Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol
.
6
,
No
. 2,
J
une
2
0
1
5
,
pp
. 38
7~
39
5
I
S
SN
: 208
8-8
6
9
4
3
87
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Modified Bidirectional Conver
ter with Current Fed Inverter
Athi
r
a
S
,
Dee
p
a Kal
i
y
aper
u
m
al
Department o
f
Electrical and
Electroni
cs Engin
e
ering, Amrita Vis
h
wa Vid
y
ap
eeth
am University
,
Amrita School o
f
Engineering, Bangalore
, Karn
at
a
k
a, Ind
i
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Ja
n 30, 2015
Rev
i
sed
May
2, 201
5
Accepted
May 20, 2015
A bidirec
tiona
l d
c
-dc conv
ert
e
r with m
u
ltipl
e
outp
u
ts are con
cat
en
ated wi
th a
high frequency current source parallel
reso
nant push pull inverter is
presented in
this
paper. The two
outputs
are
added togeth
er and it is taken
as
the input source for the inverter
. The
curren
t
source par
a
llel r
e
sonant push
pull inverter
implemented here with
high f
r
equency
applications lik
e
induction h
e
atin
g, Fluorescen
t lighting, Di
gital signal pro
cessing
sonar. This
paper proposes
a simple ph
otovoltaic
pow
er s
y
stem con
s
ists of a
bidirection
a
l
co
nverter
and a current fed
inver
t
er for r
e
gulatin
g the lo
ad
variations. Solar
power is used
as the
inpu
t sourc
e
for th
e s
y
s
t
em
.
Sim
u
lation
of the proposed
s
y
stem is carried out
in PSIM software
a
nd exp
e
rimentally
verified th
e r
e
sults.
Keyword:
Cu
rr
en
t Fed
Inv
e
r
t
er
Mu
lti Ou
t
p
u
t
Opt
o
C
o
u
p
ler
Pho
t
ov
o
ltaic Mo
du
le
PI C
ont
rol
l
e
r
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Athira
S,
Depa
rt
m
e
nt
of
El
ect
ri
cal
an
d
El
ect
roni
cs
E
n
gi
nee
r
i
n
g,
Am
ri
t
a
Vi
shwa
Vi
dy
a
p
eet
ham
U
n
i
v
e
r
si
t
y
, A
m
rit
a
Scho
ol
o
f
E
ngi
neeri
n
g
Bangal
o
re, Ka
rnataka, India.
Em
a
il: ath
i
ras3
8
88@g
m
ail.co
m
1.
INTRODUCTION
Th
e sun
h
a
s pro
v
i
d
e
d
so
lar po
wer fo
r b
illion
s
of y
ears and
will d
o
so
for
m
a
n
y
b
illio
n
s
m
o
re. It is
co
m
p
u
t
ed
th
at
th
ere is su
fficien
t
h
y
d
r
o
g
e
n
still in
th
e su
n’s co
re fo
r
4
.
5billio
n
s
m
o
re. On
e m
a
j
o
r ad
van
t
age
with
t
h
e
u
s
e
o
f
so
lar en
erg
y
i
s
th
at as it is ren
e
wab
l
e and
also
su
stain
a
b
l
e in
n
a
ture, so
it will n
e
v
e
r
run
o
u
t
.
Gene
ral
l
y
re
ne
wabl
e
e
n
e
r
gy
r
e
so
urce nee
d
s very
l
e
ss
m
a
i
n
tenance
t
h
a
n
t
r
a
d
i
t
i
onal
ge
nera
t
o
rs.
S
o
l
a
r m
odul
e
s
are o
n
e
of
t
h
e
m
a
i
n
part
s
of a
t
y
pi
cal
ph
ot
o
v
o
l
t
a
i
c
po
wer
s
y
st
em
and al
so
i
t
i
n
cl
udes i
n
t
e
rfaci
n
g
ci
r
c
ui
t
s
suc
h
as conve
r
ter a
n
d an i
nve
rter
with a cont
rol st
rategy [1
-3
]. Th
is p
a
p
e
r
b
r
i
n
g u
p
with
su
ch
a s
m
all sys
t
e
m
with
si
m
u
latio
n
stud
y as
well as t
h
e ex
p
e
rim
e
n
t
al resu
lts. C
onv
er
ter used h
e
re w
ith
a
h
i
gh
fr
equ
e
n
c
y tr
an
sf
or
m
e
r
for redu
cing
the size as well as th
e wei
g
h
t
an
d
it is
a
d
c
-d
c typ
e
m
u
lti
o
u
t
p
u
t
b
i
d
i
rect
io
n
a
l co
nv
erter. Sin
ce
th
e co
nv
erter is a b
i
d
i
rectional o
n
e
, rech
argeab
le b
a
tteri
es
are use
d
i
n
t
h
e out
p
u
t
si
de f
o
r c
o
r
r
ect
ope
r
a
t
i
on.
Here b
i
d
i
rectio
n
a
l
conv
erter is d
e
sign
ed fo
r supp
lyin
g th
e
in
pu
t so
ur
ce
to
th
e
cu
rr
en
t f
e
d
inv
e
r
t
e
r
.
S
i
nce
rech
arg
e
ab
le
battery th
ere in
t
h
e conv
erter sid
e
, th
e i
n
ve
rter o
p
e
ration
will n
o
t
b
e
in
terru
pted
ev
en
if th
e
so
lar
en
erg
y
is no
t av
ailab
l
e d
u
e
to
th
e
cli
m
atic
cond
itio
n
s
.
T
h
e c
u
r
r
e
n
t
fe
d
i
n
vert
er
sel
e
c
t
ed
her
i
s
f
o
r
hi
gh
fre
que
ncy
a
ppl
i
cat
i
ons [
4
-5]
.
2.
SYSTE
M
DESC
RIPTIO
N AN
D DESI
G
N
Th
e circu
it d
i
ag
ram
with
ou
t th
e con
t
ro
l strat
e
g
y
is d
e
p
i
cted in
Figu
re
1
.
Du
al ou
tpu
t
of th
e m
o
d
i
fied
bi
di
rect
i
o
nal
c
o
n
v
e
r
t
e
r i
s
su
m
m
e
d t
oget
h
e
r
an
d
gi
ve
n
as t
h
e i
n
p
u
t
fo
r t
h
e cu
rre
nt
fed
i
nve
rt
er
[
6
-
1
0]
. Si
nc
e
the bidi
rectional topol
ogy include
d in
the
system
, the supply for t
h
e invert
er
will be
there for all the tim
e
even if s
o
lar energy
is
no
t th
ere also
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 6,
No
.
2,
Ju
ne 20
15
:
387
–
3
95
38
8
Fi
gu
re
1.
Pr
o
p
o
se
d Sy
st
em
The i
n
ve
rt
er
whi
c
h i
s
use
d
here
wi
t
h
t
w
o i
n
duct
o
rs
,
p
o
we
r s
w
i
t
c
hes
wi
t
h
c
o
m
m
on gr
o
u
n
d
s a
n
d
reso
na
nt
t
a
n
k
ci
rcui
t
co
n
n
ect
ed i
n
paral
l
e
l
.
The a
d
vant
a
g
e
s
o
f
t
h
i
s
t
o
p
o
l
ogy
are
n
o
hi
g
h
si
de
dri
v
er
c
i
rcui
t
s
neede
d
a
nd
v
e
ry
l
e
ss vol
t
a
ge st
ress
on t
h
e p
o
w
er s
w
i
t
c
hes. T
h
e m
ode
s o
f
o
p
era
t
i
on o
f
t
h
e m
odi
fi
ed
bi
di
rect
i
o
nal
c
o
n
v
e
r
t
e
r e
xpl
a
i
ned i
n
[
1
1]
. The
desi
g
n
e
q
uat
i
o
n
s
o
f
t
h
e
sy
st
em
are g
i
ven i
n
(
1
)
-
(
5
)
.
The
speci
fi
cat
i
o
ns
of t
h
e m
odi
fi
e
d
bi
di
rect
i
o
nal
co
nve
rt
er a
r
e
gi
ve
n
bel
o
w.
In
p
u
t
V
o
l
t
a
ge
,
V
s
= 30V
, B
a
tter
y
Vo
ltag
e
,
V
b
=
24
V,
S
w
i
t
c
hi
n
g
F
r
eq
ue
ncy
=
5
k
H
z,
Vol
t
a
ge R
i
p
p
l
e
V
ripple
= 0.
05
,
Dut
y
C
y
cl
e = 72
%,
V
01
=
29
.3
V,
V
02
= 10V,
I
o
= 0.3A
.
2.
1. C
a
p
a
ci
t
o
r
Desi
gn
Two output ca
pacitors
are t
h
e
r
e in
c
o
nve
r
ter. Both a
r
e se
parately
designe
d according with
the
output
vol
t
a
ge
s.
Mag
n
e
tizing
cu
rren
t,
m
I
=
b
o
V
P
(1
)
C
h
an
ge i
n
c
u
r
r
e
nt
,
I
=
m
I
%
20
(2
)
Change i
n
ca
pacitor
voltage
,
c
V
=
o
V
ri
pp
le
V
(3
)
Out
put
C
a
paci
t
o
r
,
C
=
s
c
cap
F
V
DI
(4
)
Cap
acito
r C
u
rren
t,
cap
I
=
c
I
+
2
I
(5
)
Cap
acito
r,
C
01
i
s
desi
g
n
ed acc
or
di
n
g
wi
t
h
t
h
e
out
put
v
o
l
t
a
ge
V
01
and C
a
pac
i
t
o
r
C
02
i
s
desi
g
n
ed acc
or
di
ng
wi
t
h
t
h
e o
u
t
p
ut
vol
t
a
ge
V
02
.T
he va
l
u
es obt
ai
ne
d f
o
r
C
01
and
C
02
are 28
uF
and
47
uF
resp
ectiv
ely.
2.
2. T
r
ans
f
or
mer Desi
gn
The
desi
g
n
st
eps
[1
2-
1
4
]
f
o
r
t
h
e t
r
a
n
s
f
o
r
m
e
r gi
ve
n i
n
eq
uat
i
ons
(
6
)
-
(
2
0)
The s
p
ecifications
are
gi
ven below
Utilizatio
n
Facto
r
,
K
=0.4, Cur
r
ent De
nsity,
J
=3
*10
6
A/m
2
, Conse
r
vative
Efficiency,
=0.
8
, Flux De
nsity,
B
m
= 0.
2T
.
Sin
ce th
e ou
tpu
t
vo
ltag
e
V
02
onl
y
depe
n
d
s
on
t
h
e t
r
ans
f
or
m
e
r. So
o
n
l
y
V
02
con
s
id
ering
for th
e transform
e
r
d
e
sign
. It is imp
o
rtan
t t
o
calcu
late th
e t
o
tal lo
ad power
P
o
t
h
at the t
r
ans
f
ormer has t
o
withstand.
Power,
o
P
=
Core
L
CU
L
o
D
o
o
P
P
I
V
I
V
(6
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Modified Bidir
ectional C
o
nve
r
te
r with Curre
nt Fe
d Inverter
(Ath
ira
S
)
38
9
P
L-CU
and
P
L-Core
are c
o
ppe
r
loss and c
o
re los
s
res
p
ectively.
P
L-CU
+
P
L-Core
= 10%
V
o
I
o
(7
)
Area
p
r
o
d
u
ct
e
quat
i
o
n
o
f
hal
f
bri
dge
co
n
v
ert
e
r i
s
A
p
,
A
c
A
w
=
s
m
W
f
JB
K
P
4
)]
1
(
2
[
0
(8
)
From
the calculated area product
A
p
, choose an suitable c
o
re that should
has an area
product greate
r
tha
n
that
cal
cul
a
t
e
d
val
u
e. P
r
i
m
ary
num
ber of t
u
r
n
s c
a
n
be
gi
ve
n
p
N
=
c
m
i
A
B
f
V
2
max
(9
)
Whe
r
e V
imax
is th
e prim
ary win
d
i
n
g
vo
ltag
e
V
imax
=V
i
+10%
V
i
(1
0)
s
N
=
c
m
s
A
fB
e
2
(1
1)
Whe
r
e
min
1
.
0
D
V
V
V
e
o
D
o
s
(1
2)
D
mi
n
=
max
max
min
*
i
i
V
D
V
(1
3)
V
imin
=V
i
-1
0%V
i
(1
4)
The t
u
r
n
s
rat
i
o
i
s
gi
ve
n as
n
=
p
s
N
N
(1
5)
The
rm
s val
u
e
of
cu
rre
nt
fl
ow
i
ng t
h
r
o
ug
h
pri
m
ary
wi
n
d
i
n
g i
s
gi
ven
as,
max
D
I
I
o
rms
s
(1
6)
The
rm
s val
u
e
of
cu
rre
nt
fl
ow
i
ng t
h
r
o
ug
h se
con
d
a
r
y
wi
ndi
ng
i
s
gi
ve
n as
rms
s
rms
p
I
n
I
*
(1
7)
The c
u
r
r
e
n
t
t
h
r
o
u
g
h
t
h
e
dem
a
gnet
i
z
i
n
g
wi
n
d
i
ng i
s
gi
ven
as
3
/
)
1
(
max
D
I
I
m
rms
d
(1
8)
Whe
r
e
m
I
=
m
i
fL
V
D
min
max
(1
9)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 6,
No
.
2,
Ju
ne 20
15
:
387
–
3
95
39
0
Whe
r
e
m
L
=
m
c
r
o
p
l
A
N
2
(2
0)
Th
e tran
sform
e
r
p
a
ram
e
ters ob
tain
ed fro
m
th
e
a
b
ove e
q
uat
i
ons
are
summarized i
n
the
T
a
ble I.
Table1
. T
r
ans
f
orm
e
r Param
e
ters
Para
m
e
ters
Value
Lo
ad
Po
wer,
P
o
38
W
Ar
ea Pr
oduct,
A
p
1870
4.
99
mm
4
Core Selected
P66/22
N
u
m
b
er
of P
r
i
m
ary
T
u
r
n
s
,
N
p
50
Nu
m
b
er
of Secondar
y
T
u
r
n
s,
N
s
129
Pr
im
ary
W
i
nding RM
S Cur
r
ent
, I
p-r
m
s
2.
3
A
Secondar
y
W
i
nding RM
S Cur
r
ent,
I
s-
rms
0.
89
A
Cur
r
e
nt in De
m
a
g
n
etizing W
i
nding,
I
d-r
m
s
0.
1
A
M
a
gnetizing Cur
r
e
nt,
I
m
0.
4
A
M
a
gnetizing I
nductance,
L
m
17.
7
mH
2.
3. Res
o
n
a
n
t
T
a
nk Desi
gn
The desi
g
n
st
eps
a
r
e gi
ve
n
i
n
equat
i
o
n (
2
1
)
-
(
2
3
)
.T
he speci
fi
cat
i
ons
sel
ect
e
d
a
r
e gi
ve
n bel
o
w
.
Loa
d
Resistor,
R
=1200
oh
m
, Qu
ality Facto
r
,
Q
=7.5, Dam
p
ing
Ratio,
=0
.1
, Reson
a
n
t
In
ducto
r
,
L
r
=130
uH
.
Q Fact
or,
r
r
C
L
R
Q
(2
1)
Nat
u
ral
f
r
eq
ue
ncy
o
f
t
h
e re
so
nant
t
a
nk
,
Cr
L
r
n
1
(2
2)
R
e
sona
nt
fre
qu
ency
,
2
1
n
r
(2
3)
L
1
and
L
2
a
r
e c
hos
en as
highe
r
value t
h
an that of the
L
r
, 3
mH
eac
h. The
o
b
t
ai
ned val
u
es
o
f
nat
u
ral
fre
q
u
e
ncy
and
res
o
nant
fr
eque
ncy
a
r
e
12
16
k
H
z a
n
d
12
1
kHz
res
p
ect
i
v
el
y
3.
SIMULATION ST
UDY
3
.
1
.
Open Loop Simul
a
t
i
on
Op
en
loop
simu
latio
n
was carried
ou
t in
PSIM soft
wa
re
to ve
rify
the
p
e
rf
orm
a
nce o
f
the sy
stem
.
C
h
ar
gi
n
g
m
ode and
di
scha
r
g
i
ng m
ode
of t
h
e
bi
di
rect
i
o
nal
c
o
n
v
e
r
t
e
r are se
parat
e
l
y
veri
fi
ed by
t
h
e si
m
u
l
a
t
i
o
n
st
udy
. C
h
ar
gi
n
g
m
ode get
ac
t
i
v
at
ed w
h
e
n
t
h
e i
n
p
u
t
so
urc
e
vol
t
a
ge bec
o
m
e
hi
ghe
r t
h
a
n
t
h
at
of t
h
e
b
a
t
t
e
ry
v
o
ltag
e
an
d the switch S
1
a
n
d di
o
d
e D
2
are tak
e
p
a
rt i
n
this m
o
d
e
. In
pu
t
vo
ltag
e
is
no
t
en
oug
h to
supp
ly th
e
co
nv
erter an
d th
e
b
a
ttery vo
ltag
e
lev
e
l is
greater, th
en
b
a
ttery
d
i
sch
a
rg
ing
g
e
ts
activ
ated
.
Th
e switch an
d
th
e
d
i
od
e op
erating
in
th
is m
o
d
e
are S
2
and D
1
. Th
e in
pu
t vo
ltag
e
selected
for
the conve
rter is 30V. T
h
e output
v
o
ltag
e
s th
at are g
e
tting
from th
e co
nv
erter are
29
.3
V
and
10V. Th
e sum o
f
th
ese t
w
o o
u
t
p
u
t
s
39
.3
V is th
e
i
n
p
u
t
v
o
l
t
a
ge
fo
r t
h
e c
u
rre
nt
fed
res
o
nant
i
nve
rt
er.
In
ch
argi
ng m
ode
of
o
p
erat
i
o
n,
t
h
e c
o
n
v
ert
e
r
o
u
t
p
ut
vol
t
a
ge
wa
ve
fo
rm
s and i
n
ve
rt
er
out
put
wa
ve
fo
rm
s are de
pi
ct
ed i
n
Fi
g
u
re
2(a
)
t
o
Fi
g
u
r
e
2(c
)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Modified Bidir
ectional C
o
nve
r
te
r with Curre
nt Fe
d Inverter
(Ath
ira
S
)
39
1
Fi
gu
re 2(a
)
.
C
o
nve
rt
er O
u
t
p
ut
Vol
t
a
ge
1
Fig
u
r
e
2
(
b)
. C
o
nv
er
ter
O
u
t
p
ut V
o
ltag
e
2
Fi
gu
re
2(c
)
.
I
n
vert
er
O
u
t
p
ut
Vol
t
a
ge
The c
o
nve
rt
er
out
put
v
o
l
t
a
ge
s an
d i
n
ve
rt
er
out
put
v
o
l
t
a
ge
s are
de
pi
ct
ed
i
n
Fi
g
u
re
3
(
a)
t
o
Fi
g
u
re
3
(
c)
du
ri
n
g
t
h
e di
sc
har
g
i
n
g
m
ode o
f
t
h
e
c
o
n
v
e
r
t
e
r
.
Fi
gu
re 3(a
)
.
C
o
nve
rt
er O
u
t
p
ut
Vol
t
a
ge
1
Fig
u
r
e
3
(
b)
. C
o
nv
er
ter
O
u
t
p
ut V
o
ltag
e
2
Fi
gu
re
3(c
)
.
I
n
vert
er
O
u
t
p
ut
Vol
t
a
ge
3.
2. Cl
os
ed
L
o
op Si
mul
a
ti
on
C
l
osed l
o
op si
m
u
l
a
t
i
on was carri
ed
out
t
o
veri
fy
t
h
e l
o
a
d
vari
at
i
ons
. PS
IM
cou
p
l
e
d
wi
t
h
M
A
TLAB
sim
u
l
i
nk by
u
s
i
ng si
m
c
oupl
er. A si
m
p
l
e
PI co
nt
r
o
l
l
e
r i
s
used a
n
d t
h
e l
o
ad i
s
reg
u
l
at
ed fo
r 2
0
%
of l
o
a
d
chan
ges
.
T
h
e c
i
rcui
t
t
h
at
s
h
o
w
i
n
g P
S
IM
c
o
upl
e
d
wi
t
h
M
A
TLAB
i
s
de
pi
ct
ed i
n
Fi
g
u
re
4
(
a) a
n
d Fi
gu
re
4(
b)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 6,
No
.
2,
Ju
ne 20
15
:
387
–
3
95
39
2
Fi
gu
re
4(a
)
.
C
l
ose
d
L
o
o
p
C
i
r
c
ui
t
i
n
P
S
IM
Figu
re
4(
b
)
. C
ont
roller Ci
rcu
it in M
A
TL
AB
Si
m
u
lin
k
The o
u
t
p
ut
v
o
l
t
a
ge and c
u
r
r
e
n
t
of t
h
e cu
rre
nt
fed i
n
vert
e
r
i
n
cl
osed l
o
o
p
oper
a
t
i
on i
s
sho
w
n as i
n
Fi
gu
re 5
.
Here
u
p
t
o
0.
5s
ci
rcui
t
r
u
ns at
act
ual
l
o
a
d
a
n
d
aft
e
r
0.
5s
ci
rc
ui
t
r
uns
at
2
0
%
o
f
l
o
a
d
c
h
a
nge
.
Fi
gu
re
5.
I
nve
r
t
er O
u
t
p
ut
Vol
t
age a
n
d
C
u
rre
n
t
du
ri
n
g
L
o
a
d
C
h
an
ge
4.
HARDWARE
IMPLE
M
ENTATION
An e
x
peri
m
e
nt
al
set
up f
o
r
t
h
e m
odi
fi
ed
bi
di
rect
i
o
nal
c
o
n
v
e
r
t
e
r wi
t
h
cur
r
ent
fed i
nve
rt
er
was
i
m
p
l
e
m
en
ted
an
d v
e
rified th
e h
a
rdware results with
sim
u
la
tio
n
resu
lts. Power M
O
SFETs IRF
54
0 is u
s
ed
as
conve
r
ter s
w
itches a
n
d IRF840 is used as t
h
e inve
rter
s
w
i
t
ches. T
h
e e
xperim
e
ntal
set
up of
t
h
e po
we
r
ci
rcui
t
is sho
w
n
as i
n
Fi
g
u
r
e
6
.
Th
e
g
a
tin
g pu
l
s
es fo
r
con
v
e
r
t
er
an
d inv
e
rter
ar
e
g
e
n
e
r
a
ted
u
s
i
n
g TM
S320
micro
c
on
tro
ller. C
o
m
p
le
m
e
n
t
ary pu
ls
es
a
r
e neede
d
for both
c
o
nverte
r
a
n
d i
n
vert
e
r
. C
o
m
p
l
e
m
e
nt
ary
p
u
l
s
es
wi
t
h
5
k
H
z f
r
e
que
ncy
i
s
ge
nerat
e
d f
o
r c
o
nve
rt
er a
nd c
o
m
p
l
e
m
e
nt
ary
pul
ses
wi
t
h
3
0
k
H
z
gene
rat
e
d f
o
r
i
nve
rt
er.
Figu
re
6.
Ha
rd
ware
Setu
p
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Modified Bidir
ectional C
o
nve
r
te
r with Curre
nt Fe
d Inverter
(Ath
ira
S
)
39
3
Pul
s
es ge
ne
rat
e
d fr
om
TM
S320 c
o
nt
rol
l
e
r
f
o
r c
o
n
v
e
r
t
e
r an
d i
n
v
e
rt
er a
r
e depi
ct
ed i
n
Fi
g
u
re
7(a
)
a
n
d
Fi
gu
re 7(
b
)
re
s
p
ect
i
v
el
y
Fig
u
re
7
(
a). Gate Pu
lses
fo
r C
o
nv
erter
Fi
gu
re 7(
b
)
. G
a
t
e
Pul
s
es f
o
r I
nve
rt
er
Th
e
op
to
co
up
l
e
r
I
C
TLP25
0 is used fo
r am
p
l
if
yin
g
m
a
g
n
itu
d
e
o
f
g
a
te
p
u
l
ses gen
e
r
a
ted
f
r
o
m
th
e TMS320
cont
rol
l
e
r. T
h
e
m
a
gni
t
ude
of
gat
e
p
u
l
s
es ge
nerat
e
d fr
om
the co
nt
r
o
l
l
e
r i
s
not
s
u
f
f
i
c
i
e
nt
t
o
t
r
i
gge
r t
h
e
po
we
r
MOSFET
s
.
Optocouple
r
ICs
are used t
o
inc
r
ease the
m
a
gnit
ude
of t
h
e
gat
e
p
u
l
s
es. T
h
e a
m
pli
f
i
e
d gat
e
p
u
l
s
e
s
gene
rat
e
d
f
r
om
o
p
t
o
c
o
u
p
l
e
r
I
C
i
s
sh
ow
n
as i
n
Fi
gu
re
8(a
)
a
n
d
Fi
g
u
r
e
8(
b)
.
Figu
re
8(a
)
.
P
u
lses fr
om
IC T
L
P2
5
0
f
o
r Co
n
v
erter
Figu
re
8(
b
)
.
Pu
lses fr
om
IC T
L
P2
5
0
f
o
r I
n
ve
rter
Th
e two
ou
tput v
o
ltag
e
s of
m
o
d
i
f
i
ed
conver
t
er
w
ith
so
urce vo
ltag
e
o
f
3
0
V
ar
e
2
9
.2V
an
d
10
.2
V
o
b
t
ain
e
d
practically depicted in Fi
gure
9(
a)
an
d Figure 9(
b)
r
e
sp
ecti
v
ely.
Fi
gu
re 9(a
)
.
C
o
nve
rt
er O
u
t
p
ut
Vol
t
a
ge
1
Fig
u
r
e
9
(
b)
. C
o
nv
er
ter
O
u
t
p
ut V
o
ltag
e
2
The t
w
o out
p
u
t
s
obt
ai
ne
d are
adde
d an
d i
t
i
s
gi
ve
n as t
h
e i
n
put
v
o
l
t
a
ge f
o
r
i
nvert
er a
nd i
n
vert
er
use
d
here i
s
dc-ac
t
y
pe. The i
n
p
u
t
so
ur
ce
for
current
fed i
n
verter is s
hown as i
n
Figure
10. T
h
e inve
rte
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 6,
No
.
2,
Ju
ne 20
15
:
387
–
3
95
39
4
im
pl
em
ent
e
d
h
e
re wi
t
h
hi
g
h
f
r
eq
ue
ncy
ap
pl
i
cat
i
ons.
P
eak
-p
eak v
o
l
t
a
ge 2
9
8
V
wi
t
h
30
k
H
z
f
r
eq
ue
ncy
si
n
e
wave
i
s
pract
i
cal
l
y
o
b
t
a
i
n
ed
by
desi
gne
d
val
u
e
s
. T
h
e
out
put
v
o
l
t
a
ge
wave
f
o
rm
is de
pi
ct
ed i
n
Fi
gu
re
1
1
.
Figu
re 1
0
. In
ve
rter In
p
u
t
V
o
ltage
Fi
gu
re 1
1
. In
ve
rt
er Out
put
V
o
l
t
a
ge W
a
vef
o
r
m
5.
CO
NCL
USI
O
N
In t
h
i
s
pa
pe
r,
com
pone
nt
s de
si
gn
, sim
u
l
a
t
i
on st
udy
i
n
PS
I
M
soft
wa
re, a
n
al
y
s
i
s
of ha
rd
ware re
sul
t
s
of m
odi
fi
e
d
bi
di
rect
i
o
nal
co
n
v
ert
e
r
wi
t
h
cu
r
r
ent
fed
i
n
vert
e
r
we
re ca
rri
e
d
out
.
Usi
n
g
TM
S3
20
co
nt
r
o
l
l
e
r,
gat
e
pulses f
o
r co
nve
rter an
d in
verter
were o
b
tained
fo
r
ha
rd
ware setu
p.
Verified the
hard
wa
re res
u
lts by
co
m
p
arin
g
the si
m
u
latio
n
resu
lts carried
ou
t in
PSIM so
ftware. In
creased
t
h
e ou
tpu
t
vo
ltag
e
s of th
e
b
a
sic h
a
l
f
bri
dge
bi
di
rect
i
onal
co
n
v
ert
e
r
due t
o
m
odi
fi
cat
i
on i
n
cl
u
d
e
d
i
n
t
h
e t
o
pol
o
g
y
.
Si
nce
hi
g
h
freq
u
e
n
cy
i
s
u
s
ed i
n
t
h
e sy
st
em
t
h
e si
ze and
wei
g
ht
of t
h
e com
pone
nt
s wa
s re
d
u
ced
. Al
s
o
d
u
e
hi
g
h
f
r
eq
ue
nc
y
,
t
h
e ri
p
p
l
e
s i
n
t
h
e
out
put
v
o
l
t
a
ge of
t
h
e
i
nve
rt
er get
re
d
u
ced
.
REFERE
NC
ES
[1]
Roger G, Juliano
De Pellegrin
P,
He
lio
Leaes H,
and Johninson I,
“A Max
ȋ
mum P
o
wé
r Poi
n
t
T
r
a
c
ki
ng Sy
ste
m
wi
th
Parallel Conneçtion for PV
Stand Alone Applìcatións”,
IÈÈE Tran
ś
actiòns
, vòl. 55, no. 7
,
pp.
2674-2683, Julý
2008.
[2]
Mohamed Louzazni,
El Hassa
n Aroudam, Hanane Yatimi,
“Modeling and Simulation of a Solar Power Source for
a
Clean
Energ
y
w
ithout Pollu
tion
”
,
International
Journal of Pow
e
r Elec
tronics and
Drive System (
I
JPEDS)
, Vol 3,
No. 4, pp. 568-5
76, August 2013
.
[3]
Nur Moha
mma
d
,
Md.
Asi
f
ul
Isla
m,
T
a
re
qul
Ka
ri
m,
Qua
z
i
Delwar Hossain, “Improved Solar Ph
otovoltaic Arr
a
y
Model with FLC Based Maxi
m
u
m Power Point Tracking”,
International Journ
a
l of
Power Electronics and Drive
Sys
t
em (
I
JPEDS
)
, Vol 2, No. 6
,
p
p
. 717-730
, December 2012.
[4]
Alireza N, Javad Shokrollahi Mo
ġ
hani and Jafar
M, “A Curre
nt Fèd Parâllel Resonant Push-Pull Inverter with a
New Cascaded
Coil Flux Control for
Induction Heating
Applicatiòns”,
Jòurnal
of Powér Electr
on
ȋ
cs
, Vol. 11
, no.
5, pp
. 186-190
,
Septémber 2011
.
[5]
A.R. Namadmalan, J.S. Mogha
n
and B. Abdi, “Improved Modification of
the C
u
rrent Source p
a
rallel Resonant
Push Pull Invert
er for Indu
ction
Heating
Applic
a
tiòns”,
Internatiónal review o
f
Electrical Engin
e
ering
,
Vò
l.
5,
no
.
2, pp
. 390-396
,
April. 2010
.
[6]
John Marshal T.P, Deepa K
,
“Single Input D
C
-DC Convert
er forH
y
b
rid Dis
t
ributed
Energ
y
Generators with
Maxim
u
m
Utiliz
ation
Using D
Ş
P Cóntróller”,
Ín
ternâtional Jòurn
â
l
, vò
l. 2, no. 4,
pþ. 989-993
,
Ĵ
ulÿ 2012.
[7]
Deepa K, John
Marshal, “H
y
b
r
i
d Renewabl
e En
erg
y
S
y
st
em
: Optim
um
Design,Control and M
a
xim
u
m
Utilisati
on
with SIBB Converter Using DSP Controller”,
PESTSE 2014-Power and Energy Systems: Towards Sustainable
Energy
, pp. 1-4,
April 2014.
[8]
Deepa K,
S
a
vith
a, Vinoth
i
ni
, “
H
arm
onic Anal
ys
ȋ
s
of a M
odified
Cas
caded M
u
l
til
evel Inv
é
rt
er”
,
I
EEE In
ternatio
ń
al
C
ȯ
nfer
énc
e
, pp.
92-97, Jánu
ár
y
2
011.
[9]
L. S
h
enkm
an, B.
Axel
ȯ
rd, and V. Chudnovsky
, “A new si
mpl
ȋ
fiédmodel of the dy
namics
of the current-fed parallel
resonant inver
t
er
”,
I
E
EE Industrial Electronics S
o
ciety
, Vol. 47,
no. 2
,
pp
. 282-2
86, April. 2000
.
[10]
R. Na
ġ
ar
ajän, A
.
Shukla, M
.
Diw
a
n, P.
Awâsthi,
P. Shârma, M. Gòòdson and
Ş
. A
w
âd, “
Optimizätión of Ultrasonic
Cleaning
forEro
sion Sensit
ive
M
ì
cr
oel
èctr
òni
c C
o
mpo
ń
ènts
”,
P
r
ocèèd
ìngs
IE
EE/
Ş
ÈMÏASMÇ, pp.
233-237, 2006
.
[11]
Athira S
and Deepa K, “
S
olar Powere
d Ultrason
ic Cle
a
ner”
, Inte
rnation
a
l
conference on Magnetic, Mach
inesan
d
Drives-AICERA
, pp. 1-6, July
20
14.
[12]
Muhammad S Rashid, Power
Èlectronics Circu
its
Devìces and
Ap
plications, Th
ird
edition 2004
.
[13]
Ĺ
Umanând, Power Èlectronics
Èsse
ntials
and
applications, First
Edition 2009
,
Wile
y
Publicatio
ns.
[14]
Ned Móhan, Power electronìcs
,
Converter
ŝ
Appl
ìca
tìo
ń
s and
Des
i
gn, Second
Editi
on 1995, Wiley
Publications.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Modified Bidir
ectional C
o
nve
r
te
r with Curre
nt Fe
d Inverter
(Ath
ira
S
)
39
5
BIOGRAP
HI
ES OF
AUTH
ORS
Athira S
com
p
leted he
r B.T
ech
in Ele
c
tri
c
a
l
an
d
Electronics Engineer
ing from Amrita Vishwa
Vid
y
ap
ee
tham
,
Am
ritapuri Cam
pus
. P
r
es
entl
y s
h
e is
doing M
.
Tech
in P
o
wer Ele
c
troni
cs
at
Amrita Vishwa
Vidy
apeetham,
Ba
ngalor
e
Campus. She has pu
blished 1 paper in internation
a
l
conferen
ce
.
K. Deep
a
was
born in Tam
il Nadu. S
h
e receiv
e
d
M
.
E degree fro
m
College of Engineer
ing Anna
University
, Ch
ennai, Ind
i
a in 20
05. She is doi
ng
her PhD in the area of DC-DC Converters from
J
N
TU, Anantap
u
r, India
.
Curre
ntl
y
s
h
e is
working as
As
s
i
s
t
ant P
r
ofes
s
o
r in Elec
tri
cal
&
Electronics Engineer
ing Dept.,
Amrita school of Engineer
ing,
Amrita Vishwa
Vid
y
apeeth
am
University
, Ban
g
alore, India. She has 16
y
e
ars of
tea
c
hing
exper
i
ence
. S
h
e
is
a M
e
m
b
er of IE
EE
and a life Mem
b
er of IETE an
d ISTE, India
.
She has authore
d
2 textbooks on “
E
lectri
ca
l
Machines” and
“Control Sy
stems”. She has publishe
d 14 international journ
a
l paper, 20 papers
in intern
ation
a
l
conferen
ce an
d 6 papers
in
nation
a
l conference. 11 M.Tech
Degrees were
awarded under
her guidances.
Her areas of in
te
rests include
Power electronics, Renewab
l
e
E
n
e
r
gy
a
n
d
C
o
ntr
o
l
E
n
gi
n
e
e
r
i
n
g
Evaluation Warning : The document was created with Spire.PDF for Python.