Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
5, N
o
. 4
,
A
p
r
il
201
5, p
p
.
47
0
~
47
6
I
S
SN
: 208
8-8
6
9
4
4
70
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
FC/PV Fed SAF with Fuzzy Logi
c Cont
rol
for P
o
wer Qualit
y
Enhancement
R. B
a
lam
u
ru
g
a
n,
R
.
Nith
ya
Department o
f
Electrical and
Elec
tronics Engin
e
ering, K
.
S.Rangasamy
College of
Techno
log
y
, Tir
u
chengode
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Oct 7, 2014
R
e
vi
sed Dec 1,
2
0
1
4
Accepted Dec 15, 2014
In this paper
,
a
Fuel cell (FC)/Photovo
lta
ic cel
l (PV)/Batter
y
op
erat
ed
thre
e-
phase Shunt Active power Filter
(SAF)
is proposed for im
proving the power
qualit
y
at the ut
ilit
y side
. Fuzz
y based instantan
e
ous p-q theor
y
control i
s
proposed for SAF. This SAF
consists
of Volt
age Source PWM Converter
(VSC) and a D
C
link
cap
aci
to
r supplied
b
y
a
FC/PV/Batter
y
.
The
fil
t
er
provides harm
on
ic m
itig
ation
wit
h
rea
c
tiv
e power
com
p
ensation
a
nd neutr
a
l
compensation fo
r loads at the Point of Common
Coupling (PCC
). A Single
switch boost DC
-DC converter connects th
e FC/PV/Batter
y
with
the VSC to
maintain th
e lo
ad. Th
e perfor
m
ance of the
proposed SAF
is tested in
MATLAB/SIMULINK environment with Fu
zzy
log
i
c
contro
ller (FLC). Th
e
controll
er m
a
int
a
ins the DC link vo
ltage based on the curren
t
referen
ce
generated b
y
th
e p-q theor
y
.
The H
y
s
t
er
es
is
P
W
M
current controlle
r is
em
plo
y
ed to
g
e
nera
te
the
gat
i
ng pulses
to t
h
e switch
e
s in
VSC. Th
e
simulation results of the proposed SAF validate the eff
ectiven
ess of FLC in
power quality
en
hancement.
Keyword:
Fuel cell
Fuzzy L
o
gic Cont
roller
Pho
t
ov
o
ltaic cell
Shu
n
t
Activ
e po
wer
Filter
To
tal Harm
o
n
i
c Distortio
n
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
R. Bala
m
u
rug
a
n
,
Depa
rt
m
e
nt
of
El
ect
ri
cal
and
El
ect
roni
cs
E
n
gi
nee
r
i
n
g,
K.S.Rangasam
y
College of
Tech
nolog
y
,
KSR Kalvi Nag
a
r, Tiruch
engode
,
Tam
i
l
Nad
u
,
I
ndi
a
Em
a
il: d
r
n
r
b
a
l
s
@g
m
a
il.co
m
1.
INTRODUCTION
The i
n
creasi
n
g
ener
gy
dem
a
nds as
wel
l
as t
h
e e
nvi
r
o
nm
ent
a
l
pol
l
u
t
i
o
ns
h
a
ve si
g
n
i
f
i
c
a
n
t
l
y
prom
ot
ed
the usage
of
renewa
ble e
n
ergy system
s for all appli
cations
. Ma
ny res
earches
ha
ve
been carried
out i
n
u
tilizin
g
th
e ren
e
wab
l
e system
s
lik
e Ph
o
t
ov
o
ltaic (PV)
cell o
r
Fu
el cell (FC), wi
n
d
po
wer to
m
eet
o
u
t
th
e
req
u
i
r
em
ent
s
of t
h
e g
r
o
w
i
n
g ener
gy
dem
a
nd
s [1]
.
Fr
o
m
t
h
e above r
e
newa
bl
e ene
r
gi
es, t
h
e l
o
w
vol
t
a
ge
sources a
r
e the
PV and Fuel c
e
ll. This
can
be connected i
n
series to get
the require
d
voltage according
to the
appl
i
cat
i
o
ns T
h
e ge
nerat
e
d
DC
v
o
l
t
a
ge f
r
o
m
t
h
e PV/
F
C
i
s
bo
ost
e
d
by
usi
n
g t
h
e DC
/
D
C
bo
ost
co
n
v
ert
e
r
bef
o
re
co
n
n
ect
i
ng t
o
t
h
e
DC
l
i
nk
si
de.
Many of the loads in the
industries and com
m
ercial work
places ar
e nonlinear loa
d
s suc
h
as pers
onal
co
m
p
u
t
er
s, electr
on
ic b
a
llasts, v
a
r
i
ab
le an
d
ad
ju
stab
le sp
eed
dr
iv
es and
electr
o
n
i
c house h
o
l
d
app
lian
ces. I
t
creates power qu
ality p
r
ob
l
e
m
s
lik
e u
tilit
y cu
rren
t
d
i
sto
r
tion
d
u
e
to
h
a
rm
o
n
i
cs,
h
i
g
h
curren
t
s in n
e
u
r
al
,
unbalance
d
l
o
ads a
n
d hi
gh
reactive power com
p
ensation,
etc. T
h
e problem
s
created by the i
n
clus
ion
of
n
o
n
lin
ear lo
ads in
t
h
e
d
i
stribu
tio
n system
s
are so
lv
ed
b
y
man
y
co
m
p
en
sato
rs lik
e Sh
unt Activ
e
po
wer Filter
(SAF), Dy
n
a
mic Vo
ltag
e
Resto
r
er
(DVR) and
Un
ified
Po
wer Qu
ality Co
nd
itio
n
e
r (UPQC), etc. [2
]. All
th
ese
sy
st
em
s are we
l
l
kn
ow
n
fo
r i
t
s
m
e
ri
t
s
, but
i
t
suf
f
ers
by
i
t
s
o
w
n
d
r
aw
bac
k
s
l
i
k
e usa
g
e
of
sl
ow
res
p
onse
,
m
o
re
passive
elem
en
ts, increase
in
size of t
h
e syst
e
m
and m
o
re
l
o
sses etc. But t
h
e S
A
F s
h
ows
faster
response
with
g
ood
m
i
tig
atio
n
of h
a
rm
o
n
i
cs. Th
ere are a lo
t o
f
con
t
ro
l tech
n
i
q
u
e
s av
ail
a
b
l
e in
th
e literatu
re
for con
t
ro
lling
th
e SAF [3
], to
prov
id
e t
h
e so
ur
ce cu
rre
n
t
harm
oni
cs re
duct
i
o
n,
reac
tive power c
o
mpensation a
n
d load
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
FC/PV Fed SAF with
Fu
zzy
Lo
g
i
c C
o
n
t
ro
l for Po
wer Qua
lity Enha
n
c
emen
t (R.Ba
l
a
m
u
r
u
g
a
n
)
47
1
bal
a
nci
n
g [
4
]
.
Out
o
f
t
h
ose t
echni
que
s, i
n
st
a
n
t
a
ne
ou
s p-
q t
h
eo
ry
[5]
i
s
m
o
st
sui
t
a
bl
e co
nt
r
o
l
fo
r com
p
ensat
i
n
g
th
e pro
b
l
em
s d
u
e
to non
lin
ear lo
ads.
Th
e
o
b
j
ectiv
e
o
f
t
h
is work
i
s
to
m
a
in
tain
th
e DC li
n
k
voltag
e
o
f
th
e
VSC to
pro
v
i
d
e
con
tin
uou
s
com
p
ensat
i
o
n
.
The
I
G
B
T
(
I
n
sul
a
t
e
d Gat
e
B
i
pol
ar
Tra
n
si
st
or
) base
d bo
ost
c
o
n
v
e
r
t
e
r f
e
d by
P
V
/
F
C
/
bat
t
e
ry
u
s
es Pu
lse
W
i
d
t
h
M
o
du
lation
(PW
M
) techn
i
qu
e for m
a
in
tain
in
g
t
h
e DC
lin
k
v
o
ltag
e
.
Th
e co
m
p
en
satio
n
is
p
r
ov
id
ed
con
tin
uou
sly in
d
a
y an
d
n
i
gh
t time b
y
PV/FC/b
a
ttery. Du
ring
th
e ex
cess
p
o
wer con
d
iti
o
n
, th
e
bat
t
e
ry
i
s
ch
ar
ged
.
T
h
e m
a
xi
m
u
m
power
p
o
i
nt
t
r
acki
n
g
al
g
o
ri
t
h
m
i
s
not
di
scusse
d i
n
t
h
i
s
pape
r.
2.
PROP
OSE
D
SAF
R
e
ferri
ng t
o
F
i
gu
re 1, at
t
h
e
Poi
n
t
o
f
C
o
m
m
on C
oupl
i
n
g
(PC
C
)
, t
h
e b
oost
c
o
n
v
ert
e
r
fed VSC
i
s
connected with nonlinea
r lo
a
d
s. T
h
e VSC [6]
includes
IGB
T
, inductor
s and a
DC link ca
pacitor. T
h
e form
ula
for calcu
lating
th
e vo
ltag
e
acr
oss t
h
e
DC link ca
pacitor (V
dc
)
[4
],
[
6
],
is as fo
llo
w
s
,
a
L
dc
M
V
V
1
3
2
2
(1)
M
a
i
s
t
h
e m
odu
l
a
t
i
on i
n
de
x a
n
d
V
L
is th
e so
urce
v
o
ltag
e
.
Figu
re
1.
P
V
/F
C/Battery
fed t
h
ree
p
h
ase
SA
F
Th
e
v
a
lu
e of cap
acito
r is determ
in
ed
b
y
u
s
ing
th
e fo
rm
u
l
a as fo
llo
ws,
2
1
2
)
(
6
o
ref
ph
ph
V
V
T
I
V
C
(2)
Whe
r
e V
re
f
an
d V
o1
is t
h
e
referen
c
e DC
vo
ltag
e
and
th
e m
i
n
i
m
u
m vo
ltag
e
lev
e
l of
DC
b
u
s
respectively,
α
is
the
overl
o
ading factor, V
ph
is th
e ph
ase
v
o
ltag
e
, I
ph
is th
e
p
h
a
se curren
t
,
an
d
T is th
e ti
me b
y
wh
ich
the DC b
u
s
v
o
ltag
e
is
t
o
b
e
recov
e
red.
Th
e
star
/
d
elta tran
sfo
r
m
e
r is u
tilized
for con
n
ecting th
e
VSC to
th
e th
ree ph
ase lin
es at
th
e Poin
t o
f
Co
mm
o
n
Co
up
lin
g (P
C
C
)
. The si
n
g
l
e
swi
t
c
h DC
-
D
C
boo
st
con
v
e
r
t
e
r i
s
connected to
VSC. T
h
e
refe
rence c
u
r
r
e
n
t
ado
p
t
i
o
n f
o
r
VSC
i
s
de
ri
ve
d f
r
om
t
h
e p-
q t
h
e
o
ry
.
Thi
s
cur
r
en
t
referen
c
e wav
e
sh
ap
e t
h
e
u
tilit
y cu
rren
t t
o
n
e
ar sinu
so
id
al.
3.
MO
DELIN
G
OF
P
V
AN
D FC
A PV cell work
s on th
e
pho
to vo
ltaic effect and
it sh
ou
ld b
e
cascad
e
d
t
o
m
eet o
u
t
th
e requ
ired
vol
t
a
ge a
n
d c
u
r
r
ent
[
7
]
.
T
h
e PV cel
l
vol
t
a
ge de
pe
nd
s o
n
t
h
e s
o
l
a
r i
r
r
a
di
at
i
on l
e
vel
and t
e
m
p
erat
u
r
e wi
t
h
r
e
sp
ect t
o
th
e w
eath
e
r
co
nditio
n
s
. Tab
l
e
1
g
i
v
e
s t
h
e data’
s
of
SH
ARP ND
-Q
250F7
PV
p
a
n
e
l w
ith
the
illu
m
i
n
a
tio
n
of 1
kW
/m
2
and s
o
lar irra
diance
at a cell te
m
p
erature
of 25°C
.
Tabl
e
1. El
ect
r
i
cal
C
h
aract
eri
s
t
i
c
s of
S
HAR
P N
D
-
Q
25
0F
7
sol
a
r
pa
nel
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 4
,
Ap
r
il 2
015
:
47
0
–
47
6
47
2
M
a
xim
u
m
power
(Pm
a
x)
*
250W
Tolerance of
P
ma
x
+5%/-0%
Type of the cell
Polycrystalline Sili
con
Cell Configur
ation
60 in Ser
i
es
Open circuit Volta
ge(V
oc
) 38.
3V
M
a
x
i
mu
m P
o
w
e
r
V
o
l
t
a
g
e
(
V
pm
) 29.
8V
Short Circuit Current(I
sc
) 8.
90A
Max
i
m
u
m
Po
we
r
Cu
rren
t
(I
pm
) 8.
4A
M
odule E
fficiency
(
%
)
15.
3%
Te
m
p
e
r
ature Coef
f
i
cient(P
ma
x
) -
0
.
485%/
◦
C
Te
m
p
e
r
ature Coef
f
i
cient (V
oc
) -
0
.
36%/
◦
C
Te
m
p
e
r
ature Coef
f
i
cient (I
sc
) 0.
053%/
◦
C
The FC
gene
ra
t
e
s t
h
e vol
t
a
g
e
wi
t
h
t
h
e
hel
p
o
f
hy
d
r
oge
n a
n
d
ai
r. Pr
ot
o
n
E
x
chan
ge M
e
m
b
rane (P
EM
)
typ
e
[8
] of fu
el
cell is th
e m
o
st p
opu
larly u
s
ed
an
d th
e
Tab
l
e 2
g
i
v
e
s th
e param
e
ters o
f
PEM typ
e
FC.
Table 2. Param
e
ters
of PEM
Fuel
cell
Fuel ce
ll no
m
i
nal
para
m
e
te
rs
Stack power
No
m
i
nal=5998.
5V
M
a
xim
a
l=8325 W
Fuel Cell Resistan
ce
0.
0783
3 oh
m
s
Ner
s
t voltage of one cell[E
n
]
1.
1288V
No
m
i
nal utilizatio
n
Hydrogen(H2)=99.56%
Oxidant (
O
2)
=59.
3%
Norm
al consu
m
ption
Fuel =60.
38slp
m
Air
=143.
7slp
m
E
x
change cur
r
e
nt (i0)
0.
2919
7A
E
x
change Coeffici
ent(
alpha)
0.
6064
5
F
u
el cell signal variat
i
on para
m
e
t
e
rs
Fuel co
m
position (
x_H2)
99.
95%
Oxidant co
m
position (
y
_O2)
21%
Fuel flow r
a
te [Fuelfr
]
at n
o
m
inal hy
dr
ogen
utilization
No
m
i
nal=50.
06lp
m
M
a
xim
u
m
=
84.
5lpm
Air flow rat
e
(Ai
r
F
r) at
no
m
i
nal oxidant utilization
No
m
i
nal=300lp
m
M
a
xim
u
m
=
506.
4lp
m
Sy
ste
m
te
m
p
er
ature[T
]
338 Kelvin
Fuel supply
pr
essur
e
[Pfuel]
1.
5bar
Air p
r
essu
re[
P
Ai
r]
1
b
a
r
There
are
t
h
ree
m
odes o
f
ope
r
a
t
i
on
fo
r P
V
/
F
C
/
B
a
t
t
e
ry
based
VSC
vi
z,
Mo
de1
:
C
o
m
p
en
sation
b
y
PV/FC in d
a
y
time, in
th
is
m
ode t
h
e
vol
t
a
ge
i
s
fed
t
o
V
S
C
fr
om
PV/
F
C
th
ro
ugh
th
e
sing
le sw
itch
boost D
C
-D
C co
nv
er
ter to
co
m
p
en
sate th
e source cur
r
e
n
t
as
w
e
ll as it ch
arg
e
s the
battery
(
4
8
V
).
Mo
de2
:
C
ont
i
n
u
o
u
s C
o
m
p
ensat
i
on
by
P
V
/
F
C
,
i
n
t
h
i
s
m
ode co
nt
i
n
u
o
u
s s
o
urce
cu
rre
nt
c
o
m
p
ensat
i
o
n
is p
r
ov
id
ed
b
y
PV/FC
witho
u
t
an
y in
terru
p
t
i
o
n, ev
en if
o
n
e
so
urce
i
s
not
c
a
pabl
e
o
f
s
u
p
p
l
y
i
ng t
h
e
v
o
l
t
a
g
e
.
Mo
de3
:
C
o
mp
ensatio
n in
nig
h
t
tim
e, in
th
is m
o
d
e
b
a
ttery/FC supp
lies VSC
th
rou
g
h
th
e boo
st
con
v
e
r
t
e
r t
o
p
r
ovi
de c
o
m
p
ens
a
t
i
on.
4.
DC
- D
C
CO
NVE
RTER A
N
D
ITS CO
N
T
ROL
Fig
u
re
2
sho
w
s th
e
b
a
sic
boo
st co
nv
erter i
s
u
s
ed
t
o
i
n
crease th
e i
n
pu
t
v
o
ltag
e
to g
e
t
th
e requ
ired
out
put
vol
t
a
ge
[9]
.
T
h
e i
n
pu
t
t
o
t
h
e b
oost
con
v
e
r
t
e
r
is fed
fro
m
PV/FC/Battery. Th
ere are two
m
o
d
e
s
of
o
p
e
ration
in
bo
o
s
t co
nv
erteran
d
it is g
i
v
e
n as fo
llo
ws: [1
0]
, [1
1]
. M
o
de
1, w
h
en t
h
e s
w
i
t
c
h(
S) i
s
i
n
Tur
n
e
d
ON
,
t
h
e
i
n
put
cur
r
ent
(I
)
c
h
a
r
ges
t
h
e
i
n
d
u
ct
or (L
) upt
o
a p
e
ri
o
d
of T
ON
M
ode
2,
w
h
e
n
S i
s
T
u
r
n
e
d
O
FF, t
h
e
in
du
ctor
d
i
schar
g
es. Th
e i
n
du
ctor
d
i
ch
ar
g
i
n
g
vo
ltag
e
adds w
ith th
e
supp
ly vo
ltag
e
t
o
g
i
v
e
i
n
cr
eased ou
tpu
t
vol
t
a
ge
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
FC/PV Fed SAF with
Fu
zzy
Lo
g
i
c C
o
n
t
ro
l for Po
wer Qua
lity Enha
n
c
emen
t (R.Ba
l
a
m
u
r
u
g
a
n
)
47
3
Fi
gu
re
2.
B
a
si
c B
o
ost
co
n
v
ert
e
r
The i
n
p
u
t
vol
t
a
ge i
s
48
V a
n
d t
h
e
o
u
t
p
ut
v
o
l
t
a
ge
fr
om
t
h
e b
oost
c
o
nve
r
t
er i
s
6
7
0
V
.
T
h
e s
w
i
t
c
hi
n
g
fre
que
ncy
use
d
i
s
25 k
H
z an
d t
h
e val
u
e
of
t
h
e i
n
d
u
ct
o
r
(L) and capacitor(C) are ch
os
en as 0.0171 m
H
and
3
000
µF.
5.
CO
NTROL ALGORIT
HM
OF S
A
F
The
Inst
a
n
t
a
ne
ous
react
i
v
e
p
o
w
er t
h
eo
ry
(
p
–
q
t
h
e
o
ry
) [
5
]
,
[
15]
, i
s
c
h
ose
n
f
o
r c
o
nt
r
o
l
l
i
ng t
h
e
DC
l
i
n
k
vol
t
a
ge
o
f
t
h
e
VSC
[
1
2]
-[
13]
and i
t
s
co
nt
r
o
l
bl
ock i
s
s
h
o
w
n i
n
Fi
g
u
re
3. T
h
e re
fere
n
ce cur
r
ent
i
s
d
e
ri
ve
d
base
d
on
t
h
e
p-
q t
h
e
o
ry
an
d t
h
e eq
uat
i
o
n
s
ar
e
as f
o
l
l
o
ws,
B
y
appl
y
i
ng
t
h
e C
l
arke m
a
t
r
ices, v
o
l
t
a
ges
(
v
Sa
, v
Sb
, v
Sc
) and the l
o
ad currents (i
La
, i
Lb
, i
Lc
) are se
ns
e
d
and c
o
n
v
e
r
t
e
d
t
o
α
-
β
-0
re
fere
nce fram
e
. Th
e com
p
ensating refe
re
n
ce curre
nt is calculated by of active (
p
~
)
and reactive
power (
q
~
) c
o
m
pon
ents a
n
d
is gi
v
e
n in
the
Eq
uat
i
on
(
3
),
(3)
(
4
)
The a
-
b-c c
o
ordinates
(i
ref
_
a
, i
ref
_
b
, i
ref
_
c
) are
determ
ined by
taking th
e i
n
verse Clarke tra
n
sform
a
tion
to the current
s
in the
α
-
β
-0 coordi
nates and the
refe
rence com
p
en
sation c
u
rrents are expresse
d in the
Eq
nuatio
n (5
)
(5)
The p
o
w
er c
o
m
ponents re
g
u
l
ate the capacitor v
o
ltage
[1
4
]
in the DC
side o
f
S
A
F a
n
d
it done
by
Fuzzy logic cont
roller. The triangul
ar
m
e
m
b
ership f
u
nc
tion
varia
b
les are
use
d
as t
h
e in
p
u
t an
d
out
put
varia
b
les. T
h
e
error voltage
(e) a
n
d cha
n
ge
in error
vo
ltage (ce) are
the t
w
o input
s
of
fuzzy controller. T
h
e
Fuzzificatio
n i
s
d
one
by
u
s
in
g co
ntin
u
ous
u
n
ive
r
se o
f
disc
ou
rse, Im
plication usin
g
the
“m
in”
ope
rato
r
and
Defuzzification usi
ng t
h
e “centroid” m
e
thod. The linguistic variables for
e
r
ror
voltage and c
h
anging error
voltage are Negative Big (NB), Negativ
e Small
(NS), Zero (Z), Positive
Big (PB), and Positive Sm
al
l (PS).
The out
put va
riable
is
Δ
P
dc
and
Table
3 s
h
o
w
s th
e f
u
zz
y
rules f
r
am
ed to co
ntr
o
l the
harm
onics u
s
ing t
h
e
pr
o
pose
d
SA
F.
)
~
(
~
1
2
2
_
,
_
,
q
q
p
v
v
v
v
v
v
i
i
C
ref
C
ref
Lc
i
Lb
i
La
i
L
i
C
ref
i
3
1
0
0
_
,
_
,
_
,
0
_
,
2
3
2
1
2
1
2
3
2
1
2
1
0
1
2
1
3
2
_
,
_
,
_
,
C
ref
i
C
ref
i
C
ref
i
c
C
ref
i
b
C
ref
i
a
C
ref
i
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN:
2
088
-86
94
I
J
PEDS
Vo
l.
5
,
No
.
4
,
Ap
r
il 2
015
:
47
0
–
47
6
47
4
Table 3. Fuzzy
Rule
Ta
ble
e
NB NS
Z
PS
PB
ce
NB NB
NB
NB
NS
Z
NS NB
NS
NS
Z
PS
Z NB
NS
Z
PS
PB
PS NS
Z
PS
PS
PB
PB Z
PS
PB
PB
PB
The hysteresis current
c
o
ntrol
l
er
is
em
ploy
ed to
ge
nerate t
h
e s
w
itchin
g
p
a
tterns.
It f
o
rc
es a ba
n
g
–
b
a
ng
in
stan
taneo
u
s co
n
t
ro
l to dr
aw th
e sinu
so
id
al cu
rr
ent which
follows the refere
nce
c
u
r
r
ent deri
ve
d by
p
-
q
theory withi
n
a certain
band limits.
Fig
u
r
e
3
.
Con
t
ro
l
Stru
ctur
e f
o
r
PV
/FC f
e
d
V
S
C
The fi
ring puls
es to the VSC
are
de
rive
d f
r
o
m
the erro
r
dif
f
ere
n
ce (e
a
, e
b
, e
c
) generated between the
actual curre
nt
(i
fa
, i
f
b,
i
fc
) a
n
d
the
refe
re
nce
cu
rre
nt (i
are
f
,
i
bref
, i
cre
f
). T
h
i
s
error is s
u
bjected to a
hyst
eresis
cont
roller t
o
ge
nerate t
h
e
gating
pu
lse as sh
own in
Figu
r
e
3.
6.
RESULTS
A
N
D
DI
SC
US
S
I
ON
Th
e m
a
j
o
r
ity of
th
e
no
n
linear loads are the
p
o
we
rin
g
unit
s
by
usin
g dio
d
e brid
ge rectifier.
T
h
es
e
loads in the
distribution syste
m
,
distorts the source current and
degrades the pow
er quality. The
M
A
TLAB
/
S
I
M
U
LI
NK
s
o
ft
ware
is u
s
ed
fo
r m
o
delin
g
the proposed
SAF with PV/FC/Battery. Figure
4
illustrates the distorted sour
ce current wavefo
rm
observed without the connec
tion of SAF. The FFT analysis
for the dist
ort
e
d phase c
u
rre
n
t A is
sho
w
n in
Fig
u
r
e
5.
Th
e sign
als ar
e observed
for the si
m
u
lation ti
me
interval bet
w
een 0 to 0.4s.
Si
m
ilarly,
the
THD
obtai
ne
d for Phase currents A,
B, C
ar
e 1
9
.84
%
, 20
.9
8%
an
d19
.8
2% r
e
sp
ectiv
ely.
Whe
n
the propos
ed three phase SA
F fe
d PV/FC/Battery is connected
to the power syste
m
during
transient
opera
tion, t
h
e s
o
ur
ce
c
u
rr
en
t is
ma
d
e
to follow
the si
nusoidal te
m
p
late
of
th
e refe
ren
ce cu
rre
nt.
This
wo
r
k
is
d
one
by
f
u
zzy
b
a
sed
p-
q t
h
eo
r
y
. Fig
u
re
6 pr
esen
ts th
e wav
e
f
o
r
m
s o
f
cu
rr
en
t a
f
te
r com
p
ensation
by
the SAF. T
h
e harm
onics
of the p
h
ase A
is
m
i
tigated fr
om
19.8
4
% to 1.
53
% and it is sho
w
n in Fi
g
u
re 7
.
The T
HD
fo
r
othe
r two
Pha
s
es B
and C
is
red
u
ced
fr
om
20
.9
8% to
1.
55
% an
d 1
9
.
8
2% to
1.
50%
.
Table 4
gives t
h
e com
p
en
sation
p
r
o
v
i
ded
by
the
pr
op
ose
d
S
A
F
w
ith
fuzzy cont
roller. The m
e
rits of t
h
is SAF
syste
m
is, continuous com
p
ensation i
s
provi
d
ed
with the use
of FC
/PV/Battery, even
if
one
of the sources is affected,
the other source will contin
ue in connection with
SAF. Thus, the
harm
onic
mitig
ation is continuously
done
without any in
t
e
rruption.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
S
SN:
208
8-8
6
9
4
FC/PV Fed SAF with Fuzzy
Logic C
o
ntrol for
Power Quality Enhancement (R.Bal
amurugan)
47
5
Figu
re
4.
S
o
u
r
ce cu
rre
nt wa
v
e
fo
rm
befo
re i
n
clusi
o
n
of
SA
F
Figu
re
5.
C
u
rre
nt wa
ve
fo
rm
taken
be
f
o
re
com
p
ensation (Phase
A)
Figu
re
6.
Sin
u
s
o
idal S
o
urce
c
u
r
r
ent
wa
vef
o
r
m
obs
e
rved after
co
m
p
ensation of
SAF
Figure
7. THD m
easure
m
ent of phase
A a
f
te
r
com
p
ensation of
SAF
Table
3
Observed Total Harm
onic Di
storti
on
be
f
o
re a
n
d
after c
o
m
p
ensa
tion
of
S
A
F
wi
th F
u
zzy
co
ntr
o
l
Source cur
rent
T
H
D
Without
co
m
p
ens
a
tion
With co
m
p
e
n
sati
on
Pha
s
e A
19.
84
1.
53
Pha
s
e B
20.
98
1.
55
Pha
s
e C
19.
82
1.
50
7.
CO
NCL
USI
O
N
A three phase
SAF
fed with
PV/FC/Battery has
bee
n
sim
u
lated in M
A
T
L
AB/SIM
ULI
NK
softwa
re
and res
u
lts are pre
s
ente
d.
A satisf
actory
perform
ance has
been achi
e
ved
by
using fuzzy c
o
ntrol
l
er with
instantane
o
u
s
p-
q the
o
ry
.
ba
sed c
ontr
o
l f
o
r
havi
ng
effective s
o
urce
harm
onic reduction and
reactive
powe
r
com
p
ensation has been pres
ented
i
n
th
is pap
e
r.
The single switch
boo
st co
nverter is used
to step up the
voltage in order to m
a
intain
the
DC link
voltage
of t
h
e shunt active
f
ilter. The com
p
arison is m
a
de bet
w
een
the PI c
o
ntroll
er a
n
d fuzzy c
ont
rolle
r at
the DC
bus.
It s
h
ows t
h
at
p-q
with
fuzzy c
o
ntroller has re
duce
d
s
o
ur
c
e
cu
rr
en
t T
H
D.
Th
e
o
b
se
r
v
ed
so
urce
c
u
rrent
T
H
D of the
phase A w
ithout com
p
ensation is
20.98
% and
after com
p
ensation it is
r
e
du
ced
to 1.
53
%.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN:
2
088
-86
94
I
J
PEDS
Vo
l.
5
,
No
.
4
,
Ap
r
il 2
015
:
47
0
–
47
6
47
6
REFERE
NC
ES
[1]
Pinto
et al.
JL,
3-Phase 4-wire shunt active filter
with renewable
energ
y
interface” in
IEE
E
conf
e
r
ence,
Renewab
l
e
Energy
&
Power Quality
, Seville, Spain, 2007.
[2]
Joorabian M, Jassas
N,
Barati H. Ac
tive power filter sim
u
lat
i
on for nonlinear Lo
ad Harm
onics Effects Reduction
.
In:
Proceed
ings of the 6th Intern
ational Conferen
ce
on Industrial Ele
c
tronics
and Applica
tions (
I
CIEA)
.
2011:1376-
1380.
[3]
A Arivarasu, R
Balasubramaniu
m. Clos
ed Loop
Non Lin
ear Co
ntrol of
Shunt
Hy
brid
Power Filter for Harmonics
Mitigat
ion in Industrial Distri
bution S
y
stem
.
International
Journal of Powe
r Electronics and Drive System
(
I
JPEDS)
. 2014; 5(2):
185-194
.
[4]
Singh BN, Rastgoufard P, Sing
h B, Ch
andra A, Haddad K Al. De
sign, simulation and
implementation of
thr
ee
pole/four
pole to
pologies for
active filters
.
IE
E
El
ectri
c Pow
e
r Ap
pl.
2004
; 151(4)
: 467–76.
[5]
Joao Afonso, Carlos Couto, Juli
o Martins, Activ
e Filters with C
ontrol Based on
the p-q Theor
y
.
IEEE Industria
l
Ele
c
tronics So
ci
ety
Newsle
tter
.
2
000
;
47(3):
5-10
.
[6]
Hongbo Li, Kai
Zhang,
Hui Zhao. Active DC-lin
k
power filter
fo
r single ph
ase P
W
M rectifiers”,I
n
:
Proceedings of
the 8th IEEE International Co
nferenc
e
on Powe
r Electroni
cs and ECCE Asia (
I
CPE
&
ECC
E
)
,
Wuhan, China,
2011: 2920-292
6.
[7]
Gudimetla Ramesh et al. Photovo
ltaic Cell Fed 3-Phase Inducti
on Motor Using
MPPT Technique.
Int
e
rnation
a
l
Journal of Power Electronics
an
d Dr
ive S
y
s
t
em (
I
JPEDS)
. 2014;
5(2): 203-2
10.
[8]
Colleen
Spieg
el
,
PEM fuel cell modelling
and
simulation using MATLAB,
Acad
emic Press
,
ISBN: 978-0-
12
-
374259-9, 2008
.
[9]
Matthias Kaspe
r
, Dom
i
nik Bortis, J
ohann W Kolar. Classifica
tion
and Comparative Ev
alu
a
tion of PV Panel-
Integrated
DC–DC Converter
C
oncepts.
IEEE Transactions on
P
o
wer
El
ectr
oni
cs
,
2014; 29(5): 25
11-2525.
[10]
Wei Jiang, Yu-f
ei Zhou
, Jun-nin
g
Chen. Modelin
g
and simulation
of boost converter in CCM and
DCM.
Pr
oceedi
ng
of th
e I
EEE
con
f
er
ence
. 2009
: 28
8–91.
[11]
Abdullah Abusorrah, Mohammed M Al-H
indawi, Yusuf Al-Turki, Kuntal
Mandal Damian
Giaouris, Soumitr
o
Banerjee, Sp
y
r
o
s
Voutetak
is, Simira
Papadopou
lou. Stability
of
a boost c
onv
er
ter f
e
d from ph
otovoltaic source,
Solar Energy.
20
13; 98:458-471
[12]
Jura
j Altus,
Ja
n Mic
h
a
l
ik,
Bra
i
nisla
v
Dobruc
ky
, Vie
t
LH
. Sin
g
le phase power active f
ilter u
s
ing instantaneo
u
s
reac
tive
theor
y
-
theore
tic
al and pract
ica
l
appro
a
ch.
E
l
e
c
trica
l
P
o
wer Quality an
d Utilization
Jo
urnal.
2005; XI(
5
):
33-38.
[13]
Les
zek S
.
Czar
necki Lim
i
t
a
t
i
o
n
s
of the IRP
p-q Theor
y
as Control Algorithm of
Switching Compensators. In
Proceed
ings of
t
h
e 9th
Int
e
rnatio
nal con
f
eren
c
e
o
n
El
ectri
cal
Pow
e
r Qualit
y and
Utilisat
ion,
Barcelona. 2007
.
[14]
Karuppanan P, Kam
a
la Kanta
Mahapatr
a,
PI and fuzzy
log
i
c controllers for
sh
unt activ
e power filter - A report.
ISA
Transactions,
20
12; 51:163–169
.
[15]
Les
zek S
,
C
zar
necki On S
o
m
e
M
i
s
i
nterpr
eta
t
ions
of the Ins
t
ant
a
neous
Rea
c
tiv
e P
o
wer p-q Theor
y
.
IE
EE
Transactions on
Power Electronics,
2004; 19(3):
828-836.
BIOGRAP
HI
ES OF
AUTH
ORS
R. Balamurugan
received his
B.E degre
e
in El
e
c
tri
cal and E
l
e
c
t
r
onics
Engine
eri
ng from
Anna
University
Chen
nai,
in 2005
an
d he completed
hi
s post graduate studies
in
Power Electron
ics
and Drives from
Anna University
Ch
ennai in
20
07.
He
completed his PhD in th
e area of pow
e
r
electronics from Anna University
Chenn
a
i, in
2012. Presently
,
he is working
as Associate
professor in the
Department of Electrical and
Electronics Engineering,
K.S.Rang
asamy
Co
lleg
e
of Technolog
y
,
Tiru
chengod
e. He has
publis
he
d 25 p
a
pers
in
the Intern
ational Journals/
Conferences. He is a life member of Indian
Soci
ety
for T
e
c
hni
ca
l E
duc
ation (ISTE),
New Delhi.
His current
in
te
rests inc
l
ude
Power El
ec
tronics,
Power Quali
t
y
,
Inte
llig
ent
Control
and PFC
Converters.
R.
Nithy
a
re
ce
ived h
e
r B
.
E
d
e
gree
in
El
ec
tri
cal
and
El
ect
ro
nics
Eng
i
neer
in
g
from
Anna
University
Chen
nai in 2009
and
she completed
he
r post graduate studies in Po
wer Electronics
and Drives fro
m Anna University
Chennai in
2013. She
is
presently
work
ing as Assistant
professor in the
Department Elec
trical and
Electr
onics Engineerin
g, K. S. Rangasamy
Co
lleg
e
of
Techno
log
y
, Tir
u
chengode. Her
research intere
sts include Power Converters, Power
Factor
Correct
ion an
d I
n
tell
igent
Contro
l.
Evaluation Warning : The document was created with Spire.PDF for Python.