
negat
i
v
e seq
u
ence
com
pone
nt
s ar
e cal
cul
a
t
e
d. T
h
en t
h
e g
r
i
d
s
y
nch
r
o
n
i
zat
i
o
n
angl
e
(
θ
) i
s
ex
tracted
b
y
ap
p
l
ying
th
e p
o
s
itiv
e sequ
en
ce co
m
p
on
en
ts to
p
h
a
se lo
ck
ed
loo
p
(PLL). Th
e grid
synchronization a
ngle
is
utilized t
o
gene
rat
e
the i
n
-
pha
se
unity c
o
m
pone
nts (ua,
ub and
uc) and
qua
d
rat
u
re
uni
t
y
com
p
o
n
e
n
t
s
(
w
a,
w
b
a
n
d
wc)
as
gi
ve
n
bel
o
w.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 6,
No
.
2,
Ju
ne 20
15
:
348
–
3
55
3
51
u
s
i
n
θ
(
6
)
u
s
i
n
θ
(
7
)
u
s
i
n
θ
π
(
8
)
Fi
gu
re
3.
C
o
nt
r
o
l
sc
hem
e
of D
S
TATC
OM
√
0
2
/
32
/
3
1
1
/3
1/3
1
1/3
1/3
(9
)
The in phase c
o
m
pone
nt of refere
nce s
o
urc
e
curre
n
ts
are deri
ved by
m
u
ltiplying
d
a
x
is com
pone
nt
of current
i
wi
t
h
u
n
i
t
vect
or t
e
m
p
l
a
t
e
and
q
u
ad
rat
u
re
com
pone
nt
s
of
refe
re
nce s
o
u
r
ce c
u
r
r
ent
s
are o
b
t
a
i
n
e
d
by
m
u
l
tip
lyin
g
i
q
with
q
u
a
d
r
atu
r
e v
ector
tem
p
la
te. W
h
ere
i
is th
e ou
tpu
t
o
f
PI con
t
ro
ll
er regu
latin
g
d
c
bu
s
vol
t
a
ge
of D
S
TATC
OM
and
i
q
i
s
obt
ai
ned
by
com
p
ari
ng
m
a
xim
u
m
val
u
e of desi
re
d A
.
C
refere
nce v
o
l
t
a
ge
(V
tre
f
*)
with
v
o
ltag
e
at PCC.PI con
t
ro
ller
p
r
ocesses th
e
vo
ltag
e
erro
r. Th
e
a
m
p
litu
d
e
of
reactiv
e curren
t
to
b
e
pr
o
duce
d
by
t
h
e ST
ATC
O
M
i
s
deci
ded
by
t
h
e o
u
t
p
ut
o
f
t
h
e
PI c
o
nt
rol
l
e
r
i
n
AC
vol
t
a
ge c
o
nt
r
o
l
l
o
op
.
4.
SIMULATION RESULTS
Faul
t
ri
de t
h
ro
ug
h anal
y
s
i
s
o
f
a wi
n
d
ge
ner
a
t
i
on sy
stem is
analyzed for uns
ymm
e
trical
fau
lts wit
h
an
d withou
t st
atic co
m
p
en
sato
r in
a low
vo
ltag
e
d
i
stributio
n
system
. Th
e Si
g
n
co
nv
en
tio
n is
p
o
sitiv
e
for
act
i
v
e/
react
i
v
e po
we
r fl
o
w
fr
o
m
wi
nd ge
nera
t
o
r an
d DST
A
TC
OM
t
o
wa
rd
s PC
C
.
The var
i
ous fa
ul
t
con
d
i
t
i
ons
have
bee
n
det
a
i
l
e
d o
u
t
bel
o
w
sho
w
i
n
g t
h
e i
m
pact
of D
S
T
A
TC
OM
.
4.
1.
Sys
t
em Re
sp
onse to Sin
g
le Line to Gr
ou
nd Faul
t w
i
th
and w
i
th
ou
t
DST
A
T
C
O
M
in a Low
V
o
l
t
age
Distribu
tion S
y
ste
m
Th
e
p
e
rfo
r
m
an
ce of
th
e 11kV
,
45
0kV
A, an
d 50H
z low
v
o
ltag
e
d
i
st
r
i
bu
tio
n system
i
s
stud
ied
b
y
sim
u
l
a
t
i
ng a si
ngl
e
pha
se t
o
gr
o
u
n
d
fa
ul
t
at
i
n
st
ant
t
=
0.
5s
wi
t
h
cl
eara
n
c
e
t
i
m
e
150m
s. Fi
gu
re
4 s
h
o
w
s t
h
e
positive and negative seque
n
ce com
ponent
of vo
ltage at the point of c
o
m
m
on coupling (V
pcc
,+ V
pcc
-
-), rm
s
vol
t
a
ge
s of
ea
ch pha
se
at
p
cc
(
V
tabc
), rm
s
v
o
l
t
a
ges of
e
ach pha
se
(
V
ga
b
c
) nea
r
gri
d
,
spee
d
of
r
o
t
o
r (
w
)
,
electrical and
mechanical torque (T
e
,T
m
) with
ou
t DSTATCOM. Th
e u
n
b
a
lan
ced
fau
lt lead
s to
n
e
g
a
tive
sequence
volta
ge at PCC. Pos
itive
seque
nce com
pone
nt
of voltage V
PCC
+ at Bus 3 and V
ga
(v
ol
t
a
ge
of
phas
e
a) at
B
u
s 1 fal
l
s t
o
0.
4p
u a
nd
0.
5p
u res
p
ect
i
v
el
y
duri
n
g t
h
e
faul
t
.
T
h
e spee
d i
n
crea
ses t
o
1.
16
pu a
n
d el
ect
ri
cal
torque is
oscillating at double freque
n
cy due t
o
pr
ese
n
ce of
negative
seque
nce c
o
m
ponent of c
u
rrent.
Mechanical torque
(T
m
) is constan
t
as
wind
sp
eed is co
n
s
tant.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Fau
lt Rid
e
-Th
r
o
ugh
ca
pab
ility o
f
DSTATC
OM fo
r
Distribu
ted
Wi
n
d
Gen
e
ra
tio
n S
y
stem
(
M
a
n
j
u
A
g
ga
rw
al
)
35
2
.
Fi
gu
re
4.
Per
f
o
rm
ance un
der
s
i
ngl
e l
i
n
e
t
o
gr
ou
n
d
faul
t
wi
t
h
out
DS
TATC
O
M
Fi
gu
re
5.
Per
f
o
rm
ance un
der
s
i
ngl
e l
i
n
e
t
o
gr
ou
n
d
faul
t
wi
t
h
DST
A
TC
OM
Figure 5 includes DSTATC
OM currents (i
stat
) and active and reacti
v
e powe
r of DST
A
TCOM (P
stat
,
Q
stat
) in
ad
d
iti
o
n
to
th
e resu
l
t
s o
f
Fig
u
re 4
.
It h
a
s b
een
ob
serv
ed
th
at DSTATC
OM h
e
lp
s in
redu
cing
th
e
positive
seque
n
ce
voltage
di
p a
n
d ti
m
e
to clear fa
ult by
supplying reactive powe
r
duri
ng fault.
The
val
u
es
of
voltage at point of comm
on
coupling
for each phase, s
p
eed of ge
ne
rat
o
r a
nd tim
e
to clear the fault for
d
i
fferen
t
typ
e
s o
f
fau
lt h
a
s b
een
g
i
v
e
n
in Tab
l
e1
.
As DSTATCOM
is u
s
ed
to
contro
l on
ly th
e p
o
s
itiv
e
sequ
en
ce co
mp
on
en
t, electrical to
rqu
e
(Te) is sti
ll o
s
cilla
t
o
ry. In
th
is simu
latio
n
,
instab
i
lity
p
r
ob
lem
d
o
es no
t
arise as t
h
e sy
ste
m
returns
back to
stab
le
op
eration
after
re
m
o
v
a
l of
fau
lt.
Ho
wev
e
r, DSTATC
OM h
e
lp
s
in
im
pro
v
i
n
g
vol
t
a
ge
pr
ofi
l
e
of
t
h
e sy
st
em
by
r
e
duci
n
g
t
h
e
v
o
l
t
a
ge di
p
a
n
d
t
i
m
e t
o
cl
ear t
h
e
fa
ul
t
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 6,
No
.
2,
Ju
ne 20
15
:
348
–
3
55
3
53
4.
2.
Sys
t
em
Resp
onse to Sin
g
le
Line to
Gr
ou
nd F
a
ult with
and
without DST
A
T
C
O
M
under
Sever
e
Fault Con
d
iti
o
n
A sing
le lin
e t
o
g
r
o
und
fau
lt is si
m
u
lated
at t=0
.
5
s
fo
r
150
m
s
in
th
e same syste
m
as
co
nsid
ered
i
n
th
e
pr
ev
iou
s
ca
s
e
s
.
H
o
w
e
v
e
r,
in
th
is
c
a
s
e a w
e
ak
lo
w
vo
l
t
ag
e d
i
st
ribu
tion
system
with
sh
ort circu
it ratio
of
th
ree (3
)
h
a
s
b
een
con
s
id
ered
fo
r sim
u
lati
o
n
o
f
sev
e
re
fau
lt co
nd
itio
n. Th
e vo
ltag
e
in
stab
ility is a
maj
o
r
co
n
c
ern
in
su
ch
a syste
m
. In
th
is si
m
u
latio
n
,
in
stab
ility p
r
o
b
l
em
arises a
s
th
e syste
m
d
o
e
s no
t retu
rn
b
ack
to
st
abl
e
ope
rat
i
o
n aft
e
r rem
o
v
a
l
of faul
t
.
Fi
gu
re 6 sh
o
w
s t
h
at
speed o
f
i
n
d
u
ct
i
on
gene
rat
o
r m
onot
on
i
cal
l
y
in
creases wh
ich
ind
i
cates clear in
stab
ility.
Fig
u
r
e
6
.
Sim
u
latio
n
r
e
su
lts
un
d
e
r
sev
e
r
e
sing
le lin
e t
o
g
r
o
u
n
d
f
a
u
lt w
ithout D
S
TA
TC
O
M
Howev
e
r, DSTATC
OM h
e
l
p
s to im
p
r
o
v
e
vo
ltag
e
stab
ility b
y
p
r
o
v
i
d
i
n
g
req
u
i
red reactiv
e po
wer.
Fi
gu
re 7 e
x
hi
bi
t
s
t
h
at
wi
nd
ge
nerat
o
r
get
st
abi
l
i
zed wi
t
h
t
h
e use o
f
D
S
T
A
TC
OM
an
d re
g
a
i
n
i
t
s
ori
g
i
n
al
spee
d
after fault
clearance.
Fig
u
re
7
.
Sim
u
latio
n
resu
lts
un
d
e
r sev
e
re sing
le
lin
e t
o
g
r
o
u
n
d
fau
lt cond
itio
n with DSTATCOM
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Fau
lt Rid
e
-Th
r
o
ugh
ca
pab
ility o
f
DSTATC
OM fo
r
Distribu
ted
Wi
n
d
Gen
e
ra
tio
n S
y
stem
(
M
a
n
j
u
A
g
ga
rw
al
)
35
4
Tabl
e
1. R
M
S
vol
t
a
ge
s
of ea
c
h
pha
se f
o
r l
-
G
fa
ul
t
wi
t
h
out
a
n
d
wi
t
h
co
nt
r
o
l
l
er i
n
a
l
o
w
vol
t
a
ge di
st
ri
b
u
t
i
o
n
syste
m
R
m
s value of
each phase
(line to
gr
ound fault)
(
pu)
Speed
(
pu)
Ti
m
e
to
clear the
fa
ult
(sec)
R
m
s value of
each phase
(line to
gr
ound
fault)
(
pu)
Severe case
Speed(pu) Ti
m
e
to
clear the
fault (sec)
W
ithout
co
n
t
ro
ller
V
ta
=0.2
1.
16
0.
1
V
ta
=0 increasing
Not
cleared
V
tb
=0.5 V
tb
=0.
18
V
tc
=0.4 V
tc
=0.
19
With
co
n
t
ro
ller
V
ta
=0.
55
1.
03
0.
03
V
ta
=0.
55
1.
02
cleared in
0.
04
V
tb
=1.0 V
tb
=1.0
V
tc
=0.
64 V
tc
=0.
53
5.
CO
NCL
USI
O
N
Thi
s
pa
per a
n
a
l
y
zes t
h
e im
pact
of u
n
b
al
anc
e
d fa
ul
t
i
n
a l
o
w
v
o
l
t
a
ge di
s
t
ri
but
i
o
n sy
st
e
m
operat
i
n
g
w
ith
d
i
str
i
bu
ted
w
i
nd
g
e
n
e
ratio
n
system
an
d ro
le
o
f
DSTA
TC
O
M
in enh
a
n
c
i
n
g the f
a
u
lt r
i
d
e
t
h
r
ough
cap
ab
ility o
f
WECS.
A SC
IG b
a
sed
WEC
S
is b
e
ing
consid
ered
and
effect o
f
g
r
id
fau
lts o
n
electro
mag
n
e
tic
to
rq
u
e
an
d
ro
to
r sp
eed
is an
alyzed
. Sev
e
rity o
f
fau
lt with
l
o
w sho
r
t circu
it ratio
is d
e
m
o
n
s
trated
and
effect o
f
D
S
TA
TCO
M
in
pr
ov
i
d
ing
v
o
ltag
e
su
ppor
t
i
s
descri
bed
.
The v
o
l
t
a
ge st
abi
l
i
t
y
of the sy
st
em
an
d FR
T
cap
ab
ilit
y o
f
WECS is ev
alu
a
ted
th
ro
ug
h
m
o
d
e
l eq
u
a
tio
n an
d
m
a
t
l
ab
si
m
u
lat
i
o
n
.
APPE
NDI
X
Th
e
p
a
r
a
m
e
ter
s
of
1
1kV
,
50
H
z
low
vo
ltag
e
d
i
str
i
bu
tion
sy
ste
m
ar
e g
i
ven
b
e
low
:
Feede
r
param
e
ters:
R= 0
.
24
7
Ω
, L
=
3.
31
7m
H
f
o
r l
i
n
e
l
e
ngt
h of
1
k
m
Fo
llow
i
ng
ar
e t
h
e
p
a
r
a
m
e
ter
s
o
f
22kW
,
4
15V
,
50
H
z
,
4
-
po
le Y
-
con
n
ected
indu
ctio
n m
a
ch
in
e:
Rs = 0.251
pu
,
Rr
=0.248
9pu
,
X
l
r
= X
l
s=
0
.
52
pu
, J = 0.304
k
g
-
m
2
DST
A
TCOM
Param
e
ters:
Lf =
5m
H, Rf
= 0.01
Ω
, Vd
c=7
00v
o
lts and
C
d
c =
80
00u
F
Param
e
t
e
rs of
out
e
r
c
ont
r
o
l
l
o
o
p
(ac
v
o
l
t
a
g
e
re
gul
at
o
r
)
K
i
q
= 0.008
,
Kp
q =
0
.
5
Param
e
ters o
f
DC vo
ltag
e
regu
lato
r
Ki
d =
1
0
,
K
p
d
= 0.
6
W
i
nd
turb
in
e
Ch
aracteristics
:
Tu
rb
in
e of
r
a
tin
g 22kW
Cp=0.48, µ =
8.1
c1
=
0
.
51
76
, c2
=
11
6, c3
=
0.4
,
c4 =
5
,
c5
= 21
an
d c6 =
0
.
0
06
REFERE
NC
ES
[1]
T. Ackerman, G
.
Andersson, and L. S
öde. Distributed gen
e
ratio
n
: a definiti
on.
Ele
c
tri
c
P
o
wer S
y
s
t
em
s
Res
earch
Elsevier, vol. 20
01; 57(3): 195-2
04.
[2]
Barker P.P.
and
de Mello
, R.W.
Determining th
e impact of distributed ge
n
e
ratio
n on power system Part1 Radia
l
distribution sy
ste
m
s
. In Proceed
ings of Power En
gineer
i
ng Society
Summer Meeting. 2000; 1645-
1656.
[3]
N.D. Hatziarg
y
r
iou and
A.P.S. Melipoulos.
Dis
t
ributed ener
g
y
sources Techn
i
cal challen
g
es.
I
EEE P
E
S wint
er
meeting
.
2000; 1017-1022.
[4]
E.
J.
Coste
r
,
J.
M.A.
My
rz
ik,
B.
Kruime
r a
nd W.
L.
Kling.
Integration
issues of dist
ributed ge
ne
ration in distribution
grids
. pro
ceed
in
gs
of IEE
E
.
201
1; 99(1):
28-39.
[5]
Arulam
palam
,
A
., R
a
m
t
haran
,
G.
, J
e
nkins
,
N.,
Ra
m
achandar
a
m
u
rth
y
, V.K.
,
Ekana
y
ak
e,
J
.
B.
and
S
t
rbac
, G.
Trends
in wind power technolog
y and g
r
id code requirements
. In Intern
ation
a
l Confer
en
ce on Industrial
and Information
S
y
stems. 2007;
129-134.
[6]
El-Helw, H
.
M.,
Tennakoon
, and
S.B. Evaluation
of the suitab
ility
of a fixed speed
wind tu
rbine for
large scale wind
farms considerin
g the new UK gr
id cod
e
.
Ren
e
wa
ble
Ener
gy
Sci
e
n
ce Dir
e
ct
. 2008
;
3: 1-12
.
[7]
M. Tsili and
S.
Papathan
assiou.
A review of
grid code technolo
g
y
r
e
quir
e
ments for wind
turbin
e.
Ren
e
w. Powe
r
gen
. 2009
;
308–
332.
[8]
F.
Van Hulle; N.
Fichaux: Powering
Europe.
Wind Energ
y
and the electric
ity
grid. Eur
.
Wind Energ
y
Assoc.,
Brussels, Belg
iu
m, 2010.
[9]
C. Wessels, F.
Fuch.and M. Molinas.
Statcom control at wind
farm with
fixed speed induction generators under
as
y
m
m
e
tric
al
gri
d
faul
ts.
I
EEE tr
ansaction on
in
d
u
s
t
r
i
al el
ec
tr
oni
cs
. 2103; 60(7):
2864-2873.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 6,
No
.
2,
Ju
ne 20
15
:
348
–
3
55
3
55
[10]
M. Molinas, J.A
.
Suul, and
T. U
ndeland
. Low v
o
ltag
e
ri
de
throu
gh of wind farm with cag
e gener
a
tor STATCOM
versus SVC.
IEEE Transaction
on Power
Electr
onics
.2008; 23
(
3
): 1104-1117
.
[11]
L. X
u
,Y
ao and C. S
a
s
s
e
.
Comp
arison of using
SVC and STATCOM for wind t
u
rbine integration
. In Internatio
nal
conferen
ce on P
o
wer S
y
stem
Technolog
y
.
2006;
1-7.
[12]
R.M
.
M
.
P
e
r
e
ira
,
C.M
.
M
.
F
e
rr
eir
a
, F
.
P
.
M
.
Barbo
s
a. Com
p
arat
ive
s
t
ud
y of S
T
AT
COM
and S
V
C perform
ance
on
D
y
nam
i
c Volt
a
g
e Collaps
e of an Ele
c
tri
c
Power S
y
stem with Wind Generation.
IEEE T
r
ansaction on L
a
tin
America
. 2014;
12: 138-145.
[13]
G. Chicco, M.
Molinas, T. Un
deland
, and G. Vigliet
t
i
. Improvement of th
e t
r
ansient
stabilit
y margin in wind
sy
ste
m
s with a STATCOM
. VI World En
erg
y
S
y
s
t
. Conf
., Torino
, I
t
aly
.
2006; 371–
376.
[14]
M. Molinas, J.A. Suul, and
T. Undeland
.
W
i
n
d
farms with
in
creased transie
nt stabil
ity
margin provid
ed by
a
STATCOM.
In Proceed
ings of In
t
Power El
ec
tron. Mo
tion Con
t
r I
P
EMC Shanghai
,
Chin
a.2006
; 63
–69.
[15]
J. Suul, M. Mo
linas,
and T. U
ndeland
. STATCOM based ind
i
rect torqu
e
con
t
rol of
inductio
n
machines usin
g
voltag
e
recover
y
after gr
id f
a
ults.
IEE
E
T
r
ans
. Po
wer
el
ectr
o
n
. 20
10; 25(5): .240-2
50, 2010
.
[16]
M.
K.
Mishra
,
A.
Ghosh,
a
nd A.
Joshi.
Ope
r
a
tio
n of a DSTATC
OM in voltage control mode.
I
EEE T
r
ansaction
Power
Del
i
ver
y
.
2003; 18: 258–2
64.
[17]
B.N. Singh, B
h
im Singh, A. Chandra,
Kamal Al Haddad. Digital implem
entation of
an adv
a
nced static
compensator for
voltag
e
prof
ile improvement, po
wer factor
correction
and b
a
lan
c
ing of unb
alan
ced reactiv
e lo
ads.
Elec
tric Powe
r Sy
ste
m
s Re
se
ar
c
h
.2005; 54
: 101-1
11.
[18]
W
a
lm
ir Freitas
,
Andre Morela
to,
W
ilsun Xu and
Fujio Sato
. Impact of
AC gen
e
rators
and DSTATCOM devices on
the d
y
n
a
mic p
e
rf
ormance of
distr
i
bution s
y
stems.
IEEE
transactio
n on Pow
e
r Delivery
. 2005; 20(2
)
: 1493-1501.
[19]
Sharad W. Moh
od, and Mohan V. Aware
. A S
t
atcom
Control S
c
hem
e
for Grid Connect
ed W
i
nd
Energ
y
S
y
s
t
em
for
Power Quality
I
m
provement
. IEEE Transaction
on Systems
Journal
. 2010
; 4
(3);
346-352.
[20]
Kopella Sai Te
j
a
, R.B.R
.
Praka
s
h. Power Qualit
y
Im
pr
ovement Using Cu
stom
Power
Devices in Squirrel Cag
e
Induction Gen
e
r
a
tor Wind Farm to Weak-Grid
Connection b
y
u
s
ing neuro-fuzzy control.
Interna
tional Journal o
f
Power
E
l
ec
tr
oni
cs
(
I
JPEDS)
. 20
15; 5(4).
[21]
Arulam
palam
,
M. Barnes, N. Jenkins, and J.B. E
k
ana
y
ak
e. Powe
r qualit
y and sta
b
ilit
y im
provem
e
nt of a wind far
m
using STATCOM supported with h
y
brid batter
y energ
y
stor
age.
IEE gen. trans. and distribution
, vol 153(6), pp.
701-710, 2006
.
[22]
Am
barnath Ban
e
rji
,
Sujit K.B
i
swas, Bhim
Si
ngh. DSTATCOM Control Algorithm
s
:A Review
. Internat
ion
a
l
Journal of Power Electronics
an
d drives S
y
stems
(
I
JPEDS)
. 2012
; 2(3): 285-296.
[23]
Manju Aggarwal, Madhusudan
Si
ngh and S.K.Gupta. Fau
lt
rid
e
through
an
alysis of wind far
m
in low voltage
distribution
s
y
stem.
Internationa
l journal of
engin
eering research
and techno
logy.
2013; 2(7)
: 221
2-2219.
[24]
D.P. Kothari; K.C. Singal; Rakesh Ra
njan. Renewable Energ
y
Sources and
Emerging Technolog
ies. New Delhi.
2012.
[25]
V. Verma, Bhim
Singh. Design
and
implementation of a
cu
rren
t
controlled
par
a
llel h
y
brid f
ilter.
I
EEE transaction
on industrial electronics
. 2009; 4
5
(5): 1910-1917
.
Evaluation Warning : The document was created with Spire.PDF for Python.