Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol.
4, No. 4, Decem
ber
2014, pp. 538~
546
I
S
SN
: 208
8-8
6
9
4
5
38
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
The FHA An
alysis of Du
al-B
ridge LLC Type Resonant
Converter
Arn
o
l
d
Fre
d
d
eri
cs*, K.
Vi
no
th Kum
a
r*
, A
.
Sh
ank
a
r
*
, Je
ya
Sel
v
an
Re
n
i
us*, R
a
j
a
Gu
ru*
Sree Lakshmi
Nair*, K.Vis
w
anathan**
* Department of
Electrical an
d
Electron
i
cs Eng
i
neering, School
of
Electrical Sciences,
Karun
y
a Institute of
Technolog
y
& Sciences
Un
iv
ersity
, Coimbato
re – 641114
, Tamilnadu, Ind
i
a
** Departmen
t
o
f
Electr
i
cal
and
Computer Engin
eering
,
Schoo
l o
f
Engin
eering
,
Adama Scien
ce
and Technolo
g
y
University
, Eth
i
opia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
J
u
l 27, 2014
Rev
i
sed
Sep
13
, 20
14
Accepte
d Oct 5, 2014
The dual br
idge
resonant conv
erter is desi
gned in
this paper
.
In this converter
the LLC ty
pe resonance con
f
igu
r
ation
is proposed. Th
is ty
pes is compared
with
th
e other configurations and its be
nefits are
narrated in this paper. Th
e
stead
y
-
state an
aly
s
is of the LLC conf
iguration
is done using
fundamental
harmonics approximation meth
od and th
e values for the components of
resonance configuration
is found and
used
for simulation. The
simulatio
n
results shows that the conv
ert
e
r is able
to ach
iev
e
the ze
ro voltag
e
switchin
g
for the wide lo
ad
range an
d
attain
s a good
efficien
cy
.
Keyword:
Dc-dc c
o
nve
rter
R
e
sona
nt
c
o
n
v
e
rt
er
Zero vo
ltag
e
switch
i
ng
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Ar
nol
d F
r
e
dde
ri
cs A
,
Depa
rt
m
e
nt
of
El
ect
ri
cal
and
El
ect
roni
cs
E
n
gi
nee
r
i
n
g,
School
of Elec
trical Sciences, Ka
runya
Uni
v
ersity,
Co
im
b
a
to
r
e
–
6
411
14
, Tam
i
l
n
adu
,
Ind
i
a.
Em
a
il: arn
o
l
dfred
d
e
rics@g
m
a
il.co
m
1.
INTRODUCTION
No
wa
day
s
, t
h
e renewa
bl
e ener
gy
gene
rat
i
on
pl
ay
s
a vi
tal
part
i
n
po
wer ge
ne
rat
i
o
n. M
a
ny
ne
w
t
echni
q
u
es
are
evol
vi
n
g
t
o
get
bet
t
e
r
o
u
t
p
ut
effi
ci
ency
from
the re
newa
ble energy
syste
m
. As the re
ne
wable
en
erg
y
is
flu
c
t
u
atin
g it canno
t pro
d
u
c
e
the
expected output. So
, the
power converters
play a m
a
jor
role i
n
rene
wa
bl
e ene
r
gy
p
o
w
er
ge
n
e
rat
i
on sy
st
em
[1]
,
[
4
]
.
I
n
t
h
e hy
b
r
i
d
re
ne
wabl
e e
n
er
gy
gene
rat
i
o
n sy
st
em
t
h
at
use
wind, s
o
lar, tidal and that are couple
d
with dc
, is co
mm
o
n
to
u
s
e b
i
-d
irection
a
l d
c
-d
c co
nv
erter t
o
interface
dc bus with battery s
t
ora
g
e
stack.
In dual active bridge converte
r, the zero voltage switchi
ng cont
rol
can
b
e
ach
iev
e
d
easily [2
],
b
u
t to
ach
iev
e
it fo
r a
wid
e
l
o
ad
r
a
ng
e th
e
vo
ltag
e
g
a
i
n
of
th
at
co
nv
er
ter
sh
ould
be
main
tain
ed
to
u
n
ity. So
t
h
e
reson
a
n
c
e v
e
rsi
o
n of that
converter is
used
to achie
ve a
Z
V
S
for a
wi
de
loa
d
ran
g
e
[3]
.
The
v
o
l
t
a
ge a
n
d
c
u
r
r
ent
of
t
h
e
d
u
al
b
r
i
d
ge
res
ona
nt
c
o
n
v
e
r
t
e
r are
nea
r
l
y
si
nus
oi
dal
,
s
o
t
h
at
t
h
e
lo
wer o
r
d
e
r
h
a
rm
o
n
i
cs an
d
the filter size
is
sm
a
ll. Th
er
e are
m
a
in
ly
two
t
y
p
e
s o
f
reson
a
n
ce con
v
e
rter,
o
n
e
is
seri
es re
so
na
nc
e an
d a
not
her
one
i
s
paral
l
e
l
reso
na
nce ci
rc
ui
t
.
Eac
h
c
o
n
f
i
g
u
r
at
i
o
n
has i
t
s
l
i
m
i
t
a
t
i
ons t
h
at
are
di
scuss
e
d
i
n
t
h
i
s
pa
per
f
u
rt
he
r, s
o
t
h
e
hy
bri
d
–res
o
n
ant
c
o
nve
rt
er t
o
p
o
l
o
gy
i
s
p
r
op
ose
d
w
h
i
c
h i
s
a
on
e o
f
t
h
e
t
y
pes of v
o
l
t
a
g
e
– sou
r
ce seri
es reso
na
nt
co
nve
rt
ers .T
he b
e
nefi
t
s
o
f
usi
n
g t
h
e hy
b
r
i
d
t
o
pol
ogy
i
s
nar
r
a
t
ed i
n
th
e later
sectio
n
s
of
th
is
p
a
p
e
r
.
A
m
o
n
g
th
e
h
ybr
id
topo
logy th
e LLC typ
e
d
u
a
l
-
br
idg
e
r
e
son
a
n
t
con
v
e
r
t
er
is
pr
o
pose
d
an
d i
t
s
zvs ope
rat
i
o
n f
o
r a wi
d
e
l
o
ad ra
nge i
s
ve
r
i
fi
ed usi
n
g si
m
u
l
a
t
i
on re
sul
t
s
.
The val
u
e
s
fo
r t
h
e
reso
na
nce co
m
ponent
s are
fo
u
nd
usi
n
g t
h
e F
HA
desi
g
n
an
d i
m
pl
em
ent
e
d i
n
t
h
e s
i
m
u
l
a
t
i
on. The
bl
oc
k
di
ag
ram
of t
h
e
ope
rat
i
o
n
per
f
o
r
m
e
d by
t
h
e
pr
op
ose
d
m
e
t
hod
i
s
sh
o
w
n
bel
o
w.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
The
FHA
A
nal
ysi
s
of
Du
al
-B
r
i
dge
LLC
Type
Reso
n
ant
C
o
n
vert
e
r (
Arn
ol
d
Fred
d
eri
c
s)
53
9
Fi
gu
re
1.
B
l
oc
k
di
ag
ram
of t
h
e p
r
o
p
o
sed
t
o
p
o
l
o
gy
The sq
ua
re wa
ve ge
nerat
o
r
h
a
s t
w
o s
w
i
t
c
he
s t
h
at
con
v
ert
s
t
h
e dc i
n
put
t
o
a ac out
p
u
t
.
T
h
e ac out
p
u
t
i
s
i
n
t
h
e shape
of s
qua
re wa
ve
. Thi
s
sq
uare
w
a
ve i
s
gi
ve
n
to
th
e reson
a
n
t
circu
it, and
g
i
v
e
n
to
rectifier circu
it.
There
are
co
n
v
ent
i
o
nal
m
e
t
hods
i
n
res
o
nan
t
con
v
e
r
t
e
rs,
t
h
ey
are
di
sc
us
sed a
n
d t
h
ei
r l
i
m
i
t
a
t
i
ons are
sho
w
n.
Th
eir
lim
i
t
atio
n
s
ar
e r
ectif
ied u
s
ing
th
is
pr
op
o
s
ed
t
o
po
logy .Th
e
p
r
op
o
s
ed
top
o
l
og
y is a typ
e
o
f
lo
ad
r
e
so
nant
con
v
e
r
t
e
r, a
nd
i
t
i
s
nam
e
d as
hy
b
r
i
d
res
o
nan
t
conve
rt
er
. As
t
h
e nam
e
denot
es, t
h
e p
r
op
o
s
ed t
o
pol
ogy
h
a
s t
h
e
com
b
i
n
at
i
on o
f
b
o
t
h
seri
es a
nd
paral
l
e
l
res
ona
nt
co
n
v
ert
e
r. Thi
s
hy
b
r
i
d
reso
nant
c
o
n
v
e
rt
er has t
w
o
m
a
jor
t
o
p
o
l
o
gi
es,
one
of t
h
at
i
s
LC
C
reso
na
nt
co
nv
ert
e
r an
d a
not
h
e
r o
n
e i
s
LLC
reso
na
nt
co
nve
rt
er.
Am
ong t
h
e t
w
o
t
o
p
o
l
o
gi
es, o
u
r
pr
op
ose
d
m
e
tho
d
com
e
s un
der t
h
e LLC
t
y
pe reso
na
nce
con
v
ert
e
r. He
nce, i
n
t
h
i
s
pa
per
we
rel
a
t
e
t
h
e l
i
m
i
tat
i
ons
of
vari
o
u
s c
o
n
v
e
n
t
i
o
n
a
l
reso
nant
c
o
nve
rt
ers
bet
w
e
e
n t
h
e
pr
o
pose
d
t
o
pol
ogy
.
A
nd t
h
e
pr
o
pose
d
c
o
n
v
e
rt
er sat
i
s
fi
es
t
h
e co
n
d
i
t
i
on
of ac
hi
evi
ng
ZVS
fo
r t
h
e
wh
ol
e l
o
a
d
ra
nge
, are
f
o
u
n
d
u
s
i
n
g
sim
u
l
a
t
i
on res
u
l
t
s
. The
reso
nant
c
o
m
pone
nt
val
u
es a
r
e
anal
y
zed usi
ng F
H
A m
e
tho
d
a
nd a
ppl
i
e
d f
o
r
si
m
u
latio
n
,
to red
u
c
e th
e
vo
ltag
e
stress.
2.
CO
NVE
NTI
O
N
A
L C
O
N
V
E
RTERS
Th
ere are m
a
n
y
reson
a
n
t
-conv
erter t
o
po
log
i
es, and
th
ey all o
p
e
rate in
essen
tially th
e same way. A
squ
a
re
pul
se
o
f
v
o
l
t
a
ge
or c
u
rre
nt
ge
nerat
e
d
by
t
h
e p
o
w
er
swi
t
c
hes i
s
a
p
pl
i
e
d t
o
a
reso
nant
ci
rc
ui
t
.
E
n
er
gy
ci
rcul
at
es i
n
t
h
e reso
na
nt
ci
rcui
t
,
an
d som
e
or al
l
of i
t
i
s
t
h
en t
a
p
p
ed
of
f t
o
sup
p
l
y
t
h
e o
u
t
put
.
Am
ong
re
son
a
nt
con
v
e
r
t
e
rs, t
w
o
basi
c t
y
pes
are t
h
e se
ri
es r
e
so
nant
c
o
n
v
e
r
t
e
r (SR
C
)
, s
h
o
w
n i
n
Fi
gu
re
2(a
)
, a
n
d t
h
e
p
a
ral
l
e
l
reso
na
nt
co
nv
ert
e
r (PR
C
), s
h
o
w
n i
n
Fi
g
u
r
e 2(
b)
. B
o
t
h
o
f
t
h
ese co
n
v
ert
e
rs re
gul
at
e t
h
ei
r out
put
vol
t
a
ge by
chan
gi
n
g
t
h
e
fr
eque
ncy
of
t
h
e
dri
v
i
n
g
vol
t
a
ge
suc
h
t
h
at
t
h
e i
m
pedance o
f
t
h
e
reso
na
nt
ci
r
c
ui
t
cha
n
g
e
s.
Fi
gu
re
2(a
)
.
Se
ri
es res
o
nant
c
o
n
v
e
r
t
e
r
Fi
gu
re
2(
b
)
.
C
i
rcui
t
di
agr
a
m
of paral
l
e
l
res
o
n
a
nt
conve
r
ter
2.1. Series Res
o
nant
Conver
ter
Th
e ser
i
es
r
e
so
n
a
n
t
conv
er
ter
h
a
s th
e inducto
r
and
cap
a
cito
r
ar
r
a
ng
ed
i
n
ser
i
es to
th
e lo
ad
. Th
is
dual
-
b
r
i
d
ge se
ri
es res
ona
nt
con
v
e
r
t
e
r has
i
nhe
rent
l
i
m
i
t
a
t
i
on o
f
ZV
S o
p
erat
i
o
n f
o
r
v
a
ri
at
i
on i
n
l
o
a
d
a
n
d
i
n
p
u
t
/
out
put
v
o
l
t
a
ges.
In
rep
o
rt
e
d
w
o
r
k
s, L
L
C
-
t
y
pe res
o
n
a
nt
t
a
nk
has b
een p
r
o
v
e
d
us
eful
f
o
r e
x
t
e
n
d
Z
V
S
ran
g
e
fo
r c
o
nv
ent
i
onal
fi
xe
d
-
fre
que
ncy
reso
nant
c
o
nve
rt
er
wi
t
h
sm
al
l
com
ponent
st
re
ss
[
5
]
.
Th
e inp
u
t
vo
ltag
e
is sp
lit b
e
tween
th
is im
p
e
d
a
n
ce an
d
th
e lo
ad
. Sin
ce the SRC wo
rk
s as a v
o
ltage
di
vi
de
r
bet
w
ee
n t
h
e i
n
p
u
t
a
n
d t
h
e l
o
ad
, t
h
e
DC
gai
n
of a
n
SR
C
i
s
al
wa
y
s
l
o
wer
t
h
a
n
1.
Un
de
r l
i
ght
-l
oa
d
co
nd
itio
ns, th
e i
m
p
e
d
a
n
ce of th
e lo
ad
is v
e
ry larg
e co
m
p
ared
to
th
e im
p
e
d
a
n
ce
o
f
th
e
reso
nan
t
circu
it; so
it
b
eco
m
e
s d
i
fficu
lt to
reg
u
l
ate th
e o
u
t
pu
t, sin
ce th
is requ
ires th
e frequ
ency to
ap
p
r
o
a
ch
in
fin
ity as t
h
e lo
ad
app
r
oaches ze
r
o
. Eve
n
at
no
m
i
nal
l
o
ads, w
i
de fre
que
ncy
vari
at
i
o
n i
s
requi
red t
o
re
g
u
l
a
t
e
t
h
e out
p
u
t
whe
n
th
ere is a larg
e
in
pu
t-v
o
ltag
e
ran
g
e
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
53
8 – 546
54
0
2
.
2
.
Pa
ra
llel
Reso
na
nt Converter
The
paral
l
e
l
re
son
a
nt
c
o
nve
rt
er
has t
h
e
i
n
du
ct
or a
n
d ca
pac
i
t
o
r ar
ra
nge
d i
n
paral
l
e
l
t
o
t
h
e l
o
ad
. T
h
e
circu
it d
i
ag
ram
o
f
th
e p
a
rallel reson
a
n
t
con
v
erter is sh
own
b
e
low. Th
e lo
ad
is co
nn
ected
in
p
a
rallel with
th
e
resona
nt circui
t, inevitability
requir
ing large
am
ounts of circ
ulating curre
nt. This m
a
kes it difficult to apply
p
a
rallel reson
a
n
t
top
o
l
o
g
i
es in
ap
p
lication
s
with
hi
g
h
po
w
e
r densi
t
y
o
r
l
a
rge
l
o
a
d
vari
at
i
ons
.
The i
n
ductor is
de
note
d
as
Lr
and the ca
pacit
o
r
i
s
de
n
o
t
e
d a
s
C
r
.
The
l
o
a
d
i
s
de
not
e
d
as R
L
.
3.
EX
I
S
T
I
N
G
TO
P
O
L
O
G
Y
To
o
v
e
rco
m
e th
e li
m
itat
i
o
n
s
o
f
t
h
e conv
en
t
i
o
n
a
l conv
erters, th
e ex
istin
g
to
po
log
y
is d
e
sig
n
e
d
with
th
e co
m
b
in
ation
of
b
o
t
h
series and
p
a
rallel co
nv
erter co
mb
in
ation
s
.
In
th
is it h
a
s two
d
i
v
i
sion
s, on
e
is LCC
r
e
son
a
n
t
conv
er
ter
an
d ano
t
her
o
n
e
is th
e
LLC r
e
son
a
n
t
co
nv
er
ter
topolo
g
y
.
Th
e br
ief
descr
i
p
tio
n of
th
ese
co
nv
erters is as fo
llo
ws.
3.
1. L
C
C
Re
s
o
n
a
nt
C
o
n
v
er
ter
To
so
l
v
e th
ese li
mitat
i
o
n
s
, a co
nv
erter com
b
in
in
g
th
e series and
p
a
rallel co
n
f
iguratio
n
s
, called
a
ser
i
es-p
ar
allel r
e
son
a
n
t
conv
er
ter
(
SPRC)
h
a
s
b
e
en
p
r
op
osed
. On
e v
e
r
s
i
o
n
of
th
is str
u
ct
ur
e u
s
e o
n
e
indu
ctor
and t
w
o capaci
t
o
rs,
or an LC
C
confi
g
u
r
at
i
o
n, as sh
ow
n i
n
Fi
gu
re 3
(
a).
Al
t
h
o
u
g
h
t
h
i
s
co
m
b
i
n
at
i
on ove
r
c
om
es
t
h
e dra
w
back
s
of a si
m
p
l
e
seri
es res
ona
nt
con
v
ert
e
r o
r
paral
l
e
l
res
ona
nt
co
nve
rt
er b
y
em
beddi
n
g
m
o
re
reso
na
nt
f
r
e
q
u
e
nci
e
s, i
t
req
u
i
res t
w
o i
nde
p
e
nde
nt
p
h
y
s
i
cal
capaci
t
o
rs t
h
at
are
bot
h l
a
rge
an
d
ex
pe
nsi
v
e
because of the
high AC c
u
rrents. So
the physical
capacitors
are the limitations of thes
e LCC type resonant
conve
r
ters.
Fi
gu
re
3(a
)
.
L
L
C
t
y
pe res
o
na
nt
co
n
v
ert
e
r
In t
h
i
s
t
h
e ca
p
aci
t
o
rs are co
nnect
e
d
i
n
pa
r
a
l
l
e
l
,
wi
t
h
t
h
e i
nduct
o
r i
n
s
e
ri
es, C
r
1 a
n
d
C
r
2 are t
h
e
capacitors
, L
r
i
s
the i
n
ductor.
3.
2.
LL
C Reso
nan
t
Co
nver
te
r
To get
si
m
i
l
a
r charact
eri
s
t
i
c
s
wi
t
h
o
u
t
cha
n
gi
n
g
t
h
e p
h
y
s
i
cal
com
ponent
cou
n
t
,
t
h
e SP
R
C
can be
al
t
e
red t
o
use t
w
o i
n
d
u
ct
o
r
s and
one ca
paci
t
o
r
,
fo
rm
i
ng an LLC
reso
na
nt
con
v
e
r
t
e
r Fi
g
u
r
e 3(
b
)
. A
n
ad
v
a
nt
ag
e
of the LLC over the LCC topology is that th
e two physical
inductors can often be in
tegrat
ed into one physical
com
pone
nt, including
bot
h the
series res
o
na
nt inducta
n
ce,
Lr, a
nd t
h
e tra
n
sform
e
r’s m
a
gnetizing inductance,
Lm
. Th
e LLC reson
a
n
t
con
v
erter h
a
s m
a
n
y
ad
d
ition
a
l b
e
n
e
fits ov
er con
v
e
n
tion
a
l reso
n
a
n
t
conv
erters. For
ex
am
p
l
e, it can
regu
late th
e
o
u
t
p
u
t
ov
er wi
d
e
lin
e and load
v
a
riation
s
with
a relativ
ely s
m
all v
a
riatio
n
of
switch
i
ng
frequ
en
cy, wh
ile
main
tain
in
g
ex
cellen
t
effici
ency.
It can a
l
so ac
hieve ze
ro voltage
swi
t
ching
(ZVS)
ov
er th
e en
tir
e operating range.
Fi
gu
re
3(
b
)
. L
L
C
t
y
pe res
o
na
nt
co
n
v
ert
e
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
The
FHA
A
nal
ysi
s
of
Du
al
-B
r
i
dge
LLC
Type
Reso
n
ant
C
o
n
vert
e
r (
Arn
ol
d
Fred
d
eri
c
s)
54
1
Using
th
e LLC reson
a
n
t
con
f
i
g
uratio
n
i
n
an
iso
l
ated
h
a
lf-b
ri
d
g
e
topo
lo
g
y
will b
e
d
e
scrib
e
d
n
e
xt
,
fol
l
o
we
d
by
t
h
e m
odi
fi
cat
i
o
n
s
i
n
i
t
f
o
r t
h
e
n
e
w
pr
o
pose
d
t
o
pol
ogy
.
3.3. Hybrid Resonant Converter
Thi
s
re
so
na
nt
con
v
e
r
t
e
r ci
rc
u
i
t
s
com
e
s unde
r l
o
a
d
reso
na
nt
co
nve
rt
ers
.
I
n
t
h
i
s
co
n
v
ert
e
r
ci
rcui
t
s
t
h
e
p
o
wer fl
o
w
to th
e l
o
ad is co
n
t
ro
lled b
y
th
e
reson
a
n
t
tan
k
im
p
e
d
a
n
c
e wh
ich in
t
u
rn is con
t
ro
lled
b
y
th
e
switch
i
ng
frequ
e
n
c
y in
co
m
p
arison
to
th
e r
e
so
nan
t
fr
equ
e
ncy o
f
th
e tank
.
Th
is h
ybr
id
r
e
so
n
a
n
t
conv
er
ter
is a
vol
t
a
ge
- s
o
urc
e
seri
es res
o
n
a
nt
co
n
v
ert
e
r
.
The Fi
gu
re
3(
c) sh
o
w
s t
h
e
ci
rcui
t
o
f
hy
br
i
d
res
ona
nt
c
o
nve
rt
er
to
po
log
y
.
Fi
gu
re 3(c
)
.
C
i
rcui
t
di
agr
a
m
of hy
bri
d
reso
na
nt
co
n
v
ert
e
r
t
o
pol
ogy
4.
PROP
OSE
D
TOPOLOG
Y
The m
odi
fi
cat
i
ons d
o
n
e i
n
t
h
e hy
b
r
i
d
res
ona
nt
co
nve
rt
er t
o
p
o
l
o
gy
gi
ves us t
h
e n
e
w co
nve
rt
er
to
po
log
y
in
which
th
e zero
v
o
ltag
e
switch
i
ng can
b
e
ach
ieved
th
rou
gho
u
t
th
e lo
ad
rang
e.
Th
at in
tu
rn
red
u
c
es
the voltage stress across the
switche
s.
From the existing to
pology the
switches a
r
e replaced
with
powe
r
MO
SFET
on
t
h
e pr
im
ar
y sid
e
an
d
on
th
e seco
nd
ar
y si
de
t
h
e di
o
d
es a
r
e
repl
ace
d wi
t
h
po
we
r M
O
S
F
E
T
. The
co
nv
erter co
nfi
g
uration
in Figu
re 4(a) h
a
s three m
a
in
p
a
rts:
a) P
o
we
r swi
t
c
hes S
1
a
nd
S2
,
whi
c
h are
us
u
a
l
l
y
M
O
SFET
s
, are c
o
n
f
i
g
ur
ed t
o
fo
rm
a squa
re
wave
gene
rat
o
r. T
h
i
s
gene
rat
o
r
pr
od
uces a
uni
pol
a
r
sq
uare
-wa
v
e
v
o
l
t
a
ge,
Vs
q,
by
dri
v
i
n
g s
w
i
t
c
h
e
s S1 a
n
d S
2
,
wi
t
h
altern
atin
g
50% du
ty cycle
s
for each
switch
.
A sm
a
ll d
ead
tim
e
is n
eed
ed
between t
h
e consecutive
tran
sitio
ns,
bo
th
to prev
en
t t
h
e po
ssib
ility o
f
cro
ss con
d
u
c
tio
n and
t
o
allow tim
e fo
r ZVS to
b
e
ach
i
ev
ed
.
b)
T
h
e
res
ona
nt
ci
rc
ui
t
,
al
so
cal
l
e
d a re
so
na
nt
net
w
o
r
k, c
o
nsi
s
t
s
of t
h
e
re
son
a
nt
ca
paci
t
a
nce, C
r
,
an
d
t
w
o i
n
duct
a
nc
es—t
he seri
es
reso
na
nt
i
n
d
u
c
t
ance, Lr, a
nd
t
h
e t
r
ans
f
o
r
m
e
r are m
a
gnet
i
z
i
ng i
n
duct
a
nce
,
Lm
.
The t
r
a
n
sf
orm
e
r t
u
r
n
s rat
i
o
i
s
n. The
res
o
n
a
nt
net
w
or
k
circulates the electric curre
nt and, as a resul
t
, the
energy is circ
ulated and
delivered to t
h
e loa
d
thro
ugh
th
e
tr
an
sf
or
m
e
r
.
Th
e tr
an
sf
or
m
e
r
’
s
p
r
im
ar
y w
i
nd
ing
receives a
bi
polar squa
re-wave voltage.
This
voltage is tr
a
n
sferred to t
h
e s
econda
r
y
side,
with the
tra
n
sform
e
r
p
r
ov
id
ing
bo
th electrical iso
l
atio
n
an
d th
e tu
rn
s
ratio
to d
e
li
v
e
r th
e
requ
ired
v
o
ltag
e
lev
e
l
to
th
e
ou
tpu
t
.
c) The sec
o
ndary side has t
h
e re
placem
ent of di
ode
s wi
th the power
MOSFET
s; this
m
a
kes the
rectifiers to
perfo
r
m
syn
c
h
r
o
nou
s rectificatio
n
to
re
duce
con
duct
i
o
n l
o
sses, especi
al
l
y
benefi
ci
al
i
n
l
o
w-
vol
t
a
ge
an
d
hi
gh
cu
rre
nt
a
ppl
i
cat
i
ons.
Fi
gu
re
4(a
)
.
C
i
rcui
t
di
agr
a
m
of t
h
e
p
r
o
p
o
se
d
con
v
e
r
t
e
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
53
8 – 546
54
2
4.
1. B
a
si
c Pr
o
cedure
for
FH
A
an
al
ysi
s
The LLC c
onverter is operated in
t
h
e
vi
ci
ni
t
y
of se
ri
es res
ona
nce.
This m
eans that the m
a
in
co
m
p
o
s
ite of circu
l
atin
g curren
t in th
e
reson
a
n
t
n
e
t
w
ork i
s
at or cl
ose t
o
the se
ries
res
o
nant
freque
ncy. T
h
is
pr
o
v
i
d
es a hi
n
t
t
h
at
t
h
e ci
rcul
at
i
ng cu
rre
nt
consi
s
t
s
m
a
i
n
l
y
of a si
ngl
e fre
que
ncy
an
d
i
s
a pure si
nu
soi
d
al
current. Although
this as
sum
p
tion is
not com
p
le
tely accurate, it is
close-especially whe
n
the s
q
uare
Wave
’s
switching cycle corres
p
onds
to the series resonant fre
qu
en
cy
. If t
h
e squa
re wave i
s
di
f
f
e
rent
fr
om
t
h
e
seri
es
resona
nce, the
n
in reality
m
o
re fre
que
ncy com
pone
nt
s are include
d; but an appr
oxim
ation usi
ng the
single
fundam
ental h
a
rm
onic of the
squa
re wa
ve c
a
n be m
a
de
while ignori
ng all
highe
r
order
harm
onics and s
e
tting
pos
sible acc
uracy issues
aside
for t
h
e m
o
ment. This
is
th
e so
-called first h
a
rm
o
n
i
c
ap
pro
x
i
m
a
tio
n
(FHA)
m
e
thod,
now
widely use
d
for res
ona
nt-c
onverter design. This
m
e
thod
pr
oduces accept
a
ble design re
s
u
lts as
l
o
n
g
as t
h
e co
nve
rt
er o
p
e
r
at
es at
or cl
ose t
o
t
h
e seri
es resona
nce. T
h
e F
HA m
e
t
hod ca
n be use
d
t
o
d
e
vel
o
p
th
e g
a
i
n
,
or th
e in
pu
t-t
o
-o
u
t
p
u
t v
o
ltag
e
-tran
s
fer fun
c
tio
n. The first step
s i
n
t
h
is
p
r
o
cess are
as fo
llo
ws:
a)
R
e
prese
n
t
t
h
e
pri
m
ary
-
i
n
p
u
t
uni
pol
a
r
s
qua
r
e
wav
e
vo
ltage and
curren
t
with
th
eir fu
nd
am
en
tal
com
pone
nt
s, i
g
no
ri
n
g
al
l
hi
g
h
e
r-
or
der
ha
rm
oni
cs.
b)
Ignore the e
f
fect from
the out
put ca
pacitor a
nd t
h
e transform
e
r’s seconda
r
y-side
leakage
inductance
.
c)
R
e
fer t
h
e
obt
ai
ned
sec
o
n
d
ary
-
si
de
vari
abl
e
s
t
o
t
h
e
p
r
i
m
ary
si
de.
d)
R
e
prese
n
t
t
h
e refe
rre
d seco
n
d
ary
v
o
l
t
a
ge,
whi
c
h i
s
t
h
e bi
pol
a
r
sq
uare
-w
ave v
o
l
t
a
ge (V
so)
,
an
d
t
h
e refer
r
e
d
secon
d
a
r
y
curr
ent
wi
t
h
onl
y
t
h
ei
r fun
d
am
ent
a
l
com
pone
nt
s, agai
n i
g
n
o
ri
ng al
l
higher-order harm
onics.
W
i
t
h
these ste
p
s accom
p
lished, a circuit model of the
LL
C resonant hal
f
-bri
dge c
o
nve
r
ter can
be obtained.
In t
h
e ci
rc
ui
t
m
odel
,
bot
h i
n
put
v
o
l
t
a
ge a
n
d o
u
t
p
ut
vol
t
a
ge are i
n
si
n
u
s
oi
dal
f
o
rm
wi
t
h
t
h
e sam
e
si
ngl
e
fre
que
ncy
-
i
.
e
.,
t
h
e fu
n
d
am
ent
a
l
com
ponent
of t
h
e
sq
uare
wave v
o
l
t
a
ge, gene
rat
e
d by
t
h
e
swi
t
c
hi
n
g
o
p
erat
i
o
n
of
S
1
a
n
d
S
2
.T
hi
s m
odel
i
s
ca
l
l
e
d t
h
e
res
ona
nt
c
o
n
v
er
te
r’s
FH
A circ
uit m
o
d
e
l.
Assu
m
p
tio
n
s
for th
e an
alysis
are, all inductors, ca
pacitors,
d
i
od
es, switches,th
e
HF transfor
m
e
r are ass
u
m
e
d to be
ide
a
l.
To facilitate th
e calcu
latio
n, all q
u
a
n
tities wo
u
l
d
b
e
n
o
rm
al
ized
b
y
t
h
e
fo
ll
o
w
i
n
g b
a
se
v
a
lu
es.
;
√
;
;
Th
e no
rm
alize
d
switch
i
ng
freq
u
e
n
c
y
is:
F
;
;
.
The norm
alize
d
reactance of
t
h
e resona
nt
tank:
X
,
pu=F;
X
,
;
,
;
The se
ri
es
para
l
l
e
l
i
nduct
a
nce
rat
i
o
i
s
=
/
.
Th
e no
rm
alize
d
fund
am
en
tal
p
r
im
ary
o
u
t
pu
t
vo
ltag
e
:
v
,
√
V
,rpu Sin
,
, is th
e no
rm
ali
ze rm
s v
o
ltag
e
.
v
,
=
sin
.
The
n
o
rm
al
i
z
ed
fu
n
d
am
ent
a
l
com
pone
nt
o
f
vol
t
a
ge
acr
oss
t
h
e hi
gh
-f
re
que
ncy
t
r
a
n
sf
orm
e
r i
s
,
v
,
=
√
,
∅
∅
,
∅
.
V
,
√
/
, fu
n
d
am
ent
a
l
rm
s co
m
pone
nt
i
s
t
h
e
n
o
rm
al
i
zed.
M, is th
e
no
rm
alized
conv
erter
v
o
ltag
e
g
a
i
n
,
M=
′
;
′
/
=2
/
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
The
FHA
A
nal
ysi
s
of
Du
al
-B
r
i
dge
LLC
Type
Reso
n
ant
C
o
n
vert
e
r (
Arn
ol
d
Fred
d
eri
c
s)
54
3
Th
e
qu
ality facto
r
is
Q=
/
It fo
rm
s th
e
b
a
sis fo
r t
h
e an
al
ysis an
d fi
n
a
lly th
e val
u
es
for the
com
p
one
n
ts are
found
and applied
for th
is p
r
o
p
o
s
ed
to
po
log
y
an
d
it is ch
eck
ed
u
s
ing
PSIM si
m
u
latio
n
.
The resu
lts sh
ows th
at th
e reson
a
n
c
e
com
pone
nts’
value m
a
kes the conve
r
ter topology to ac
hiev
e 80% of efficiency. T
h
is
anal
ysis can be
done for
diffe
re
nt co
n
v
e
r
ter to
p
o
lo
gies
[6]
,
[
7
]
.
5
.
SIMULATION
CIRCUIT
The si
m
u
l
a
ti
on
i
s
done usi
ng
t
h
e val
u
es o
b
t
a
i
n
ed by
t
h
e F
HA an
al
y
s
i
s
. The si
m
u
l
a
ti
on
t
ool
used i
s
PSIM.
Th
e sim
u
la
tio
n
circuit an
d
t
h
e waveform
s o
f
th
e
g
a
tin
g sign
als, vo
ltag
e
acro
s
s th
e cap
acito
r, ou
tpu
t
vol
t
a
ge
,Z
VS
acros
s t
h
e
swi
t
ch a
r
e al
s
o
s
h
ow
n i
n
Fi
gu
re
5
(a)
-
(
f).
T
h
e i
n
p
u
t
vol
t
a
ge i
s
2
0
0
V
;
t
h
e e
x
pect
ed
out
put
vol
t
a
g
e
i
s
nearl
y
4
8
V
.
The
vol
t
a
ge ac
ross t
h
e ca
p
acito
rs sh
ou
l
d
b
e
2
00V. Th
e tran
sfo
r
m
e
rs tu
rn ratio
i
s
kept
at
25:
1
2
:
1
2. Th
e resi
st
or i
s
connect
ed on the pri
m
ar
y sid
e
in
s
e
ries with
th
e so
urce, to
redu
ce the
cu
rren
t; th
is is d
o
n
e
during
the si
m
u
latio
n
.
Th
e v
a
lue o
f
t
h
e cap
acitan
ce can
b
e
varied
t
o
g
e
t d
i
fferen
t ou
tpu
t
s.
The l
e
a
k
a
g
e i
n
duct
a
nce
of
t
h
e t
r
an
sf
orm
e
r
pl
ay
s a m
a
jor
rol
e
.
S
o
,
t
o
ge
t
a sm
oot
h
o
u
t
put
t
h
e
val
u
e
of
t
h
e
leakage i
n
duct
a
nce ca
n
be c
h
ange
d.
ZVS
o
p
erat
i
o
n
can
be co
n
f
i
r
m
e
d by
chec
ki
ng t
h
e
phase
a
ngl
es
of
and
with
resp
ect to
and
,
respect
i
v
el
y
.
F
o
r sam
e
out
p
u
t
po
we
r, t
h
e
o
u
t
put
c
u
r
r
ent
i
2
s
h
o
w
s l
e
ss
neg
a
t
i
v
e perce
n
t
a
ge
at
40
V o
u
t
p
ut
t
h
an
48
V
o
u
t
p
ut
.
T
h
e a
b
o
v
e m
e
nt
i
one
d
and
are
t
h
e vol
t
a
ge
s of pri
m
ary
and
se
conda
r
y sides
respectively.
Fi
gu
re
5(a
)
.
Si
m
u
l
a
t
i
on ci
rc
ui
t
of
p
r
o
p
o
se
d c
o
n
v
e
r
t
e
r
The
wa
veform
s for t
h
e
gating signals
of the switche
s on
th
e pr
im
ar
y si
d
e
S1
a
n
d S2
are s
h
own i
n
Fi
gu
re 5(
b
)
.
Fi
gu
re
5(
b
)
. T
h
e wa
vef
o
rm
s o
f
gat
e
si
g
n
al
s
o
f
s
w
i
t
c
h S
1
a
n
d S
2
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
53
8 – 546
54
4
The
wave
fo
rm
s of t
h
e
gat
i
n
g si
g
n
al
s o
f
t
h
e s
w
i
t
c
hes
o
n
t
h
e sec
o
nda
ry
si
de i
s
s
h
o
w
n i
n
t
h
e
Fi
gu
re 5(c
)
.
Fi
gu
re
5(c
)
.
Th
e wa
vef
o
rm
s o
f
t
h
e
gat
i
n
g si
g
n
al
s f
o
r t
h
e
sec
o
n
d
a
r
y
si
de
sw
i
t
c
hes
Th
e cap
acitor
(Cr) in
th
e
reso
nan
ce
b
l
o
c
k sh
ou
ld
h
a
v
e
th
e v
o
ltage o
f
2
0
0
V
, and
its si
m
u
latio
n
wave
f
o
rm
i
s
sh
ow
n i
n
t
h
e
Fi
g
u
re
5
(
d
)
.
Figu
re
5(
d
)
. T
h
e wa
vef
o
rm
fo
r the
capacito
r
voltage
(
V
cr
)
Fi
gu
re
5(e
)
.
Th
e wa
ve
fo
rm
of
o
u
t
p
ut
v
o
l
t
a
ge
o
f
pr
op
ose
d
c
o
n
v
e
r
t
e
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
The
FHA
A
nal
ysi
s
of
Du
al
-B
r
i
dge
LLC
Type
Reso
n
ant
C
o
n
vert
e
r (
A
rn
ol
d
Fred
deri
cs)
54
5
Th
e
ou
tpu
t
fr
om
th
e second
ary sid
e
is m
easure
d
i
n
Vp2
of the sim
u
lation diagram
,
and t
h
e e
xpe
cted
resu
lt sh
ou
ld be 48
V. Th
e
wav
e
fo
rm
for th
e
o
u
t
p
u
t
vo
ltag
e
is sho
w
n
in th
e Figu
re
5
(
e). Th
e FHA an
alysis is
do
ne t
o
fi
n
d
t
h
e val
u
es
of t
h
e
com
pone
nt
s t
h
at
can appl
i
e
d t
o
t
h
e p
r
op
ose
d
con
v
ert
e
r t
o
p
o
l
ogy
, s
o
t
h
at
t
h
e zvs
is ach
iev
e
d
fo
r th
e wh
o
l
e lo
ad
r
a
ng
e, if
it is attain
ed
,th
e
ou
tpu
t
vo
ltag
e
sh
ou
ld
b
e
ar
ound
48V
, ev
en
t
h
o
ugh
th
ere
v
a
riatio
n in
switch
e
s an
d lo
ad
. Th
e
v
a
lu
es th
at
a
r
e obtaine
d
from
the analysis and a
p
plied i
n
t
h
e
si
m
u
latio
n
are
Lr: 165
.3
9
µ
H;
Cr: 25
m
F
; L
m
:
15
9.3
µ
H.
6.
CO
NCL
U
S
ION
The L
L
C
t
y
pe
dual
-
b
r
i
d
ge
res
ona
nt
c
o
n
v
e
r
t
e
r i
s
a
n
al
y
zed
w
i
t
h
va
ri
o
u
s
ot
h
e
r c
o
n
v
e
n
t
i
ona
l
t
o
p
o
l
o
gi
es
and
t
h
e basi
c anal
y
s
i
s
pr
oce
d
u
r
e
i
s
do
ne u
s
i
ng FH
A
an
alysis. And
t
h
e
resu
lts are used
fo
r sim
u
latio
n
an
d
v
e
rified
. Th
e resu
lts o
f
th
e sim
u
la
tio
n
sh
ow th
at th
is p
r
o
posed
to
po
log
y
,
main
tain
s zero v
o
ltag
e
switchin
g
fo
r
v
a
ri
o
u
s
switches for all th
e lo
ad
rang
e,
with
ou
t an
y vo
ltag
e
stress
for the switch
e
s. The co
nv
erter m
a
in
tain
s
the
efficiency
of 80%, for whole
loa
d
ra
ng
e.
The
fut
u
re
w
o
rk i
s
base
d o
n
t
h
e gat
i
ng sc
he
m
e
s for t
h
e s
w
i
t
c
hes
t
h
at
can
re
duce
t
h
e am
ount
o
f
ci
rcul
at
i
n
g
cu
rr
ent
,
a
n
d
t
o
i
n
cr
ease t
h
e
o
v
eral
l
effi
ci
ency
of
t
h
e c
o
n
v
e
r
t
e
r.
REFERE
NC
ES
[1]
JT Bialasiewicz. Renewab
l
e
en
erg
y
s
y
stems with phototvoltaic power ge
nerato
r: Operation an
d modeling.
IEEE
Transactions on
Indus
trial Electronics.
2008
; 55(
7): 2752–2758.
[2]
RW De Doncker, DM Divan, MH Kher
aluwala.
A three-ph
ase s
o
ft-switched
hig
h
power density
DC/DC converter
for high pow
er
applications.
IEEE Transactions
on Industrial
Ap
plications
. 1991
; 27(1): 63–73
.
[3]
XD Li, AKS Bh
at. Analy
s
is and
design of h
i
gh-fr
equency
is
olated
dual-br
idge ser
i
es
resonant dc/d
c conv
erter.
IE
EE
Transactionson Powe
r
E
l
ectr
oni
c
s
.,
2010; 21(2):
850–862.
[4]
JM Ca
rra
sc
o et
a
l
. Powe
r ele
c
tronic
s
s
y
ste
m
s for the grid
integr
ation o
f
ren
e
wable
energ
y
sour
ces: A survey
.
IEEE
Transactions on
Indus
trial Electronics.
2006
; 53(
4): 1002–1016.
[5]
AKS Bhat.
Ana
l
ysis and design
of a fixed-freq
uency LCL-type
series resonant converte
r with
capacitive outpu
t
filt
er.
IE
EE
Proceed
ings Circ
uit
s
Devices
S
y
st
e
m
. 1997; 144(2)
:
97–103.
[6]
I Batars
eh. R
e
s
onant conv
ert
e
r to
pologies
with
thr
ee and
four en
er
g
y
s
t
or
age
elem
e
n
ts
.
IEEE Transactions on
Power
Electronics
. 199
4; 9(1): 64–73.
[7]
AKS
Bhat, S
B
Dewan. A gen
e
r
a
li
zed
approa
ch
for the s
t
ead
y s
t
a
t
e an
al
ys
is
of r
e
s
onant inv
e
rt
ers
.
I
EEE T
r
ansactio
ns
on Industrial
Ap
plications
. 1989
; 25(2): 326–338
.
[8]
GG Oggier, M Ordonez, JM Galvez, F Luch
in
o. Fast transi
en
t boundar
y
contr
o
l and stead
y
-
state op
eration of
the
dual active br
id
ge conv
erter
us
i
ng the n
a
tura
l s
w
itching surfa
ce
.
IEEE Transactions on Power
Electronics
. 201
4;
29(2): 946–957.
[9]
XD Li, A Rathore. A gener
a
l stud
y
of
soft-switching ranges of
dual-bridg
e
re
so
nant conver
t
ers
using a modified
com
p
lex AC anal
y
s
is
approa
ch.
Proceed
ings IE
EE 6th Conf
ere
n
ce I
ndustrial Ele
c
tronics
App
licat
ions
, Be
ijin
g,
China. 2011: 31
6–321.
BIOGRAP
HI
ES OF
AUTH
ORS
Mr.
A. A
r
n
o
ld
Fred
d
e
r
i
cs
r
ece
ived h
i
s
B.T
ech
.
degre
e
in E
l
e
c
t
r
ica
l
and
E
l
ec
tro
n
ics
Eng
i
neer
in
g
from
Anna
Univers
i
t
y
, T
a
m
ilnad
u, India. P
r
es
ent
l
y
he is pursuing
M.Tech in Power Electronics and
Drives
from
Karun
y
a Univ
ers
i
t
y
,
Coim
batore, T
a
m
il Nadu, India
.
His
pres
ent res
earch int
e
res
t
s
ar
e
Power converter
s, Special m
achines, Solar
Application.
Prof. K. Vinoth Kumar
recei
ved his
B.E. de
gree in El
ec
tric
a
l
and Ele
c
tron
ic
s
Engineering fr
om
Anna University, Chennai,
Tamil
Nadu, India. He obtain
e
d M.Tech
in Power Electronics and Driv
es
from
VIT Unive
r
sit
y
, Ve
llore
,
T
a
m
il Nadu,
Indi
a
.
Present
l
y
h
e
is
working as an
Assistant Professor
in the School
of El
ectr
i
cal Science, K
a
run
y
a
Institut
e
of
Technolog
y
and Scien
ces (Karu
n
y
a
Univers
i
t
y
), Co
i
m
b
atore,
Tam
il
Nadu, India. He is pursuing Ph
D degree
in Karuny
a University
,
Coim
batore, Ind
i
a. His present research in
ter
e
st
s are Condition
Monitoring of
Industrial Drives,
Neural Network
s
and Fuzzy
Lo
gic, Special machin
es, Application of Soft
Co
mputing Techniqu
e.
He has publish
e
d various p
a
pers
in in
tern
ation
a
l
journals
and
co
nferences and
also published fou
r
textbooks. He i
s
a m
e
m
b
er of
IEEE (USA), MIS
TE and als
o
in Interna
tion
a
l associ
ation o
f
Ele
c
tri
cal
Eng
i
n
eers
(IAENG).
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
4
,
D
ecem
b
er
2
014
:
53
8 – 546
54
6
Prof.
S
h
a
n
k
a
r. A re
ce
ived
hi
s
B.E.
degr
ee
i
n
El
ectr
i
c
a
l
and
El
ectron
i
cs
En
gineer
ing in
D
M
I
coll
ege of
engin
eering from
Ann
a
Univers
i
t
y
,
Ch
enna
i, Tamil Nadu, India. He
ob
tain
ed M
.
T
ech i
n
Power s
y
stem
s from
kalasaling
a
m
universit
y Universi
ty
, madurai, Tamil Nadu
,
India. Pr
esently
he
is working as an Assistant Pro
f
essor in the School
of Electrical Science,
Karun
y
a Institute
of
Techno
log
y
and
Scien
ces (Karu
n
y
a
Universi
t
y
),
Coim
batore
,
T
a
m
il Nadu,
Indi
a. He
is pursuin
g
P
h
D degree in Karun
y
a Univer
s
i
t
y
, Coim
bator
e
, India
.
His
pres
ent res
e
a
r
ch i
n
teres
t
s
are n
a
n
o
s
t
ructured pv
c
e
lls
, s
m
art gr
id
im
plem
entat
i
o
n
and re
liab
ili
t
y
anal
ys
is
in r
e
newabl
e en
erg
y
generators.
Mr. A. Jey
a
S
e
lvan Renius
rece
ived his
B.T
ech. d
e
gree
in Ele
c
troni
cs
and
Comm
unicatio
n
Engineering fro
m Anna University
, Tamilnadu, Indi
a. Presen
tly he is pursuing M.Tech
in Power
Ele
c
troni
cs and
Drives from
Karun
y
a Univer
sit
y
, Coim
bato
r
e
,
Tam
il Nadu
,
India
.
His pre
s
ent
research
interes
t
s are Power
converters and
inverters, Special machin
es, Solar and wind
Applica
tions.
Mr.
B. Raja G
u
ru
receiv
e
d hi
s
B.Te
ch. d
e
gre
e
in
Ele
c
troni
cs
and Com
m
unication
Engin
eeri
n
g
from
Anna
Univers
i
t
y
, T
a
m
ilnad
u, India. P
r
es
ent
l
y
he is pursuing
M.Tech in Power Electronics and
Drives
from
Karun
y
a Univ
ers
i
t
y
,
Coim
batore, T
a
m
il Nadu, India
.
His
pres
ent res
earch int
e
res
t
s
ar
e
Resonant conver
t
ers,
Special
machines, Solar App
lication
.
M
s
.
Sr
ee
lakshmy
Nair
re
ceiv
e
d his
B.T
ech.
de
gree in
El
ectr
i
cal and Electronics Engineering fro
m
Saintgits
coll
eg
e of
engine
erin
g,Mahatm
a G
a
n
dhi Universit
y
,
Keral
a
,
India
.
Presentl
y sh
e
is
pursuing M.Tech in Power Electronics and Driv
es from
Karunya Unive
r
sit
y
,
Coim
batore, T
a
m
i
l
Nadu,
and India. Her pr
esent research
inte
re
st
s are dc
-dc c
onve
r
ter
s
and inv
e
rters.
Prof. Vis
w
anat
han
K
receiv
e
d
his
B.E. degr
ee in E
l
ec
tric
al
and Electronics Engineering
in
Government College of
Techno
log
y
, Coimbator
e
,
T
a
m
il Nadu,
India. He ob
ta
in
ed M.E in Pow
e
r
S
y
stem Engineering from Governme
nt College of Technolog
y
,
Co
imbatore, Tamil Nadu, India.
P
r
es
entl
y he
is
working as
an A
s
s
i
s
t
ant P
r
ofes
s
o
r in the S
c
hoo
l
of Engine
ering
,
Adam
a S
c
ienc
e
&
Techno
log
y
Uni
v
ers
i
t
y
, Adam
a
,
Ethiopia. He
is pursuing PhD degree
in St.P
eters University
,
Chennai
,
India
.
His
pres
ent res
e
arch int
e
res
t
s
ar
e P
o
wer S
y
s
t
em
s
,
Renewabl
e E
n
erg
y
s
ourc
e
s
a
n
d
Ele
c
tri
cal
M
ach
i
n
es
.
Evaluation Warning : The document was created with Spire.PDF for Python.