Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol
.
5
,
No
. 2, Oct
o
ber
2
0
1
4
,
pp
. 16
6~
17
5
I
S
SN
: 208
8-8
6
9
4
1
66
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Lithium-ion Battery Charging
System using Constant-Current
Method with Fuzzy Logic based ATmega16
Ro
ssi Passa
rella
,
Ahma
d
Fa
l
i
Oklila
s, T
a
ri
da
Ma
thilda
Department o
f
C
o
mputer Engin
e
ering, Univer
sity of Sriwijay
a, Palembang, Indonesia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Ma
r 5, 2014
Rev
i
sed
May 2
3
, 2
014
Accepted
Jun 15, 2014
In this
charg
i
n
g
s
y
s
t
em
, cons
tant-
c
urrent
charging technique keeps th
e
current flow in
to the batter
y
on
its ma
ximum ra
nge of 2A. The
use of fuzzy
logic
contro
l of
this charg
i
ng s
y
s
t
em is
to
control the value of
PWM. PWM is
controlling the
value of curren
t
flowi
ng to the batter
y
dur
ing the charging
process. Th
e cu
rrent v
a
lue
into
the ba
tter
y
dep
e
nds on the v
a
lu
e of batter
y
voltag
e
and
als
o
its
t
e
m
p
eratu
r
e.
The
cutoff
s
y
s
t
em
will
oc
cur if
th
e
tem
p
eratur
e of
t
h
e ba
tter
y
re
ach
es
its
m
a
xim
u
m
range.
Keyword:
Ch
arg
i
ng
C
onst
a
nt
-c
ur
re
nt
Fuzzy
Lith
iu
m
-Io
n B
a
ttery
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Rossi Passa
rella,
Depa
rt
m
e
nt
of
C
o
m
put
er E
ngi
neeri
n
g
,
Un
i
v
ersity of
Sriwij
aya,
Jln
.
Palem
b
an
g-
Pr
abu
m
u
lih
, km
3
2
.
Ind
e
r
a
laya, Og
anI
lir
,
Su
m
a
ter
a
-
s
elata
n
,
In
don
esia 306
62
Em
a
il: p
a
ssarella.ro
s
si@g
m
a
il
.co
m
1.
INTRODUCTION
Th
ere are m
a
n
y
ch
arg
i
n
g
m
e
th
od
s fo
r lith
i
u
m
b
a
ttery su
ch
as con
s
tan
t
-curren
t
m
e
th
od
, con
s
tan
t
-
vol
t
a
ge
m
e
t
hod, c
o
nv
ent
i
o
na
l
fi
ve
-st
a
ge
o
r
p
r
o
p
o
sed
f
u
zz
y
-
base
d al
go
ri
t
h
m
m
e
t
hod
[1
]
.
C
h
ar
gi
n
g
Li
t
h
i
u
m
bat
t
e
ry
wi
t
h
c
onst
a
nt
-c
ur
rent
m
e
t
hod i
s
a
t
echni
q
u
e t
o
k
eep t
h
e
val
u
e
of t
h
e cu
rre
nt
whe
n
i
t
fl
o
w
s i
n
t
o
b
a
ttery, wh
ile
t
h
e v
a
lu
e of
its v
o
ltag
e
is
ch
arg
i
ng
[2
]-[5
]
. Ev
en tho
ugh
th
e v
a
lu
e of t
h
e cu
rren
t is flu
c
t
u
atin
g
,
b
u
t
in
th
is charg
i
n
g
system
,
th
e
m
a
x
i
m
u
m v
a
lu
e will
b
e
2Am
p
ere. Here, th
e ch
an
g
i
n
g
v
a
lu
e of b
a
ttery
v
o
ltag
e
is fro
m ran
g
e
2.7 vo
lt
to
4.2 vo
lt.
Th
e ad
d
ition
of fu
zzy log
i
c co
n
t
ro
l
o
f
t
h
is
Lith
iu
m
b
a
ttery ch
arg
i
ng
syst
e
m
is th
e con
t
ro
l of cu
rren
t
flow int
o
the
lithium
battery, so t
h
at it w
ill m
eet its input a
n
d output
requi
r
em
ents.
Th
ere are two
in
pu
ts in
th
is ch
arg
i
ng
system, wh
ich
are tem
p
eratu
r
e and
v
o
ltag
e
o
f
lith
i
u
m
b
a
ttery.
Tem
p
eratu
r
e is th
e
m
o
st v
ital
p
a
ram
e
ter in
li
th
iu
m
b
a
ttery s
ecu
rity th
at affected
b
a
ttery’s h
ealth
. Th
e lith
iu
m
b
a
ttery is easy
to
exp
l
od
e
wh
en
it is
o
v
e
rcha
r
g
i
n
g t
h
at
c
a
use
d
by
o
v
e
r
t
e
m
p
erat
ure
.
Th
e obj
ectiv
e
o
f
th
is stud
y is th
e cu
rren
t
flows in
to
th
e Lith
iu
m b
a
ttery can
b
e
co
ntro
lled
,
b
y
changing t
h
e te
m
p
erature a
n
d
incr
easi
n
g t
h
e
vol
t
a
ge
o
f
t
h
e
bat
t
e
ry
.
2.
CH
AR
GIN
G
METHO
D
There a
r
e m
a
n
y
ki
nds o
f
cha
r
gi
n
g
m
e
t
hod
s f
o
r bat
t
e
ry
, e
x
a
m
pl
e const
a
nt
–
c
ur
rent
, c
o
n
s
t
a
nt
-
vol
t
a
ge
,
an
d
f
i
v
e
-
s
tag
e
Li-
i
o
n
b
a
tter
y
ch
arg
e
r
[
1
]-[5
].
D
u
r
i
ng
th
e co
n
s
tan
t
cur
r
e
n
t
p
h
a
se,
th
e pr
imar
y task
o
f
batter
y
m
a
nagem
e
nt
i
s
t
o
c
ont
rol
t
h
e
fl
o
w
of c
u
rre
nt
t
o
t
h
e
m
a
xim
u
m
per
m
i
ssi
bl
e bat
t
e
ry
cu
rre
nt
[4]
-
[
5]
.
Batter
y
u
s
e in
th
is ch
arg
i
ng
syste
m
is Pan
a
so
n
i
c CG
R
1
8650
CG
[6
]. Th
e sp
ecif
i
catio
n
o
f
th
e b
a
tter
y
sho
w
n i
n
Ta
bl
e 1.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Li
t
h
i
u
m
-
i
o
n B
a
t
t
e
ry C
har
gi
n
g
Syst
e
m
usi
n
g
C
onst
ant
-C
urr
e
nt
Met
h
o
d
w
i
t
h
F
u
zzy
L
ogi
c
…
(
R
ossi
P
a
ss
arel
l
a
)
16
7
Table
1. Battery Specification
Measure
m
ents
Quantity
No
m
i
nal Voltage
3.
6 v
Nominal Capacity
M
i
nim
u
m
2.
150
m
A
h
T
y
pical 2.
250
m
A
h
Dimension
Diam
eter
18.
6
m
m
Height 65.
2
m
m
Thi
s
cha
r
gi
ng
sy
st
em
i
s
usi
ng M
O
S
F
ET
’
s
t
r
an
sistor as an active instrum
e
nt. MOSFET is an
i
n
st
rum
e
nt
w
h
i
c
h
read
t
h
e
el
ect
ri
c si
g
n
al
an
d c
o
nt
rol
s
t
h
e
out
put
v
o
l
t
a
ge
fr
om
t
h
e c
h
ar
ger
sy
st
em
ont
o t
h
e
bat
t
e
ry
.I
n t
h
i
s
char
gi
n
g
sy
st
e
m
, M
O
SFET i
s
use
beca
use
i
t
has
bet
t
e
r
d
u
r
a
bl
e t
h
a
n
ot
he
r
com
m
on t
r
an
s
i
st
ors.
This M
O
SFE
T
can resist t
h
e
flow
of the c
u
rrent
up to
10Am
p
ere. In c
h
arging system
the PW
M
(Pulse
W
i
dth
Mo
du
latio
n) tech
no
log
y
is app
lied
to set th
e
fun
c
tion
o
f
ch
arg
i
n
g
system
t
o
b
a
ttery.
3.
R
E
SU
LTS AN
D ANA
LY
SIS
The
key
desi
g
n
o
f
s
o
ft
w
a
re
fr
om
t
h
i
s
chargi
n
g
system
is Fuzzy Al
gorithm
.
The Fuzz
y infere
nc
e
sy
st
em
of t
h
i
s
char
gi
n
g
sy
st
em
i
s
Sugen
o
’s
m
odel
.
On Su
g
e
no
’s m
odel
,
t
o
b
r
i
n
g o
u
t
t
h
e out
p
u
t
we nee
d
f
o
u
r
steps, w
h
ich: fo
rm
ing
o
f
F
u
zzy
’s
set (fuzzificatio
n
)
,
fu
n
c
tion of imp
licatio
n
,
ev
al
u
a
tio
n
o
f
ru
les, and
defuzzification [7]. T
h
e eval
uation rules use
Max-Min m
e
c
h
anism
and the
defuzzification step
use Center of
Ave
r
a
g
e (C
o
A
) m
e
t
hod.T
h
e
f
l
owc
h
art
of
ch
argi
ng
sy
st
em
is sh
o
w
n
i
n
Fi
g
u
re
1
.
Fi
gu
re 1.
Fl
o
w
char
t C
h
arging System
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
2
,
O
c
t
o
b
e
r 201
4 :
1
66 –
17
5
16
8
3.
1.
Fuz
z
i
f
i
c
ati
o
n
Th
is syste
m
u
s
es two
in
pu
ts wh
ich
are v
o
ltag
e
and
te
m
p
eratu
r
e o
f
th
e b
a
ttery. First, ADC
micro
c
on
tro
ller read
b
a
ttery’s vo
ltag
e
wit
h
sen
s
o
r
and
set th
e lin
gu
istic form
. Lin
g
u
i
stic fo
rm
s o
f
battery
vol
t
a
ge
an
d
bat
t
ery
t
e
m
p
erat
ur
e sh
ow
n i
n
Ta
b
l
e 2 a
n
d
Ta
bl
e
3.
Tabl
e 2. In
p
u
t
vol
t
a
ge
V
OLTAGE
(V)
L
INGUI
STIC
2.
7 – 3.
2
L
o
w2
3.
0 – 3.
6
L
o
w1
3.
2 – 3.
8
Norm
al
3.
6 – 4.
0
High1
3.
8 – 4.
2
High2
Fi
gu
re 2.
F
u
zz
y
Vol
t
a
ge
’s ra
nge
Fig
u
re
2
sho
w
s th
e sets
of
vo
ltag
e
’s rang
e. It co
n
s
ist
o
f
fiv
e
areas, start
i
n
g
fro
m
2
,
7 vo
lt un
til 4
,
2
volt, nam
i
ng low2, low1, normal, high1,
high2. System
will run
cut-off,
on
ce
t
h
e voltage
of
the battery reach
above 4,2 volt.
Table 3. Input -
tem
p
erature
Te
m
p
e
r
ature
(
0
C)
Variabel
L
i
nguistik
18-
24
I
n
c1
21-
29
I
n
c2
24-
34
I
n
c3
29-
37
I
n
c4
34-
40
I
n
c5
Figure
3. Fuzz
y Tem
p
erature
’
s range
Fi
gu
re 3 s
h
ow
s t
h
e set
s
of t
e
m
p
erat
ure’s r
a
nge
. It
al
so c
o
nsi
s
t
s
o
f
fi
ve a
r
eas t
h
at
st
art
i
ng at
1
8
o
C-
40
o
C. System
will also
run
cu
t-o
f
f,
on
ce th
e te
m
p
erature reach
ab
ov
e
40
o
C.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Li
t
h
i
u
m
-
i
o
n B
a
t
t
e
ry C
har
gi
n
g
Syst
e
m
usi
n
g
C
onst
ant
-C
urr
e
nt
Met
h
o
d
w
i
t
h
F
u
zzy
L
ogi
c
…
(
R
ossi
P
a
ss
arel
l
a
)
16
9
3.
2.
Rul
e
B
a
se
Rule base
of this syste
m
is from
each input
of fuzzy logic.
So that, the
r
e
will be 25
rule
s, and shown
in
Tab
l
e 4.
Tabl
e 4.
R
u
l
e
base
No
Input
Output
Voltage T
e
m
p
er
atur
e
Cur
r
e
nt
1 L
o
w2
I
n
c1
Rapid
2 L
o
w2
I
n
c2
Rapid
3 L
o
w2
I
n
c3
Rapid
4 L
o
w2
I
n
c4
Rapid
5 Low2
Inc5
Nor
m
al
6 L
o
w1
I
n
c1
Rapid
7 L
o
w1
I
n
c2
Rapid
8 L
o
w1
I
n
c3
Rapid
9 L
o
w1
I
n
c4
Rapid
10 Low1
Inc5
Nor
m
al
11 Nor
m
al
Inc1
Rapid
12 Nor
m
al
Inc2
Rapid
13 Nor
m
al
Inc3
Rapid
14 Nor
m
al
Inc4
Nor
m
al
15 Nor
m
al
Inc5
Nor
m
al
16
High1
I
n
c1
Norm
al
17
High1
I
n
c2
Norm
al
18
High1
I
n
c3
Norm
al
19
High1
I
n
c4
Slow
20
High1
I
n
c5
Slow
21
High2
I
n
c1
Slow
22
High2
I
n
c2
Slow
23
High2
I
n
c3
Slow
24
High2
I
n
c4
Slow
25
High2
I
n
c5
Slow
3.3. Mechanism
of
Infere
nce
Mech
an
ism
o
f
in
feren
ce in
t
h
is syste
m
tran
sfo
r
m
in
to
three ran
g
e
s of
p
e
rcen
ts, in
duty cycles o
f
PW
M
will run
,
wh
ich
are
rap
i
d
,
no
rm
al an
d
slo
w
and
sho
w
n
in Tab
l
e 5, an
d its fo
rm
u
l
a in
Equ
a
tio
n (1
)
%
∑
∑
(
1
)
Whe
r
e :
%
PWM is
output,
is
crisp’s v
a
l
u
e
of i’s
elem
e
n
t,
) is
de
gree
of eve
r
y elem
e
n
ts in Fuzzy’s
set o
f
V.
V isun
iv
erse
o
f
Fu
zzy, and
n
is
quan
tizatio
n
.
Table
5. M
e
c
h
anism
Infere
nc
e
Duty Cycle
(%)
L
i
nguistic I
n
form
ation
30
Rapid
M
a
x1
60
Norm
al
M
a
x2
90
Slow
M
a
x3
3.
4.
Defuz
z
i
ficatio
n
Defu
zzification
o
f
th
is system
is u
s
ing
C
o
A (cen
ter of
Av
erag
e),
b
y
fo
rm
u
l
a in
Eq
u
a
ti
o
n
(2
):
∑
∑
(
2
)
Wh
ere : y is crisp
’
s
v
a
l
u
e an
d
μ
_
R
(
y
)
i
s
me
mb
e
r
s
h
i
p
o
f
y
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
2
,
O
c
t
o
b
e
r 201
4 :
1
66 –
17
5
17
0
3.
5.
Pulse Wid
t
h
Modulation (PWM)
Pul
s
e W
i
dt
h M
o
d
u
l
a
t
i
o
n
(P
WM
)
i
s
a
m
e
tho
d
fo
r usi
n
g pul
se wi
dt
h
t
o
enco
de o
r
m
odul
at
e
a
si
g
n
al
.
The wi
dth of
each pulse is a function
of t
h
e a
m
plitude
of the signal.
While ADC
detect the battery voltage
an
d
LM
3
5
d
e
t
ect th
e ch
an
g
i
n
g
o
f
tem
p
eratu
r
e, m
i
cro
c
o
n
tro
ller will d
e
liv
er and
g
r
oup
th
o
s
e inpu
ts in
to
Fu
zzy’s set. Furth
e
rm
o
r
e, m
i
c
r
o
c
on
tro
ller wi
ll co
n
t
ro
l
th
e IC to
deliv
er t
h
e PW
M
sign
al
in
to
MOSFET
series.
Th
e
v
a
lu
e of t
h
e curren
t
will
dep
e
nd
on
th
e ma
th
em
at
ics calc
u
latio
n
i
n
t
h
e
micro
c
on
tro
ller.
Fi
gu
re 6 .Fl
o
w
c
hart
of
P
W
M
4.
RESULTS
4.1. First
Experim
e
nt
In the
first
experim
e
nt (Figure 7), t
h
e
room
te
m
p
erature
was set at
25
o
C
,
i
n
2
h
o
u
r
s
(
7
2
00s
) a
n
d t
h
e
in
itial b
a
ttery
v
o
ltag
e
was 2.7
vo
lts. In
th
e
1
s
, th
e b
a
ttery
te
m
p
eratu
r
e was 2
5
.
1
o
C, the
current inflows was
reco
rde
d
at
2
a
m
peres. At
23
8 sec
o
nd
t
h
e
v
o
l
t
a
ge i
n
crease
up to 2.8 volts
, and t
h
e tem
p
erature
wa
s rec
o
rde
d
at 2
5
.5° C
with
a
flow to th
e b
a
ttery at 1.9
a
m
p
e
res.
The
decrease
in flow occurs
due t
o
the
tem
p
erature
rise.
A
t
46
9 second
, th
e vo
ltag
e
i
n
cr
ease
u
p
t
o
2.9
vo
lts w
ith
ba
ttery te
m
p
erature was
26.9° C
and curre
nt
was at
2 Am
peres.
At
3.
0
vol
t
s
, t
e
m
p
erat
ure
was
2
7
.
3
o
C
an
d t
h
e
cur
r
ent
was
1.
9 Am
peres.
At
3.
1
vol
t
s
vol
t
a
ge o
f
battery on
991 second, the te
m
p
erature was
at 29.2° C w
ith
curren
t
flows in
to
th
e b
a
ttery at 2
Am
p
e
res. At
1
135
second
vo
ltag
e
rise to
3
.
2
v
o
lts with
a record
ed
te
m
p
erature of 29.8° C an
d
th
e cur
r
e
n
t
f
l
ow
of
1.8
Am
pere.
It
can be co
ncl
ude
d t
h
at
Fuzz
y
l
ogi
c wor
k
whe
n
t
e
m
p
erat
ure i
s
ri
si
ng i
n
t
h
e bat
t
e
ry
curre
nt
fl
ow
s.
Wh
en
t
h
e curren
t flow increases, th
e tem
p
eratu
r
e
will in
crease, so th
e
n
e
xt cu
rren
t
flow
can
b
e
redu
ced, and
the tem
p
erature can
be
dec
r
ea
sed.
4.2. Second
E
x
per
i
ment
In t
h
e sec
o
nd e
xpe
ri
m
e
nt
(Fi
g
ure
8
)
, t
h
e r
oom
t
e
m
p
erat
ure
was 25
o
C
,
experi
m
e
nt
s
ap
pro
x
i
m
a
tel
y
with
in
2
h
ours
(720
0s) with
in
itial
b
a
ttery
v
o
ltag
e
at 2
.
7
v
o
lts.
In th
e
1
s
, th
e tem
p
erature was
26
o
C
,
t
h
e
fl
o
w
s of
cu
rre
nt
w
a
s 2 am
peres.
At
2
4
0
sec
o
n
d
t
h
e
v
o
l
t
a
ge
i
n
crease
d
up t
o
2.
8 v
o
l
t
s
, a
n
d t
h
e
te
m
p
er
atu
r
e was at 26
.1
°C
with
cur
r
e
n
t
f
l
ow
to
b
a
tter
y
was 2 A
m
p
e
r
e
.
A
t
50
0 second, th
e vo
ltag
e
i
n
cr
eased
u
p
to 2.9 vo
lts and
t
h
e tem
p
eratu
r
e
was
26.3
°
C
with
c
u
rrent at
2 am
pere.
At
3.0
volts, tem
p
erature
was
26
.5
o
C
a
nd t
h
e
cur
r
ent
fl
o
w
s
at
2 am
peres. At
3.
1
vol
t
s
a
t
87
0 sec
o
n
d
, t
h
e t
e
m
p
erat
ure
was at
2
7
.
1
°C
wi
t
h
cur
r
ent
fl
o
w
s
of
1.
9 am
pere.
At
1
0
19
seco
nd
, v
o
l
t
a
ge
u
p
t
o
3
.
2
v
o
l
t
an
d t
e
m
p
erat
ure
was
27
.2
°C
wi
t
h
t
h
e
current
flows a
t
1.9 am
peres.
Si
m
ilar to
th
e first ex
p
e
rim
e
n
t: in
co
n
c
lusio
n
th
e fu
zzy
lo
g
i
c co
n
t
ro
l
wo
rk
s sim
i
lar to
th
e first
expe
ri
m
e
nt
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Li
t
h
i
u
m
-
i
o
n B
a
t
t
e
ry C
har
gi
n
g
Syst
e
m
usi
n
g
C
onst
ant
-C
urr
e
nt
Met
h
o
d
w
i
t
h
F
u
zzy
L
ogi
c
…
(
R
ossi
P
a
ss
arel
l
a
)
17
1
Fi
gu
re
7.
G
r
ap
h
of
Fi
rst
E
x
pe
ri
m
e
nt
resul
t
Fi
gu
re
8.
G
r
ap
h
of
Sec
o
n
d
E
x
peri
m
e
nt
resul
t
4.3. Third
Experi
ment
In
th
e th
ird
exp
e
rim
e
n
t
(Fig
ure
9), the room te
m
p
erature was 25
o
C, app
r
ox
im
a
t
elyw
it
h
in
2
ho
ur
s
(720
0
s
) th
e in
i
tial b
a
ttery v
o
ltag
e
at 2
.
7
v
o
l
t
s
. In
th
e
first seco
nd
, th
e temp
erat
u
r
e was at 2
5
.
1
o
C, the c
u
rrent
fl
o
w
s t
o
bat
t
e
r
y
was 2 am
per
e
s. At
29
4 sec
o
n
d
t
h
e v
o
ltage increased
up
to 2.8 vo
lts, and the te
m
p
erature at
25
.2
o
C
wi
t
h
cu
rre
nt
fl
o
w
ed t
o
t
h
e bat
t
e
ry
at
1.
9 am
peres . At
50
4 sec
o
n
d
t
h
e vol
t
a
ge i
n
creased t
o
2.
9
vol
t
s
with tem
p
erature
was 25.4°C a
nd t
h
e c
u
r
r
ent
wa
s 2 am
peres
.
At
3
.
0
vol
t
s
, t
e
m
p
erat
ure 2
5
.
3
o
C
a
nd t
h
e
cur
r
ent
fl
ow a
t
2 am
peres.
At
3.
1 v
o
l
t
s
at
89
0 sec
ond
, th
e te
m
p
er
atur
e w
a
s 25
.6
°C and c
u
rrent fl
ow at 2
Am
pere. I
n
1
2
1
sec
o
n
d
t
h
e
v
o
l
t
a
ge ri
se t
o
3
.
2
vol
t
s
a
nd t
e
m
p
erat
ure was
26
.1
°C
wi
t
h
t
h
e cu
rre
nt
fl
ow
s at
1.
8
Am
peres.
In th
e ch
arg
i
n
g
system
o
f
th
e
lith
iu
m
io
n b
a
t
t
ery,
th
e critical p
a
ram
e
ter th
at sho
u
l
d
b
e
con
s
id
ered is
te
m
p
erature
,
due to this t
h
e
com
p
ar
i
s
on
be
t
w
een e
x
peri
m
e
nt
s
was
pl
ot
i
n
t
h
e
gra
p
h
as
sh
o
w
n
i
n
Fi
g
u
re
1
0
.
The
res
u
lts show that t
h
e temperat
ur
e
batteri
es are
below t
h
e data s
h
eet.
0
0.
5
1
1.
5
2
2.
5
3
3.
5
4
4.
5
0
5
10
15
20
25
30
35
0
1000
2000
3000
4000
5000
6000
7000
voltage
or
ampere
Degree
Celc
ius
tim
e
(second)
Experiment
1
tem
p
er
atur
e
current
voltage
0
0.
5
1
1.
5
2
2.
5
3
3.
5
4
4.
5
25.
8
26
26.
2
26.
4
26.
6
26.
8
27
27.
2
27.
4
27.
6
0
1000
2000
3000
4000
5000
6000
7000
voltage
or
ampere
Degree
Celc
ius
tim
e
(second)
Experiment
2
tem
p
er
atur
e
Vol
t
a
g
e
current
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
2
,
O
c
t
o
b
e
r 201
4 :
1
66 –
17
5
17
2
Fi
gu
re
9.
G
r
ap
h
of
Thi
r
d
Ex
p
e
ri
m
e
nt
resul
t
Fi
gu
re
1
0
. C
o
m
p
ari
s
on
of
t
h
e t
e
m
p
erat
u
r
e f
r
om
3 e
xpe
ri
m
e
nt
s
At
t
h
e e
n
d
of
t
h
e e
xpe
ri
m
e
nt
, t
h
e a
v
era
g
es
o
f
eac
h
bat
t
e
ry
param
e
t
e
rs are
sho
w
n i
n
Ta
bl
e 6.
Tabl
e
6. T
h
e
A
v
era
g
e B
a
t
t
e
ry
param
e
t
e
r i
n
E
xpe
ri
m
e
nt
Para
m
e
ter
BATT
ERY
Te
m
p
e
r
ature (
o
C)
Cu
rren
t
(A)
E
xper
i
m
e
nt 1
27.
75
1.
65
E
xper
i
m
e
nt 2
26.
77
1.
68
E
xper
i
m
e
nt 3
26.
21
1.
62
Average
26.
91
1.
65
From
the Table 6 shows that the av
era
g
e
value of experim
e
nts for each
ba
ttery starting from
the first
to
th
e th
ird
tri
a
l are: te
m
p
eratu
r
es
o
f
26
.9
1
o
C
and c
u
r
r
e
n
t
of
1.
6
5
Am
per
e
s. I
n
t
h
i
s
e
x
peri
m
e
nt
t
h
e cur
r
ent
flows in
to
t
h
e
Lith
iu
m
b
a
ttery can
b
e
co
n
t
ro
lled
,
b
y
ch
ang
i
ng
th
e tem
p
eratu
r
e and
in
creasin
g
t
h
e vo
ltag
e
of
th
e b
a
ttery.
5.
CO
NCL
USI
O
N
a)
Th
is system
c
o
n
s
ists
of two p
a
rts,
wh
ich
are:
m
i
cro
c
o
n
t
ro
ller
series
fun
c
tio
n to
calcu
l
ate the
Fuzzy
, a
n
d M
O
SFE
T f
u
nct
i
o
n
fo
r c
h
ar
ger
s
e
ri
es.
0
0.
5
1
1.
5
2
2.
5
3
3.
5
4
4.
5
24.
5
25
25.
5
26
26.
5
27
27.
5
28
0
1000
2000
3000
4000
5000
6000
7000
voltage
or
ampere
Degree
Celc
ius
tim
e
(second)
Experiment
3
tem
p
er
atur
e
voltage
current
0
10
20
30
40
1
238
469
707
991
1135
1496
1855
2332
2706
3132
3557
3982
4421
5592
6737
6756
Experiment
1
Experiment
2
Experiment
3
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Li
t
h
i
u
m
-
i
o
n B
a
t
t
e
ry C
har
gi
n
g
Syst
e
m
usi
n
g
C
onst
ant
-C
urr
e
nt
Met
h
o
d
w
i
t
h
F
u
zzy
L
ogi
c
…
(
R
ossi
P
a
ss
arel
l
a
)
17
3
Cu
t-off
b)
The desi
gn al
go
ri
t
h
m
t
o
co
nt
r
o
l
t
h
e fl
o
w
s o
f
curre
n
t use PW
M.
The output from
the
micro
c
on
tro
ller calcu
latio
n
will b
e
d
e
liv
ered
th
rou
g
h
M
O
SFET to
contro
l th
e v
a
lue o
f
th
e cu
rren
t
flowing
in
to
th
e Lith
ium
b
a
ttery.
c)
Th
e to
tal
o
f
cu
rren
t
flows in
to
Lith
i
u
m b
a
ttery is affected
b
y
th
e v
a
lu
e
o
f
vo
l
t
ag
e and
te
m
p
eratu
r
e wh
ile it is ch
arg
i
n
g
.
d)
Fu
zzy is still
work
i
n
g
d
e
sp
ite th
e te
m
p
eratu
r
e
o
f
th
e Lit
h
iu
m
b
a
ttery ch
an
g
i
n
g
. Th
e
vo
ltag
e
of
the battery
will constantly ri
se
s until it reache
s
4.2
volt.
e)
Th
e
v
a
lu
e
o
f
th
e curren
t
flowing
in
to
t
h
e
lith
iu
m
b
a
ttery is d
e
p
e
nd
ing o
n
t
h
e v
a
l
u
e o
f
t
h
e
te
m
p
eratu
r
e of
th
e b
a
ttery, as i
t
is fo
rm
ulated in the
rule ba
se
of Fuzzy.
Th
e av
erag
e tem
p
eratu
r
e of t
h
e lith
iu
m
b
a
tte
ry wh
ile ch
arg
i
ng
p
r
o
cess run
n
i
n
g
is
2
6
o
C an
d th
e
avera
g
e of
the
current flowin
g
in
t
o
th
e battery is 1,75A.
ACKNOWLE
DGE
M
ENTS
Thi
s
wo
rk w
a
s sup
p
o
r
t
e
d
by
Depart
m
e
nt
of C
o
m
put
er Engi
neeri
n
g, Facul
t
y
of
C
o
m
put
er
Scien
ce.
Un
iversity o
f
Sri
w
ijaya.
REFERE
NC
ES
[1]
Houshy
arAsadi,
et al.
Fuzzy
Logic Contro
l Technique
in Li-I
on Batter
y
Charger.
In
ternatio
nal conference
on
electrica
l
, electronics
and
civil engineering
(iceece'
2011) p
a
ttay
adec. 2011; 179-1
83.
[2]
Huang, Jia-Wei,
et al
. Fuzzy
-
control-based fiv
e
-s
tep Li-
i
on batter
y
charg
e
r.
In Power Electronics and Dri
ve
Systems. PEDS.
International Co
nference on
. I
E
EE, 2009
; 1547-1
551
[3]
As
adi, Hous
h
y
ar
. et
al
. Fuzzy
-co
n
trol-based f
i
ve-
s
tep Li-
i
on batter
y
charg
e
r b
y
using AC impedan
ce techniq
u
e."
In
Fourth International Conference on Machine Vision (
I
CMV 1
1
)
,
pp. 834939-
834939. International Society
f
o
r
Optics and
Photonics. 2012
.
[4]
Hsieh, Ching-Hsing. Research on
the Five Step C
h
argi
ng Techniq
u
e for Li-
i
on Batter
ies Using Tag
u
chi Method
an
d
Fuzzy
Contro
l. PhD diss., 2011
.
[5]
Manoj, Niran
j
an
Kumar, Vijay
P
a
l Singh. Fuzzy
Logic Based B
a
tter
y
Charg
e
r for Inverter
."
Intern
ational Journal
of
Engineering.
20
13; 2(7).
[6]
Cgr 18650-cg.
Datasheet lithiu
m-ion rech
argeable
cell.
Panaso
n
ic
corporation
energy compan
y
. Febru
a
ri. 201
0.
Availab
l
e:www.industrial.pan
a
s
onic.com/wwwdata/pdf2/aca4000/aca4000
ce234
.p
df&sa=u&ei=gq
9vuv6hbszfkwf2
y
hobq&v
e
d =0cbmqfjad&usg=afqjc
nemwazpsmqr9zuhrkvgmha2367jda.
[7]
Pa
ssa
re
lla,
Rossi,
et a
l
. Per
a
ncan
ganSistemPenjadw
alanBateraiB
erbasisLogik
a
Fuzzy
MenggunakanMikrokontro
ler
ATMega16.
Kon
f
erensiNasionalI
n
formatika
(KNI
F). 2013: 54
-58.
APPE
NDI
X
Experi
me
nt
#1
Time (s)
Battery
Time
(
o
C)
Vol
t
(V
)
Current
(A
)
1 2
5
.1
2
.
7
2
23
8
25
.5
2.
8
1.
9
4
69 2
6
.9
2
.
9
2
7
07 2
7
.3
3
1
.
9
9
91 2
9
.2
3
.
1
2
1
135 3
0
.8
3
.
2
1
.
8
1
496 2
9
.3
3
.
3
2
1
855 2
8
.5
3
.
4
1
.
7
2
332 2
9
.4
3
.
5
1
.
8
2
706 2
8
.9
3
.
6
1
.
6
3
132 2
7
.8
3
.
7
1
.
4
3
557 2
6
.9
3
.
8
1
.
5
3
982 2
7
.2
3
.
9
1
.
7
4
421 2
7
.8
4
.
0
1
.
7
5
592 2
7
4
.
1
1
.
6
6
737 2
7
.6
4
.
2
1
.
5
6
756 2
7
.6
4
.
2
0
.
0
Mea
n
27
.7
5
-
1.
65
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
2
,
O
c
t
o
b
e
r 201
4 :
1
66 –
17
5
17
4
Cu
t-off
Cu
t-off
Experi
me
nt
#2
Time (s)
Battery
Temp
(
o
C)
Vol
t
(V
)
Current
(A
)
1 2
6
2
.
7
2
2
40 2
6
.1
2
.
8
2
5
00 2
6
.3
2
.
9
2
6
10 2
6
.5
3
.
0
2
87
0
27
.1
3.
1
1.
9
1
019 2
7
.2
3
.
2
1
.
9
1
393 2
7
.3
3
.
3
2
1
802 2
7
.5
3
.
4
1
.
7
2
350 2
7
.4
3
.
5
1
.
8
2
830 2
6
.9
3
.
6
1
.
7
3
201 2
6
.8
3
.
7
1
.
7
3
605 2
6
.9
3
.
8
1
.
5
4
002 2
7
.2
3
.
9
1
.
7
4
690 2
6
.6
4
.
0
1
.
7
6
001 2
6
.1
4
.
1
1
.
6
7
201 2
6
.6
4
.
2
1
.
5
7
220 2
6
.6
4
.
2
0
.
0
Mea
n
26
.7
7
-
1.
68
Experi
me
nt
#3
Time (s)
Battery
Temp
(
o
C)
Vol
t
(V
)
Current
(A
)
1 2
5
.1
2
.
7
2
29
4
25
.2
2.
8
1.
9
5
00 2
5
.4
2
.
9
2
6
99 2
5
.3
3
.
0
2
8
90 2
5
.6
3
.
1
2
1
121 2
6
.1
3
.
2
1
.
8
1
444 2
5
.9
3
.
3
2
1
801 2
6
.1
3
.
4
1
.
7
2
305 2
6
.2
3
.
5
1
.
8
2
599 2
6
.3
3
.
6
1
.
6
3
200 2
6
3
.
7
1
.
4
3
501 2
6
.3
3
.
8
1
.
4
4
013 2
6
.9
3
.
9
1
.
5
5
404 2
7
.4
4
.
0
1
.
5
6
120 2
7
.3
4
.
1
1
.
6
7
580 2
7
.3
4
.
2
1
.
5
27
.3
4.
2
0.
0
Mea
n
26
.1
5
-
1.
73
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Li
t
h
i
u
m
-
i
o
n B
a
t
t
e
ry C
har
gi
n
g
Syst
e
m
usi
n
g
C
onst
ant
-C
urr
e
nt
Met
h
o
d
w
i
t
h
F
u
zzy
L
ogi
c
…
(
R
ossi
P
a
ss
arel
l
a
)
17
5
BIBLIOGRAPHY
OF AUT
HORS
Rossi Passarella
is a m
e
m
b
er fa
c
u
lt
y of Com
pute
r
Sc
ien
c
e
,
Unive
r
sit
y
of Sriwij
a
y
a. He
was join
ed
to this facul
t
y
o
n
Decem
ber 2010. Bache
l
or degr
ee
in el
ec
tric
al e
ngineer
ing was held in 2002 from
the univ
e
rsit
y
of
Sriwija
ya
, In
20
05, he
joined
to
the univ
e
rsity
of
Malay
a
-K
uala
Lumpur as maste
r
student, and
res
earch
assistant
f
o
r depar
t
ment o
f
design
and
manufactur
e
and gr
aduated in
2007
(cum
laude). Aft
e
r gradua
ting, h
e
is joining as
a
reseach
assistant
in Center of Pr
oduct Design an
d
Manufactur
e, u
n
til 2010. Since 2011, He has appoint
ed as
a head of Indu
strial Autom
a
tio
n
Laboratorium in
Faculty
of Com
puter Science, the
res
e
a
r
ch ar
ea
s
of the lab
,
in
cl
uded: Ren
e
wabl
e
energ
y
in industr
y
,
robotic
in ind
u
strial
automa
tio
n
, and
computer
vision in
industrial Automation.
Ahm
a
d Fali Oklilas was born
i
n
Palem
b
ang, o
n
15 October 1
972. He was gr
aduat
e
d from
th
e
Universit
y
of Sriwija
ya m
a
jorin
g
in ele
c
tr
ica
l
and engineering.
He holds a master'
s
deg
r
ee from
ITB Bandung
, In
donesia.
Tarid
a
Mathild
a
was born in Palem
b
ang, on 0
2
November 19
89. She was gr
aduated from th
e
Department o
f
C
o
mputer Engin
e
ering,
University of Sriwijay
ain 2
013.
Evaluation Warning : The document was created with Spire.PDF for Python.