Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol
.
5
,
No
. 2, Oct
o
ber
2
0
1
4
,
pp
. 24
4~
25
1
I
S
SN
: 208
8-8
6
9
4
2
44
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Active and Reactive Power Cont
rol of a Doubly Fed Induction
Generator
Z
e
r
z
ouri Nor
a
, L
a
bar
Hoci
ne
Department o
f
Electrical Engin
e
ering,
B
a
dji Mokthar Univers
ity
A
nnaba, Alger
i
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
J
u
l 13, 2014
Rev
i
sed
Sep
14
, 20
14
Accepted
Sep 30, 2014
W
i
nd energ
y
h
a
s
m
a
n
y
adv
a
n
t
ages
,
it does
not pollut
e
and
it is
an
inexhaustib
le source. However
,
the cost
of this energ
y
is stil
l too high t
o
com
p
ete with tr
adition
a
l fossil
fuels, espe
ci
all
y
on sites less wind
y. Th
e
performance of a wind turbine depends
on three parameters: th
e power of
wind, the power
curve of th
e tur
b
ine and
the gen
e
rator
'
s ab
ility
to
respond to
wind fluctu
ation
s
. This pap
e
r presents
a contro
l chain conv
ersion
based on
a
double-fed as
y
n
chronous machine (D.F.I.G
). To improve the transient an
d
stead
y
state per
f
ormance and the power factor
of generation
,
a stator flux
oriented vector
control sch
e
me is us
ed in this
work. The v
e
c
t
or contro
l
structure
emplo
y
s conv
ention
a
l PI cont
rollers f
o
r the d
ecoupled control of
the
s
t
ator s
i
de a
c
tiv
e and reac
tiv
e power. The whole s
y
s
t
em
is
m
odeled and
sim
u
lated using
Matlab/Sim
u
link
and
the
results
a
r
e an
al
yz
ed
.
Keyword:
D
oub
ly Fed Ind
u
c
tion
Gene
rato
r (D
F
I
G
)
Wi
n
d
T
u
r
b
i
n
e
Activ
e an
d Reactiv
e Power
C
ont
r
o
l
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Zerzo
u
r
i N
o
ra
Depa
rtem
ent of Elect
ri
cal
E
n
gi
nee
r
i
n
g,
B
a
dji
M
okt
har
Uni
v
ersi
t
y
A
n
naba
,
U
n
i
v
er
sité Badj
i Mokh
tar
-
A
nn
ab
a-
B.P.1
2
,
A
n
n
a
b
a
,
23
000 A
l
g
e
r
i
a.
Em
a
il: Zerzo
u
ri_
k
a
rim
a
@yah
o
o
.fr
1.
INTRODUCTION
W
i
n
d
e
n
er
gy
i
s
o
n
e
of
t
h
e
m
o
st
i
m
port
a
nt
and
p
r
om
i
s
i
n
g
so
urce
o
f
ren
e
wabl
e e
n
e
r
gy
al
l
ov
er t
h
e
world, m
a
inly because it re
duces t
h
e e
n
vironm
ental po
llution ca
use
d
by
traditional
power pla
n
ts as
well as
t
h
e de
pe
nde
nc
e o
n
f
o
ssi
l
f
u
el
, w
h
i
c
h
ha
ve l
i
m
i
t
e
d reser
v
es.
El
ect
ri
c ener
g
y
,
ge
nerat
e
d b
y
wi
n
d
p
o
w
er
pl
ant
s
i
s
t
h
e fast
est
devel
opi
ng a
n
d m
o
st
prom
i
s
i
ng re
ne
wabl
e
ener
gy
so
urc
e
[1]
.
O
f
f
-
s
h
o
r
e wi
n
d
po
wer
pl
ant
s
pr
o
v
i
d
e
hi
g
h
er
y
i
el
ds beca
us
e of
bet
t
e
r
co
n
d
i
t
i
ons
.
W
i
t
h
i
n
crease
d
pe
netration
of wind powe
r
int
o
ele
c
trical
gri
d
s,
wi
n
d
t
u
r
b
i
n
es
are l
a
rge
l
y
depl
oy
e
d
d
u
e t
o
t
h
ei
r
va
r
i
abl
e
spee
d
fe
at
ure a
n
d
henc
e i
n
fl
uenci
n
g
s
y
st
em
dy
nam
i
cs. B
u
t
un
bal
a
nces i
n
wi
n
d
e
n
er
gy
a
r
e hi
ghl
y
i
m
pact
i
ng t
h
e e
n
e
r
g
y
con
v
er
si
o
n
a
nd t
h
i
s
pr
obl
e
m
can
be o
v
erc
o
m
e
by
usi
n
g a Do
ubl
y
Fed I
n
du
ct
i
on Ge
nerat
o
r (D
FI
G) [
2
]
.
Do
u
b
l
y
fed w
o
u
n
d
rot
o
r i
n
d
u
ct
i
o
n
mach
in
e with
v
ector con
t
ro
l is v
e
ry attractiv
e to
th
e
hi
g
h
per
f
o
r
m
a
nce vari
abl
e
spee
d
dri
v
e an
d ge
ne
rat
i
n
g
appl
i
cat
i
o
ns. I
n
va
ri
abl
e
spe
e
d d
r
i
v
e ap
pl
i
cat
i
on, t
h
e s
o
cal
l
e
d sl
i
p
po
wer rec
o
very
schem
e
i
s
a com
m
on
pract
i
ce
here
t
h
e
po
we
r
due
t
o
t
h
e
r
o
t
o
r sl
i
p
bel
o
w
or
ab
ove
sy
nc
hr
o
n
o
u
s s
p
ee
d i
s
rec
ove
re
d t
o
o
r
s
u
p
p
l
i
e
d
fro
m
th
e po
wer so
urce
resultin
g
in a
h
i
gh
ly efficien
t
variable s
p
ee
d
syste
m
. Slip powe
r c
o
ntrol
can
be
obt
ai
ne
d
by
usi
ng
po
p
u
l
a
r St
at
i
c
Scher
b
i
u
s
dr
i
v
e fo
r bi
di
rec
t
i
onal
p
o
we
r fl
ow
. A
dva
nt
age
of t
h
e D
F
I
G
i
s
t
h
at
th
e po
wer electron
ic equ
i
pmen
t u
s
ed a back
to
b
a
ck
co
nv
erter th
at
h
a
nd
les a
fractio
n
o
f
(20
-
30%) to
tal
sy
st
em
powe
r
.
The
bac
k
t
o
ba
ck c
o
n
v
e
r
t
e
r c
onsi
s
t
s
o
f
two
co
nv
erters. Grid
Si
d
e
C
o
nv
ert
e
r (GSC
) an
d
Ro
tor
Si
de C
o
n
v
ert
e
r
(R
SC
)
co
n
n
ec
t
e
d bac
k
t
o
bac
k
t
h
r
o
u
g
h
a
dc
l
i
nk ca
paci
t
o
r
f
o
r
ene
r
gy
st
ora
g
e
pu
r
pose
[
2
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Act
i
ve an
d
Rea
c
t
i
ve Pow
e
r C
ont
r
o
l
of
a
D
o
ubl
y
Fed
I
n
d
u
c
t
i
on
Gene
rat
o
r
(
Z
erzo
uri
N
o
r
a
)
24
5
Fi
gu
re
1.
W
i
nd
ene
r
gy
c
o
nve
r
s
i
o
n
chai
n
2.
WIN
D
T
URB
INE MO
DEL RESEA
R
C
H
W
i
nd t
u
rbines
produce elect
ricity by
u
s
i
n
g th
e
po
wer
o
f
th
e wi
nd
to driv
e an
electrical g
e
n
e
rator.
W
i
n
d
passes
o
v
er t
h
e
bl
ades
,
ge
nerat
i
n
g l
i
f
t
an
d e
x
ert
i
n
g
a tu
rn
ing
force. The ro
tatin
g
b
l
ad
es tu
rn
a sh
aft
i
n
si
de t
h
e
nac
e
l
l
e
, whi
c
h
go
es i
n
t
o
a gea
r
bo
x. T
h
e
g
earb
o
x
in
creases
th
e ro
tation
a
l sp
eed
to
th
at wh
ich
is
app
r
op
ri
at
e fo
r t
h
e ge
nerat
o
r, w
h
i
c
h
uses
m
a
gnet
i
c
fi
el
ds to
co
nv
ert th
e ro
tatio
n
a
l en
erg
y
in
to
electrica
l
energy.
The
po
wer c
o
n
t
ai
ned i
n
t
h
e w
i
nd i
s
gi
ve
n by
t
h
e ki
net
i
c
e
n
e
r
gy
of t
h
e
fl
o
w
i
ng ai
r m
a
ss pe
r u
n
i
t
t
i
m
e
[
3
],
[4
].
P
ρ
Sv
(1)
Whe
r
e P
air
t
h
e
po
we
r co
nt
ai
ned i
n
wi
n
d
(i
n wat
t
s
)
,
ρ
i
s
t
h
e ai
r
densi
t
y
(1.
2
25
k
g
/
m
3 at
1
5
°C
a
n
d
no
rm
al
press
u
re), S is the swe
p
t area
in (squa
r
e m
e
ter), a
n
d v is
the wind
v
e
lo
cit
y
with
ou
t ro
t
o
r in
terferen
c
e, id
eally
at in
fin
ite d
i
stan
ce fro
m
th
e ro
tor (in m
e
ter
p
e
r secon
d
).
Alth
o
ugh
(1
) g
i
ves th
e power av
ailab
l
e in
th
e
wind
,
the power transferred to t
h
e
wind
turb
in
e
ro
tor is
redu
ce
d by the
power
coefficient C
p
(2)
A
ma
x
i
mu
m v
a
l
u
e
o
f
C
p
is defin
e
d
b
y
th
e
Betz li
mit, wh
ich
states th
at a tu
rb
in
e can
nev
e
r ex
tract
m
o
re th
an
59
.3% of th
e power fro
m
an
air stream
. In
reality, wind
t
u
rb
in
e ro
t
o
rs h
a
v
e
m
a
x
i
m
u
m
C
p
values i
n
th
e rang
e
2
5
-45
%
. It is also
co
nv
en
tio
n
a
l
to
d
e
fi
n
e
a tip sp
eed ratio
as [
5
],
[6
]:
(3)
Whe
r
e
ω
is
ro
t
a
tio
n
a
l sp
eed of ro
tor
(in
rp
m
)
, R is th
e ra
d
i
us of th
e swep
t
area (i
n
m
e
ter).Th
e tip sp
eed
ratio
and the
powe
r coefficient C
p
are t
h
e
di
m
e
nsi
onl
ess a
n
d s
o
ca
n b
e
u
s
ed
t
o
desc
ri
be
t
h
e
per
f
o
rm
ance of a
n
y
size of wi
nd turbi
n
e rotor.
Fi
gu
re
2.
The
t
y
pi
cal
cur
v
es
o
f
C
p
ve
rs
us
f
o
r
va
ri
o
u
s
val
u
es o
f
t
h
e
pi
t
c
h
angl
e
β
0
5
10
15
20
25
0
0.
0
5
0.
1
0.
1
5
0.
2
0.
2
5
0.
3
0.
3
5
0.
4
0.
4
5
0.
5
V
i
t
e
s
s
e
de V
e
nt
(
m
/
s
)
c
oef
f
i
c
i
ent
C
p
1be
t
a
=
0
2be
t
a
=
2
3be
t
a
=
4
4be
t
a
=
6
5be
t
a
=
8
6be
t
a
=
1
0
7be
t
a
=
1
2
8be
t
a
=
1
4
9be
t
a
=
1
6
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
2
,
O
c
t
o
b
e
r 201
4 :
2
44 –
25
1
24
6
3.
D
F
IG MOD
E
LIN
G
AN
D POWER CONTR
O
L
3.
1.
Pri
n
ci
pe of
Oper
ati
o
n
The m
achine stator winding is dir
ectly connected to the grid and th
e rotor winding is connected t
o
t
h
e r
o
t
o
r-
si
de
VSC
by
sl
i
p
ri
ngs
a
n
d
b
r
ush
e
s.
A
wi
de
ra
ng
e o
f
vari
a
b
l
e
s
p
eed
ope
rat
i
n
g
m
ode can
be a
c
hi
eve
d
b
y
app
l
yin
g
a
co
n
t
r
o
llab
l
e
v
o
ltag
e
acr
o
s
s the r
o
t
o
r
ter
m
in
als. Th
is is done th
ro
ugh
th
e ro
tor
-
s
i
d
e VSC. Th
e
appl
i
e
d
r
o
t
o
r v
o
l
t
a
ge ca
n be
vari
e
d
i
n
b
o
t
h
m
a
gni
t
ude
an
d
pha
se by
t
h
e
con
v
e
r
t
e
r c
ont
rol
l
e
r,
w
h
i
c
h c
ont
rol
s
t
h
e r
o
t
o
r c
u
rre
nt
s. T
h
e
r
o
t
o
r
si
de
VSC
c
h
a
n
ges t
h
e m
a
gni
t
ude
a
n
d
an
gl
e
of
t
h
e
ap
pl
i
e
d
vol
t
a
ge
s a
n
d
h
e
nce
decoupled c
o
nt
rol
of real a
n
d
reactive
powe
r can
be ac
hie
v
e
d
.
3.
2.
M
a
them
a
t
i
c
al
Mo
del
o
f
DFIG
For a
do
u
b
l
y
fed i
n
d
u
ct
i
on
m
achi
n
e, t
h
e
C
onc
or
di
a an
d
Park t
r
a
n
s
f
o
r
m
a
t
i
on'
s appl
i
cat
i
on t
o
t
h
e
trad
itio
n
a
l a,b,c m
o
d
e
l allo
ws to
write a
d
yna
m
i
c
m
odel in
a d
-
q
re
fere
nce
fram
e
as f
o
llo
ws
[7]
:
(4)
The
fl
u
x
é
quat
i
ons
are:
(5)
W
h
er
e
ω
s
:
sy
nch
r
on
o
u
s a
n
gul
ar
f
r
eq
uency
ω
r
:
rot
o
r
an
g
u
l
a
r f
r
e
que
ncy
Rs
,
Rr
:
e
q
ui
val
e
nt
resi
st
a
n
ces
of
st
at
or
an
d
ro
t
o
r
wi
n
d
i
n
gs,
r
e
spect
i
v
el
y
Ls
,
L
r
, M
: self an
d
m
u
tu
al
in
du
ct
ances
of sta
t
or a
n
d rotor
windings
,
re
spec
tively
Th
e m
o
tio
n
equ
a
tio
ns are g
i
ven
as fo
llo
ws:
(6)
(7)
(8)
W
h
er
e
g
: slip
an
gu
lar freq
u
e
n
c
y
s
: slip
C
m
:
m
ech
an
ical to
rq
u
e
prov
ided
to th
e
wind
tu
rb
in
e
C
e
: electro
m
a
g
n
e
tic to
rqu
e
J
:
m
o
m
e
n
t
o
f
in
ertia
3.
3.
Establishm
ent of the
Contr
o
l Str
a
te
gy
Negl
ect
i
n
g
t
h
e
resi
st
ance
o
f
t
h
e gene
rat
o
r
st
at
or wi
n
d
i
n
g,
t
h
e pha
se di
ffe
r
e
nce bet
w
ee
n st
at
or fl
u
x
an
d
stato
r
v
o
l
t
a
g
e
v
ector
is just
90
°.
Th
erefore,
u
tilizin
g
the st
ato
r
flux-orien
t
ed
t
o
align
t
h
e stator
flux
vecto
r
p
o
s
ition
with
d
-axi
s,
t
h
e fl
u
x
equat
i
o
n
i
s
:
0
(9)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Act
i
ve an
d
Rea
c
t
i
ve Pow
e
r C
ont
r
o
l
of
a
D
o
ubl
y
Fed
I
n
d
u
c
t
i
on
Gene
rat
o
r
(
Z
erzo
uri
N
o
r
a
)
24
7
T
o
k
e
ep
th
e s
t
ato
r
f
l
ux
ϕ
s
c
o
n
s
t
a
nt
, t
h
e
v
o
l
t
a
ge e
quat
i
o
ns
c
a
n
be e
x
p
r
esse
d as:
0
(10)
Whe
r
e
Vs
is t
h
e spac
e vect
or am
plitude of stator voltage
.
The
active
a
nd reactive powers of
stat
or can
be
deri
ved
as:
(11)
Accord
ing
to
(1
0),
wh
ile DFIG is co
nn
ected
to
an
i
n
fi
ni
t
e
gri
d
, t
h
e
st
at
or
v
o
l
t
a
ge i
s
c
onsi
d
ere
d
a
co
nstan
t
. Th
e stato
r
curren
t
is th
e on
ly con
t
ro
lled
q
u
a
n
tity. Th
erefo
r
e, th
e
DFIG
ou
tpu
t
po
wer to grid
can
be
cont
rol
l
e
d
by
t
h
e st
at
or
cu
rre
nt
, w
h
i
c
h
achi
e
ves t
h
e
g
o
al
of i
nde
pe
nde
nt
cont
rol
fo
r t
h
e DF
IG act
i
v
e
an
d
reactive
power out
put. Due t
o
the stator wi
ndings a
r
e di
rec
tly connecte
d
t
o
the
powe
r sy
ste
m
s and the
effect
of the stator
re
sistance is
very
sm
all.
Sub
s
titu
tin
g (9) in
t
o
(5),
d
-
q
a
x
is stator c
u
rre
n
t can be
calculated as:
(12)
Sub
s
titu
tin
g “(1
2
)” i
n
to
“(4)”, th
e
ro
t
o
r
vo
ltag
e
can
b
e
ex
press as:
(13)
Whe
r
e
1
is the
l
eakage
fact
or.
The control va
riables
Vdr
an
d
Vqr
of t
h
e r
o
t
o
r v
o
l
t
a
ge ca
n be o
b
t
a
i
n
ed f
r
o
m
“(13)”
.
The
i
n
fl
ue
nce o
f
the cross
-
c
o
upl
i
ng bet
w
een the
d
-
q
ax
is co
mp
on
en
ts o
f
ro
t
o
r curren
t on
syste
m
p
e
rfo
rm
an
ce is s
m
all,
wh
ich
can be
elim
inated by a
d
opting s
o
m
e
control
law. T
h
e m
o
del o
f
th
e
v
ect
or con
t
ro
l of th
e ro
t
o
r-sid
e
conv
erter
obt
ai
ne
d
fr
om
t
h
e ab
o
v
e a
n
al
y
s
i
s
i
s
sh
ow
n i
n
Fi
gu
re
3.
Fi
gu
re
3.
P
o
we
r c
ont
r
o
l
of
t
h
e
DF
IG
4.
SIMULATION RESULTS
The structure
of t
h
e DFIG
wind
en
erg
y
syste
m
is i
llu
st
rated
in
Figure 1. T
h
e
DFIG connected
di
rect
l
y
t
o
t
h
e
gri
d
t
h
r
o
ug
h t
h
e st
at
or
, an
d
i
t
s
speed
is controlled via a
back-to-bac
k
PW
M convert
e
r. T
h
e
param
e
t
e
rs of
t
h
e
DFI
G
a
r
e
gi
ven
i
n
Tabl
e
1.
A s
p
ee
d
wi
n
d
pr
ofi
l
e
i
s
a
p
pl
i
e
d t
o
t
h
e
sy
st
em
Fi
gure
4.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
2
,
O
c
t
o
b
e
r 201
4 :
2
44 –
25
1
24
8
Table 1
.
3M
W
WT
G I
n
duct
i
o
n M
a
c
h
i
n
e
Par
a
m
e
t
e
rs
Parameter Value
Rotor
r
e
sistor
per
phase
2,
97
m
Ω
Rotor
r
e
sistor
per
phase
3,
82
m
Ω
I
nductance of the stator
winding
121
m
H
I
nductance of the r
e
tor
winding
57,
3
m
H
M
u
tual I
nductance
12,
12
m
H
Nu
m
b
er
of pole pair
s
2
iner
tia 114
kg.m
2
Rated power
3M
W
Rated voltage
690V
Fi
gu
re 4.
W
i
n
d
s
p
ee
d pr
ofi
l
e
Figure
5. Mec
h
anical
s
p
ee
d
of
t
h
e
DF
IG
Fig
u
re
6
.
Ro
tor slip
0
1
2
3
4
5
6
8
8.
5
9
9.
5
10
10.
5
11
Ti
m
e
(
s
)
Vt
(
m
/
s
)
0
1
2
3
4
5
6
0
200
400
600
800
1000
1200
1400
1600
1800
2000
Ti
m
e
(
s
)
W
r(t
r/
m
i
n
)
0
1
2
3
4
5
6
-0.
4
-0.
2
0
0.
2
0.
4
0.
6
0.
8
1
Ti
m
e
(
s
)
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Act
i
ve an
d
Rea
c
t
i
ve Pow
e
r C
ont
r
o
l
of
a
D
o
ubl
y
Fed
I
n
d
u
c
t
i
on
Gene
rat
o
r
(
Z
erzo
uri
N
o
r
a
)
24
9
Fi
gu
re
7.
St
at
or
cu
rre
nt
a
n
d
vol
t
a
ge
Fig
u
r
e
8
.
Zo
om
sta
t
o
r
cur
r
e
nt an
d vo
ltag
e
Fi
gu
re
9.
R
o
t
o
r
cu
rre
nt
an
d
v
o
l
t
a
ge
Fi
gu
re
1
0
.
Zo
om
rot
o
r
cu
rre
nt
an
d
v
o
l
t
a
ge
1.
8
1.
9
2
2.
1
2.
2
2.
3
-4000
-3000
-2000
-1000
0
1000
2000
3000
4000
Ti
m
e
(
s
)
V
a
s
(
V
)
and
i
a
s
(
A
)
Va
s
ia
s
2.
28
2.
3
2.
3
2
2.
3
4
2.
3
6
2.
3
8
2.
4
-30
0
0
-20
0
0
-10
0
0
0
10
00
20
00
30
00
Ti
m
e
(
s
)
Va
s
(
V)
a
n
d
i
a
s
(
A)
Va
s
ia
s
1
1.
5
2
2.
5
3
3.
5
-
300
0
-
200
0
-
100
0
0
100
0
200
0
300
0
Ti
m
e
(
s
)
V
a
r(V
) a
n
d
i
a
r(A
)
Va
r
ia
r
3
3.
05
3.
1
3.
15
3.
2
3.
25
3.
3
3.
35
3.
4
3.
45
3.
5
-3000
-2000
-1000
0
1000
2000
3000
Ti
m
e
(
s
)
V
a
r(V
) a
n
d
i
a
r(A
)
Va
r
ia
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
2
,
O
c
t
o
b
e
r 201
4 :
2
44 –
25
1
25
0
Fig
u
r
e
11
.
Stato
r
activ
e power
Figure 12.
Sta
t
or reactive power
Fig
u
re 7
sh
ows th
e zo
o
m
o
f
th
e wav
e
fo
rm
o
f
th
e stato
r
vo
l
t
ag
e an
d
cu
rren
t are in
ph
ase o
p
p
o
s
ition
.
Th
is con
f
irm
s
th
at th
e DFIG is sen
d
i
ng
activ
e po
wer to
the grid.
We can see that the curre
nt and
volta
ge are
in
ph
ase
wh
en th
e m
ach
in
e acts th
e m
o
to
r.
Fig
u
re
6
sh
ows th
e g
e
n
e
rator slip
, b
e
l
o
w syn
c
hro
nou
s sp
eed
th
e
slip
is p
o
s
itiv
e
an
d
t
h
e m
ach
in
e acts as
m
o
to
r, abo
v
e
sy
n
c
h
r
o
nou
s sp
eed
t
h
e slip
is n
e
g
a
ti
v
e
and
m
ach
in
e acts
as ge
nerat
o
r. Figures
11 a
n
d
12 illustrate re
spectively
the stator
active powe
r
a
n
d
react
ive power.
W
e
can se
e
t
h
e ro
b
u
st
ness
of t
h
e p
o
we
r
cont
r
o
l
of t
h
e DFI
G
. Fi
g
u
r
es 9 and
10 s
h
o
w
t
h
e r
o
t
o
r
vol
t
a
ge an
d
cur
r
ent
wave
form
s.
The
fre
quency of these voltage
a
n
d curre
nt,
va
ry according t
o
the slip s
.
The active
power
of DFIG
i
n
crease
from
1M
W
to t
h
e
power
2.5M
W a
n
d the
reactive
powe
r rem
a
ins
0M
va
r,
whi
c
h
si
gni
fi
e
d
t
h
e
react
i
v
e p
o
w
er
out
put
i
s
n
o
t affected. T
h
e sim
u
lation res
u
lt indicates that the
active and
reac
tive powe
r
dec
o
upled control
i
s
achi
e
ve
d a
n
d t
h
e
pe
rf
o
r
m
a
nce i
s
g
o
o
d
.
5.
CO
NCL
USI
O
N
Thi
s
pa
per
pr
esent
s
t
h
e d
o
ubl
y
fe
d i
n
d
u
c
t
i
on ge
nerat
o
r use
d
i
n
va
r
i
abl
e
-spee
d
w
i
nd p
o
w
er
gene
rat
i
o
n.
An
d a co
nt
r
o
l
st
r
u
ct
u
r
e usi
ng s
t
anda
rd
pr
o
p
o
r
t
i
onal
i
n
t
e
g
r
al
PI co
nt
r
o
l
l
e
r
and a
fi
el
d-
ori
e
nt
ed
cont
rol str
a
teg
y
based
o
n
a
re
fere
nce
fram
e
rotating sy
nc
h
r
o
nou
sly w
ith
t
h
e ro
tor
f
l
ux
for
v
a
r
i
ab
le sp
eed
w
i
nd
t
u
r
b
i
n
es usi
n
g
do
ubl
y
fed i
n
d
u
ct
i
o
n ge
ne
rat
o
r a
nd f
o
r
obt
ai
ni
ng i
n
je
ct
ed rot
o
r v
o
l
t
a
ges i
s
descri
bed a
n
d
sim
u
l
a
t
e
d. Hen
ce resul
t
s
are
det
e
rm
i
n
ed su
b-sy
nch
r
on
o
u
s
and s
upe
r sy
n
c
hr
o
n
o
u
s s
p
ee
ds an
d t
h
e act
i
v
e an
d
react
i
v
e p
o
we
r
cont
r
o
l
i
s
achi
e
ved by
t
h
e
R
S
C
and G
S
C
.
For t
h
e
pu
r
p
ose o
f
fut
u
re
ext
e
nsi
on i
n
st
e
a
d of
standa
rd PI c
o
ntrollers fuzzy
cont
rollers
etc. can
be
use
d
.
REFERE
NC
ES
[1]
A Babaie Lajimi, S Asghar
G
holamian, M Shahabi. Modeling an
d Control
of a DF
IG-Bas
ed W
i
nd Turbine During a
Grid Voltage Drop.
ET
AS
R -
En
gineering
,
T
e
chn
o
logy
&
Applied
Science Research.
2011; 1(5): 12
1-125.
[2]
MA Mo
ssa
.
Field Orientation Control of a Wind Dr
iven DF
IG
Connect
ed to th
e Grid.
Wseas Transactions On
Powe
r Sy
ste
m
s
. 2012;
4(7).
[3]
Hachemi Glaoui, Harrouz Abdelkader,
Ismail M
e
ssaoudi, Hamid Saab. Modeling
of Wind Energ
y
on Isolated Area”
International Jo
urnal of
Power
Elec
tronics and
Drive
System (
I
JPEDS)
. 2014; 4(
2): 274~280.
0
1
2
3
4
5
6
-4
-2
0
2
4
6
8
10
12
Ti
m
e
(
s
)
Ps
(
M
W
)
0
1
2
3
4
5
6
-6
-4
-2
0
2
4
6
8
Ti
m
e
(
s
)
Qs
(
M
V
A
R)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Act
i
ve an
d
Rea
c
t
i
ve Pow
e
r C
ont
r
o
l
of
a
D
o
ubl
y
Fed
I
n
d
u
c
t
i
on
Gene
rat
o
r
(
Z
erzo
uri
N
o
r
a
)
25
1
[4]
Yu Ling, Xu
Cai. Rotor curr
ent d
y
namics of doubly
fed
indu
ction gen
e
rators
during
grid voltage dip and ris
e
.
Electrica
l
Pow
e
r and En
ergy S
y
stems.
2013; 44: 1
7–24.
[5]
Srinath Vanukur
u, Sateesh Sukhavasi
.
Ac
tive
&
React
ive Powe
r Control Of A Doubl
y
Fed Ind
u
ction Gen
e
rato
r
Driven By
A Wind Turbine.
I
n
ternational Jou
r
nal of Power S
y
st
em Operation and Energy Management.
ISSN
(
PRINT
): 2011
;
1(2): 2231–4407
.
[6]
Sai Sindhura K,
G Srinivas Rao
.
Control
And Mo
deling Of Doubly
Fed
Induction
Machine For Wind Turbines
.
Int.
Journal of Engin
eering
Research
and
Applications
. 2013; 3(6): 532
-538.
[7]
Belabb
as Belkacem, Tay
e
b Allaoui, M
ohamed
Tadjin
e, Ahmed Safa. H
y
br
id
Fuzzy
Slid
ing Mode Control of a
DFIG Integrated
into the Network.
Internationa
l Journal of Power El
ectronics and Drive System (
I
JPEDS)
. 2013;
3(4): 351~364.
Evaluation Warning : The document was created with Spire.PDF for Python.