Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
5, N
o
. 3
,
Febr
u
a
r
y
201
5,
pp
. 33
6
~
34
3
I
S
SN
: 208
8-8
6
9
4
3
36
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Perform
a
nce An
alysi
s
of
a DTC and SVM Based Field-
Orientation Control I
nduction Motor Drive
Md. Rashe
dul
Islam
*
, Md.
M
a
ruful Islam
**
,
M
d
. Ka
ma
l Ho
s
s
a
i
n
***
and
Pintu K
u
mar
Sad
h
u
****
*,**,***
Department
of Electr
i
cal and
Electron
i
c En
gineer
ing, Dhak
a University
of
Engineering & Technolog
y
,
Gazipur-1700, B
a
nglad
esh
****
Service Oper
ation
Center, Gr
ameenphone Limite
d, B
a
ngladesh
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Oct 30, 2014
Rev
i
sed
D
ec 13
, 20
14
Accepted Dec 28, 2014
This stud
y
pres
ents a p
e
rformance
an
aly
s
is of
two most popular con
t
rol
strateg
i
es for Induction Motor (IM) driv
es: direct torque contro
l (DTC) and
space ve
ctor m
o
dulation
(SVM) strateg
i
es.
The p
e
rform
ance
anal
y
s
is is done
b
y
appl
y
i
ng
fi
el
d-orient
ation
co
ntrol (FOC) t
e
c
hnique b
ecause
of its good
d
y
namic respons
e.
The theor
e
tical prin
ci
ple, simulation
resu
lts ar
e discussed
to s
t
ud
y
th
e d
y
n
a
m
i
c perform
an
ces
of the drive
s
y
s
t
em
for indiv
i
dual con
t
rol
strateg
i
es using
actu
a
l parameters of
indu
ction
motor. A closed loop PI
controller sch
e
me has been
u
s
ed. Th
e main
purpose of th
is stud
y
is to
minimize ripple in torque response curve an
d to achiev
e
quick speed
response as well as to
inv
e
stig
ate the condition f
o
r optimum performance o
f
induction motor
drive. Depend
ing on the
simul
a
tion results this study
also
pres
ents
a det
a
i
l
ed com
p
aris
on
between dir
ect
torque control
and s
p
ace
vector modulation based field-o
r
ienta
tion con
t
ro
l method for the induction
m
o
tor drive
.
Keyword:
Di
rect
T
o
r
q
ue
C
ont
r
o
l
Electric Dri
v
e
Fi
el
d-
ori
e
nt
at
i
o
n
co
nt
r
o
l
I
ndu
ctio
n Mo
t
o
r
Space Vector Modulation
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
M
d
. Kam
a
l
Ho
ssain,
Assistant Profe
ssor, Depa
rtem
ent
of
Electrica
l and Electr
oni
c En
gi
nee
r
i
n
g,
Dha
k
a
U
n
i
v
e
r
s
i
t
y
of E
ngi
neer
i
ng
& Tec
h
nol
ogy
,
G
azipu
r-
170
0, Ban
g
l
ad
esh
Em
ail: m
khoss
a
in87@gm
a
il.com
1.
INTRODUCTION
Th
e m
o
st co
m
m
o
n
typ
e
of
ac m
o
to
r
b
e
ing
u
s
ed
thro
ugh
ou
t th
e wor
l
d
t
o
d
a
y is t
h
e inductio
n
m
o
to
r
(IM). T
h
ree
phase induction m
o
tors ar
e
w
i
d
e
ly u
s
ed
in
var
i
ou
s indu
str
i
es as pr
im
e w
o
rkh
o
r
s
es to pr
odu
ce
ro
tation
a
l m
o
tio
n
s
and fo
rces. Trad
ition
a
lly, it h
a
s
b
e
en
u
s
ed
i
n
co
n
s
tan
t
an
d
variab
le-sp
e
ed
d
r
i
v
e
applications that do not cater
for
fa
st
dy
nam
i
c pr
ocess
e
s [
1
]
.
D
u
e t
o
t
h
e
re
qui
rem
e
nt
s of t
h
e l
o
a
d
a
n
d t
h
e
nee
d
fo
r eco
nom
y
have res
u
l
t
e
d i
n
devel
o
pm
ent
s
of sever
a
l ty
p
e
s of ind
u
c
tion
m
o
to
r d
r
i
v
es an
d
th
ese i
n
du
ction
m
o
tor drives requi
re a great attenti
on in controlling spee
d. Because of th
e
m
a
rriage of
powe
r electronics wit
h
m
o
t
o
rs an
d
rec
e
nt
de
vel
opm
ent
o
f
se
ve
ral
n
e
w c
ont
rol
t
e
c
h
n
o
l
o
gi
es t
h
i
s
si
t
u
at
i
on i
s
ch
angi
ng
ra
pi
dl
y
.
Suc
h
cont
rol
t
ech
nol
ogi
es are
di
rec
t
t
o
rq
ue co
nt
ro
l
(DTC
), s
p
ace
vect
or m
odul
at
i
on (S
VM
) a
nd fi
el
d-
ori
e
nt
at
i
o
n
cont
rol
(
F
OC
)
t
echni
q
u
e. T
h
ese t
ech
nol
o
g
i
e
s are wi
del
y
used i
n
hi
g
h
pe
rf
orm
a
nce
m
o
t
i
on co
nt
r
o
l
o
f
in
du
ctio
n m
o
to
rs [2
].
Th
is wo
rk
p
r
esen
ts
a co
m
p
arativ
e stud
y
o
n
th
ree m
o
st p
opu
lar con
t
ro
l strateg
i
es fo
r indu
ctio
n m
o
to
r
(IM)
dri
v
es: direct torque c
o
ntrol (DTC
), s
p
ace vect
or
modulation
(SVM) and
fiel
d-oriented c
ont
rol
(FOC
)
[3]
-
[
5]
.
Here fi
xed
val
u
e
of t
h
e pr
op
o
r
t
i
onal
and i
n
t
e
gral
ga
i
n
of P
I
co
nt
r
o
l
l
e
r i
s
used t
o
achi
e
ve
qui
c
k
spee
d
resp
o
n
se. I
n
DTC
i
t
i
s
pos
si
bl
e t
o
cont
r
o
l
t
h
e st
at
or f
l
ux an
d t
h
e t
o
rq
ue i
s
cont
r
o
l
l
e
d by
sel
ect
ing t
h
e
appropriate inverter
state [6]
.
Bu
t
co
n
v
ent
i
onal
DTC
sc
h
e
m
e
has t
w
o
m
a
i
n
di
sad
v
an
t
a
ges [
7
]
:
C
u
r
r
e
nt
an
d
t
o
r
que
di
st
ort
i
ons ca
use
d
b
y
t
h
e sect
or c
h
an
ges a
nd st
art
i
ng a
nd l
o
w - s
p
eed
o
p
e
rat
i
on
pr
o
b
l
e
m
s
. To
ove
rc
om
e t
h
ese pr
o
b
l
e
m
s
SVM
t
echni
que
i
s
im
pl
em
ent
e
d.
For
ap
pl
y
i
n
g
S
V
M
sc
hem
e
po
wer i
s
t
a
ke
n f
r
o
m
dc
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Perf
or
ma
nce A
nal
ysi
s
of
a
DT
C
a
n
d
SV
M B
a
sed Fi
el
d
-
Ori
e
nt
at
i
o
n C
ont
r
o
l
…
(
M
d. R
a
s
h
e
dul
Isl
a
m)
33
7
source a
n
d c
o
nverts it to thre
e phase ac
usi
n
g dc
-to-ac c
o
nve
r
t
er
[8
].
In
o
r
d
e
r to
ac
hieve fast s
p
eed re
spons
e
and i
m
pro
v
e
d
t
o
r
que c
h
a
r
act
eri
s
t
i
c
, fi
el
d-
or
i
e
nt
at
i
on c
ont
r
o
l
(F
OC
) t
e
c
h
ni
q
u
e i
s
u
s
ed
[
9
]
.
Th
e m
e
t
hodol
ogy
of
fi
el
d
-
o
r
i
e
nt
a
t
i
on c
ont
rol
i
s
no
rm
al
ly
devel
ope
d
base
d
o
n
est
i
m
a
ti
on
of
i
n
d
u
ct
i
o
n m
o
t
o
r
fl
u
x
es.
2.
R
E
SEARC
H M
ETHOD
2.
1. I
nduc
tion
Motor
Model
under
Fi
eld-Orientation Control
Princip
l
e
To st
u
d
y
t
h
e
t
r
ansi
ent
an
d
dy
nam
i
c con
d
i
t
i
ons
ge
neral
l
y
m
u
t
u
al
l
y
per
p
en
di
cul
a
r st
at
i
ona
ry
a
n
d
syn
c
hrono
usly ro
tatin
g
fictitio
u
s
co
ils
are con
s
id
ered. Fo
r th
e i
n
du
ctio
n m
o
to
r co
nsid
ered
will h
a
v
e
th
e
fo
llowing
assu
m
p
tio
n
s
: symme
trical two
-
po
le, thr
ee
pha
ses wi
ndi
n
g
s, sl
ot
t
i
ng e
ffect
s a
r
e ne
gl
ect
ed
,
p
e
rm
eab
ility
o
f
th
e iron
p
a
rt
s is in
fin
ite, the flu
x
d
e
nsity
is rad
i
al in
th
e air g
a
p
,
iron
lo
sses are
n
e
g
l
ected
,
stato
r
and
th
e ro
tor wind
ing
s
are si
m
p
lified
as a sin
g
l
e,
m
u
lti-tu
rn
fu
ll p
itch
co
il situ
ated
on
th
e two
sid
e
s of
the
air ga
p.
From
st
at
i
onar
y
t
w
o axi
s
m
o
del
and sy
nch
r
o
n
ousl
y
r
o
t
a
t
i
ng t
w
o axi
s
m
odel
t
h
e fi
ft
h
or
der
no
n
-
linear state s
p
ace m
odel of
induction
m
o
tor is re
pre
s
ent
e
d in the
synchronous
refe
rence
fram
e
(d-q) as
fo
llows:
qr
e
m
dr
m
qs
e
s
ds
s
s
ds
i
L
i
pL
i
L
i
pL
R
v
)
(
(1)
qr
m
dr
e
m
qs
s
s
ds
s
e
qs
i
pL
i
L
i
pL
R
i
L
v
)
(
(2)
qr
sl
r
dr
r
r
qs
m
sl
ds
m
i
L
i
pL
R
i
L
i
pL
)
(
0
(3)
dr
sl
r
qr
r
r
qs
m
ds
sl
m
i
L
i
pL
R
i
pL
i
L
)
(
0
(4)
L
m
m
e
T
B
Jp
T
(5)
Fr
om
t
h
e de
ve
l
ope
d el
ect
r
o
m
a
gnet
i
c
t
o
r
que
i
n
t
e
rm
s of
d-
an
d
q-
a
x
es c
o
m
p
o
n
e
n
t
s
i
s
gi
ve
n
by
:
qr
ds
dr
qs
m
p
e
i
i
i
i
L
P
T
2
3
(6)
C
o
m
pone
nt
s o
f
r
o
t
o
r
fl
ux
are:
ds
m
dr
r
dr
i
L
i
L
(7)
qs
m
qr
r
qr
i
L
i
L
(
8
)
Fro
m
(
7
) and
(8
),
)
(
1
ds
m
dr
r
dr
i
L
L
i
(9)
)
(
1
qs
m
qr
r
qr
i
L
L
i
(10)
Sub
s
titu
tin
g fro
m
(7
) t
o
(10
)
in
to
(3) an
d (4
) yield
s
:
0
qr
sl
ds
r
r
m
dr
r
r
dr
i
R
L
L
L
R
dt
d
(11)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
3
,
Feb
r
uar
y
201
5 :
3
36 –
34
3
33
8
0
dr
sl
qs
r
r
m
qr
r
r
qr
i
R
L
L
L
R
dt
d
(1
2)
If the field ori
e
ntation is establishe
d suc
h
that q-a
x
is rot
o
r flu
x
is set zero
, and
d-a
x
is rot
o
r flu
x
is
m
a
intained co
nstant the
n
Eq
uation
(1
1)
, (
1
2)
, (9
), (
1
0) a
n
d (
6
) bec
o
m
e
s
ds
m
dr
i
L
;
ds
qs
r
sl
i
i
1
;
0
dr
i
;
qs
r
m
qr
i
L
L
i
qs
dr
r
m
p
e
i
L
L
P
T
2
3
; where
)
/
(
r
r
r
R
L
is the ti
m
e
constant
of the rotor.
2.2 Direct
T
o
r
que Contr
o
l
T
echnique
Direct torque cont
rol technique is
used i
n
variable fre
quency drives
to control the to
rq
ue (
a
nd
th
us
finally the s
p
e
e
d) of three
-
phase ac electric
m
o
tors. In
dire
ct torque it is possible t
o
control
directly the stator
flu
x
and the to
rq
ue by
selecting the
appropriate state
[10]. The way to im
pose the req
u
ire
d
stator flu
x
is by
m
eans of c
h
o
o
s
ing the m
o
st suitable V
o
ltage So
ur
ce Inv
e
r
t
er
(
V
SI)
state. Decoup
led
co
ntr
o
l of
th
e stator
f
l
ux
m
odulus an
d t
o
r
q
ue is achieved
by
acting
on t
h
e ra
dial
and ta
nge
ntial com
pone
nts res
p
ectively
of th
e stator
flux-linkage
s
p
ace
vector. Figure
1.
shows
the possible dynam
i
c
locus
of
the
stator
flux, a
n
d its
differe
nt
variatio
n depe
ndi
ng
o
n
the VSI
states
c
h
o
s
en [1
0]
. The
pos
sible
glo
b
a
l
locus
is
di
vi
ded
int
o
six
diffe
ren
t
sectors signaled
by the
disc
ontinuous
line.
In accorda
n
ce
wi
th Figure
1, t
h
e
ge
neral ta
ble I can
be
written.
Table 1. Selection Table fo
r DTC
Voltage Vector
Increase
Decrease
Stator
Flux
V
k
, V
k+
1
, V
k-1
V
k +
2
, V
k-
2
, V
k+
3
T
o
r
que V
k+
1
, V
k+
2
V
k-
1
, V
k-
2
Figu
re
1.
Stato
r
fl
ux
vect
or
lo
cus a
n
d
pos
sibl
e
switching.
The sect
ors
of
the stator fl
ux
space
vector a
r
e de
note
d
from
S1 to
S6. Stat
or
flux m
o
dulus error a
f
ter
the hy
steresis
bloc
k (
∆ψ
) can take just two
values. The zero voltage
vect
ors V0 a
n
d V7 a
r
e selected
when the
tor
que
er
ro
r is
within t
h
e
give
n
hy
ster
esis limits, and m
u
st rem
a
in unchanged.
Table
2. L
o
o
k
u
p
Ta
ble f
o
r
DT
C
Torque
error
(
∆ψ
)
Torque
error
(
∆
T)
Sector
S
1
S
2
S
3
S
4
S
5
S
6
FI
TI
V
2
V
3
V
4
V
5
V
6
V
1
FI
TE
V
7
V
0
V
7
V
0
V
7
V
0
FI
TD
V
6
V
1
V
2
V
3
V
4
V
5
FD TI
V
3
V
4
V
5
V
6
V
1
V
2
FD TE
V
0
V
7
V
0
V
7
V
0
V
7
FD TD
V
5
V
6
V
1
V
2
V
3
V
4
Fig.
2.
D
T
C
B
l
ock
dia
g
ram
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
S
SN:
208
8-8
6
9
4
Perfor
ma
nce A
nalysis
of
a
DT
C
a
n
d
SV
M B
a
sed Fiel
d
-
Orientatio
n C
ontr
o
l…
(
M
d. R
a
s
h
e
dul
Isla
m)
33
9
2.
3 S
p
ace
Vec
t
or
M
o
d
u
l
a
ti
o
n
T
echni
qu
e
Space Vect
or Modulatio
n pri
n
ciple
[4] is
shown i
n
Fig.3. The refe
re
nce vector
*
u
is sam
p
led at the
fixe
d clock
fre
que
ncy
s
f
2
.
The re
fere
nce voltage vector
*
u
can be gene
rated from
the
m
achine com
m
a
nd –
and
–
axes
voltages
*
s
v
and
*
s
v
as:
2
*
2
*
*
s
s
v
v
u
(
1
3)
Figure
3. SVM Signal fl
ow di
agram
Figure 4.
All voltage
s
p
ace ve
ctors
If
T
s
is the
sa
m
p
ling tim
e
then t
h
e sam
p
led val
u
e re
ference voltage
vector
)
(
*
s
t
u
is used to sol
v
e the
equatio
ns
.
)
(
2
*
s
b
b
a
a
s
t
u
u
t
u
t
T
(
1
4
)
)
(
2
1
7
0
b
a
s
t
t
T
t
t
(
1
5
)
)
sin
3
1
(cos
3
)
(
*
s
s
a
t
u
T
t
(
1
6
)
sin
3
2
)
(
*
s
s
b
t
u
T
t
(17)
)
(
2
1
7
0
b
a
s
t
t
T
t
t
(18)
2.
4. Fi
el
d-Ori
e
nt
at
ion Control
Me
th
od
The field-orie
ntation control consis
ts of c
o
n
t
rolling t
h
e stator c
u
r
r
ents
re
prese
n
ted
by
a
vecto
r
. T
h
is
cont
rol is
base
d
on
p
r
o
j
ectio
n
s
w
h
ich t
r
ans
f
o
r
m
a three p
h
as
e tim
e
and s
p
e
e
d
depe
n
d
ent s
y
stem
into a tw
o c
o
-
or
dinate (
d
an
d
q co-
o
rdi
n
ates
) tim
e
invarian
t sy
stem
. Figure 5. S
h
o
w
s th
e
B
a
sic schem
e
of F
O
C
f
o
r IM
drive
[5]
.
u
4
S
5
(
001
)
S
1
(
1
00)
S
4
(
0
11)
jI
m
u
*
u
1
u
2
u
3
u
5
u
6
u
7
u
0
S
2
(1
10)
S
3
(010
)
S
6
(10
1
)
S
0
(
0
00)
S
7
(1
11
)
I
II
II
I
IV
V
VI
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN:
2
088
-86
94
I
J
PEDS
Vo
l.
5
,
No
.
3
,
Feb
r
uar
y
201
5 :
3
36 –
34
3
34
0
Figu
re
5.
B
a
sic schem
e
of
FO
C
fo
r
IM
d
r
ive
3.
R
E
SU
LTS AN
D ANA
LY
SIS
The sim
u
lat
i
on scenarios shown in this thesis pa
per cover the following situations: Generation of
pulses f
o
r inve
rter, tran
sient
and steady
state beha
vior
of
3-
p
h
ase cur
r
e
n
t, speed and torque res
p
onse
, a step
change i
n
load
torque, a step ch
ange i
n
speed referen
ce [11]
and condition for
optim
u
m
perform
a
nce.
3.
1.
R
o
t
o
r
a
n
d St
a
t
or
fl
u
x
Figu
re 6.
d-
q
ax
is
stato
r
fl
uxe
s
Figu
re 7.
d-
q
ax
is
r
o
to
r flu
x
es
Fig
u
r
e
8
.
Lo
cus of
stator
f
l
uxes in
Stationary
refe
rence
f
r
am
e
Figu
re
6 an
d
Figu
re
7. s
h
o
w
s the stato
r
a
nd
r
o
tor
fluxes
. It is noticed
that 90º phase
diffe
re
nce is
obtaine
d a
n
d a
r
e a
p
p
r
o
x
im
ately
sinus
oidal.
Figure
8. indicat
es the locus
of
th
e stator fl
ux
and it is noticed that
flux follows a
circular
sha
p
e. The
com
p
one
n
ts of stat
or
fl
uxe
s in sta
tionary re
fere
nce
fram
e are sinus
oidal
and 90º phase
displacem
ent to eac
h
othe
r.
3.
2.
Simul
a
tio
n
Res
u
lts f
o
r DTC ba
sed
F
O
C meth
o
d
Figu
re 9.
S
p
ee
d resp
o
n
se
i
n
DTC
usin
g FO
C
Figure 10.
T
o
r
que
de
velo
pe
d
in D
T
C
u
s
in
g
FOC
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
S
SN:
208
8-8
6
9
4
Perfor
ma
nce A
nalysis
of
a
DT
C
a
n
d
SV
M B
a
sed Fiel
d
-
Orientatio
n C
ontr
o
l…
(
M
d. R
a
s
h
e
dul
Isla
m)
34
1
W
i
t
h
the help
of field-orientati
on co
ntrol m
e
tho
d
q
u
ick sp
eed res
p
onse is achieved a
n
d catches the
refe
rence
spee
d wit
h
in
0.10
sec. as indicat
ed in
Fi
gu
r
e
9 and
Figur
e 10 sho
w
s th
e actu
a
l to
rqu
e
d
e
velo
p
e
d
cur
v
e fo
r DTC
base
d
F
O
C
m
e
tho
d
. It
ca
n be said
that,
re
gio
n
of
tor
q
ue distortio
n
is sm
aller
tha
n
DTC
.
3.
3. Simula
tio
n
Res
u
lts f
o
r SV
M
b
a
sed
F
O
C Me
th
od
Figure 11.
Spe
e
d resp
o
n
se
i
n
SVM
usin
g FO
C
Figure 12.
T
o
r
que
de
velo
pe
d
in S
V
M
u
s
in
g
FOC
B
y
usin
g
field
-
o
r
ientatio
n
pri
n
ciple i
n
S
V
M
tech
nique
ove
rshoot proble
m
is elim
inate
d
as
well as
q
u
i
ck
sp
eed r
e
sp
on
se is ach
i
ev
ed as sh
own in
Figur
e 11
. Fig
u
r
e
12
. sho
w
s th
e to
rq
ue r
e
sp
on
se
when
th
e
m
o
tor is u
n
loa
d
ed
, it is e
v
ide
n
t that th
e to
rq
ue
resp
o
n
se is
better tha
n
DT
C
base
d F
O
C
m
e
thod.
Figure 13.
Three-phase currents
under load
condition
3.
4.
E
ffec
t
of
Ch
an
ge of
L
o
ad fo
r
DT
C
T
echni
que
Su
dde
n a
p
plication
of
loa
d
t
o
r
q
ue f
r
o
m
0 Nm
to 6
Nm
at t = 0
.
4
sec. t
o
t = 0.
6 sec
.
ca
u
s
es a c
h
an
ge
in three-phase current an
d t
r
ansie
n
t p
h
e
n
o
m
enon
is occ
u
r
r
ed
an
d a
f
ter fe
w sec
o
nds
latter steady
state
con
d
ition has been reac
hed whe
n
loa
d
a
d
justm
e
nt
is
don
e.
Figure
14. indicates the si
m
u
la
ted response of the
m
o
tor
spee
d w
h
en it is sudde
nly
loaded f
r
o
m
0 Nm
to
6 Nm
. It
is observe
d that sud
d
e
n ap
plication of lo
a
d
tor
que ca
uses a
no
n
-
u
n
if
orm
dip an
d
ove
rs
ho
ot in the
spee
d curve. Sudden application
of
lo
a
d
to
rqu
e
fr
om t
=
0.
4 sec. to t = 0.
6 sec. cau
ses
torq
ue
ri
pple
at that particular tim
e
in the devel
ope
d to
rq
ue cu
rve as s
h
ow
n in
Fig
u
r
e
15
.
Fig
uur
e 1
4
.
E
f
f
ect of
cha
n
ge
o
f
loa
d
t
o
r
que
o
n
s
p
ee
d
r
e
spon
se
Figure 15.
T
o
r
que
de
velo
pe
d
whe
n
l
o
ad
to
rq
ue is
increase
d
s
u
ddenly
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN:
2
088
-86
94
I
J
PEDS
Vo
l.
5
,
No
.
3
,
Feb
r
uar
y
201
5 :
3
36 –
34
3
34
2
3.
5. Si
mul
a
ti
o
n
Res
u
l
t
s f
o
r SV
M
Technique under
L
o
ad Co
nditio
n
Effect
of change
of l
o
ad torque
on three-phase current is
illustrated i
n
Fi
gure
16.
Sudden application
of load torque
from
0 N
m
to
6 Nm
causes a change in
three-phase curren
ts but the oscillation of current is
sm
aller than that of D
T
C
techni
que
. Fig
u
r
e
17. in
dicates
the
m
o
tor speed when it is
s
u
ddenly loaded. It is
observed that sudden application of lo
ad torque causes a very litt
le dip a
nd there is no
oversho
ot in the speed
curve.
Figure 16.
Three-phase currents
under load
condition
Figure 17.
E
ffe
ct of
cha
n
ge
of
load
to
rq
ue
o
n
spee
d
r
e
spon
se
Figure 18.
T
o
r
que
de
velo
pe
d
whe
n
l
o
ad
to
rq
ue is
increase
d
s
u
ddenly
Hence
,
better s
p
eed
res
p
onse
curve ha
s bee
n
achie
ve
d by
u
s
ing S
V
M
tha
n
that o
f
DTC
techniq
u
e
.
The
oscillation found in
the torque
devel
o
ped curve und
er load conditio
n is also reduced as
shown in
Figure
18
.
4.
CO
NCL
USI
O
N
In this
pape
r,
m
a
in characteristics of direct
to
rque c
ont
rol
and s
p
ace
vect
or m
odulation
base
d field-
orie
ntation c
o
ntr
o
l schem
e
fo
r in
ductio
n
m
o
tor drives
are stu
d
ied a
n
d pe
rf
orm
a
nce
analy
s
is has
been
investigate
d
wi
th the help
of
sim
u
lation res
u
lts with
a vie
w
to hi
ghlighting the a
d
vanta
g
es of each sc
hem
e
s.
For
achie
vin
g
hig
h
pe
rf
o
r
m
a
nce IM
dr
i
v
e,
a suitable m
a
them
atical
m
odel
is used.
Perform
a
nce analysis of
indivi
dual sc
he
m
e
is carried
o
u
t by
c
h
an
gin
g
the loa
d
to
r
que at a partic
ular tim
e
interval
and by c
h
angi
ng t
h
e
refe
rence s
p
ee
d. L
o
w
e
r
valu
e of
refe
rence
stator fl
ux
d
u
ri
ng t
h
e sim
u
lation ca
uses
gre
a
t
er tor
que
dist
ortio
n
and
ba
d spee
d response curve. That is why the refe
ren
ce
stator flux is determ
ined
f
r
o
m
the IM
para
m
e
ters
.
From
the sim
u
lation res
u
lts for
DTC
an
d S
V
M
base
d fi
eld-
orie
ntation c
ont
rol m
e
thod; it can be conc
lud
e
d
that the SVM
base
d field
-
o
r
ientation c
ont
r
o
l m
e
thod
sh
o
w
s better
pe
rf
orm
a
nce fo
r in
ductio
n m
o
tor
dri
v
es
because
of its
quick s
p
ee
d
response a
n
d
elim
inati
on of
the ove
rs
hoot
proble
m
unlike DTC based
field-
orie
ntation co
n
t
rol.
Whe
n
field-
orie
nt
ation
principle is introduced in SVM
technique; there is a reduc
tion of
rip
p
le in the
d
e
velo
ped
tor
q
u
e
. M
o
r
e
o
v
er
, S
V
M
base
d
FO
C
m
e
thod is ca
pable t
o
f
o
llo
w the
refe
re
nc
e spee
d
quickly and
has practi
cally thus
will find m
a
ny applications.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
S
SN:
208
8-8
6
9
4
Perfor
ma
nce A
nalysis
of
a
DT
C
a
n
d
SV
M B
a
sed Fiel
d
-
Orientatio
n C
ontr
o
l…
(
M
d. R
a
s
h
e
dul
Isla
m)
34
3
REFERE
NC
ES
BIOGRAP
HI
ES OF
AUTH
ORS
M
d
.
Rashe
d
ul
Islam
was born
in Pabna, Bangl
adesh on Decem
ber 31, 1987. He
receiv
e
d his
B.Sc. Engin
eer
ing Degree from Rajshahi Univ
ersity
of Engineer
ing & Techno
lo
g
y
(RUET), B
a
ng
ladesh,
in April, 2010
in El
ectrical
and
Electroni
c Eng
i
neer
ing. He
published thr
e
e
intern
ation
a
l p
a
pers. He
is curr
en
tl
y working
a
s
a Le
ctur
er in
Ele
c
tri
cal
and
Ele
c
troni
c Engi
neering Depar
t
m
e
nt, DUET.
His
res
earch in
teres
t
s
are P
o
wer S
y
s
t
em
,
PV
S
y
stems, Nanotechnolog
y
,
Fibe
r Optic Communication and Signa
l Processing using MATLAB.
M
d
. Ras
h
edul Is
lam
is
the
m
e
mber of the IEB of Banglades
h an
d an active m
e
m
b
er of CRTS
com
m
ittee
in d
e
pt. of
E
E
E, DUET, B
a
ngladesh.
Md
. Maru
fu
l I
s
l
am
was born i
n
Rangpur, Ban
g
ladesh on 04 Februar
y
, 1989
. He receiv
e
d his
B.Sc. Engin
eerin
g Degree from
Khulna Universi
ty
of Engineering & Technolog
y
(KUET),
Banglad
esh,
in April,
2010
in
Electrical
and
Electronic
Engineering
.
He is cu
rrently
work
ing
as
Lectur
er in E
l
ec
tric
al and El
e
c
troni
c Engine
er
ing Departm
e
nt,
DUET. His
research in
ter
e
s
t
s
are Ren
e
wabl
e energ
y
s
y
s
t
em
s
,
S
m
art-grid int
e
gtra
ted ren
e
wa
ble en
erg
y
, Ad
vanced P
o
wer
ele
c
troni
cs
and
i
t
s
appli
c
a
tion
int
o
M
achin
e der
i
v
e
s. Md.
Maruf
u
l Islam
is th
e
m
e
m
b
er of the
IEB of Bangla
d
esh and an active m
e
m
b
er of CRTS
comm
ittee in dept
. of EEE, DUET,
Banglad
esh.
Md. Kam
a
l H
o
ssain
was born in Khulna, B
a
n
g
ladesh on O
c
to
ber 20, 1987. H
e
r
eceived
his
B.Sc.
Engineering Degree fr
om
Rajshahi
University
of
Engineering
& Technolo
g
y
(RUET), B
a
ng
ladesh,
in April, 2010
in El
ectrical
and
Electroni
c Eng
i
neer
ing. He
published thre
e
intern
ation
a
l p
a
pers. He is cu
rre
ntly
working a
s
a
n
Assista
n
t Profe
ssor in
Ele
c
tri
cal
and
Ele
c
troni
c Eng
i
neering
Depart
m
e
nt, DUET.
His
res
earch
int
e
res
t
s
ar
e P
o
we
r
s
y
s
t
em
D
y
n
a
m
i
cs
and Ren
e
wa
ble En
erg
y
s
y
s
t
em
, Applic
ation
of power e
l
ec
tr
onics
in power
s
y
stem con
t
rol,
Smart grid tech
n
o
log
y
and
Nanotechnolog
y
.
Md. Kamal Hossain
is th
e member
of the IEB of B
a
nglad
es
h and a
n
activ
e m
e
m
b
er of CRTS
com
m
ittee in d
e
pt
. o
f
EEE
, DUET,
Banglad
esh.
P
i
ntu Kumar
S
a
dhu
was born in Khulna, B
a
ng
ladesh on
01
Januar
y
, 1988
. He
received
his
B.Sc. Engin
eering
Degree
from
Khulna
Un
iversity
of
Engineer
ing
&
Technolog
y
(KUET),
Bangladesh,
in
April,
2010
in
El
ectrical
and
Electron
i
c
Eng
i
n
eering
.
He is
currently
working as Sy
stem Engineer in
Grameenphone Ltd. His research
interests ar
e
Renewabl
e
ener
g
y
s
y
s
t
em
s
and c
ontrol s
y
s
t
em
to
drive M
a
chin
es
i
n
effi
ci
ent wa
y.
[1]
Muhammad H Rashid.
Power Ele
c
tronics,
Circui
t
s
, Devi
ces
and
Applications
, 3
r
d
edition.
[2]
AF
P
u
chs
t
ein,
T
C
Lio
y
d
,
AG Co
nrad.
A
lternatin
g Current Mach
ines
. Ed
ition
200
6-2007.
[3]
M Vasudevan, R Arum
ugam, S Paramasiva
m
.
High
–
Performance Adaptive
I
n
telligent Direct Torque Control
Schemes for
Ind
u
ction
Motor Drives
.
Serbian
Jo
urnal of
Electrical Eng
i
neering
.
2005; 2(1); 93 –
116.
[4]
Bimal
K
Bos
e
.
Power Electronics and Vari
ab
le Fr
equency Drive
.
I
EEE
P
r
ess.
[5]
Jae Ho Chang,
B
y
ung Kook Kim.
Minimum-Time Minimum Loss Speed C
ontrol of Induction
Motors Under
Field
-
Oriented
Control
.
I
EEE T
r
ans. on Ind. Elecron.
1997; 44(6
)
;809-815.
[6]
Tej
a
vathu
Ra
m
esh, Anup Kumar Pandl, Y
Sures
h
, Suresh
Mikkili.
Direct
Flux an
d Torque Control of Indu
ction
Motor Drive for
Speed
Regula
t
o
r
using PI and
Fuzzy Logic Co
ntrollers
.
IEEE-
Internationa
l C
onference On
Advances In
Eng
i
neering
,
S
c
ien
c
e And
Managem
e
nt
(
I
CAESM
-2
012)
.
2012; 31;
288-295.
[7]
Manoj Datta, Md Abdur Rafiq, BC Ghosh.
Gen
e
tic Algorithm Based Fast Speed Response Induction Motor
Drive without Sp
eed
Encod
e
r.
P
O
WERENG
200
7,
Setubal, Portu
gal.
2007
.
[8]
Ma
rc
in
Ż
elecho
wski.
Space Vector
Modulated
–
Direct Torque C
ontrolled (
D
T
C
–
SVM)
Inverter
–
Fed
Induction
Motor Drive
,
Warsaw,
Poland
.2
005.
[9]
Donald Graham
e Holm
es
, Bren
dan P
e
ter
M
c
Grath,
Stewart Geoffrey
Parke
r
.
C
u
rrent Regula
tio
n Strategies for
Vector-Controlled Induction M
o
tor Drives
.
IEEE Transaction
s
on I
ndustrial Electronics
. 201
2; 59(10); 3680
-
3689.
[10]
A Jidin,
NRN Idris,
AHM Ya
tim, T Sutikno
, Malik E Elbulu
k
.
E
xtending switching frequency
for
torque ripp
le
reduct
i
on utili
zi
ng a constant frequency
torqu
e
controll
er in
dtc of inducti
on m
o
tors.
Jou
r
nal of Power
Electronics
. 201
1; 11(2);
148-15
5.
[11]
Elw
y
E
El-kholy
.
High Performance Inductio
n Motor Drive Based on
A
daptive Variab
le Str
u
cture Control
.
Journal of Electr
ical Engineerin
g
. 2005; 56(3-4); 64–70.
Evaluation Warning : The document was created with Spire.PDF for Python.