Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
4, N
o
. 3
,
Sep
t
em
b
e
r
2014
, pp
. 35
6
~
36
2
I
S
SN
: 208
8-8
6
9
4
3
56
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Microcontroller Based Stator Re
sistance Determination of
Induction Motor on Te
mperature Variations
S
i
ra
j A
h
med
T*
,
S.
Sao
*
*
,
K
.
S.
R
.
A
n
j
a
n
e
y
u
lu**
*
* Department of
EEE, Ghousia C
o
lleg
e
of
Engin
e
ering, India
** Bharath Institute of
Eng
i
neer
ing &
Technolog
y
,
JNTU H
y
dera
bad Affiliated C
o
lleg
e
, India
** Departmen
t
o
f
EEE, Jawahar
l
al Ne
hru
Techno
logical Univ
ersity
Co
lleg
e o
f
Eng
i
neer
ing, Anantapur India
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Ja
n 19, 2014
Rev
i
sed
Ap
r
19
, 20
14
Accepted
May 15, 2014
In this pap
e
r an
experiment has
been
conducted to determin
e th
e
online stator
winding resistan
ce of
an
induction motor,
in
ind
u
stries as well
as domestic
purpose induction motors is la
r
g
ely
u
tilized
,
as it ha
s bo
th app
lications o
f
variab
le
and con
s
tant torqu
e
operation
n
a
tur
e
.
The major r
e
quirement of an
electric drive s
y
stem is its independent
control
of torque and s
p
eed; th
is is
achieved in DC
motor Drive but has mo
re disadvantag
es. With the help o
f
fast acting switching dev
i
ces it is
possible to
independ
ently
control
an
induction
motor, drive various m
e
thods ar
e
av
ailable, di
rect torqu
e
con
t
rol of
induction
motor is one of th
e bes
t
method of con
t
rol compared
to
other,
the
only
disadv
antage is
the
torqu
e
ripp
le
. Stator
resistan
ce is
one of
the
param
e
ter for th
e cause; hen
ce it
s determ
ination
is essential
.
An
experim
e
n
t
is conducted at v
a
rious loads on
an i
nduction motor and th
en th
e temperatur
e
in th
e stator win
d
ing is no
ted
at
differe
n
t
instants
using microcon
troller
,
from
the tabul
at
ed re
adings
s
t
ator winding res
i
s
t
anc
e
is
calcula
ted an
d com
p
ared
with the d
i
rect
m
easurement b
y
Volt-Ampere met
hod. Furth
e
r it
is suggested
that b
y
im
plem
enting
the
ac
tu
al onl
ine
valu
e
of s
t
ato
r
res
i
s
t
ance
of an
induction
motor
dive
torque ripple can b
e
minimized
.
Keyword:
Di
rect
T
o
r
q
ue
C
ont
r
o
l
I
ndu
ctio
n Mo
t
o
r
Micro
c
on
tro
ller
Stator Winding
Resistance
Therm
i
stor
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Siraj Ahm
e
d T
Depa
rtem
ent of Electrical a
n
d
El
ect
ro
ni
cs E
n
gi
nee
r
i
n
g,
Gh
o
u
si
a C
o
l
l
e
ge
of
En
gi
nee
r
i
ng,
R
a
m
a
nagar,
K
a
rnat
a
k
a,
I
ndi
a
Em
a
il: tsiraj
ahmedeee@gm
ai
l.com
1.
INTRODUCTION
Wh
en
a m
o
to
r is started
fo
r
o
p
e
ration
h
eat
is p
r
o
d
u
c
ed
due to
th
e lo
sses, its te
m
p
eratu
r
e rises and
v
a
ries
fro
m
o
n
e p
a
rt to
ano
t
h
e
r bu
t
will be m
a
x
i
m
u
m
in
th
e
wind
ing
s
, th
is
will affect th
e stator
win
d
i
ng
resistance and
also the therm
a
l in
su
latio
n
[1
]. To
con
t
ro
l any
m
ach
in
e its b
e
h
a
v
i
o
r
& C
h
aracteristics h
a
s to
b
e
st
udi
e
d
an
d
un
derst
a
nd
fi
rst
.
Depe
n
d
i
n
g u
p
on t
h
e re
q
u
i
r
e
m
ent
and i
t
s
a
ppl
i
cat
i
o
n t
h
e
po
we
r capaci
t
y
of a
mach
in
e will be selected
. If low rating
m
ach
in
e is select
ed
th
en
t
h
e produ
ctio
n
g
e
t
redu
cs o
r
th
e m
ach
ine g
e
ts
ove
r
hea
d
ted
upand a
ffects
the pe
rform
ace and its life.
Wh
en
a highe
r
rating
m
achine
is
selected the
n
its cost
increases a
n
d a
l
so no loa
d
power
dra
w
n fr
o
m
source i
n
cre
a
ses res
u
l
t
i
ng
po
we
r wast
a
g
e
.
Most of the el
ectrical
mach
in
es are self coo
l
ed
; th
e
rise in
tem
p
eratu
r
e will b
e
sl
ow fo
r
h
i
gh
sp
eed
m
ach
in
es,
wh
ereas it is fast fo
r
lo
w sp
eed
m
a
ch
in
es. Th
e tem
p
eratu
r
e rise in
a m
ach
in
e d
e
p
e
nd
s
up
on
its typ
e
o
f
u
s
ag
e, th
e lo
ad
tim
e
variation a
n
d the m
a
jor class
e
s of
duty a
r
e [2].
a)
C
ont
i
n
u
ous
d
u
t
y
b)
Sho
r
t tim
e d
u
t
y
c)
In
term
itten
t
p
e
riod
ic du
ty wit
h
starting
d)
In
term
itten
t
p
e
riod
ic du
ty wit
h
starting
&
b
r
ak
ing
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Mi
croco
n
t
r
ol
l
e
r Bas
e
d
St
at
or
Resi
st
ance
Det
e
rmi
n
at
i
o
n
of
I
n
d
u
ct
i
o
n M
o
t
o
r o
n
…
(
S
i
r
aj
A
h
me
d
T)
35
7
The eq
ui
val
e
n
t
curre
nt
an
d t
o
r
que i
n
a
n
i
n
d
u
ct
i
o
n m
o
t
o
r de
pen
d
s
up
o
n
t
h
e ab
o
v
e cl
asses, t
h
u
s
affects the te
m
p
erature, the
change
in te
m
p
erature and hence the sta
t
or resista
n
ce value
varies.
Precise
cont
rol
o
f
i
n
d
u
ct
i
on m
o
t
o
r
dri
v
e can be
achi
e
ve
d w
ith the actual value of stator resistance and the
cor
r
es
po
n
d
i
n
g val
u
e of
t
o
r
q
u
e
and fl
u
x
est
i
m
a
t
i
ons.
Direc
t
Torque C
o
ntrol (DTC
) m
e
thod
of controlling a
n
Induction m
o
tor is
one
of t
h
e best m
e
thods
of cont
rolling, its im
porta
nc
e, supe
riority
and m
e
thodol
ogy are
wel
l
ex
pl
ai
ne
d
[
2
]
.
T
h
e DTC
of
i
n
duct
i
o
n
m
o
t
o
r (IM
)
dri
v
e
s
o
ffe
rs fast
i
n
st
ant
a
ne
ous t
o
r
que a
nd fl
ux c
ont
rol
wi
t
h
si
m
p
l
e
im
pl
em
ent
a
t
i
on. Thi
s
m
e
t
hod
i
s
l
e
ss depen
d
ent
on m
achi
n
e pa
ram
e
t
e
rs, t
h
e onl
y
de
p
e
nde
nt
param
e
t
e
r i
s
st
at
or
resi
st
ance,
d
o
es
not
req
u
i
re a com
p
l
e
x
fi
el
d o
r
i
e
nt
at
i
o
n
bl
oc
k, a
spe
e
d e
n
co
de
r an
d
a
n
i
nne
r c
u
r
r
ent
r
e
gul
at
i
o
n l
o
o
p
[3]
.
W
i
t
h
a
soft starter c
o
nnecte
d
to an ac motor th
e
t
h
erm
a
l
reco
very
t
i
m
e
has b
een i
m
prove
d f
o
r
in
term
i
tten
t
p
e
riod
ic du
ty cycles o
p
e
rating m
ach
in
e. Th
e i
m
p
o
r
tance of th
is techn
i
q
u
e is b
a
sed
o
n
on
ly
voltage
&
current m
easurem
e
n
ts [4].
Sim
u
l
a
t
i
on a
n
al
y
s
i
s
of
fu
zz
y
l
ogi
c
DTC
of
an
IM
d
r
i
v
e usi
n
g
si
m
u
l
i
nk
AC
4 m
ode
l
has
bee
n
di
scuss
e
d
,
t
h
e
m
a
i
n
aim
of t
h
i
s
st
udy
i
s
fo
cu
sed o
n
m
o
t
o
r f
a
i
l
u
re & c
o
m
pone
nt
l
o
ss
d
u
e
t
o
hi
g
h
t
o
rq
ue
ri
p
p
l
e
[5]
.
On l
i
n
e
st
at
or
r
e
si
st
ance has
b
een est
i
m
at
ed usi
n
g
AN
N, i
n
t
h
e p
r
o
p
o
se
d
m
e
t
hod t
h
e ef
f
ect
of st
at
o
r
resi
st
ance vari
at
i
ons has bee
n
st
u
d
i
e
d
.
It
i
s
al
so
n
o
t
e
d
t
h
at
the val
u
e of st
ator resistance
has
varie
d
from 6.03
Ohm
s
t
o
8.0 O
h
m
s
and t
h
e co
rres
p
on
di
n
g
d
r
op
of st
at
o
r
cu
rre
nt
i
s
cl
earl
y
sho
w
n. F
u
rt
her
i
t
i
s
concl
u
de
d t
h
at
t
h
e rel
a
t
i
o
ns
hi
p
bet
w
ee
n st
at
or
cu
rre
nt
&
st
at
or
resi
st
ance
i
s
n
o
n
l
i
n
ear
w
h
i
c
h
has
easi
l
y
m
a
pped
wi
t
h
NN
[
6
]
.
Fo
r sm
all
to
med
i
u
m
sized
main
s-fed
IM
th
e ro
tor tem
p
eratu
r
e h
a
s
b
e
en
ob
tain
ed
b
y
tak
i
ng
on
ly
voltage
& c
u
rrent sens
ors, t
h
e inductances
are estim
a
t
ed
usi
n
g e
qui
val
e
nt
ci
rcui
t
,
t
h
e
rot
o
r t
e
m
p
erat
ure i
s
calcu
lated
from
th
e lin
ear
rel
a
tio
n
s
h
i
p
b
e
tween
the
tem
p
erature
& rotor
resistance [7].
The
Di
rect
T
o
r
q
ue C
o
nt
r
o
l
i
s
a
hi
g
h
l
y
-
d
y
n
am
i
c
and
hi
g
h
per
f
o
r
m
a
nce c
ont
rol
t
e
chni
que
f
o
r
in
du
ctio
n m
o
to
r driv
es wh
ich
is
on
e
o
f
t
h
e po
ssib
l
e altern
ativ
e so
l
u
tion
to DC
driv
es. In
d
i
rect-t
o
r
q
u
e
-
co
n
t
ro
lled
ad
justab
le sp
eed
d
r
iv
es th
e
m
o
to
r
flux
an
d
th
e el
ectro
m
a
g
n
e
tic to
rq
u
e
are th
e
referen
ce
q
u
a
ntities
.
It
s est
i
m
a
ti
on i
s
very
im
port
a
nt
, pa
ral
l
e
l
i
d
ent
i
f
i
cat
i
on sc
he
m
e
for b
o
t
h
sp
eed & st
at
or re
si
st
ance of se
n
s
orl
e
ss
IM
dri
v
es
usi
ng sl
i
d
i
n
g m
o
de o
b
se
rve
r
a
nd m
odi
fi
e
d
s
l
i
d
i
ng m
ode o
b
ser
v
e
r
base
d
on s
p
ee
d est
i
m
at
i
o
n
schem
e
for
fi
e
l
d wea
k
e
n
i
n
g
ope
rat
i
o
n
has
been
p
r
op
ose
d
[
8
]
.
W
i
t
h
onl
y
one
p
h
ase
c
u
r
r
ent
&
rot
o
r
spee
d
adaptive
stator
resistance esti
ma
t
i
on has
bee
n
pr
o
pose
d
[
9
]
.
Tem
p
er
atu
r
e
d
i
str
i
bu
tio
n in an
ai
r
-
c
o
o
l
ed asyn
ch
ro
nou
s in
du
ction
m
a
ch
in
e is pr
opo
sed
using
th
erm
a
l Fin
ite Ele
m
en
t An
aly
s
is th
e estim
at
i
o
n h
a
s
b
een ca
rried ou
t
b
y
jou
l
es lo
sses in stato
r
wind
ing
s
[10
]
.
The est
i
m
at
i
on o
f
st
at
or fl
ux
, spee
d an
d
freq
u
e
n
cy
fo
r fl
u
x
o
r
i
e
nt
e
d
vect
or co
nt
r
o
l
m
e
t
hods
,
becom
e
s inaccurate due to st
ator resi
sta
n
ce variation.
T
h
e inaccurate
flux
vector c
o
m
putation gi
ves error
not
only in t
h
e fl
ux m
a
gnitude
,
but i
n
the
phas
e angle also,
whic
h affects t
h
e re
sponse
of the drive
.
T
h
e
direct
t
o
r
que c
ont
rol
m
e
t
hod
of t
h
e
i
n
d
u
ct
i
on m
o
t
o
r dri
v
e i
s
sim
i
larl
y
affect
ed
b
y
t
h
e erro
r i
n
s
t
at
or fl
u
x
est
i
m
at
i
o
n
;
the fee
d
back s
i
gnal estim
atio
n acc
uracy
is
depe
ndent
on
l
y
on the
stator re
sistan
ce
va
riations. T
h
e s
t
ator
wind
ing
resist
an
ce prim
aril
y
v
a
ries with
win
d
i
ng
tem
p
er
ature. The
resistance at
diffe
rent te
m
p
eratures can
be cal
cul
a
t
e
d a
s
[
11]
.
R
new
= R
0
{ 1
+
α
( T
1
– T
0
)
}
(
1
)
Whe
r
e:
R
new
is Resista
n
ce at
new temperat
ure
R
0
is Resistance at room
te
m
p
erature
α
is Tem
p
erature
coe
fficient
T
1
is Tem
p
eratu
r
e (n
ew) at
wh
ich
Resistan
ce v
a
lu
e to
b
e
determin
ed
T
0
is Room
Tem
p
erature
Th
e stato
r
copp
er and
iro
n
losses will co
n
t
ri
b
u
t
e to
stato
r
wind
ing
te
m
p
eratu
r
e
rise. In
t
h
is p
a
p
e
r, th
e
value
of stator
resistance c
h
a
n
ges, base
d
on s
t
at
or
wi
n
d
i
n
g t
e
m
p
erat
ur
e
has
bee
n
cal
c
u
l
a
t
e
d.
2.
Mathem
atical
Modeling of I
nducti
on
Motor
In
o
r
d
e
r to
m
a
k
e
th
e calcu
latio
n
s
sim
p
le an
d easy
m
o
d
e
lin
g o
f
i
n
du
ction
m
o
to
r is to
b
e
an
alyzed
.
An
in
du
ctio
n
m
o
to
r can
b
e
co
m
p
ared
with
a tran
sform
e
r;
t
h
e
m
a
jor pa
ram
e
t
e
rs of i
n
d
u
ct
i
on m
o
t
o
r are g
i
ven as
Stator re
sistance, rot
o
r
resistance,
stator and rotor leaka
g
e reactance,
m
a
gnetizing com
ponents a
nd
the loa
d
equi
val
e
nt
c
o
m
ponent
. T
h
e
param
e
t
e
rs of i
n
d
u
ct
i
o
n m
o
t
o
r can
be easi
l
y
det
e
rm
i
n
ed by
per
f
o
r
m
i
ng a no l
o
a
d
test an
d a
b
l
o
c
k
e
d ro
tor test
on
an
indu
ction
m
o
to
r.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
3
,
Sep
t
em
b
e
r
2
014
:
35
6 – 362
35
8
Fi
gu
re
1.
Per
P
h
ase E
q
ui
val
e
n
t
C
i
rcui
t
o
f
In
d
u
ct
i
o
n
M
o
t
o
r
Whe
r
e:
I
S
&
I
r
ar
e
s
t
a
t
or
& ro
tor
cu
rr
en
ts
I
o
th
e
no
lo
ad
cu
rren
t
I
w
&
I
m
Activ
e
& m
a
g
n
e
tizin
g Cu
rren
ts
R
S
& R
r
are Stator &
Rot
o
r
Resistances per phase
X
S
& X
r
are
St
ator
& Rot
o
r Reactance’s
pe
r
pha
se
R
m
is Resistan
ce of the
core
X
m
is Magnetizing Reacta
n
ce
Loa
d
e
qui
val
e
nt
R
e
si
st
ance
= R
r
(1 – S) /
S
S =
Slip
Wh
en
a
b
a
lanced
three
ph
ase supp
ly is fed
to th
e
stato
r
wind
ing
of an
Indu
ctio
n mo
tor resu
lts i
n
devel
opi
ng
a r
o
t
a
t
i
ng m
a
gne
t
i
c
fi
el
d wi
t
h
a spee
d
depe
n
d
i
n
g
up
o
n
t
h
e n
u
m
b
er of
p
o
l
e
s an
d t
h
e s
u
p
p
l
y
fre
que
ncy
,
t
h
i
s
speed i
s
cal
l
e
d as t
h
e sy
nc
h
r
o
n
ous s
p
ee
d
.
Ro
tatin
g
m
a
g
n
etic field
as it
cu
t b
y
th
e ro
tor b
a
r
co
ndu
ctors
h
e
n
ce an
em
f gets in
du
ced
i
n
th
e
ro
t
o
r cond
u
c
t
o
rs resu
ltin
g in curren
t
flow throug
h t
h
e
b
a
r
con
d
u
ct
o
r
s as
t
h
ey
are
s
h
o
r
t
c
i
rcui
t
e
d t
h
r
o
ug
h e
n
d
r
i
n
gs,
du
e to
t
h
is action th
e
ro
t
o
r starts ro
tatin
g
i
n
t
h
e sam
e
d
i
rection
as that o
f
th
e
ro
tatin
g m
a
g
n
e
tic field
at a sli
g
h
t
l
y
lesser sp
eed th
an th
e syn
c
h
r
on
ou
s
sp
eed
.
Th
e
diffe
re
nce in s
p
eed is e
x
pres
sed as
slip s
p
eed.
De
pend
i
n
g
u
pon
th
e
v
a
lu
e of l
o
ad app
lied
,
t
h
e slip of a
machine c
h
anges. T
h
e tem
p
erature
of m
ach
in
e
d
u
ring
its
op
eration
ch
an
ges du
e t
o
th
e losses th
at
o
c
cu
rs in
it,
and are
gi
ven a
s
:
Stato
r
C
o
pp
er
l
o
ss = 3 I
s
2
R
s
Ro
to
r Copp
er
l
o
ss = 3 I
r
2
R
r
Stator C
o
re
los
s
, Mecha
n
ical
& Magnetic losses
All these losse
s are i
n
the
form
of heat, and
get
transfers to
th
e
v
a
riou
s p
a
rts of th
e
mach
in
e b
y
con
d
u
ct
i
o
n
an
d c
o
n
v
ect
i
o
n
p
r
oces
s. T
h
e
he
at
pr
od
uce
d
i
s
m
a
xim
u
m
i
n
t
h
e wi
ndi
ng;
t
h
e t
e
m
p
erat
ure
i
n
t
h
e
winding sl
owl
y
increases
, thus a
ffecting t
h
e wind
ing
resistan
ces an
d also th
e life
o
f
in
sulatio
n
.
3.
Direct T
o
rque
Contr
o
l
In
DTC o
f
indu
ctio
n
m
o
to
r it is p
o
ssib
l
e to
co
n
t
ro
l th
e m
a
ch
in
e v
e
ry easily, it
h
a
s
m
o
re ad
v
a
n
t
ag
es
com
p
ared t
o
others
, fe
w
of the
m
are; Coordinate tra
n
sfo
r
m
a
tio
n
is
no
t r
e
qu
ir
ed
, Sen
s
or
less op
er
ati
o
n, R
o
bu
st
nat
u
re.
Fi
gu
re
2.
B
a
si
c B
l
ock
Di
a
g
ra
m
of DTC
Rm
Rs
Im
Xm
Vs
Xs
Ir
Rr
Io
Iw
Is
Xr
R
r
(1-S
)/
S
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Mi
croco
n
t
r
ol
l
e
r Bas
e
d
St
at
or
Resi
st
ance
Det
e
rmi
n
at
i
o
n
of
I
n
d
u
ct
i
o
n M
o
t
o
r o
n
…
(
S
i
r
aj
A
h
me
d
T)
35
9
Fi
gu
re s
h
ow
n
re
prese
n
t
s
t
h
e bl
ock
di
a
g
r
a
m
of
DTC
s
c
hem
e
i
n
w
h
i
c
h t
h
e est
i
m
ated
val
u
es
of
el
ect
rom
a
gnet
i
c
t
r
oq
ue a
nd
fl
ux a
r
e com
p
ar
ed wi
t
h
t
h
e c
o
m
m
a
nd val
u
es
of t
o
rq
ue a
nd
fl
u
x
, de
pe
ndi
n
g
u
p
o
n
the errors
obtained the c
o
rr
es
ponding s
w
itch
gets ope
r
ated and the
cont
rol action take
s place. Stator flux is
a
co
m
p
u
t
atio
n
a
l
q
u
a
n
tity, wh
ich
is
o
b
t
ained
usin
g
t
h
e stat
or-measu
r
ed curren
t ‘Is’ and
voltag
e
‘Vs’. Th
e m
a
j
o
r
equat
i
o
ns
o
f
i
n
t
e
rest
are
gi
ve
n
as;
ψ
s
=
∫
( V
s
–
i
s
R
s
)
dt
(2)
T
e
= (3/2) P
p
(
ψ
sd
i
sq
-
ψ
sq
i
sd
)
(
3
)
ψ
sd
=
∫
( V
sd
– I
sd
R
s
)
dt
(4)
ψ
sq
=
∫
( V
sq
– I
sq
R
s
)
dt
(5)
Th
e
D
T
C
d
e
pen
d
s upo
n th
e v
a
lu
es of
th
e stato
r
f
l
ux
and
tor
q
u
e
. Stator
r
e
sistan
ce R
s
is a known
value; e
x
act evaluation
of R
s
requi
res acc
urat
e m
easure
m
ents. T
h
e
value
of R
s
, va
ries wit
h
te
m
p
erature
,
needs
eith
er a t
h
erm
a
l
m
o
d
e
l or an
esti
m
a
t
i
o
n
m
e
th
o
d
.
4.
Experimental Setup
4.
1. B
l
ock
Di
a
g
ra
m &
Circuit Description
Fi
gu
re
3
&
4 s
h
o
w
t
h
e e
xpe
ri
m
e
nt
al
arra
nge
m
e
nt
t
o
veri
fy
t
h
e t
h
e
r
m
a
l
concept
,
i
n
w
h
i
c
h t
h
e
IM
i
s
loade
d
for
different val
u
es of load
curren
t
& co
rresp
ond
in
g
v
a
riation
s
in
th
e tem
p
eratu
r
e
with
resp
ect to
ti
me
are noted. The
readi
ngs a
r
e t
a
bulated a
n
d a
r
e as shown
i
n
Table I.
A T
h
erm
i
stor is us
ed as a tem
p
erature
sensing
de
vice to m
easure the stator
winding tem
p
erature.
The tem
p
erature
se
nsor is c
o
nnecte
d
to the
anal
og
t
o
di
gi
t
a
l
(A t
o
D) c
o
nve
rt
e
r
A
D
C
0
8
0
9
w
h
i
c
h i
s
a
n
8
b
i
t
con
v
ert
e
r
.
It
i
s
desi
gne
d t
o
gi
ve
fast
, ac
curat
e
repeata
b
le conversi
ons over
a wide
range
of tem
p
erat
ure
.
The
di
gi
t
a
l
out
put
i
s
pass
ed o
n
t
o
t
h
e
m
i
cro
cont
rol
l
e
r.
T
h
e m
i
cro c
ont
r
o
l
l
e
r
used
he
r
e
i
s
At
m
e
l
AT8
9
C
5
1.
It
i
s
a p
o
w
er
ful
m
i
cro com
put
er w
h
i
c
h
pr
o
v
i
d
es a
hi
g
h
l
y
fl
exi
b
l
e
a
n
d c
o
st
ef
fect
i
v
e sol
u
t
i
o
n t
o
m
a
ny
em
bedd
ed c
ont
r
o
l
a
ppl
i
cat
i
ons.
It
has
4KB
o
f
f
l
ash
m
e
m
o
r
y
, 1
2
8
b
y
tes of
RA
M, 32
p
r
ogr
ammab
l
e I
/
O
lin
es, 6 in
terr
up
t sour
ces an
d p
r
og
r
a
mm
ab
l
e
ser
i
al
I/O ch
an
n
e
ls.
As t
h
e tem
p
eratu
r
e
of th
e ind
u
c
tion m
o
to
r
increa
ses t
h
e
stator
resistanc
e
increa
ses, and t
h
e
micro
con
t
ro
ller sen
d
s
th
e d
a
t
a
to
th
e LCD
wh
ich
d
i
sp
lays th
e actual wi
nd
ing
tem
p
erature.
Fi
gu
re 3.
B
l
oc
k Di
ag
ram
R
e
present
a
t
i
o
n of
M
odel
Fi
gu
re
4.
A
rra
ngem
e
nt
o
f
W
i
ndi
ng
Tem
p
era
t
ure M
eas
urem
ent
&
Ha
rd
war
e
M
o
del
o
f
M
i
croc
o
n
t
r
ol
l
e
r
Tem
p
erartue Monitor
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
3
,
Sep
t
em
b
e
r
2
014
:
35
6 – 362
36
0
4.
2. Al
g
o
ri
t
h
m
1.
Start
2.
In
itialize LCD
an
d A to
D conv
erter
3.
Read tem
p
erature
4.
Display
5.
Del
a
y
–
2Sec
s
6.
Go
to ste
p
3
5.
RESULTS
5.
1. E
x
peri
me
ntal
Res
u
l
t
An
ex
peri
m
e
nt
i
s
co
nd
uct
e
d
on
IM
a
f
t
e
r i
n
sert
i
n
g
t
h
e t
e
m
p
erat
ure se
n
s
i
ng
de
vi
ce
ne
ar t
h
e
st
at
or
wi
n
d
i
n
g at
t
w
o
di
ffe
re
nt
pl
ace
s i
n
an
IM, the
machine is loa
d
ed at
diffe
re
nt
st
eps an
d c
o
r
r
e
sp
on
di
n
g
val
u
es of
te
m
p
erature
at differe
n
t i
n
tervals a
r
e
tabu
lated
.
Tab
l
e 1
g
i
v
e
s
t
h
e d
e
tails
of
the
tabu
lated
read
i
n
gs. Fig
u
re 5
rep
r
ese
n
t
s
t
h
e
expe
ri
m
e
nt
al
grap
h
of
tem
p
erature
verses time at diffe
rent
lo
ads.
It is seen
fro
m
th
e g
r
ap
h th
at
the tem
p
erature rise is
very
fa
st
when loa
d
on
IM is inc
r
eas
ed.
Tabl
e
1. E
x
per
i
m
e
nt
al
Dat
a
o
f
Ti
m
e
and Te
m
p
erat
ure o
f
S
t
at
or
W
i
n
d
i
n
g
Lo
ad
Cu
rren
t
Ti
m
e
in
Min
2.
8Am
p
s
3.
2
Am
ps
3.
5Am
p
s
3.
8
Am
ps
Te
m
p
Resistance Te
m
p
Resistance Te
m
p
Resistance Te
m
p
Resistance
Star
t
38
8.
33
38
8.
33
43
8.
5
40
8.
33
5
50
8.
73
56
8.
93
60
9.
0
58
8.
99
10
57
8.
96
65
9.
23
76
9.
6
74
9.
52
15
63
9.
16
78
9.
66
79
9.
7
85
9.
89
20
68
9.
32
81
9.
77
85
9.
9
98
10.
32
25
74
9.
52
88
10.
00
93
10.
16
108
10.
66
30
80
9.
72
90
10.
06
100
10.
43
118
11
35
83
9.
82
95
10.
23
108
10.
66
128
11.
32
40
91
10.
09
101
10.
43
114
10.
86
45
98
10.
32
110
10.
73
119
11.
0
50
103
10.
49
115
10.
89
128
11.
33
55
105
10.
56
120
11.
00
135
11.
56
Fi
gu
re
5.
G
r
ap
h
of
t
e
m
p
(deg
rees C
e
l
s
i
u
s
)
v
s
t
i
m
e
agai
nst
di
ffe
re
nt
l
o
a
d
c
u
r
r
ent
5.
2.
M
e
a
s
urement
of
St
ator R
e
sist
a
n
ce
Tabl
e
2 s
h
ows
t
h
e act
ual
rea
d
i
n
gs
of
st
at
or
resi
st
an
ce
at room
te
m
p
erature a
n
d at a te
m
p
erature
of
12
5 de
g
r
ees C
e
l
s
i
u
s. The m
e
t
h
o
d
use
d
t
o
m
easure t
h
e st
at
or resi
st
a
n
ce
i
s
based o
n
Vol
t
-
Am
pere m
e
t
hod
,
fro
m
th
e
m
eas
u
r
ed
v
a
lu
es it i
s
clear th
at th
e resist
an
ce
v
a
l
u
e
will v
a
ry between
8
.
33
ohm
s an
d
10
.7
ohm
s with
a close conformity to equation (1). It
is seen with
th
e earlier in
vestig
atio
ns
m
a
de the val
u
e of stator res
i
stance
of i
n
d
u
ct
i
o
n
m
o
t
o
r has va
r
e
i
e
d fr
om
6.0
3
ohm
s t
o
8.
0
ohm
s on a
n
O
n
l
i
n
e est
i
m
at
ed m
easurem
en
t
s
m
a
de
[2
1]
.
0
50
100
150
0
5
10
15
20
25
30
35
40
45
50
55
Temperature
Time
in
Min
2.8
Am
p
s
3.2
Am
p
s
3.5
Am
p
s
3.8
Am
p
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Mi
croco
n
t
r
ol
l
e
r Bas
e
d
St
at
or
Resi
st
ance
Det
e
rmi
n
at
i
o
n
of
I
n
d
u
ct
i
o
n M
o
t
o
r o
n
…
(
S
i
r
aj
A
h
me
d
T)
36
1
Tabl
e
2. E
x
per
i
m
e
nt
al
Dat
a
V
o
l
t
-
Am
p m
e
t
hod
Te
m
p
.in
Deg.Cels
V in Volts
I in A
m
ps
Ef
f
ective resistance
Resistance Stator
winding
38
25
4.
5
5.
77
8.
33
125
32
4.
5
7.
11
10.
7
6.
CO
N
C
LUS
I
ON
In t
h
i
s
pa
per
a cl
ear vi
ew
o
f
st
at
or
resi
st
ance va
ri
at
i
on
has bee
n
pres
ent
e
d
whi
c
h i
s
due t
o
t
h
e
v
a
riation
s
of te
m
p
eratu
r
e alon
e, in
actu
a
l DTC co
n
t
ro
l,
the p
r
actical ch
an
g
e
in
stator resistan
ce will
n
o
t
b
e
considere
d
.
If the actual va
lue of
st
ator
resistance is calculated, the
n
a cor
r
es
po
n
d
i
n
g co
nt
r
o
l
l
e
r c
a
n be
su
gg
ested
to red
u
c
e th
e t
o
rque ripp
le.
7.
FUTURE IMPLEMENT
A
TION
Th
e DTC of Indu
ctio
n
M
o
to
r
d
r
i
v
e with Variab
le
Stat
or Resistance
values
base
d on t
h
erm
a
l
consideration c
a
n be
take
n as
anot
her i
n
put t
o
estim
a
t
e th
e values
of torque so as t
o
get
m
o
re accurate
values
of
t
o
r
q
ue,
an
d
he
nce t
h
e t
o
r
que
ri
ppl
e
m
a
y
fu
rt
he
r
be
re
duce
d
.
F
u
rt
her
t
h
e m
e
t
hod
h
a
s t
o
be
i
m
pl
em
ent
e
d
usi
n
g s
o
ft
c
o
m
put
i
n
g t
e
c
hni
q
u
es l
i
k
e
A
N
N
,
fuzzy
l
o
gi
c,
A
N
FI
S,
or
ot
her
com
put
i
ng t
ool
s & t
h
e
pe
rf
or
m
a
nce
of
t
h
e
DTC
ca
n
be
fu
rt
he
r i
m
pr
o
v
ed
i
n
fut
u
r
e
.
ACKNOWLE
DGE
M
ENTS
St
udy
m
a
t
e
ri
al, basi
c eq
uat
i
o
ns an
d al
l
ot
he
r p
r
o
d
u
ct
s, t
h
e
r
e nam
e
d are r
e
fer
r
ed t
o
i
n
t
h
i
s
pape
r are
tradem
arks or registered
tra
d
e
m
arks of
th
e
re
spective c
o
nce
r
ns
, c
o
m
p
anies or
owners
.
REFERE
NC
ES
[1]
Fundamentals of
Electr
i
cal Driv
es, G.K Dube
y
,
N
a
rosa publishing
house, 2nd Ed
ition, 200
.
[2]
I Takahashi, T
Noguchi. A new quick
response and high efficiency
control
str
a
teg
y
for an
induction motor.
IE
EE
Transaction Industr
y Applicatio
ns
. 1986;
IA-22(5); 820-827.
[3]
YS Lai, JH Chen. A new approach to direct torq
ue control
of
ind
u
ction motor drives for constant
inverter switchin
g
frequency
and
to
rque ripp
le redu
ction
. I
EEE
Trans.Energy Con
v
ersion
. 2001; 16; 220-227.
[4]
Pinja zh
ang, Yi
Du. Thomas G
Hebaltor
,
Bin
Lu. Improvi
ng Th
ermal Recover
y
Time fo
r soft-
Starter – Conn
ected
AC Motors with
Interm
itt
ent Per
i
odic Dut
y
C
y
cl
e.
IEEE
Transaction on Industry Application.
2010
; 46(5).
[5]
Ab Aziz NH,
A
b
Rehim A.
simulation on Simulink AC4 model,
200hp DTC
induction motor drive with fuzzy logic
controller
. IEEExplor Computer Application
& Industrial Electro
n
ics ICCAIE 2010
International Conference.
201
0:
553- 557, ISN 978-1-4244-9054-7.
[6]
Baburaj k
a
rna
y
i
l
M
uham
m
e
d F
azlur
Rahm
an,
Colin Granth
am
. Onlin
e S
t
ato
r
and Rotor R
e
s
i
s
t
anc
e
Es
t
i
m
a
tio
n
Scheme Using Artificial Ne
ural Network for
Vector Controlled
speed
Sensorless Induction
Motor Drive.
IE
EE
transaction on
I
ndus
trial Electronics.
2007
; 54(1)
; 167-175.
[7]
Zhicho
. A Sensorless Rotor Temperature Estim
ator for
Inductio
n Machine Based on a Current Harmonics Spectral
Estim
ation
sche
m
e
.
IEEE Transaction
on I
ndustrial Electronics
.
2008; 55(1); 407
-416.
[8]
Mohamed S Zaky
, Mahmoud M Khater, Shokr
y
S Shokralla, Hu
ssain A Yasin. Wide-Speed-R
ang
e
Estimation with
Online Parameter Identif
ication
Schemes
of Sensorless Inductio
n Motor Drives.
IEEE Transacti
ons on Industrial
Electronics.
200
9; 56(5); 1699.
[9]
Fa
rz
a
d
R Sa
lmasi
,
Toora
j
Abba
s
i
an Najaf
a
bad
i
.
An Adaptive O
b
s
e
rver with On
line Rotor
and
S
t
ator Res
i
s
t
anc
e
Estimation for I
nduction Motors
with One Phase Current Sensor
.
IEEE T
r
ansacti
ons on Energy
Conversion.
201
1;
26(3); 959-966
[10]
Yujiao Zhang
,
Jiangjun Ruan
, Tao Huang, Xiao
ping Yang,
Houquan Zhu, Gao
Yang. Ca
lculation of Temperature
Rise in Air-cooled Induction Mo
tors Through 3-D Coupled
Electromagnetic Fluid-D
y
na
mical an
d Thermal Finite-
Elem
ent
Anal
ys
i
s
.
IEEE Transactions on Magn
etics
. 2012; 48(2);
1047-1050.
[11]
Fermando Biz,
Michael W Degne
r, Jaun M Guerrero
, Albert
o
B Diez. Temperature Estimation
in Inverter – Fed
Machines Using
High Frequan
c
y
Carrier Sign
al I
n
jection.
IEEE T
r
ansaction on In
dustry Applications
. 2008; 44(3
)
;
799-807.
[12]
Alirani S
,
Jagan
n
athan V
.
Torque Ripp
le
Minimization in DTC based
Induction Motor Drive using Fuzzy lo
gic
Technique.
In
ter
n
ation
a
l Journal
of Comput
cr Ap
plications. 2012; 40(1): 25-3
1
.
[13]
Mustafa AKTAS,
H Ibrahim O
KUMU
S
.
Stator resistance estim
ation
using
ANN
in DTC IM drives.
Turk
j
Ele
c
.
Eng
& Comp Sci. 20
10; 18(2) 19721
0.
[14]
Abdul wahab H
F
, sunsui.
Simulink model of to
rque
control of induction machine.
Americn
journal of
applied
science 2008; 5
(
8
); 1083-1090
I
SSN 1546- 9239.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
4
,
No
.
3
,
Sep
t
em
b
e
r
2
014
:
35
6 – 362
36
2
[15]
Turki Y Abdalla Haroution Ant
r
anik Hairik Ad
el M Dakhil
. Minimization of Torque Ripple in
DTC of Induction
Motor Using Fu
zzy Mode Duty
Cycle
. Controller Iraq
J.
Elec
trical
and
Electronic Engin
eering
.
20
11; 7(1); 42–49.
[16]
YV Siva Reddy
, M Vijay
a
ku
ma
r, T Brahmananda Redd
y
.
Direct Torque Control of Induction Motor Using
Sophisticated Lo
okup Tables
Based on N
e
ural N
e
tworks.
AIML J
ournal. 2007; 7(
1); 9-15.
[17]
Depenbrock M.
Direct Self-cont
rol of inver
t
er-f
ed m
achine
.
IEEE Transactions on Power Electr
onics
. 1988; 3(4
)
,
420-429.
[18]
F
Blas
chke.
The principle of fie
l
s
-orientation as applied to th
e Tran vector close
d
-loop control system for rotating-
field
machin
es
.
Siemens Reviev
. 1972; 34
; 217-2
20.
[19]
J
K
K
a
ng, SK
Sul.
Analysis and Prediction of In
verte
r Switching
Frequency in D
i
rect
Torque Control of Inductio
n
Machine Bas
e
on Hysteresis Bands and Machine Pa
rameters. I
EEE Trans. On Industrial Ele
c
tr
onics.
2001; 48;
545-553,
[20]
TG Habetler
,
F
P
r
ofum
o, M
P
a
storell
i
, LM
Tolb
ert. Dir
ect torqu
e
control of indu
ction m
achin
es
us
ing s
p
ace vec
t
or
modulation.
IEEE Trans. Industrial
Applications.
1992; 28
; 1045-
053.
[21]
R Krishnan.
El
e
c
tric
Motor Driv
es: Mode
ling, Analysis, and
Con
t
rol
. Pren
tice Hall of
India. 2001.
[22]
Baburaj k
a
rna
y
i
l
M
uham
m
e
d F
azlur
Rahm
an,
Colin Granth
am
. Onlin
e S
t
ato
r
and Rotor R
e
s
i
s
t
anc
e
Es
t
i
m
a
tio
n
Scheme Using Artificial Ne
ural Network for
Vector Controlled
speed
Sensorless Induction
Motor Drive.
IE
EE
transaction on
I
ndus
trial Electronics.
2007
; 54(1)
: 167-175.
BIOGRAP
HI
ES
OF AUTH
ORS
Siraj Ahmed T
. rece
ived his
Ba
chelor of
Engine
ering degr
ee and
M
a
s
t
ers
degree
in the
ye
ar 198
9
and 1996 respectively
from Ban
g
alore University
, B
a
nga
lor
e
, K
a
rnataka. He is pursuing Ph.D fr
o
m
J
N
TU, Anantap
u
r. Curren
t
l
y
h
e
is
an
As
s
o
cia
t
e P
r
ofes
s
o
r in
the Dep
a
rtm
e
n
t
of E
l
ec
tri
cal
&
Electronics Engineering
,
Ghousia Co
llege of
En
gineer
ing. His resear
ch in
clud
es Electrical Machine
Drives, Power S
y
stem
and Contr
o
l. He
is
a
life
m
e
m
b
er of IST
E
Suk
hde
o Sao
received
his B.S
c
(Electri
cal En
gineer
ing) in
1
981 from Ranchi University
.
He
received his M.Tech from REC
,
Kakatiy
a univ
e
rs
ity
,
War
a
ngal, Andhra Prades
h and Ph.D from
B.R.Ambedkar
University
, Bih
a
r in the
y
ear 200
5.
He has published several r
e
search papers both in
National and
International Conferences
and Jour
nals.
Curr
entl
y
he is Princ
i
pa
l,
Bharth Insti
t
ut
e
of
Engineering
& Techno
log
y
, aff
iliated to
JNTU,
H
y
d
e
rab
a
d, A
ndhra Pradesh I
ndia. His res
ear
ch
inter
e
st inc
l
udes
Flexible Power
Control, Power
S
y
s
t
em
s
and Uti
lit
y P
o
wer El
ec
t
r
onics
. He is
a
li
fe
member of ISTE and I
E
TE.
K.
S.
R.
Anjaneyulu
received his
B. Tech (Ele
ctr
i
ca
l Engine
ering
)
, M
.
Tech & P
h
.D degrees
from
JNTU College of Engineer
ing, Anantapur. He
has published several rese
arch papers both in
National & International Conf
erences and Journals
. Curren
t
l
y
he
is Professor in Ele
c
tri
c
a
l
&
Electronics Engineering
,
Dep
a
rtment, JNTU Colle
g
e
of
Engineering, Anantapu
r, Andhra Prad
esh
INDIA.
His re
sea
r
c
h
intere
st
include
s Powe
r S
y
st
em
s
,
Reli
abi
lit
y
Engine
er
ing
and
Neural Network
Evaluation Warning : The document was created with Spire.PDF for Python.