Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
6, N
o
. 3
,
Sep
t
em
b
e
r
2015
, pp
. 56
7
~
57
5
I
S
SN
: 208
8-8
6
9
4
5
67
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Electri
c
Vehicl
e as an En
ergy
Storage for Grid Connected Solar
Power S
y
st
em
E. Shee
b
a Per
c
is, S.
Mani
vannan,
A.
Nalini
Dr. M.G.R
.
E &
RI, Madur
avo
y
al, Ch
ennai – 95
,
India
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
J
u
n 22, 2015
Rev
i
sed
Au
g 4, 201
5
Accepted Aug 20, 2015
In the past f
e
w
y
e
ars th
e growin
g dema
nd for
el
ectr
i
ci
t
y
and
s
e
ri
ous
concer
n
for the environment h
a
ve g
i
ven
rise to
the growth
of sustain
a
ble sources lik
e
wind, s
o
lar
,
tid
al, b
i
om
as
s
etc
.
The t
echno
logi
cal
advan
cem
en
t in power
electronics has led to the ex
tensive us
age of solar power. Solar power output
varies with th
e
weather
cond
itions and under s
h
ading
conditio
n
s. With
the
incre
a
s
i
ng con
c
erns
of th
e im
p
acts
of
the high
penetration of
Photovoltaic
(PV) sy
stems, a techn
i
cal stud
y about
their
eff
e
cts on th
e power quality
of
the utility
gr
id is required.
This
paper
inv
e
stigates the functionin
g
of a grid-
tied PV s
y
stem along with maxi
mum po
wer point tracking (MPPT)
algorithm
.
The e
ffects
of var
y
ing
atm
o
s
pheric co
nditions
lik
e s
o
lar irrad
i
an
c
e
and temper
ature are
also tak
e
n into acc
ount. It
is proposed in th
is work that
an Ele
c
tri
c
Vehi
cle (EV) c
a
n be
us
ed as
an energ
y
s
t
orag
e to s
t
abil
iz
e th
e
power supplied to the grid from the
photovoltaic resources. A coordinated
control is
neces
s
a
r
y
for the EV t
o
obtain des
i
red
outcom
e
. The m
odeling of
the P
V
and
EV
s
y
s
t
em
is
c
a
rri
ed out
in
P
S
C
AD and th
e prop
os
ed ide
a
is
verifi
ed through
sim
u
lation result
s utilizing
real fi
eld data for solar
irradi
ance
and t
e
m
p
eratur
e.
Keyword:
Electric Ve
hicle
EMTDC
M
i
crog
ri
ds
Pho
t
ov
o
ltaic syste
m
s
PSCAD
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
E. S
h
ee
ba Pe
rc
is,
Depa
rtem
ent of Electrical a
n
d
El
ect
ro
ni
cs E
n
gi
nee
r
i
n
g,
Dr. M.
G. R. Ed
u
cation
a
l
& R
e
search In
stitu
t
e
,
Per
i
yar
E.
V
.
R
.
H
i
g
h
Ro
ad
,
Mad
u
r
a
vo
yal,
Ch
enn
a
i - 95
.
Em
a
il: sh
eeb
aed
w
i
n
@yah
oo
.co
m
1.
INTRODUCTION
Ener
gy
c
r
i
s
i
s
i
s
an
o
n
goi
ng
soci
al
i
ssue
w
h
i
c
h
nee
d
s t
o
be a
d
d
r
esse
d
wo
rl
d
w
i
d
e
.
R
e
cent
l
y
m
a
ny
devel
opi
ng c
o
unt
ri
es have e
v
en dec
o
m
m
i
ssione
d t
h
e n
u
cl
e
a
r po
we
r pl
ant
s
aft
e
r t
h
e Fu
k
u
shi
m
a di
sast
er. Thi
s
has l
e
d t
o
t
h
e gr
owi
n
g nee
d
f
o
r
gene
rat
i
n
g e
n
er
gy
i
n
an al
t
e
rnat
i
v
e m
a
nn
er an
d m
i
crogr
i
d
t
echn
o
l
o
gy
st
art
e
d
becom
i
ng m
o
re po
p
u
l
a
r.
The
m
i
crog
ri
d ca
n be
de
fi
ne
d a
s
a p
o
we
r sy
st
em
whi
c
h
has
l
i
m
i
t
e
d geo
g
r
aphi
c
ext
e
nt
a
n
d c
o
n
t
ai
ns em
bedde
d
gene
rat
i
o
n
or
st
ora
g
e
res
o
ur
ces o
r
b
o
t
h
w
h
i
c
h m
a
y
operat
e
pa
ral
l
e
l
t
o
t
h
e g
r
i
d
or i
n
i
s
ol
at
i
o
n
m
ode [1,
2]
.
M
i
crog
ri
d t
e
c
h
nol
ogy
i
s
one
of t
h
e vi
a
b
l
e
s
o
l
u
t
i
o
ns
fo
r el
ect
ri
fi
cat
i
on
w
h
ere t
h
e
expa
nsi
on
of
t
h
e m
a
i
n
gri
d
i
s
ei
t
h
er
not
p
o
ssi
bl
e
or
has
no e
c
o
n
o
m
i
c ju
st
i
f
i
cat
i
on.
The m
i
crogri
d
of
fers
decent
r
alized
operation a
n
d c
ont
rol
which
helps to re
duce
t
h
e tra
n
sm
issi
on
burden on
power utility syst
e
m
s.
Di
st
ri
b
u
t
e
d
en
ergy
res
o
u
r
ces
(
D
ER
)
are
a
part
of
t
h
e
m
i
cro
g
ri
d
whi
c
h
i
n
cl
ude
s
ph
ot
o
vol
t
a
i
c
(
P
V
)
,
sm
a
ll wind turbines (WT
)
,
heat or electricity storag
e, c
o
m
b
i
n
ed heat
and
po
we
r (C
H
P
), a
nd c
ont
ro
l
l
a
bl
e
l
o
ads
.
Am
on
g
t
h
e va
ri
o
u
s D
E
R
s
t
h
e PV
res
o
urce i
s
m
o
re a
ppeal
i
n
g as i
t
i
s
not
ha
vi
n
g
a
n
y
m
ovi
ng
par
t
s and
the losses as
sociated with m
o
tion are
no
n
e
x
i
sten
t. Also
so
lar power system
s are u
s
ed
in ap
p
lication
s
si
milar
to
a g
e
n
e
rato
r t
o
sup
p
l
y rem
o
te lo
ad
s [3
]. But th
e
m
a
in
d
i
sad
v
a
n
t
ag
e
o
f
solar p
o
wer is its in
termitten
t
n
a
tu
re.
En
erg
y
st
o
r
ag
e is g
e
n
e
rally reco
mmen
d
e
d in th
e case of an
in
term
i
tten
t
sou
r
ce [4
].
It
has
bee
n
s
h
ow
n
bef
o
re
t
h
at
pl
u
g
-i
n
ve
hi
cl
e par
k
i
n
g l
o
t
s
(Sm
a
rt
Parks
)
can
be u
s
ed t
o
ab
so
rb
t
h
e
v
a
riation
s
cau
s
ed
d
u
e
to
t
h
e i
n
term
it
ten
c
y in
wind
po
we
r
[4-5]. T
h
e i
d
ea
of
usi
n
g an electric ve
hicle (EV) as
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
56
7 – 575
56
8
an exte
rnal e
n
ergy stora
g
e [6] can
be
ext
e
nde
d t
o
a sol
a
r
po
we
red sy
st
e
m
al
so. I
n
t
h
e
near
fut
u
re t
h
e
ri
si
ng
penet
r
at
i
o
n
o
f
PV sy
st
em
m
a
y
al
so l
ead
t
o
i
m
port
a
nt
i
m
pact
s o
n
po
wer
d
i
st
ri
but
i
o
n sy
st
em
s, part
i
c
ul
ar
l
y
du
e
t
o
t
h
e
i
n
t
e
rm
i
t
t
e
nt
nat
u
re
o
f
i
t
s
out
put
cau
sed
by
cl
ou
d
cove
r
[
7
]
.
T
h
e
r
ef
ore
,
a
co
or
di
nat
e
d
use
of
sol
a
r
p
o
wered system
with
EVs
will b
e
a po
ssi
b
l
e so
l
u
tio
n wh
i
c
h
can
h
e
lp
t
o
main
tain
a flat po
wer
p
r
ofile to
the
gri
d
.
EVs ca
n be c
o
or
di
nat
e
d wi
t
h
PV sy
st
em
s in m
a
ny
way
s
. For e
x
am
pl
e, a dc-
d
c co
n
v
er
t
e
r i
n
sert
e
d
bet
w
ee
n an E
V
an
d t
h
e
dc bus
v
o
l
t
a
ge o
f
a PV sy
st
em
can im
pro
v
e
gri
d
i
n
t
e
g
r
at
i
o
n o
f
PV sy
st
e
m
s by
red
u
ci
n
g
t
h
e
r
a
m
p
rat
e
of
t
h
e PV
i
n
vert
er
out
put
p
o
we
r
[8
] [9
]. To
reduce th
e
flu
c
tu
ati
o
n
s
in th
e
g
r
i
d
, on
ly
slo
w
ly ch
an
g
i
n
g
p
o
wer can
b
e
exp
o
rted
b
y
th
e u
s
e o
f
a hig
h
p
a
ss filter in
th
e n
e
two
r
k, wh
ich
d
i
rects rap
i
d
p
o
wer fl
u
c
tu
atio
n
s
to
t
h
e EV
b
a
ttery [1
0
]
. No
t on
ly th
at, t
o
regu
late th
e en
erg
y
im
b
a
lan
ce in
th
e system
, th
e
day
t
i
m
e
sol
a
r gene
rat
e
d
p
o
w
e
r can e
ffect
i
v
el
y
be con
v
ert
e
d i
n
t
o
ni
g
h
t
t
i
m
e consum
pt
i
on
usi
n
g t
h
e
ve
hi
cl
e t
o
gri
d
a
n
d
g
r
i
d
t
o
vehi
cl
e c
o
nc
ept
[
1
1]
.
Al
so
as m
o
re a
n
d
m
o
re PV
ge
ne
rat
i
o
n
i
s
pum
ped i
n
t
o
t
h
e e
x
i
s
t
i
n
g
p
o
w
e
r
s
y
s
t
e
m
,
th
e
n
e
ed
fo
r
an e
n
er
g
y
s
t
o
r
ag
e wh
ic
h
is co
st
effectiv
e is
empha
sized [12,
13, 14].
Ho
we
ver
,
i
n
or
der t
o
gene
rat
e
m
o
re con
f
i
d
e
n
ce o
n
t
h
i
s
t
e
c
h
nol
ogy
,
t
h
e sy
s
t
em
has t
o
be
exp
o
se
d t
o
realistic field
data. Th
is is th
e
m
o
st i
m
p
o
r
tan
t
ob
jectiv
e of this pa
per, where, a
gri
d
connected c
o
m
b
ined PV
and E
V
sy
st
em
i
s
t
hor
ou
g
h
l
y
m
odel
e
d and
st
udi
ed by
i
n
cor
p
orat
i
n
g t
h
e real
fi
el
d dat
a
i
n
PSC
AD/
E
M
TDC
envi
ro
nm
ent. In o
r
der to v
e
rify
the per
f
o
rm
ance of
the PV-E
V com
b
ined
m
i
cr
ogri
d
, fi
el
d dat
a
(sol
ar
i
rradi
a
n
ce an
d
t
e
m
p
erat
ure)
obt
ai
ne
d fr
o
m
C
e
nt
re for
W
i
nd E
n
er
g
y
Techn
o
l
o
gy
(C
W
E
T
)
, C
h
en
nai
,
Tam
i
l
n
adu, I
n
di
a has bee
n
use
d
. The
res
u
l
t
s
obt
ai
ne
d
sho
w
s t
h
at
t
h
i
s
El
ect
ri
c Vehi
cl
e t
echn
o
l
o
gy
i
n
coo
r
di
nat
i
o
n
wi
t
h
t
h
e s
o
l
a
r
PV
gene
rat
i
n
g
uni
t
gi
ve
s a
sm
oot
h
po
we
r
out
put
t
o
t
h
e g
r
i
d
.
T
h
i
s
p
a
per
i
s
or
ga
ni
zed as f
o
l
l
o
w
s
:
In sec
t
i
on II
, m
odel
i
ng a
nd c
ont
rol
of g
r
i
d
co
n
n
e
c
t
e
d PV
-EV c
o
m
b
i
n
ed sy
st
em
i
s
di
scuss
e
d
.
T
h
e
sim
u
l
a
t
i
on res
u
l
t
s
are s
h
o
w
n i
n
Sect
i
o
n
II
I a
n
d
co
ncl
u
si
o
n
s
are
dra
w
n i
n
S
ect
i
on
IV
.
2.
PROP
OSE
D
MODEL A
ND
CO
NTR
O
L OF GR
ID CO
N
N
E
C
TED PV
-E
V CO
MBI
N
ED
M
I
CR
OGR
ID
2.
1.
Mo
del
i
n
g
an
d
C
o
ntr
o
l
of
Gr
i
d
C
o
nnec
t
ed
PV S
y
s
t
em
The
pi
ct
ori
a
l
r
e
prese
n
t
a
t
i
o
n
of a
gri
d
c
o
n
n
ect
ed PV
sy
st
em
i
s
represe
n
t
e
d i
n
Fi
gu
re
1.
The i
n
p
u
t
t
o
th
e PV m
o
du
le is no
th
i
n
g
b
u
t
th
e so
lar i
rrad
i
an
ce and
th
e
t
e
m
p
erat
ure. T
h
e
DC
-
D
C
c
o
nve
rt
er i
s
use
d
t
o
bo
os
t
t
h
e o
u
t
p
ut
of
t
h
e PV m
o
d
u
l
e
. The
fi
ri
n
g
pul
se
of t
h
e DC
-
D
C
co
nve
rt
er i
s
ge
nerat
e
d t
h
r
o
ug
h t
h
e
M
P
P
T
cont
rol
l
ogi
c.
The o
u
t
p
ut
of t
h
e
c
o
nverte
r i
s
connected to the
gri
d
t
h
ro
ug
h a t
h
r
e
e ph
ase cur
r
e
n
t
con
t
r
o
lled
P
W
M
i
nve
rt
er.
2
.
1
.
1
.
Mo
delling
o
f
the So
lar Fa
rm
In t
h
i
s
pa
per
,
a
10
0
k
W
s
o
l
a
r
farm
i
s
m
odel
e
d i
n
P
S
C
A
D/
E
M
TDC
pl
at
f
o
r
m
. The param
e
t
e
r val
u
es
of al
l
t
h
e
passi
ve com
p
o
n
ent
s
are o
b
t
a
i
n
e
d
f
r
om
t
h
e M
a
t
l
a
b dem
o
m
odel
of a
1
00
k
W
s
o
l
a
r P
V
sy
st
e
m
. Ten
num
bers o
f
m
o
d
u
l
e
s are c
o
n
n
ect
ed i
n
se
ri
es and ei
g
h
t
n
u
m
bers of m
odul
es are co
n
n
e
c
t
e
d i
n
pa
ral
l
e
l
.
The
r
e
are 216 cells connected in se
ries per m
odul
e and eight
cells in each string per m
odule i
n
series. T
h
e series
resi
st
ance pe
r
cel
l
i
s
0.02
oh
m
and t
h
e sh
u
n
t
resi
st
ance i
s
10
00
o
h
m
.
The out
p
u
t
v
o
l
t
a
g
e
of t
h
e s
o
l
a
r
panel
i
s
obt
ai
ne
d a
c
r
o
s
s
a ca
paci
t
o
r
(
C
i
n
Fi
gu
re
1)
.
Fi
gu
re
1.
Sc
he
m
a
t
i
c
di
agram
of
t
h
e
gri
d
c
o
n
n
ect
ed
PV
sy
st
em
Sol
a
r
Pa
n
e
l
Irr
a
di
ati
o
n
Te
m
p
e
r
a
t
u
r
e
C
V
pv
C1
L
Gr
id
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Electric Vehicle as
an E
n
er
gy
Storage
f
o
r
Gr
id Connected
Solar
Power
Sy
s
t
em
(E.
Sh
eeb
a
Percis)
56
9
2
.
1
.
2
.
Mo
delling
o
f
the B
o
o
s
t Co
nv
erter
It
i
s
al
so
very
im
port
a
nt
t
o
ext
r
act
t
h
e m
a
xi
m
u
m
possi
bl
e po
we
r f
r
om
t
h
e pa
nel
u
s
i
n
g M
a
xi
m
u
m
Po
wer
Poi
n
t
Tracki
n
g
(M
P
P
T) al
go
ri
t
h
m
.
T
h
e al
g
o
ri
t
h
m
i
s
em
bedde
d i
n
si
de t
h
e c
ont
rol
of
t
h
e
bo
ost
co
nv
er
ter
.
Th
e i
m
p
l
e
m
en
tatio
n
of
MPPT b
a
sed
boo
st conv
er
ter con
t
ro
l in
t
h
is p
a
p
e
r is presen
ted
i
n
Figu
re
2
.
Fi
g. 2 s
h
o
w
s t
h
at
t
h
e out
put
cur
r
ent
(
I
pv
) an
d o
u
t
p
ut
vol
t
a
ge (
V
pv
)
of the
PV m
odule are
passed through first
o
r
d
e
r low
p
a
ss filters. Th
e
MPPT
b
l
o
c
k
u
s
es t
h
e In
cremen
tal Co
nd
uctan
ce Al
g
o
rith
m
fo
r track
i
n
g
th
e
requ
ired
po
i
n
t. Th
e algorith
m is b
a
sed
on
the fact th
at
the
slope
of t
h
e PV array
powe
r curve is zero
at the
Max
i
m
u
m
Po
wer Po
i
n
t (MPP),
p
o
sitiv
e on th
e left o
f
t
h
e
MPP, and
n
e
gativ
e o
n
t
h
e ri
gh
t. Th
e MPP can
thu
s
be t
r
ac
ke
d
by
c
o
m
p
ari
n
g
t
h
e i
n
stanta
neous c
o
nductance
(
I
/
V
) to the i
n
cre
m
ental conductance
(
Δ
I
/
Δ
V
).
The o
u
t
p
ut
o
f
t
h
e M
PPT bl
ock i
s
t
h
e M
P
P vol
t
a
ge (
V
mp
p
). Th
is is th
e v
o
ltag
e
at wh
ich
th
e PV
m
odul
e has t
o
ope
rat
e
t
o
ext
r
act
m
a
xim
u
m
po
we
r. The al
g
o
ri
t
h
m
decrem
ent
s
or i
n
crem
ent
s
V
mpp
to
track
th
e
max
i
m
u
m
p
o
wer p
o
i
n
t
wh
en
o
p
e
rating
u
n
d
e
r v
a
rying
climatic
co
nd
itio
ns
and
p
a
ssi
n
g
clo
u
d
s
.
Th
is v
o
ltag
e
(
V
mpp
) is t
h
en
co
m
p
ared
with
the m
easu
r
ed
PV p
a
n
e
l
ou
tpu
t
v
o
ltag
e
(
V
pv
) and
is fed
as th
e inp
u
t
to
PI
cont
rol
l
e
r.
T
h
e
o
u
t
p
ut
o
f
t
h
e
PI c
o
nt
rol
l
e
r
i
s
use
d
t
o
gene
ra
t
e
t
h
e s
w
i
t
c
hi
n
g
pul
ses
f
o
r
t
h
e
b
oost
co
n
v
ert
e
r.
Fi
gu
re
2.
M
P
P
T
an
d t
h
e c
ont
r
o
l
o
f
b
oost
c
o
n
v
ert
e
r
2.
1.
3. C
o
nt
rol
of
the
In
verte
r
Th
e ou
tpu
t
of th
e DC-DC conv
erter is co
nn
ected
to
th
e inverter,
wh
ich
con
v
e
rts it in
to
AC an
d
th
en
co
nn
ects it to th
e
u
tility g
r
id
. Th
e i
n
v
e
rt
er is a tw
o
-
lev
e
l vo
ltag
e
sou
r
ce conv
erter (VSC) u
s
i
n
g IGB
T
sw
itch
e
s along w
ith
an
ti-p
a
r
a
llel d
i
o
d
e
s as sh
own
in
Fi
g
u
re 1
.
Cur
r
e
n
t
con
t
ro
lled
PW
M
tech
n
i
qu
e is used
to
gene
rat
e
t
h
e swi
t
c
hi
n
g
o
r
de
r
for t
h
e I
G
B
T
s. In
or
der t
o
expl
ai
n t
h
e co
nt
r
o
l
of t
h
e g
r
i
d
-c
on
nect
ed
VSC
,
a
sim
p
l
i
f
i
e
d di
ag
ram
i
s
show
n i
n
Fi
g
u
r
e 3
.
T
h
e com
p
l
e
x p
h
a
s
or
re
prese
n
t
a
t
i
on
of
Fi
g
u
re
3 i
s
ag
ai
n s
h
o
w
n i
n
Fi
gu
re 4.
Fi
gu
re
3.
Sc
he
m
a
t
i
c
di
agram
of
a
gri
d
co
n
n
e
c
t
e
d
VSC
Fi
gu
re 4.
C
o
m
p
l
e
x p
h
as
or re
prese
n
t
a
t
i
o
n
of
g
r
i
d
connected VSC
From
Fi
g
u
re
4,
i
t
appea
r
s t
h
at
s
s
s
s
v
i
i
e
dt
d
L
R
(
1
)
MP
P
T
Con
t
r
o
l
V
pv
I
pv
V
pv
_
f
i
l
t
e
red
I
pv
_
f
i
l
t
e
red
PV
Outpu
t
+
‐
PI
Co
n
t
r
o
lle
r
Compa
r
ato
r
V
mp
p
Sw
i
t
c
h
i
n
g
or
der
X
s
e
s
i
s
v
R
L
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
56
7 – 575
57
0
Here
,
s
e
is th
e con
v
e
rter
vo
ltag
e
,
s
v
is th
e grid
voltag
e
and
s
i
is the curren
t
fl
o
w
i
n
g fro
m
co
nv
erter to the
g
r
i
d
.
All th
ese
v
a
riab
les are rep
r
esen
ted in
statio
n
a
ry
referen
ce
fram
e
. Co
nv
ertin
g th
em in
to
sy
n
c
hro
n
o
u
s
(d-
q)
re
fere
nce
fr
am
e y
i
elds
v
i
i
i
e
v
i
i
i
e
v
i
i
e
s
s
s
s
)
(
)}
(
{
dt
d
j
L
R
dt
d
j
e
L
e
R
e
dt
d
L
e
R
e
e
j
j
j
j
j
j
(
2
)
The PLL is
us
ed to ge
ne
rate the value
of t
h
eta
θ
. Th
is th
et
a is u
s
ed
to
t
u
rn
on
and
o
f
f th
e IGBT’s
wh
ich
in
t
u
r
n
c
ont
r
o
l
s
t
h
e fl
o
w
of
real a
n
d reactive
power.
Pu
ttin
g
q
d
q
d
q
d
ji
i
jv
v
je
e
i
v
e
,
,
and
se
parating
real a
n
d im
aginary parts
(3
)
Al
i
gni
ng
t
h
e
d
-axis
of t
h
e
refe
rence
fram
e on the
voltage s
p
ace vect
or, we
obtain
v
d
v
0
q
v
(
4
)
W
i
t
h
t
h
i
s
new
refe
rence f
r
am
e ori
e
nt
at
i
o
n w
e
obt
ai
n
co
m
p
lete d
eco
up
ling o
f
activ
e and
reactive powe
r. The
po
we
r e
quat
i
o
ns
bec
o
m
e
d
d
i
v
P
q
d
i
v
Q
(
5
)
Equ
a
tio
n (3
) no
w ch
ang
e
s to
(6
)
In eq
u
a
tion (6
), th
e term
s
and
a
r
e t
h
e
spee
d/fre
quency
induce
d
term
s that gi
ves
raise
t
o
the cross c
o
upl
i
ng bet
w
een the two axes. T
h
ese ter
m
s are
consi
d
ere
d
as di
st
ur
bance
s
i
n
t
h
e sy
st
em
and hence
eli
m
in
atin
g
th
em will yie
l
d
better resu
lts.
If we
d
e
fin
e
ou
r co
mm
an
d
e
d
co
nv
erter
d
and
q
vol
t
a
ges
as
*
d
e
and
*
q
e
and comm
anded c
u
rrents t
o
be
)
(
ref
d
i
and
)
(
ref
q
i
, th
en
with
a PI typ
e
cu
rren
t con
t
ro
ller along
with
cro
s
s-
co
up
ling
co
m
p
en
sation
,
fo
ll
owing
eq
u
a
tion
s
ho
ld
d
q
d
ref
d
i
p
d
v
Li
i
i
s
K
K
L
e
)
(
)
(
*
;
d
q
ref
q
i
p
q
Li
i
i
s
K
K
L
e
)
(
)
(
*
(7
)
Here
, since
d
i
is d
i
rectly p
r
o
portio
n
a
l to
activ
e p
o
wer
(5), t
h
en
it is reason
ab
le to
con
t
ro
l th
e DC
v
o
ltag
e
b
y
co
n
t
ro
lling
th
e
d
i
. T
h
er
e
f
o
r
e,
)
(
ref
d
i
can
be
ge
nerat
e
d a
s
an
o
u
t
p
ut
of t
h
e
DC
vol
t
a
ge
cont
rol
l
e
r.
)
(
*
)
(
dc
dc
idc
pdc
ref
d
v
v
s
K
K
i
(
8
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Electric Vehicle as
an E
n
er
gy
Storage
f
o
r
Gr
id Connected
Solar
Power
Sy
s
t
em
(E.
Sh
eeb
a
Percis)
57
1
Th
e
ov
erall con
t
ro
l of th
e inverter
for th
e gri
d
c
o
n
n
ect
ed
P
V
sy
st
em
i
s
show
n i
n
Fi
gu
re
5.
2
.
2
.
Mo
delling
a
n
d Contro
l o
f
Grid Co
nnected
Electric Vehicle
Th
e electr
i
c v
e
h
i
cle is
m
o
d
e
led
as a D
C
vo
ltag
e
sou
r
ce w
ith
a th
r
e
e-
ph
ase tw
o
-
lev
e
l in
v
e
r
t
er
th
rough
wh
ich
it co
nn
ects to
th
e g
r
i
d
(Fig
ure 6). Th
e
co
n
t
ro
l of
the e
l
ectric vehicle inve
rter
system is alm
o
s
t
the sa
m
e
as the PV inve
rter. T
h
e only diffe
re
nce bet
w
een t
h
e two i
s
that since it is connected
t
o
a const
a
nt
DC
vol
t
a
g
e
so
urce, th
e
DC v
o
ltag
e
con
t
rol is n
o
t
necessary. Instea
d, it can directly
control the active power comm
a
nde
d
(
*
EV
P
) fr
om
t
h
e e
l
ect
ri
c vehi
cl
e
.
H
o
weve
r,
h
e
re t
h
e
act
i
v
e
p
o
we
r
o
r
de
r
com
e
s fr
om
t
h
e c
o
o
r
di
nat
i
n
g
co
n
t
ro
ller
wh
ich
co
n
t
ro
ls t
h
e
o
v
e
rall power
i
n
j
ection
(PV+EV) in
to th
e
u
t
ilit
y g
r
id.
Fig
u
re
5
.
Ov
erall co
n
t
ro
l sch
e
matic o
f
th
e
grid
co
nn
ected PV inv
e
rter
2.
3.
C
oor
di
na
t
e
d C
o
n
t
rol
o
f
the
P
V
-EV Combined Microgrid
In o
r
der t
o
sm
oot
h o
u
t
t
h
e po
wer fl
uct
u
at
i
o
n
s
from
t
h
e PV i
nve
rt
er an
d t
o
m
a
ke sure t
h
at
t
h
e powe
r
inj
ection to the
utilit
y grid
is
absolutely constant, a coordi
nating c
ont
roll
er is necessary. The desire
d powe
r to
th
e u
tility g
r
id
is g
i
v
e
n
as an
i
n
pu
t to th
e coord
i
n
a
tin
g
con
t
ro
ller.
It also track
s t
h
e
o
u
t
p
u
t
po
wer
fro
m
th
e PV
syste
m
. Then t
h
e di
ffe
rence
between the
s
e two
powe
rs,
wh
i
c
h i
s
t
h
e o
u
t
p
ut
of t
h
e co
o
r
d
i
nat
i
ng c
ont
rol
l
er, ca
n
be use
d
as
t
h
e com
m
a
nded
po
wer
f
o
r the E
V
syste
m
. Mathematically,
*
*
EV
PV
utility
P
P
P
(
1
0
)
whe
r
e,
∗
represen
ts th
e d
e
si
red p
o
wer
ou
tpu
t
o
f
th
e
u
tility g
r
id
,
rep
r
esent
s
t
h
e out
put
po
wer
fr
om
t
h
e
s
o
l
a
r gene
r
a
t
i
ng pl
ant
a
n
d
∗
re
prese
n
ts the
commanded
power to t
h
e electric ve
hicle.
Fi
gu
re
6.
Sc
he
m
a
t
i
c
represe
n
t
a
t
i
on
of
g
r
i
d
co
nnect
e
d
E
V
PL
L
abc
v
abc
to
dq
d
v
q
v
v
)
(
ref
d
i
ref
Q
-1
)
(
ref
q
i
abc
to
dq
abc
i
d
i
q
i
PI
‐
‐
PI
‐
ω
L
+
+
ω
L
dq
to
abc
*
abc
e
*
d
e
*
q
e
PI
‐
*
dc
v
dc
v
+
‐
Gri
d
I
a
I
b
I
c
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
56
7 – 575
57
2
3.
SIM
U
LATI
O
N
RESULTS
AN
D DIS
C
US
SION
3.1 Per
f
or
mance of
the
Sol
a
r P
V
Sys
t
em
In o
r
de
r
t
o
ve
ri
fy
t
h
e pe
rf
or
m
a
nce
o
f
t
h
e
PV-
E
V
com
b
i
n
ed
m
i
crogri
d
,
fi
el
d dat
a
obt
ai
ned fr
om
C
e
nt
re f
o
r
Wi
nd
Ene
r
gy
Tec
h
n
o
l
o
gy
(C
W
ET), C
h
en
nai
,
Tam
i
l
n
adu,
In
di
a has
bee
n
u
s
ed i
n
t
h
i
s
pa
p
e
r. T
h
e
or
ga
ni
zat
i
on p
r
o
v
i
d
es si
t
e
da
t
a
for b
o
t
h
s
o
l
a
r PV an
d wi
n
d
sy
st
em
s. In t
h
i
s
pap
e
r o
n
e
m
i
nut
e dat
a
i
s
t
a
ken
in
to
co
nsid
eratio
n
,
as it is m
ean
ing
f
u
l
to in
t
e
rpo
l
ate
the
sa
me. The i
nve
rt
ers in the
electric ve
hicle s
h
ould
be
very
fast
t
o
m
i
t
i
g
at
e po
wer
u
nbal
a
nce,
but
t
h
ey
are n
o
t
s
u
pp
ose
d
t
o
wo
r
k
for a l
o
ng time. There
f
ore
if ten
min
u
t
es d
a
ta is u
s
ed th
en
the in
terp
o
l
ation will no
t
b
e
realistic. Hen
c
e
th
e so
lar i
rrad
i
an
ce and
tem
p
eratu
r
e
d
a
ta with
on
e
min
u
t
e in
terv
al
o
n
1
st
Janu
ary, 2
0
1
3
at a site lo
catio
n
in
C
h
en
n
a
i, Tam
il Nad
u
is used. The site
d
e
scri
p
tio
n is sh
own
in th
e
b
e
lo
w tab
l
e 1.
Tabl
e 1. Si
t
e
D
e
scri
pt
i
o
n
Station Na
m
e
/ID
Chennai/1791
L
a
titude
12 °
57'21.
79'' N
L
ongitude
80°
12'5
9
.
75''
E
Elevation / Altitude
1
m
a
m
s
l
/ 0
m
agl
Site Address
National Institute
of
Wind Energy,
C
h
ennai, Ta
m
ilnadu
.
The
dat
a
sheet
speci
fi
ed t
h
e
Su
n hei
ght
a
n
gl
e, S
un azi
m
u
t
h
a
ngl
e,
Gl
obal
ho
ri
zo
nt
a
l
i
rradi
an
ce
"
W
/m
^2", Direct norm
al
irradiance "
W
/m
^2", Diffus
e ho
ri
zontal irradia
n
ce "
W
/m
^2",
Horizontal wind s
p
eed
(10
m
) "
m
/s",
W
i
n
d
d
i
rection
,
Ai
r te
m
p
eratu
r
e "°C", Relativ
e h
u
m
id
it
y "%", Baro
metric p
r
essu
re
"h
Pa",
Precip
itatio
n "mm", Dew
po
in
t tem
p
eratu
r
e
"°C",
Wet bu
lb te
m
p
erature "°C".
Al
l
t
h
e si
m
u
l
a
ti
ons
are ca
rri
e
d
out
wi
t
h
a
1
0
0
m
i
nut
es’ da
t
a
set
st
art
i
n
g
f
r
om
10:
00
AM
. H
o
wev
e
r
,
in
PSCAD, it is q
u
ite ti
m
e
co
n
s
u
m
in
g
to
act
u
a
lly ru
n
a
1
00
m
i
n
u
t
es’ d
a
ta
set wh
en
th
e si
m
u
la
tio
n
ti
m
e
-step
is
50 µ
s
. S
u
c
h
a
sm
al
l
tim
e-st
ep ha
s t
o
be
us
ed i
n
or
de
r t
o
achi
e
ve t
h
e hi
gh
fre
q
u
e
n
cy
swi
t
c
hi
n
g
of t
h
e po
we
r
electro
n
i
c co
nv
erters wh
ich
are m
o
d
e
led
in q
u
ite d
e
tail in
th
is p
a
p
e
r. In
o
r
d
e
r t
o
ob
tain a realistic so
lu
tio
n
t
o
th
is p
r
o
b
l
em
, t
h
e 10
0
m
i
n
u
t
es’ d
a
ta set is u
s
ed
in
th
e PSC
AD m
o
d
e
l. All th
e si
m
u
latio
n
resu
lts are ob
tain
ed
with
resp
ect t
o
ti
m
e
(1
00
m
i
n
u
t
es) i
n
th
e x-ax
is.
Figu
re
7 (a
)
sho
w
s
,
h
o
w
t
h
e ir
radia
n
ce
and
tem
p
erature ha
s va
ried during t
h
e time interval
m
e
nt
i
oned
be
f
o
re
. D
u
e t
o
t
h
a
t
vari
at
i
o
n
,
t
h
e
out
put
of t
h
e s
o
l
a
r P
V
sy
st
em
chan
ges
,
w
h
i
c
h i
s
sh
o
w
n i
n
Fi
gu
re
7
(b
). The ou
tpu
t
of
th
e PV
arr
a
y v
a
r
i
es
w
ithin
th
e r
a
ng
e of 8
0
kW
to
1
30 kW
. Th
is po
wer
is cap
tur
e
d
u
s
ing
t
h
e M
PPT
al
g
o
r
i
t
h
m
di
scusse
d
bef
o
re
.
Figu
re
7
(a)
S
o
lar irra
diance
a
n
d
tem
p
erature
vari
at
i
o
n
wi
t
h
t
i
m
e
as per t
h
e
fi
el
d
dat
a
Fi
gu
re 7 (b
) V
a
ri
at
i
on of
P
V
array
out
put
p
o
w
er
d
u
e
to
th
e
v
a
riatio
n of irrad
i
an
ce an
d tem
p
eratu
r
e
Now, i
n
ord
e
r
to
send
th
is
p
o
wer to
t
h
e u
tility g
r
id
, it is req
u
i
red
t
o
ho
ld
th
e DC link
voltag
e
o
f
t
h
e
sol
a
r
PV
i
n
ver
t
er t
o
a
co
nst
a
nt
val
u
e
by
t
h
e DC
v
o
l
t
a
ge
cont
rol
l
e
r.
T
h
e
pe
rf
orm
a
nce
of
t
h
e
DC
v
o
l
t
a
ge
co
n
t
ro
ller in
su
ch
a
v
a
rying
p
o
wer scen
ario
is th
erefor
e im
portant for the correct ope
r
ation
of the s
o
lar
PV
sy
st
em
. In Fi
gure
8, t
h
e re
fer
e
nce an
d t
h
e act
ual
DC
vol
t
a
ge o
f
t
h
e DC
l
i
nk i
s
sh
o
w
n
.
It
i
s
obser
ved t
h
at
eve
n
in
th
is
v
a
rying
p
o
wer scen
ari
o
, th
e
DC link
vo
ltag
e
is s
u
cce
ssfully m
a
intained at the
com
m
anded val
u
e.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Electric Vehicle as
an E
n
er
gy
Storage
f
o
r
Gr
id Connected
Solar
Power
Sy
s
t
em
(E.
Sh
eeb
a
Percis)
57
3
Fi
gu
re
8.
R
e
fe
rence
an
d act
u
a
l
DC
vol
t
a
ge
of
t
h
e
i
nve
rt
er DC
l
i
n
k
Fi
gu
re
9.
R
e
fe
rence
an
d act
u
a
l
d-a
x
i
s
c
u
r
r
e
n
t
o
f
th
e so
lar inv
e
rter
An
ot
he
r i
m
port
a
nt
com
p
o
n
e
n
t
of t
h
e s
o
l
a
r PV i
nve
rt
er
i
s
t
h
e cur
r
en
t
cont
r
o
l
l
e
r. T
h
e cu
rre
n
t
co
n
t
ro
ller in
th
e
d
-a
xi
s has
t
o
be fast
eno
u
g
h
t
o
t
r
ack t
h
e cur
r
e
n
t
refe
rence ge
ne
rat
e
d by
t
h
e DC
vol
t
a
g
e
cont
roller.
At t
h
e sam
e
tim
e
the cu
rre
nt c
ont
roller
has to
b
e
ab
le to
limit th
e cu
rren
t i
n
case o
f
tran
sien
t ev
en
ts
so t
h
at
t
h
e
co
nve
rt
er
val
v
es
doe
s
not
ex
per
i
ence
hi
g
h
un
want
e
d
c
u
r
r
e
n
t
bey
o
n
d
i
t
s
rat
i
ng.
I
n
Fi
g
u
re
9, t
h
e
track
ing
o
f
t
h
e
d
-
ax
is cu
rren
t
co
n
t
ro
ller is sho
w
n
.
Here I
dord
is the refe
re
nce
cur
r
e
n
t an
d I
d
is the actual curre
nt
wave
form
s. From
the refe
re
nce a
n
d actua
l curre
n
t, th
e
success
f
ul
ope
r
ation of t
h
e
current
control
l
er is
estab
lish
e
d.
3.2
Perform
a
nce of
the Ele
c
tric Ve
hicle
In t
h
is case an electric vehic
l
e is used i
n
orde
r
t
o
a
b
s
o
r
b
t
h
e p
o
we
r
va
ri
at
i
ons ca
use
d
due t
o
t
h
e
vari
at
i
o
n i
n
i
r
r
a
di
at
i
on a
nd t
e
m
p
erat
ure. I
n
fi
g
u
re 7
,
th
ese v
a
riatio
ns are si
m
u
lated
u
s
in
g
th
e
real ti
me field
dat
a
o
b
t
a
i
n
e
d
f
r
om
C
e
nt
re fo
r
W
i
n
d
E
n
er
gy
Tech
nol
ogy
, C
h
en
nai
,
Tam
i
l
n
adu
,
I
n
di
a. Th
e C
ont
r
o
l
ci
rc
u
i
t
of
the electric ve
hicle tracks t
h
e P
ord
and the
vehicle
power
follows t
h
e sa
me satisfactorily. The vehicle
powe
r
vari
es i
n
t
h
e
ra
nge
of +/
-
30
k
W
. T
h
e ve
hi
cl
e po
wer t
r
ac
ks
t
h
e refe
rence
po
we
r w
h
i
c
h i
s
sho
w
n i
n
fi
g
u
re
10
.
In
t
h
i
s
m
odel
a
co
nst
a
nt
dc s
o
urce
o
f
5k
V i
s
use
d
as
refe
re
n
ce.
Fi
gu
re
1
0
R
e
f
e
rence
an
d act
ual
ve
hi
cl
e
po
wer
As m
e
n
tio
n
e
d
earlier in
secti
o
n
B
,
th
e co
n
t
ro
l of th
e
electri
c vehicle inve
rter sy
ste
m
is si
milar to
th
at
of t
h
e PV i
n
ve
rt
er. Si
nce a c
onst
a
nt
DC
s
o
urce i
s
use
d
,
DC
v
o
l
t
a
ge c
o
nt
r
o
l
i
s
not
re
qui
red
.
I
n
st
ead
, i
t
can
directly control the active
powe
r c
o
mm
an
ded (
*
EV
P
) from
the electric ve
hicle.
Howe
ve
r, here
the acti
v
e
po
we
r o
r
de
r c
o
m
e
s from
t
h
e coo
r
di
nat
i
n
g co
nt
r
o
l
l
e
r w
h
i
c
h
cont
rol
s
t
h
e
o
v
e
ral
l
po
wer i
n
j
ect
i
on (
P
V+E
V
) i
n
t
o
th
e u
tility
g
r
id
. Th
en
, th
e referen
ce cu
rren
t fo
r th
e curren
t
co
n
t
ro
ller is calcu
lated
d
i
rectly fro
m
th
e fo
ll
o
w
i
ng
equat
i
o
n
d
EV
EV
ref
d
v
P
i
*
_
)
(
Fo
llowing
th
e
ab
ov
e equ
a
tion
,
th
e
re
fere
nc
e curre
nt is tracked
by
th
e actu
a
l d
-
ax
is cu
rren
t of the
electric vehicle
succes
sfully.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
56
7 – 575
57
4
3.3 Per
f
or
mance of
the
PV
-EV Com
b
ined Microgrid
Now,
with
an
o
b
j
ectiv
e t
o
obtain
a flat po
wer profile inj
e
cted
to
th
e
u
tility g
r
id, a
p
o
wer referen
c
e of
1
0
0
kW
is set in
th
e coo
r
d
i
n
a
tin
g
con
t
ro
ller
.
I
t
m
ean
s th
at, if
th
e PV
syste
m
p
r
od
u
c
es m
o
r
e
p
o
w
er
than
100
kW, th
en
th
e
EV will ab
so
rb
t
h
e ex
cess
p
o
wer. Sim
ilarly,
if
th
e PV system p
r
od
u
ces
less
p
o
wer th
an
100
kW,
the E
V
syste
m
will supply
the
de
ficit.
Obviously,
t
h
e EV system
cannot s
u
pply
or a
b
s
o
rb
power for
inde
finitely long
peri
od
. It will be determ
ined by the avail
a
ble stat
e of charge of the E
V
batteries which are
t
a
ki
ng
part
i
n
t
h
i
s
V2
G an
d G
2
V t
r
ansa
ct
i
ons.
In t
h
is
case, it was assum
e
d that the EV system whi
c
h
co
nstitu
tes th
e PV-EV co
m
b
i
n
ed
m
i
cro
g
rid
,
is cap
ab
le o
f
su
ppo
rting
th
e
PV system
wit
h
in
a ran
g
e
o
f
+/- 30
k
W
. Fi
g
u
re
11
sho
w
s t
h
at
wi
t
h
suc
h
a si
m
p
le im
pl
em
ent
a
tion
of a co
o
r
di
nat
i
ng c
o
nt
rol
l
er, t
h
e p
o
w
er
f
e
d i
n
t
o
th
e g
r
i
d
is
m
a
in
tain
ed
p
e
rfectly a
t
th
e co
mman
d
e
d
v
a
lu
e, wh
ich
is 10
0 kW
in
th
is case. Th
e so
lar p
o
wer
flu
c
tu
ation
s
are co
m
p
letel
y
a
b
sorb
ed
b
y
th
e EV system
, w
h
ich
h
e
lp
s th
e
co
m
b
in
ed
syste
m
to
m
a
in
tain
a flat
po
we
r pr
ofi
l
e
.
Figure
11.
Perform
ance of the
PV-E
V c
o
m
b
ined m
i
crogri
d
It
i
s
evi
d
ent
fr
om
t
h
e fi
el
d da
t
a
obt
ai
ne
d t
h
a
t
rene
wa
ble energy sources like so
lar, wind
etc increases
t
h
e dem
a
nd f
o
r rese
rves a
n
d
reg
u
l
a
t
i
ons i
n
vi
ew
of t
h
ei
r in
term
i
tten
t
n
a
tu
re.
Asm
o
re o
f
th
ese sources are
in
j
ected
in
t
o
t
h
e grid no
wad
a
ys, th
e
electric gri
d
needs
s
o
mething
to
bri
d
g
e
t
h
e
ga
p
bet
w
een al
t
e
ri
ng
de
m
a
nd
or s
u
ppl
y
an
d t
h
e res
p
on
se o
f
t
h
e ge
neral
l
y
sl
ow l
a
r
g
e
gen
e
rat
i
on
u
n
i
t
s
.
Thi
s
rese
r
v
e/
b
a
l
a
nci
ng
capac
i
t
y
i
s
i
s
term
ed
as ‘an
c
illary serv
ices’. In
[6
,
11
] th
e
ro
le
o
f
EV
’s is sp
ecified
and
th
e nu
m
b
er of
EV’s to
b
e
d
e
plo
y
ed
in accorda
n
ce to the loa
d
dem
a
nd is re
po
rte
d
but real field
data
has
not
be
en inc
o
rporate
d
in these st
udi
es. In
[3
] th
e m
o
d
e
lin
g
o
f
th
e so
lar PV syste
m
is
carried
o
u
t
bu
t
th
e in
termitte
n
c
y h
a
s no
t b
e
en
add
r
essed. In
th
e
prese
n
t w
o
rk t
h
e real
field d
a
ta of the
sola
r irra
di
ance
and tem
p
erature
has
been
use
d
to validate the E
V
tech
no
log
y
an
d th
e
resu
lts ab
t
a
in
ed
clearly sh
ows t
h
at th
e po
wer
ou
tpu
t
to
th
e grid is stab
l
e
.
4.
CO
NCL
USI
O
NS
In t
h
i
s
pape
r, i
t
i
s
sh
ow
n t
h
at
a co
or
di
n
a
t
e
d
co
nt
ro
l is capab
le of m
a
in
tain
in
g a f
l
at
pow
er
pr
of
ile
wh
ich
is fed
i
n
to
th
e
u
tility g
r
id
fro
m
a PV syste
m
b
y
m
i
tig
atin
g
th
e in
termit
ten
c
y with
electric v
e
h
i
cles in
a
PV-EV co
m
b
i
n
ed
m
i
crig
rid
.
A PSCAD si
m
u
latio
n
,
wh
ich
uses field
d
a
ta fo
r so
lar irrad
i
an
ce and
te
m
p
eratu
r
e, are carried
o
u
t
to v
e
rify th
is id
ea. Th
e resu
lts sh
own
in
th
is pap
e
r are v
e
ry
pro
m
isin
g
to
estab
lish
the claim
that e
l
ectric vehicles
can
be
use
d
as
an e
x
te
rnal e
n
ergy st
ora
g
e t
o
a s
o
lar PV
unit in m
i
crogri
d
.
REFERE
NC
ES
[1]
Jo
y
d
eep
Mitra,
Niannian C
a
i,
Mo-Yuen Chow, Sukumar
Kamalasad
a
n, Wenxin Liu,
Wei Qiao
, Sri Niwas Singh
,
Anurag K. Srivastava, Sanjeev K
.
Srivastav
a
, Ganesh K. Venay
a
gamoorth
y
,
Zian
g Zhang
.
Intellig
ent Methods for
Smart Microgrid
s.
Power & En
er
g
y
society
Gen
e
r
a
l Meeting
.
I
E
EE Confer
ence. July
2011; 24-29.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Electric Vehicle as
an E
n
er
gy
Storage
f
o
r
Gr
id Connected
Solar
Power
Sy
s
t
em
(E.
Sh
eeb
a
Percis)
57
5
[2]
Kodanda
Ram R B P U S B, Ven
u
Gopala Rao Mannam.
Operatio
n and Control of Grid Connected
Hybrid AC/DC
Microgrids using RES
.
IJPEDS. October
2014;
Vol 5 (No 2)
; 19
5-202.
[3]
Mohamed Louzazni,
El Hassan A
r
oudam,
Hanan
e
Yatimi.
Modelling and Simula
tion of a
Solar
Po
wer Source
for a
Clean Energy
without Pollu
tion.
August 2013; V
o
l 3 (No
.
4); 568
-576.
[4]
Pinaki Mitr
a, G
a
nesh K. Venay
a
gamoorth
y
.
Intelligent Coordinated control of
a
Windfarm and
Distributed Sma
r
t
Park
s.
Industr
y
Applications So
ciety
Annual Meeting
(IAS) IEEE. 2010
.
[5]
G. K. Venay
a
gamoorth
y
and
P.
Mitra.
SmartPark Shock Absorbers for Wind Farms.
IEEE
Transa
ctions on
Ene
r
g
y
Conversion. Sep
t
ember 2011; Vo
l. 26
(Issue 3)
; 9
90 – 992
.
[6]
Zahed
i
, A.
Electric Vehicle as
distributed en
er
gy
storage resource for future
smart grid.
Universiti
es Power
Engineering Con
f
erence (AUPEC
). Sept. 2012
; 1
– 4.
[7]
Aguero, J.R.
Ch
ongfuangprin
y
a
, P.;
Shengnan S
h
ao;
Le Xu
;
Jah
a
nbakhsh, F.;
Willis, H
.
L
.
Integr
ation of Plug-in
Electric Veh
i
cles and distributed energy
resources on pow
er d
i
stribution systems.
Ele
c
tri
c
Ve
hicl
e Confer
enc
e
(IEVC).
March
2012; 1 –
7.
[8]
Traube, J., Fen
g
long Lu,
Maksimovic, D.
Mos
s
oba,
J.
Kromer,
M.; Faill,
P.
Katz,
S.
Boro
w
y
,
B. Nicho
l
s,
S.
Ca
sey
,
L.
M
i
t
i
gation o
f
So
lar
Irradiance Int
e
rmitten
cy
in
Phot
ov
oltai
c
Power Systems
With
Int
e
grated Ele
c
tri
c
-
Vehicle Chargin
g
Functiona
lity.
IEEE T
r
ansac
t
i
ons on Power Elec
tronics. June
2013; Vol 28 (Issue 6); 3058 –
3067.
[9]
Foste
r
,
J.
M.
,
Trivino,
G.
,
Kuss,
M.
,
Ka
ra
ma
nis,
M.
C.
Plug-in-
E
lectric Vehicle a
nd vo
ltage support for distributed
solar.
S
y
stems Journal I
EEE.
20
13; Vol 7
(Issue
4); 881-888.
[10]
Brissette, A.
H
oke, A.
Traub
e
,
J. Fenglong
Lu Maksimovizc,
D.
Study on
the effect of solar irradian
ce
intermitt
enc
y
mi
tigation
on
ele
c
t
ric
vehi
c
l
e
bat
tery
lif
etime
.
Technolog
ies for
Sustai
nability
(Sus
Tech) IEEE
Conference. Aug 2013; 262
– 26
7.
[11]
U
d
aw
atta
, L
.
M
a
daw
a
l
a
, M
u
th
umuni,
D.
Vilathgamuwa,
M.
Control of solar powered micro-g
r
ids using electric
vehi
c
les
. Sustain
a
ble Energ
y
Technologies (ICSET)
IEEE Confer
ence.
Sep
t
2012; 270 –
275.
[12]
Changsong Chen, Huazhong
,
Wuhan, Shanxu Duan.
Optimal Integration o
f
Plug-in-H
ybrid Ele
c
tric Vehi
cl
e
s
in
Microgrid
. I
E
EE Transaction
on
I
ndustrial Informatics. 2014; Vol
10 (Issue 3); 191
7-1926.
[13]
Patterson, M
.
,
Sk
y
S
ong, Sco
tts
dale
, Macia, N.F., Kann
an, A
.
M.
Hybrid Microgrid Model
Based on Solar
Photovoltaic Battery Fu
el Cell System
for Intermittent Load Applications.
IEEE Tr
ansa
ction on Ener
g
y
Conversion. Feb
2015; 359-366
.
[14]
Kumaravel, S.,
Ashok, S.
Adapted Multilayer feedforward ANN based
Power Management Control of Solar
Photovoltaic and wind Inte
grated Power Systems.
Innovative Smart Grid Techn
o
logies - India (ISGT India) IEEE
PES. 2011; 223-
228.
BIOGRAP
HI
ES OF
AUTH
ORS
E. S
h
eeb
a Perc
is
obtained her B.E. from Madras Univer
sity
and M.E. from Anna University.
Currentl
y
s
h
e
is
purs
u
ing P
h
.D. i
n
Dr. M
.
G.R.
Ed
ucat
ional
& Res
earch Ins
t
itut
e
.
Her s
p
ecia
l
i
zat
io
n
in PG is Power Ele
c
tron
ics a
nd Drives. Her
res
ear
ch in
ter
e
s
t
s
include
Ren
e
wable
Ener
g
y
Techno
log
y
, Po
wer S
y
stem
Simulation stud
ies,
Po
wer Electronics, Transmission and Distributio
n.
S
h
e is
pres
entl
y working
as
As
s
o
ciate P
r
ofe
s
s
o
r of Electr
i
c
a
l and
Ele
c
tron
ics
Engin
eerin
g
Department
at Dr. MGR Edu
cational
and R
e
sear
ch Institute, Ch
ennai,
T
a
m
ilNadu
,
Indi
a.
S.
M
a
nivannan
obtain
e
d his
B.E. and M.E. from Ma
dras
Univers
i
t
y
and
P
h
D from
Anna
Universit
y
.
His specia
lisa
tion i
n
cludes th
erm
a
l
and EMI man
a
gement of
electronic packag
es,
ele
c
trom
agnet
i
c
com
p
atibil
it
y,
P
o
wer S
y
s
t
em
S
i
m
u
lation studies and optimisat
io
n. He is pr
esently
working as the
Deputy
D
ean an
d Professor of Elec
trical
and Electronics Engineering at Dr. MG
R
Educational and Research Institute University
, Ch
ennai, TamilNad
u, Indi
a. He has published over
ten p
a
pers
in r
e
f
e
rred
index
e
d in
ternational journ
a
ls and pr
esented
man
y
p
a
pers
in
conferences.
A.
Nalini
obtain
e
d her B
.
E. and
M.E.
from Annama
l
a
i
Uni
v
e
r
sity.
Curre
ntly
she
is pursui
ng Ph.
D
.
in Dr. M
.
G.R.
E
ducat
ional
& R
e
search Inst
itut
e
.
Her speci
ali
z
a
tio
n in PG is Powe
r S
y
stem
s. Her
res
earch in
ter
e
s
t
s
include W
i
de Area M
onitorin
g
and Control,
P
h
as
or M
eas
urem
ent Unit, P
o
wer
S
y
stem
Sim
u
lati
on studies and Optim
izatio
n. She is
pres
entl
y
working as
As
socia
t
e P
r
ofes
s
o
r of
Electrical and
Electronics En
g
i
neer
ing Depar
tment at Dr
.
M
G
R Educational and Research
Institute
, Ch
enn
a
i,
T
a
m
ilNadu,
I
ndia.
Evaluation Warning : The document was created with Spire.PDF for Python.