Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l. 5,
N
o
.
1
,
Ju
ly 20
14
, pp
. 45
~55
I
S
SN
: 208
8-8
6
9
4
45
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Design of New Single-phase
Multilevel Voltage Source
Invert
er
Ras
o
ul
Sh
alch
i Alishah*, Daryoosh
Naz
a
r
p
our
*
,
Se
yye
d
Hossein H
o
ss
eini**,
Me
hran S
a
b
a
hi**
* Depart
em
ent o
f
El
ectr
i
c
a
l
and
Com
puter Engin
eering
,
Urm
i
a
Univers
i
t
y
,
Ir
an
** Departement
of Electr
i
cal
Eng
i
n
eer
ing,
Tabr
iz
Universitu,
Iran
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Ma
r 1, 2014
Rev
i
sed
May
4, 201
4
Accepted
May 20, 2014
Multilevel
inve
rt
ers
with
m
o
re
nu
m
b
er
of
level
s
can
pr
oduce
high
qualit
y
voltage
waveforms. In thi
s
pa
pe
r, a
ne
w single-phase structure
for m
u
ltile
vel
voltage source i
n
verter is
pro
p
o
s
e
d
whic
h can gene
rate a large nu
mb
er of level
s
with
reduced
n
u
mber
of
IGB
T
s, gate
dri
v
er
circuit
s
an
d d
i
odes.
Three
algorith
ms f
o
r d
e
terminati
on o
f
dc voltage
sou
r
c
e
s’
magnit
ude
s a
r
e prese
n
ted
which p
r
ovi
de odd and even l
e
vels at the ou
tput voltage
wa
vefor
m
. A
comparison i
s
p
r
esented bet
w
een
prop
ose
d
m
u
ltile
vel inverter a
nd c
onventi
onal
cascade top
o
logy
. The pro
p
o
s
ed t
opolo
g
y
is analy
zed by
the exper
i
mental a
nd
si
m
u
lation result
s.
Keyword:
Asy
mme
tr
ic
Casc
ade
Ful
l
-
bri
dge convert
er
Multileve
l
inve
rter
Symm
etric
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
R
a
soul
Shal
c
h
i
Al
i
s
ha
h,
Depa
rtem
ent of Electrical a
nd Co
m
p
u
t
er
Engin
eer
ing
,
Urm
i
a Un
iv
ersity,
Ira
n.
Em
a
il: Raso
u
l
.sh
a
lch
i
@g
m
a
il
.co
m
1.
INTRODUCTION
Mu
ltilev
e
l in
verters are
p
o
wer electron
i
c syste
m
s wh
ich p
r
od
u
c
e a suitab
l
e AC
o
u
t
p
u
t
vo
ltag
e
w
a
v
e
fo
rm
from sev
e
ral d
c
vo
ltag
e
s as inputs [1
]. In
rece
nt years, Mu
ltil
ev
el in
v
e
rters
h
a
v
e
b
e
en
u
tilized
in
m
e
di
um
and hi
gh
po
we
r ap
pl
i
cat
i
ons suc
h
as
fl
exi
b
l
e
AC
t
r
ansm
i
ssi
on sy
st
em
(FAC
TS)
[2]
,
i
n
du
st
ri
al
m
o
t
o
r
dri
v
es
[3], t
r
action electric
ve
hicle applica
tions, drive system
s
[4
], [
5
] and so
on
.
Mu
ltilev
e
l in
verters in
co
m
p
arison
with
t
h
e trad
iti
o
n
a
l t
w
o-lev
e
l
v
o
ltag
e
inv
e
rter
h
a
v
e
adv
a
n
t
ag
es
suc
h
as sm
al
l
e
r out
put
v
o
l
t
a
g
e
l
e
vel
,
bet
t
e
r el
ect
rom
a
gnet
i
c
com
p
at
i
b
i
l
i
t
y
, l
o
wer
harm
oni
c com
pone
nt
s and
lo
wer switch
i
ng
lo
sses
[6
],
[7]. Th
ere are three ren
o
wn
ed kin
d
s
of m
u
ltile
v
e
l inv
e
rter which
h
a
v
e
b
e
en
called
classical
m
u
ltilevel inve
rter topolo
gies. T
h
e
s
e are Neut
ral-Point Clam
pe
d (NPC), Flying capacitor (FC) and
C
o
n
v
e
n
t
i
onal
c
a
scade
H-
b
r
i
d
g
e
i
nve
rt
er
(C
H
B
) [
8
]
-
[
1
0]
.
Conventional cascade t
o
po
logy is the m
o
st i
m
portant topol
ogy
am
ong classical to
pologies. Because
t
h
i
s
t
o
pol
ogy
need
s t
h
e
l
east
n
u
m
b
er o
f
po
wer
el
ect
ro
ni
c
de
vi
ces a
n
d
c
a
n
pr
o
duce
m
a
ny
l
e
vel
s
at
out
pu
t
vol
t
a
ge
[
1
1]
, [
12]
.
A casc
a
d
e
m
u
l
t
i
l
e
vel
inve
rt
er c
o
nsi
s
t
s
o
f
a
num
ber
of
H
-
b
r
i
d
ge
con
v
e
r
t
e
r
uni
t
s
wi
t
h
sep
a
rate d
c
source for each
unit an
d it is conn
ected in
cascad
e
o
r
series [13
]
. In
symmetr
ic cascad
e m
u
ltilev
e
l
i
nve
rt
er,
DC
vol
t
a
ge
so
urce
s of si
m
i
l
a
r cel
l
s
are
the s
a
m
e
. For t
h
e
sam
e
nu
m
b
er of
powe
r electronic
com
pone
nt
s, a
s
ym
m
e
t
r
i
c
cascade m
u
l
t
i
l
e
vel
t
opol
ogi
es si
gni
fi
cant
l
y
i
n
crease t
h
e
num
ber
of l
e
v
e
l
at
out
put
vol
t
a
ge
wave
f
o
rm
s. In t
h
ese
t
opol
ogi
es,
D
C
vol
t
a
ge so
u
r
ces of
di
ffe
re
nt
cel
l
s
are non
-e
qual
[
14]
,
[15]
.
Howe
ver, this
structure
requi
r
es to a large
num
ber
of
un
i
d
irection
a
l switch
e
s. Th
e m
o
st i
m
p
o
r
tan
t
Part in
m
u
l
tilev
e
l in
v
e
rters is switch
e
s wh
ich
in
crease th
e co
st
and co
n
t
ro
l co
m
p
lex
ity an
d
tend
to
redu
ce th
e
ov
erall
reliab
ility
an
d
efficien
cy [16
]
,
[17
]
.
In
t
h
is
p
a
p
e
r,
a n
e
w stru
cture
for m
u
ltilev
e
l v
o
ltag
e
so
urce in
v
e
rter
is p
r
esen
ted
wh
ich
can
g
e
n
e
rate
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
45
–
55
46
m
a
ny
l
e
vel
s
wi
t
h
m
i
nim
u
m
num
ber o
f
IGB
T
s,
gat
e
d
r
i
v
e
r
ci
rcui
t
s
an
d
di
ode
s.
2.
THE
STRU
CTU
R
E
OF CONV
EN
TION
A
L
CASCADE MULTIL
E
VEL INVE
RTER
Th
e stru
cture
o
f
co
nv
en
tion
a
l cascad
e m
u
lt
ilev
e
l in
v
e
rter
is sh
own
in
Fi
g
u
re 1. Th
e outp
u
t
vo
ltag
e
of casc
a
de i
n
vert
er
i
s
o
b
t
a
i
n
ed
by
s
u
m
m
i
ng t
h
e
out
put
vol
t
a
ges o
f
f
u
l
l
-
b
r
i
d
ges a
n
d i
s
o
b
t
a
i
n
e
d
by
t
h
e
fo
llowing
relatio
n
s
h
i
p
:
…
(
1
)
Fig
u
re
1
.
Th
e stru
cture
o
f
conv
en
tion
a
l cascad
e
m
u
ltilev
e
l i
n
v
e
rter
In th
is st
ru
ct
u
r
e, each
switch con
s
ists
o
f
an IGBT
a
n
d
on
e di
ode
(
o
r
ant
i
-paral
l
e
l
di
o
d
e
).
If
al
l
d
c
vol
t
a
ge s
o
urce
s i
n
Fi
gu
re 1 a
r
e t
h
e sam
e
, t
h
e i
nvert
e
r
i
s
kn
o
w
n as sy
m
m
et
ri
c
m
u
l
t
i
l
e
vel
i
nvert
er
. To
pr
o
v
i
de a
larg
e
nu
m
b
er o
f
ou
tpu
t
lev
e
ls witho
u
t
i
n
creasing
the
num
ber of
powe
r electronic el
e
m
ents, asymmetric
m
u
l
tilev
e
l
in
v
e
rters
can
b
e
u
s
ed
. In
[16
]
, [17],
th
e d
c
vo
ltages sources are
p
r
op
o
s
ed
t
o
b
e
cho
s
en
acco
r
din
g
t
o
a ge
om
et
ri
c prog
ressi
on
wi
t
h
a fact
o
r
of t
w
o o
r
t
h
ree,
w
h
i
c
h are
cal
l
e
d
b
i
nary
an
d t
r
i
n
a
r
y
co
nfi
g
u
r
at
i
o
ns.
In
sym
m
et
ri
c, bi
nary
an
d t
r
i
n
a
r
y
con
f
i
g
urat
i
ons
, t
h
e m
a
gnitudes of dc
voltage sources
are selected by the
fo
llowing
equ
a
tio
n
s
:
Fo
r symmetric co
nfigu
r
ation
:
⋯
(
2
)
For
m
t
h
ful
l
-
br
i
dge c
o
nve
rt
er
i
n
bi
nary
c
o
nfi
g
u
r
at
i
o
n:
2
1,2,
…
,
(
3
)
For
m
t
h
fu
ll-b
r
id
g
e
con
v
e
rter
in
trin
ary config
uration
:
3
1
,2,
…
,
(
4
)
Wh
ere V represen
ts th
e m
a
g
n
itu
d
e
of vo
ltage o
f
th
e fi
r
s
t
fu
l
l
-
bri
d
ge c
o
n
v
e
r
t
e
r. Ta
bl
e 1 s
h
o
w
s t
h
e
num
ber
of
IGB
T
s
,
l
e
vel
s
,
m
a
xim
u
m
out
put
v
o
l
t
a
ge a
nd t
h
e rel
a
t
i
o
n bet
w
een t
h
e
num
ber o
f
I
G
B
T
s an
d l
e
v
e
l
s
i
n
symm
e
t
ric and asymmetr
ic co
n
f
i
g
uratio
ns.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Design of
New Single-phase
Multilevel Voltage
Source
Inv
e
rt
er (Rasoul
Shalc
h
i Alishah)
47
Tabl
e
1.
Po
wer
com
pone
nt
re
qui
rm
ent
s
i
n
c
o
n
v
e
n
t
i
onal
ca
scade i
nve
rt
er
Sy
mm
et
ric
Structure
Asy
m
m
e
t
r
ic Struct
ure
Binary
config
ur
ation
Trin
ar
y
config
ur
ation
Nu
m
b
er
of I
G
B
T
s
4n
4n
4n
Voltage levels
2n+1
(
2
-1
3
m
a
xim
u
m
output voltage
n×V
(
2
1
V
3
1
V
2
Relation between the nu
m
b
er of
I
G
BT
s and levels
2N
1
4
1
4
ln
N
ln
3
Whe
r
e n
repre
s
ents the number
of
dc
vo
ltag
e
sou
r
ces. It i
s
i
m
p
o
r
tan
t
to
n
o
t
e th
at in
all co
nfigu
r
ation
s
, th
e
num
bers
o
f
I
G
B
T
s,
gat
e
d
r
i
v
e
r
ci
rc
ui
t
s
an
d
dio
d
e
s (o
r an
ti-parallel d
i
od
es)
are th
e sam
e
.
3
.
PROPOSE
D
MULTILE
VEL
INVE
RTER
Fig
u
re
2
sho
w
s th
e
b
a
sic
un
it to
po
log
y
for
p
r
op
o
s
ed
m
u
ltilev
e
l inv
e
rter,
wh
ich
co
nsists of a
d
i
od
e,
an
IGBT an
d
a d
c
v
o
ltag
e
so
urce. In
th
is circu
it, wh
en
th
e Sswitch
is tu
rn
ed
o
f
f, th
e
o
u
t
p
u
t
vo
ltag
e
will b
e
zero, bu
t wh
en th
e Sswitch
is tu
rn
ed
on
, th
e d
i
o
d
e
is re
v
e
rse b
i
ased
an
d
t
h
e ou
tpu
t
vo
ltag
e
will b
e
V.
Hen
c
e,
by
t
h
e
use
of t
h
i
s
m
e
t
hod t
h
e
out
p
u
t
v
o
l
t
a
g
e
i
s
co
nt
rol
l
e
d
.
Thi
s
m
e
t
hod i
s
t
h
e b
a
si
c o
f
pr
o
pose
d
m
u
l
t
i
l
e
vel
i
nve
rt
er.
Fig
u
re 2
.
Th
e b
a
sic u
n
it o
f
pro
p
o
s
ed
m
u
ltile
v
e
l
i
nve
rt
er
Fig
u
re
3
.
Propo
sed
sing
le-phase m
u
lti
lev
e
l v
o
ltag
e
source i
nve
rter topology
Th
e
pr
opo
sed
b
a
sic
u
n
it
show
n in Figur
e
2 can
b
e
ex
tended
as sh
own
i
n
Figu
r
e
3,
which
is called
Mu
ltip
le Basic Un
it (MBU). Th
e MBU can
in
crease the p
o
s
sib
l
e v
a
l
u
es of
V
́
o
. Th
e M
B
U ge
ner
a
t
e
s a
staircase voltage wa
veform
(
´
with
po
sitiv
e
p
o
l
arity (
0,
,
,
,…,
.Th
e
MBU is co
nn
ected
to
a fu
ll-
b
r
i
d
g
e
co
nv
erter, wh
ich
p
a
rti
c
u
l
arly altern
ates th
e
in
pu
t vo
ltag
e
po
larity an
d
g
e
n
e
rates p
o
s
itiv
e
o
r
n
e
g
a
tiv
e
staircase wave
form
(
at
t
h
e
out
put
0,
,
,…,
. Th
e pro
p
o
s
ed
sing
le-p
h
a
se m
u
ltilev
e
l vo
ltag
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
45
–
55
48
sou
r
ce i
nve
rt
er
t
o
p
o
l
o
gy
,
w
h
i
c
h i
s
base
d
o
n
t
h
e com
b
i
n
at
i
o
n
of
M
B
U a
n
d
a f
u
l
l
-
b
r
i
d
ge c
o
n
v
e
r
t
e
r, i
s
s
h
ow
n i
n
Fi
gu
re 3.
Tabl
e
2 S
h
o
w
s t
h
e
ON
s
w
i
t
c
hes l
o
o
k
-
up
t
a
bl
e
fo
r
pr
o
pose
d
si
n
g
l
e-p
h
ase m
u
l
t
i
l
e
vel
i
n
vert
er
to
po
log
y
.
Tabl
e
2. M
a
gni
t
udes
o
f
´
and
f
o
r
di
f
f
ere
n
t
st
a
t
es of
swi
t
c
hes
i
n
p
r
op
ose
d
st
r
u
ct
u
r
s
In
t
h
e
pr
o
p
o
s
e
d
i
n
ve
rt
er, t
h
e
num
ber
of
I
G
B
T
s can
be
det
e
r
m
i
n
ed by
(
5
):
(5
)
In
th
e
p
r
op
o
s
ed
stru
ct
u
r
e, th
e switch
e
s are
un
id
irec
tion
a
l.
Each
un
id
i
r
ectio
n
a
l switch
co
n
s
ists
o
f
an
IGB
T
a
n
d an
ant
i
-
pa
ral
l
e
l
di
ode
. I
n
t
h
e
rec
o
m
m
e
nded
st
r
u
ct
u
r
e,t
h
e
n
u
m
b
er
of
di
o
d
es i
s
gi
ve
n
by
fol
l
owi
n
g
equat
i
o
n:
(6
)
4
.
DETERMINATION
OF THE
DC
VOLTAGE SOURCES MAGNITUDES
In
th
is section
,
th
ree algorith
m
s
fo
r d
e
t
e
rm
in
atio
n
o
f
th
e d
c
v
o
ltag
e
sou
r
ces mag
n
itud
e
s are
pr
o
pose
d
.
a) First
algori
thm:
In th
is algorithm
,
th
e v
a
lu
es
of
d
c
s
o
urces a
r
e the sam
e
. He
nce,
we
ha
ve:
⋯
(
7
)
This struct
ure
is called sym
m
e
tric topology. Usin
g this algorithm
,
the
num
ber of output voltage
l
e
vel
s
an
d m
a
xim
u
m
out
p
u
t
v
o
l
t
a
ge a
r
e
gi
ve
n
by
(
8
)
an
d
(
9
),
res
p
ect
i
v
el
y
:
2
1
(
8
)
(
9
)
Using
(5) and
(8
), th
e relation
b
e
tween
th
e num
b
e
r
o
f
IGBTs and
lev
e
ls is ob
tain
ed as
fo
ll
o
w
s:
(
1
0
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Design of
New Single-phase
Multilevel Voltage
Source
Inv
e
rt
er (Rasoul
Shalc
h
i Alishah)
49
From
(6
) a
nd
(
8
)
,
t
h
e
rel
a
t
i
on
bet
w
ee
n t
h
e
n
u
m
ber of
po
we
r
di
o
d
es a
n
d
o
u
t
put
l
e
vel
s
i
s
ca
l
c
ul
at
ed by
fo
llowing
equ
a
tio
n
:
3
(
1
1
)
b) Se
con
d
algorithm
:
In th
is algorithm
,
th
e d
c
so
urce m
a
g
n
itu
d
e
s
a
r
e c
hose
n
acc
o
r
di
ng
t
h
e
fol
l
o
w
i
n
g e
quat
i
o
ns
:
(
1
2
)
=
2
V
2,
3,
4,
…
,
(1
3)
In
t
h
e
pr
o
p
o
s
e
d
al
g
o
r
i
t
h
m
,
t
h
e n
u
m
b
er o
f
l
e
vel
s
a
n
d
m
a
xim
u
m
out
put
vo
l
t
a
ge are
gi
ve
n
as f
o
l
l
o
w
s
:
4
1
(
1
4
)
2
1
(
1
5
)
C
onsi
d
eri
n
g
(
5
) a
n
d
(
1
4
)
,
we
have:
(
1
6
)
Usi
n
g
(6
) a
n
d (
1
4
)
,
i
t
i
s
o
bvi
o
u
s t
h
at
we
ha
v
e
:
(
1
7
)
c) Third
algor
i
thm:
In
th
is al
g
o
rith
m
,
th
e v
a
lu
es o
f
dc sources
are proposed
to be
ch
o
s
en
acco
rd
ing
to
the fo
llowing
equat
i
o
ns:
(
1
8
)
2
2,
3,4,
…
,
(
1
9
)
For
t
h
i
s
m
e
t
hod, t
h
e n
u
m
b
er
of l
e
vel
s
an
d t
h
e p
eak
o
u
t
p
ut
vol
t
a
ge are cal
cul
a
t
e
d
usi
n
g t
h
e f
o
l
l
o
wi
n
g
rel
a
t
i
ons
hi
ps
, r
e
spect
i
v
el
y
:
2
1
(
2
0
)
2
1
(2
1)
Th
e th
ird
alg
o
rith
m
fo
r th
e d
e
termin
atio
n
o
f
v
a
lu
es of d
c
sou
r
ces is in
b
i
nary fash
ion
,
wh
ich
resu
lts
i
n
an
ex
p
one
nt
i
a
l
i
n
crease i
n
t
h
e
num
ber
of
o
v
eral
l
out
put
v
o
l
t
a
ge l
e
vel
s
.
In
ab
o
v
e e
quat
i
ons
n
re
prese
n
t
s
t
h
e
num
ber
of
dc
v
o
l
t
a
ge s
o
u
r
ces.
F
r
om
(5)
an
d
(2
0
)
,
we
ha
ve:
3
(
2
2
)
Also, c
onsi
d
eri
n
g (6) and
(20), it is clear t
h
at we
ha
ve
2
2
(
2
3
)
The seco
n
d
an
d t
h
i
r
d al
g
o
r
i
t
h
m
s
are cal
l
e
d asym
m
e
t
r
i
c
t
opol
o
g
i
e
s. The
pr
op
ose
d
m
u
l
t
i
l
e
vel
vol
t
a
ge
sou
r
ce i
n
vert
er
coul
d
be a sui
t
a
bl
e po
wer co
nve
rt
er can
di
d
a
t
e
i
n
uni
di
rect
i
onal
p
o
we
r fl
ow a
ppl
i
cat
i
o
n
s
su
c
h
as wi
n
d
t
u
rbi
n
e wi
t
h
pe
rm
anent
m
a
gnet
(P
M
)
o
r
Sy
nc
hr
on
o
u
s G
e
ne
rat
o
r
(S
G) a
n
d p
hot
ov
ol
t
a
i
c
sy
st
em
s
ap
p
lication
an
d so
on
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
45
–
55
50
5. CO
MP
A
R
ISO
N
OF
PRO
P
OSE
D
ST
RU
CT
URE WITH
CO
N
V
ENT
I
ON
AL CA
SC
ADE
STRU
CT
UR
E
Power
IGBTs are t
h
e m
o
st
i
m
p
o
r
tan
t
elemen
t in
m
u
ltil
ev
el inv
e
rter stru
ctures
wh
ich
d
e
fi
n
e
t
h
e
circu
it size, reliab
ility, co
st,
co
n
t
ro
l co
m
p
lex
ity an
d
in
st
allatio
n
area.
Fig
u
re 4
co
mp
ares t
h
e nu
mb
er
of
IGBTs
ver
s
us
the n
u
m
b
er of lev
e
ls fo
r t
h
e first
r
ecom
m
ended st
ruct
ure
(or sy
mmetric structure) with
sym
m
et
ri
c convent
i
o
nal
casc
a
de t
o
p
o
l
o
gy
.
It
i
s
obvi
ous
t
h
at
t
h
e pr
op
os
ed sym
m
et
ri
c top
o
l
o
gy
nee
d
s
fewer
IGBTs
to
realize
fo
r ou
tpu
t
vo
ltag
e
w
a
v
e
fo
rm
.
Fi
gu
re
4.
C
o
m
p
ari
s
on
o
f
fo
r
th
e f
i
rst r
e
co
mmen
d
e
d stru
ctur
e
with
symme
tric con
v
e
n
tional cascad
e
Fi
gu
re
5 sh
o
w
s t
h
e
num
be
r o
f
I
G
B
T
s
v
e
rsus t
h
e
num
ber
of
o
u
t
p
ut
l
e
vel
s
fo
r t
h
e
asym
m
e
t
r
i
c
recom
m
ended
st
ruct
u
r
es
(t
he
seco
nd a
n
d t
h
i
r
d al
g
o
ri
t
h
m
s
) wi
t
h
bi
na
ry
and t
r
i
n
a
r
y
con
v
e
n
t
i
onal
ca
scade
i
nve
rt
er st
r
u
ct
u
r
es. T
h
i
s
fi
g
u
r
e
sho
w
s t
h
e t
h
i
r
d
pr
op
ose
d
al
go
ri
t
h
m
requi
r
e
s l
e
ss num
ber
of I
G
B
T
s t
h
a
n
ot
her
structures t
o
re
alize
N
fo
r
.
Fi
gu
re
5.
C
o
m
p
ari
s
on
o
f
for
the asymmetric
al recomm
ended st
r
u
ct
u
r
es
wi
t
h
bi
nary
a
n
d t
r
i
n
ary
c
o
nv
en
tio
n
a
l ca
s
c
a
d
e
It
i
s
im
port
a
nt
t
o
not
e t
h
at
i
n
pr
o
pose
d
t
o
pol
ogy
, t
h
e
n
u
m
b
er of
IGB
T
s and
gat
e
dri
v
er
ci
rcui
t
s
are
t
h
e sam
e
. Hence, t
h
e t
h
i
r
d s
u
g
g
est
e
d t
o
p
o
l
ogy
re
q
u
i
r
es
m
i
nim
u
m
num
ber
of gat
e
d
r
i
v
ers
.
The
gat
e
dri
v
e
r
circuits are t
h
e
electronic
pa
rt of the
circ
uit a
n
d increa
sing t
h
e
num
ber
of
gate
d
r
iv
er circuits is a co
n
s
i
d
erab
le
de
fi
ciency. Be
cause i
n
creasi
n
g
gate drive
r
c
a
us
e i
n
creasi
n
g costs a
n
d c
ont
rol c
o
m
p
lexity.
Fi
gu
re 6 com
p
ares t
h
e n
u
m
b
er of
di
o
d
es v
e
rsus t
h
e num
ber o
f
l
e
vel
s
i
n
t
h
e sy
m
m
e
t
r
i
c
pro
p
o
sed
to
po
log
y
and
sy
mm
e
t
ric co
nv
en
tion
a
l cascad
e
inv
e
rter.
As shown
i
n
th
is figu
re, th
e p
r
o
p
o
s
ed
sy
mme
tric
t
o
p
o
l
o
gy
re
q
u
i
r
es
fewe
r
num
bers
o
f
di
o
d
es t
h
an
sy
m
m
e
t
r
i
c
cascade
t
o
pol
ogy
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Design of
New Single-phase
Multilevel Voltage
Source
Inv
e
rt
er (Rasoul
Shalc
h
i Alishah)
51
Fi
gu
re
6.
C
o
m
p
ari
s
on
o
f
to
realize
vol
t
a
ges
i
n
t
h
e
p
r
op
ose
d
sy
m
m
et
ri
c t
opol
ogy
a
n
d sy
m
m
e
t
r
i
c
c
o
nv
en
tio
n
a
l ca
s
c
a
d
e
Fi
gu
re 7 sh
o
w
s t
h
e num
ber o
f
di
o
d
es ve
rsu
s
t
h
e num
ber of
out
p
u
t
vol
t
a
ge
l
e
vel
s
i
n
t
h
e asym
m
e
t
r
ic
pr
o
pose
d
t
o
p
o
l
ogi
es a
n
d
co
nve
nt
i
o
nal
cas
cade i
n
ve
rt
er.
Thi
s
fi
gu
re s
h
ows
t
h
at
t
h
e
num
ber
of
di
o
d
es i
n
t
h
i
r
dal
g
o
r
i
t
h
m
of
p
r
o
p
o
se
d t
o
pol
ogy
i
s
l
o
we
r t
h
a
n
ot
he
r t
o
p
o
l
o
gi
es.
Fi
gu
re
7.
C
o
m
p
ari
s
on
o
f
N
to
realize
v
o
ltag
e
s in
th
e pro
p
o
s
ed
asymm
e
tric to
po
log
i
es and
asymm
e
tric conve
ntional cas
cade
6.
E
X
PE
RIM
E
NTAL AN
D SIM
U
LATI
O
N
RESULTS
Fi
gu
re
8.
Pr
o
p
o
se
d
15
-l
evel
a
s
ym
m
e
t
r
i
c
i
n
v
e
rt
er
according t
o
the second algori
thm
Fi
gu
re
9.
P
hot
o
of
t
h
e a
r
chet
y
p
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
45
–
55
52
In th
is secti
o
n
,
t
h
e sim
u
latio
n
and
exp
e
ri
m
e
n
t
al resu
lts fo
r th
e
15
-lev
el asymmetri
c
top
o
l
o
g
y
(accordi
ng t
o
the second algorithm
)
is studied. The MATLAB softwa
re
is
utilized for si
m
u
lation. Fi
gure
8
sh
ow
s 15
-
l
ev
el
asymmetr
ic in
v
e
r
t
er stru
ctur
e b
a
sed
on
th
e seco
nd
pr
opo
sed
algor
ith
m
.
Fig
u
r
e
9
sho
w
s ph
o
t
o
of the a
r
chety
p
e.
The i
n
ve
rt
er c
onsi
s
t
s
of
f
o
u
r
DC
v
o
l
t
a
ge s
o
urces
wi
t
h
m
a
gni
t
u
des
o
f
3
0
V
an
d
6
0
V
.
A
t
e
st
has bee
n
m
a
de on t
h
e R
-
L l
o
a
d
(R
= 1
4
0
Ω
and
L = 40
m
H
).Th
e switch
e
s are
IRFP4
5
0
MOSFET’s with
in
tern
al
an
ti-
paral
l
e
l
di
ode
s.
The
gat
e
dri
v
e
r
s a
r
e TL
P2
5
0
and
di
ode
s are
M
U
R
4
60
.
Th
e to
tal h
a
rm
o
n
i
c d
i
sto
r
tio
n
(THD) ev
alu
a
tes th
e q
u
a
n
tity o
f
h
a
rm
o
n
i
c co
n
t
en
ts in
th
e ou
tpu
t
wave
f
o
rm
and
i
s
a p
o
pul
a
r
per
f
o
r
m
a
nce i
nde
x
fo
r
p
o
we
r co
n
v
ert
e
rs.
S
e
veral
m
o
d
u
l
a
t
i
on t
e
c
hni
que
s
ha
ve
been i
n
t
r
od
uce
d
f
o
r
m
u
l
t
i
l
e
vel
i
nvert
e
r
s s
u
ch as si
nus
oi
d
a
l
P
W
M
,
s
p
ac
e vect
o
r
P
W
M
,
sel
ect
i
v
e ha
r
m
oni
c
el
im
i
n
at
i
on,
f
u
ndam
e
nt
al
fre
q
u
ency
-swi
t
c
hi
n
g
a
n
d
ot
hers
[
1
8]
-[
2
4
]
.
In t
h
i
s
pa
per
,
t
h
e fun
d
am
ent
a
l
freq
u
e
n
cy
-swi
t
c
hi
ng st
r
a
t
e
gy
has bee
n
use
d
. T
h
e b
e
ne
fi
t o
f
the
fu
n
d
am
ent
a
l
f
r
eq
ue
ncy
-
s
w
i
t
c
hi
n
g
t
echni
qu
e i
s
it
s l
o
w swi
t
c
hi
n
g
f
r
eq
uency
com
p
ar
ed t
o
ot
he
r cont
ro
l
strategies [25]. It is
noticea
ble that
th
e calculatio
n
of t
h
e
o
p
ti
m
a
l switch
i
ng
a
ngles
for di
ffere
n
t objective suc
h
as t
h
e el
i
m
i
n
at
i
on
of
sel
ect
ed
harm
oni
cs a
n
d m
i
nim
i
zi
ng t
h
e t
o
t
a
l
harm
oni
c di
st
o
r
t
i
o
n i
s
n
o
t
t
h
e
ob
jec
t
i
v
e of
t
h
i
s
pa
per
.
Ta
b
l
e 3 s
h
o
w
s t
h
e
m
a
gni
t
ude
o
f
o
u
t
p
ut
v
o
l
t
a
ge
f
o
r
va
ri
o
u
s st
at
e
s
o
f
swi
t
c
hes i
n
s
u
g
g
est
e
d 1
5
-
l
e
vel
asy
m
m
e
tric stru
cture.
Table 3
.
Switch
e
s states for
15-level
as
y
mmetric topolog
y
Fi
gu
re 1
0
s
h
o
w
s
t
h
e
c
ont
r
o
l
bl
oc
k di
ag
ram
fo
r pr
o
pose
d
t
o
pol
ogy
.
Fi
gu
re 1
0
.
C
o
n
t
rol
bl
oc
k di
ag
ram
for pr
o
p
o
s
ed
t
o
p
o
l
o
gy
Th
e sim
u
latio
n
and
m
easu
r
emen
t resu
lts are shown
in
Fig
u
re 11
.
Acco
rd
ing
to
th
e
si
m
u
latio
n
s
,
THD
s
of t
h
e
out
put
v
o
l
t
a
ge
an
d c
u
r
r
ent
a
r
e 3
.
8
3
%
an
d
1.
1
7
%,
res
p
e
c
t
i
v
el
y
.
Thi
s
f
i
gu
ress
ho
ws t
h
at
t
h
e
sim
u
lationsand expe
rim
e
ntal
results ha
ve a good agreem
e
n
t to each othe
r.T
o
ge
nerate
a desired
out
put with
h
i
gh
p
o
wer
q
u
ality, th
e nu
m
b
er
o
f
vo
ltag
e
lev
e
ls sh
ou
ld b
e
in
creased
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Design of
New Single-phase
Multilevel Voltage
Source
Inv
e
rt
er (Rasoul
Shalc
h
i Alishah)
53
(a)
(b
)
1A
(c)
(d
)
Fi
gu
re
1
1
.
Si
m
u
l
a
t
i
on a
n
d m
easurem
ent
res
u
l
t
s
(Ti
m
e/
di
v =
2
m
s
) an
d
(V
ol
t
a
ge/
d
i
v
=1
0
V
by
1:
10
p
r
o
b
e):
(a)
Ex
peri
m
e
nt
al
out
p
u
t
v
o
l
t
a
ge;
(
b)
Si
m
u
l
a
t
i
on out
put
v
o
l
t
a
ge
and
ha
rm
oni
c s
p
ect
r
u
m
(THD
=3.
8
3
%
);
(c)
Ex
peri
m
e
nt
al
out
p
u
t
cu
rre
nt
;
(
d
)Si
m
ul
at
i
ono
ut
p
u
t
cu
rre
nt
a
n
d
ha
rm
oni
c s
p
ect
r
u
m
(THD
= 1.
1
7
%)
.
7. CO
N
C
L
U
S
I
ON
In t
h
i
s
pa
per
,
a new m
u
l
t
i
l
e
vel
vol
t
a
ge so
ur
ce i
nvert
er
has
been p
r
o
p
o
se
d. F
o
r p
r
o
p
o
se
d st
ruct
ure
,
th
ree algo
rithm
s
h
a
v
e
b
een
p
r
esen
ted
for determin
atio
n
of dc source
s values. The
s
e algorithm
s
can generate
al
l
l
e
vel
s
(
o
d
d
an
d e
v
en
) at
t
h
e
out
put
v
o
l
t
a
ge
wave
f
o
rm
. The
com
p
ari
s
on
bet
w
een
t
h
e p
r
o
p
o
sed
t
o
p
o
l
o
gy
and
t
h
e
co
n
v
e
n
t
i
onal
casca
d
e
t
o
pol
ogy
has
bee
n
p
r
esent
e
d.
It
was
sh
o
w
n t
h
at
t
h
e
t
h
i
r
d al
go
ri
t
h
m
requi
red
m
i
nim
u
m
num
ber
of
IGB
T
s,
gat
e
d
r
i
v
er
s
and
di
o
d
es
.Th
e
sim
u
l
a
t
i
on and e
x
peri
m
e
nt
al
resul
t
s
ha
ve
been
p
r
esen
ted
for
a 1
5
-lev
el inverter b
a
sed
o
n
th
e secon
d
al
g
o
rith
m
to
v
a
lid
ate th
e ab
ility o
f
th
e p
r
opo
sed
t
o
p
o
l
o
gy
i
n
ge
nerat
i
n
g of
de
s
i
red o
u
t
p
ut
v
o
l
t
age.
REFERE
NC
ES
[1]
JN Chiasson, LM Tolbert
,
KJ McKenzie, Z D
u
. Cont
rol of M
u
ltil
evel
conver
t
er Using Result
ant Th
eor
y
.
IE
EE
Trans. On Cont.
Sys. Tech
.,
2003; 11(3): 345-
354.
[2]
NH Kim. Rotor fault detection
s
y
stem for inv
e
r
t
er driv
en
indu
ction motor usin
g curren
t
signals and an
Encod
e
r.
Journal of Power Electronics
. 20
07; 7(4): 271-27
7.
[3]
MF Aiello, PW Ham
m
ond, M
Rastogi. Modular Multi-
Level A
d
justable Suppl
y
wi
th Par
a
ll
el
Connect
ed Act
i
v
e
Inputs. U.S. Patent. 2001
.
[4]
LM Tolber
t, F
Z
P
e
ng, TG Hab
e
tl
er.
Mu
lti
lev
e
l
Inverters for E
l
ec
tric V
e
hi
cle
Applica
tions.
I
E
EE Workshop on
Power Electron
ics in
Transportation. 1998
; 1424-
1431.
[5]
MN Abdul Kadir, S Mekhi
lef, H
W
Ping. Dual vector con
t
rol str
a
teg
y
for a
three –
s
tage h
y
brid
cas
caded multilev
e
l
inverter.
Journal of pow
er
Electronic. 2010;
10(2
)
: 155-164.
[6]
JH Kim
,
SK Sul, PN Enjeti
. A carri
er-based PWM m
e
thod with optim
al switc
hin
g
sequence fo
r a
m
u
ltilevel four-l
eg
voltag
e
-source inverter
.
I
EEE Trans. Ind. Appl.,
2008; 44(4): 123
9-1248.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
45
–
55
54
[7]
LM Tolber
t, FZ Peng, T Cunn
y
ngham, JN Ch
iasson. Ch
arg
e
Balan
ce Contro
l Schemes for Cascade Multilev
el
Converter in H
ybrid Electric Vehicles.
IEEE T
r
ans. Industrial Ele
c
tronics
, Vol. 49, No. 5, pp. 1058-1064, Oct.
2002.
[8]
A Nami, F Zare, A Ghosh, F Bl
aabjerg
.
A h
y
br
id
cascade converter topo
lo
g
y
with
series-conn
ected s
y
mmetrical
and
as
y
mmetrical diode-cla
mped H-
bridge
cells.
I
E
EE Trans. Power
Electron
., 2011;
26(1): 51–64.
[9]
J Li, S Bhattach
ar
y
a
, AQ Huang
.
A new nine-
l
ev
el activ
e NP
C (ANPC) converter for grid conn
ection of large win
d
turbines for
distr
i
buted
gener
a
tio
n
.
IEEE Trans.
Power Electron
., 2010; 26(3)
: 96
1–972.
[10]
J Ebrahim
i
, E B
a
baei, Goverg B
Gharehpetian
.
A New
Multilev
e
l Conver
t
er
To
polog
y
With Reduced num
ber o
f
Power Electron
ic Components.
I
EEE Trans. on I
nd. Elec.
, 2012;
59(2): 655-667
.
[11]
E Babaei, SH Hosseini. New cas
caded multilev
e
l inve
rter
topolog
y
with minimum number of swit
ches.
Els
evi
er
J.
Energy Con
vers.Manage
., 2009;
50(11): 2761–27
67.
[12]
E Baba
ei
, SH Hosseini, GB Gharehpe
tia
n
,
M
Tarafd
ar Haqu
e, M Sabahi. R
e
d
u
ction of
dc vo
ltag
e
sources an
d
switches in as
y
m
m
e
trical m
u
ltil
evel conv
ert
e
rs using a novel to
polog
y
.
Els
e
vi
er
J. El
ectr
i
c Pow
e
r
Sys
t
. Res
.
,
20
07;
77(8): 1073–108
5.
[13]
E Babaei. A cascade multilev
e
l
converter
topolo
g
y
with r
e
duced
numberof switches
. IEEE Trans. Power Electron
.
2008; 23(6): 265
7–2664.
[14]
E Babae
i
, MS Moeinian
. As
y
m
m
e
tric casc
a
ded
m
u
ltileve
l inve
r
t
er with charge b
a
lan
ce contro
l of a low resolution
s
y
m
m
e
tric subs
ystem
.
J. Energy Convers.
Manag
.,
2010; 51(11)
:
2272–2278.
[15]
RA Ah
m
e
d, S
Mekhilef
,
HW
Ping. New m
u
ltilev
e
l i
nver
t
er t
opolog
y
with r
e
duced num
ber of Switches
.
Proc
.
International Middle
East Pow
e
r Systems Conf.
, 2010;
565-570.
[16]
Manjrekar M, Li
po TA. A hy
brid
m
u
ltilevel inv
e
r
t
er topolog
y
for drive appli
c
ation
.
Proc. of the AP
ECp
. 1998; 523–
529.
[17]
Rufer A, Veen
stra M, Gopak
u
mar A.
Asymmetric mult
ile
v
e
l con
verter fo
r high resoluti
on voltag
e
pha
sor
generation
.
Euro
pean confer
ence on
power electro
n
ics and
app
lications, Switzerlan
d
. 1999
.
[18]
D Sasi, J Kuruvilla
, A Gopina
th. Gener
a
li
zed
SVPW
M Algorithm
for Two Legged
Three
Phase Multilev
e
l
Inverter
.
In
terna
tional
Journal o
f
Power
El
ectron
i
cs and Drive S
y
stems (
I
JPEDS)
, 2013; 3(3)
: 279-
286.
[19]
S Mekhilef
,
M
N
Abdul Kadir. Novel v
ector
control m
e
t
hod
f
o
r three-stag
e h
y
brid
cascad
ed
m
u
ltilevel
invert
er.
IEEE Trans. on
Ind. Elec.,
2010; 1339-1349.
[20]
MG Hosseini Aghdam
,
SH Fat
h
i, GB Ghar
ehp
e
ti
an. An
al
y
s
is
of Multi-Carrier
PWM Methods for As
y
m
m
e
tri
c
Multi-Lev
e
l
Inv
e
rter
.
I
EEE Conf. on
Ind.
Elect. a
nd Appl.,
2008;
2057-2062.
[21]
Shantanu Chat
t
e
rjee. A Multil
evel Inver
t
er
Based
on SVPWM Technique for Photovoltaic Appli
cat
ion
.
International Jo
urnal of
Power
Elec
tronics and
Drive Systems (
I
JPEDS)
, 2013: 3
(
1): 62-73.
[22]
R Shalchi Alish
a
h, D Nazarpour
, SH Hosseini,
M Sabahi. Sw
itched-diode structure for multilev
e
l conv
erter with
reduced
number
of power
electro
n
ic d
e
vices
.
IET
Power
El
ectron
., 2014; 7(3): 648
– 656
.
[23]
E Villanu
eva, P
Correa, J Rodrig
uez, M P
acas. C
ontrol of
a single-phase casc
a
de
d H-bridge m
u
ltilev
e
l inver
t
er fo
r
grid-connected
p
hoto-
voltaic s
y
stems.
IEEE Trans. Ind. Electron.,
2009; 56(11)
: 4
399-4406.
[24]
R Shalchi Alish
a
h, D Nazarpour
, SH Hosseini, M Sabahi. Ne
w h
y
brid stru
ctur
e for m
u
ltilev
e
l in
verter wi
th fewe
r
number of comp
onents for h
i
gh-
voltag
e
levels.
I
E
T
Power
Ele
c
tr
on
., 2014; 7(1)
:
96–104.
[25]
R Shalchi Alishah, D Nazarpou
r, SH Ho
sseini, M
Saba
hi. Novel Topologi
es for Sy
m
m
e
tric
, Asy
m
m
e
tri
c
and
Cascade Switch
ed-Diode Multilevel
Conv
erter
with Minimum
Number of Power Electron
i
c C
o
mponents.
IE
EE
Trans. Ind. Electron.
, 2014; 61(1
0
):5300-5310.
BIOGRAP
HI
ES OF
AUTH
ORS
Rasoul S
h
alc
h
i Alishah
was bor
n in Alishah, Ir
an, in1989. He
r
e
ceiv
e
d the B
.
Sc. degree
in Power
ele
c
tri
cal
eng
i
ne
ering from
the
Azad Unive
r
s
i
t
y
of Tabriz, Tab
r
iz, Ira
n
,
in 20
11and th
e M.Sc.
degree
in
power
ele
c
tri
cal
eng
i
ne
ering from
Urm
i
a
Univers
i
t
y
,
Urm
i
a, Ir
an,
in 201
3.
His current research in
terests in
clude power
el
ec
tronic conv
erters
, m
u
ltilev
e
l conv
erters, Z-sour
ce
and matrix
conv
erters, Application of Power Elec
troni
cs
in Ren
e
wable En
erg
y
S
y
s
t
em
s
,
Harm
on
ics
and Power Quality
. Since 2014, h
e
has been a member
of the Iran
Elites Nation
a
l F
oundation
.
He is
the au
thor of more than 20
jou
r
nal and
confer
en
ce pap
e
rs. Als
o
, he is a reviewer and Editorial
Board member o
f
sever
a
l
intern
ational journals.
Dary
oosh Naz
a
rpour
was born
in Urmia, Iran
in1958. He
received his B
.
Sc. d
e
gree from Ira
n
University
of
Science
and Techn
o
log
y
,
Tehr
an, I
r
an in
1982
and
the M.Sc. d
e
gree from Facu
lty
o
f
Engine
ering, Un
iversit
y
of Tabr
i
z
, Tabr
iz
, Iran i
n
1988. He recei
ved the Ph.D. de
gree from
Tabriz
University
, in 2
005 in Electr
i
cal Power Engineeri
ng. He is now an Assistant Professor inUr
mia
Univers
i
t
y
, Ir
an.
His
res
earch i
n
teres
t
s
in
clude
power ele
c
tron
ics
,
and f
l
exib
le
ACtrans
m
is
s
i
on
s
y
stem (FACTS).
Evaluation Warning : The document was created with Spire.PDF for Python.