Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l. 5,
N
o
.
1
,
Ju
ly 20
14
, pp
. 83
~92
I
S
SN
: 208
8-8
6
9
4
83
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Open L
o
op and Clos
ed L
oop P
e
rf
orm
a
nce of
Switched
Reluctan
ce M
o
tor wi
th Vari
ous Converter Top
o
logies
Kiran Kum
a
r
,
G.
R.
K Mur
t
hy,
S S
Srini
v
as Add
a
la
Department o
f
Electrical and
Elec
tronics Engin
e
ering, KL Univer
sity
, Guntur
, An
dhra Pradesh
,
In
dia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Mar 24, 2014
Rev
i
sed
May 15
, 20
14
Accepted
May 27, 2014
Switched relu
ctance motor (SRM) is b
ecoming popular because of
its simple
construction, ro
bustness and lo
w-maintena
nc
e.
This m
o
tor is ve
r
y
usefu
l
for
high s
p
eed appli
cat
ions
becaus
e
no windings
are plac
ed on rotor and can als
o
be used for v
a
riable sp
eed
applications in industries.
Conv
erter
is one of th
e
im
portant e
l
em
e
n
ts in SRM which pla
y
s a v
e
r
y
cruci
a
l rol
e
. In
this paper
various converter topologies
for 6/
4 switched reluctance motor and
Asy
mmetric bridge converter to
polog
y
for 8/6 switched reluctan
ce motor are
discussed. Final
l
y
a
closed
loop f
o
r each
conver
t
e
r
topolog
y
is pro
posed. The
converter topo
logies are simula
ted b
y
using MATLAB/SIMULINK.
Constant speed is achieved
in
clo
s
ed loop
contro
l.
Keyword:
3-l
e
vel
Asymmetric b
r
id
g
e
C-du
m
p
Co
nv
er
ter
topolo
g
i
es
Miller co
nv
ert
e
r
R-du
m
p
Switch
e
d
relu
ctan
ce
m
o
to
r
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
S
S Srini
v
as Addala,
Depa
rt
m
e
nt
of
El
ect
ri
cal
and
El
ect
roni
cs
E
n
gi
nee
r
i
n
g,
Kon
e
ru Lakshmih
Un
i
v
ersity,
Vad
d
es
waram
,
G
unt
ur
, A
n
d
h
r
a
Pra
d
es
h,
I
ndi
a.
Em
a
il: sreen
ivas.add
ala@g
m
ail.co
m
1.
INTRODUCTION
Switch
e
d
reluctan
ce m
o
to
r i
s
g
a
i
n
ing
m
u
ch
im
p
o
r
tan
c
e
wh
en
co
m
p
ared
with
o
t
h
e
r
m
o
to
rs lik
e
i
n
d
u
ct
i
on m
o
t
o
rs a
n
d pe
rm
anent
m
a
gnet
s
y
nch
r
o
n
ous m
o
t
o
rs. T
h
e ad
v
a
nt
ages a
r
e be
t
t
e
r per
f
o
r
m
a
nce, l
o
w
cost, higher
efficiency
an
d
hi
gh
fa
ul
t
t
o
l
e
ra
nce
[1]
-
[
3]
.
Va
ri
o
u
s t
y
pes
o
f
con
v
e
r
t
e
rs a
r
e
use
d
f
o
r c
ont
r
o
l
l
i
n
g
the SRM
dri
v
e.
Th
e m
a
j
o
r drawb
a
ck
of SR
M d
r
iv
e is large to
rqu
e
ripp
les. Bu
t th
is can b
e
li
mited
to
a larg
e ex
ten
t
by
pha
se cu
rre
nt
ove
rl
ap
pi
n
g
.
That
’s
why
t
h
e co
nv
ert
e
rs
whi
c
h are u
s
e
d
i
n
SR
M
dri
v
e
m
u
st
have s
e
parat
e
cont
rol for eac
h phase. T
h
e torque ripples are reduce
d
by
pha
se cur
r
e
n
t
o
v
erl
a
ppi
ng
. O
n
e
m
o
re reaso
n
fo
r t
h
e
torque
ri
pples
is that t
h
e st
ator c
u
rre
nts fall befo
re
the
refe
re
nce c
u
rrent
which ta
kes
place
duri
ng the
com
m
ut
ati
on o
f
SR
M
phase c
u
r
r
ent
d
u
e to t
h
e bac
k
EMF.
During the co
mmutation process, the phase
curre
nt
reaches to ze
ro a
f
ter the
re
ference
curre
nt
, that ca
us
es
negative
torque and m
o
re torque
ripples
will be
p
r
od
u
c
ed
. As t
h
e co
mm
u
t
at
io
n
ab
ility o
f
ph
ase curren
t
s is
in
creased th
e t
o
rqu
e
ripp
les
will b
e
redu
ced
[4
].
As
sho
w
n i
n
Fi
g
u
r
e 1 w
h
e
n
t
h
e
speed
of
SR
M increases, t
h
e comm
utation
of
p
h
a
se cu
rren
t in
terv
al
is n
o
t
redu
ced
as requ
ired
an
d
th
is
cau
ses n
e
g
a
tive to
rqu
e
. Th
e n
e
g
a
tiv
e torq
ue wh
ich
is p
r
od
u
c
ed
will create larg
e
t
o
r
que ri
ppl
es
.
To ove
rc
om
e t
h
i
s
pro
b
l
e
m
t
h
e com
m
u
t
at
i
on of
pha
se
curre
nt
sh
oul
d be achi
e
ved
m
o
re
q
u
i
ck
ly. Th
e co
nv
erter
h
a
s to b
e
d
e
sign
ed to ach
iev
e
t
h
is.
The t
o
r
que
pr
o
duct
i
o
n a
n
d ef
f
i
ci
ency
i
s
i
n
cre
a
sed,
if at tu
rn
on
and
tu
rn
off in
stan
ts d
i/d
t is
m
o
re, so
th
at th
e neg
a
tiv
e to
rqu
e
p
r
od
u
c
tion
wil
l
n
o
t
tak
e
s p
l
ace an
d
th
e av
erag
e torq
u
e
pro
d
u
c
ed
b
y
th
e m
o
to
r is m
o
re.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
83
–
92
84
Figure
1. SRM
phase i
n
ducta
n
ce a
n
d curre
nt
Th
e torq
u
e
p
r
od
u
c
tion
and
efficien
cy is in
creased
,
if at tu
rn
o
n
and
turn off in
stan
ts
d
i/d
t is m
o
re, so
that the ne
gative torque
production
will not takes place a
nd t
h
e a
v
era
g
e
torque
produc
e
d by t
h
e m
o
t
o
r i
s
mo
r
e
.
2. CO
N
V
ERT
E
RS
2.
1. AS
Y
M
M
E
T
R
IC
B
R
IDGE CONVERTER
Th
is co
nv
erter co
nsists of
two powe
r
s
w
i
t
ches
and
two
diodes per phase of SRM
[1]
.
Here t
h
e
num
bers
of
el
e
m
ent
s
use
d
ar
e
m
o
re per
p
h
as
e. It
i
s
o
n
e
of t
h
e m
a
jor
di
sa
d
v
ant
a
ges
of
t
h
i
s
co
nve
rt
er
. I
n
t
h
i
s
conve
r
ter t
h
e t
w
o s
w
itches
go
off
when the
curre
nt e
x
cee
ds t
h
e c
o
mm
an
ded c
u
rrent
val
u
e.
The
e
n
ergy store
d
in
th
e m
o
to
r win
d
i
ng
keep
s t
h
e curren
t
in
the sa
m
e
d
i
rectio
n
un
til it
is d
e
pleted
. Th
e two
d
i
od
es th
en
come i
n
to
actio
n lead
i
n
g to
rech
arg
i
ng
th
e so
urce.
Fi
gu
re
2.
Asy
m
m
e
t
r
i
c
bri
dge
co
nve
rt
er
pe
r
pha
se SR
M
Th
e m
a
j
o
r
d
r
awb
a
ck
is u
tilizatio
n
o
f
th
e
power d
e
v
i
ces
is
v
e
ry
po
or an
d th
e co
st is also
h
i
gh
.
Figu
re
2
sh
ows th
e asy
mmetric b
r
idg
e
co
n
v
e
r
ter fo
r one
p
h
ase o
f
SRM
.
2.
2. R-
D
U
M
P
CO
NVE
RTER
Th
is
low-co
st co
nv
erter was p
r
op
o
s
ed
b
y
R
.
Kris
hnan [5].
The ca
paci
t
o
r
C
val
u
e al
way
s
de
pen
d
s
u
p
on t
h
e d
u
m
p
resi
st
ance R
.
Fi
gu
re 3 s
h
ow
s t
h
e co
n
v
ert
e
r c
onsi
s
t
i
n
g
of
on
e di
o
d
e an
d o
n
e
swi
t
c
h pe
r p
h
ase
o
f
th
e SRM. Th
e
switch
T1
is on
on
ly
w
h
en t
h
e cu
rre
nt
i
s
b
e
l
o
w t
h
e c
o
m
m
a
nded c
u
rre
n
t
val
u
e,
ot
he
rw
i
s
e t
h
e
switch
T1
is off.
Wh
en
switch T1
is o
ff th
e
dio
d
e
D1
co
m
e
s in
to
actio
n
.
Th
is si
m
ilar p
r
ocess tak
e
s p
l
ace fo
r
t
h
e rem
a
i
n
i
ng
pha
ses al
so
. I
n
R
-
dum
p co
n
v
ert
e
r t
h
e
nu
m
b
ers of s
w
itches
used a
r
e
less com
p
ared to the
asym
m
e
t
r
i
c
bri
dge
co
n
v
ert
e
r
.
Fi
gu
re
3.
R
-
du
m
p
conve
rt
er
f
o
r
t
h
ree
p
h
ase
SR
M
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Ope
n
Lo
o
p
an
d C
l
ose
d
Lo
o
p
Perf
or
ma
nce
o
f
Sw
i
t
c
hed
Rel
u
ct
a
n
ce M
o
t
o
r
w
i
t
h
Vari
ous…
(
M
.K
i
r
an
ku
m
a
r)
85
The m
a
jo
r
dra
w
bac
k
i
s
t
h
at
pha
se i
n
d
u
ct
o
r
ene
r
gy
i
s
wast
ed by
t
h
e
dum
p re
sistance,
which leads
to
low overall
efficiency
of
t
h
e
dri
v
e.
2.
3. C-
D
U
M
P
CO
NVE
RTER
Thi
s
l
o
w
vol
t
a
ge d
u
al
deca
y
conve
rt
er f
o
r t
h
e SR
M
w
a
s pr
op
ose
d
b
y
Eshani
et
al
[6]
.
I
n
t
h
i
s
co
nv
er
ter
th
e ph
ase ind
u
c
tan
c
e en
erg
y
is sto
r
ed
in
cap
acitor. Th
e en
erg
y
lo
ss o
f
th
is conver
t
er
is v
e
r
y
less. So
the ove
r
all effi
ciency is m
o
re when
co
m
p
ared
w
ith
R-du
mp
co
nv
er
ter
.
Th
is conv
er
ter
i
s
show
n
i
n
Fi
gu
r
e
4
.
In th
is co
nv
erter th
e switch
T1
is
o
f
f
wh
en th
e cu
rren
t
is a
b
ove t
h
e c
o
mmanded c
u
rrent value, the
n
t
h
e diode
D1 c
o
m
e
s into action. Sim
i
la
r thing takes place for th
e
re
maining phase
s
also. The c
-
dum
p conve
r
ter also
uses l
e
ss
n
u
m
b
er
of
swi
t
c
hes
com
p
ared
wi
t
h
asy
m
m
e
t
r
i
c
bri
dge c
o
nve
rt
er
.
Fi
gu
re
4.
C
-
du
m
p
conve
rt
er
f
o
r
t
h
ree
p
h
ase
SR
M
Th
is c-du
m
p
co
nv
erter con
s
ists of
o
n
e
m
o
re switch, th
is is on
e
of
t
h
e
di
sad
v
ant
a
ges a
n
d t
h
e
ot
h
e
r
o
n
e
is th
e rev
e
rse vo
ltag
e
is li
mited
to
v
dc
–v
o
, w
h
i
c
h
i
s
use
d
fo
r
pha
se c
u
r
r
ent
c
o
m
m
ut
ation
.
2
.
4
.
3-LEVEL
CONVERTE
R
Fig
u
r
e
5
shows th
e 3-
Lev
e
l co
nv
er
ter
fo
r
on
e ph
as
e
of t
h
e SRM. This c
o
nve
r
ter ha
s three m
odes.
Th
ey are
fast de
m
a
g
n
e
tisatio
n (state 1
)
, fast
mag
n
e
tisatio
n
(state 2
)
and
mag
n
e
tisation
(st
a
te 3
)
[7
].
Generally
th
e fast d
e
-m
a
g
n
e
tisation
is d
o
n
e
to
redu
ce th
e p
h
a
se cu
rren
t to
zero
in th
e sh
ortest time p
o
ssib
l
e after th
e
aligned
position and the fast
magnetis
ation
is done to increase the pha
se
curre
nt according to the re
ference
v
a
lu
e in
th
e sho
r
test ti
m
e
p
o
s
sib
l
e. Th
e
fast
m
a
g
n
e
tisatio
n an
d
fast-d
em
a
g
n
e
tisation
are d
o
n
e
to
redu
ce th
e
to
rq
u
e
ripp
le, t
o
in
crease th
e
p
o
s
itiv
e t
o
rqu
e
an
d to
redu
ce
th
e copp
er losses. Here in
t
h
is co
nv
erter th
e t
u
rn
s
rat
i
o
of c
o
upl
e
d
i
n
d
u
ct
o
r
s
de
pen
d
s
u
p
o
n
t
h
e spee
d
of
t
h
e
SR
M
dri
v
e.
Fi
gu
re
5.
3
-
Le
vel
c
o
nve
rt
er
per
p
h
ase
SR
M
(a) Fast Dem
a
g
n
e
tisation
:
In t
h
e Fast
m
a
gnet
i
s
at
i
o
n m
ode t
h
e s
w
i
t
c
h
T1t
u
rn
s o
ff a
n
d t
h
e
di
o
d
e
D1
t
u
r
n
s
on a
n
d t
h
e di
od
e
D
b
1
tu
rn
s on
, th
e
rev
e
rse
vo
ltag
e
is p
r
esen
t acro
ss th
e
p
h
a
se
wind
ing
in
prop
ortion
to
th
e
in
du
ctor tu
rn
s ratio
,
whic
h accelera
t
es the
phase
c
u
rrent c
o
mm
utation.
(b) Fast
Magn
etisatio
n
:
In th
is m
o
d
e
switch
T1 and
switch
Td
tu
rn
o
n
. Th
e Dc link
vo
ltag
e
i.e V
Dc
and the
dump ca
pacitor
v
o
ltag
e
i.e
V
CD
are app
lied
to
p
h
a
se wi
nd
ing
an
d th
e
ph
ase
cu
rren
t is bu
ilt u
p
qu
ick
l
y
b
e
cau
s
e
o
f
h
i
g
h
vo
ltag
e
wh
ich
is equ
a
l
to
V
DC
+ V
CD
.
(c) Magn
etisatio
n
:
In
t
h
is m
a
g
n
e
tisatio
n
m
o
d
e
th
e switch
T1
is tu
rn
ed on
, and
th
e en
erg
y
is tran
sferred fro
m
th
e so
urce
to
th
e
p
h
a
se w
i
nd
ing
.
H
e
n
ce th
e curr
en
t in
ph
ase in
du
ctan
ce in
creases. Th
e m
a
g
n
e
tising
ind
u
ctan
ce o
f
inducto
r
s
is
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
83
–
92
86
not
reset
i
n
t
h
i
s
m
ode an
d t
h
e
di
o
d
e
D
1
t
u
r
n
s o
n
.
The
n
t
h
e
m
a
gnet
i
s
i
n
g
i
n
duct
a
nce
of
t
h
e
co
upl
e
d
i
n
d
u
c
t
ors i
s
r
e
set, an
d th
en
th
e d
i
o
d
e
D1
turn
s
o
f
f
.
Fo
r o
t
h
e
r
ph
ases m
a
g
n
e
tizin
g in
du
ctan
ce
o
f
cou
p
l
ed
inducto
r
s
is
si
m
ilar.
2
.
5
.
MILLER CONVE
RTER
Th
e Miller con
v
e
rter con
s
ist
s
of
(N+1
) switch
e
s,
wh
ere N
is
t
h
e nu
mb
er
of ph
ases [8
]. In
th
is
conve
r
ter the
uppe
r switch i
s
used t
o
control the curre
n
t
wh
ile th
e lower switch
e
s are
u
s
ed
for sen
s
in
g
t
h
e
p
o
s
ition
o
f
ro
t
o
r with th
e
h
e
l
p
o
f
sen
s
or.
Fig
u
re
6
.
Mille
r co
nv
erter for
th
ree
ph
ase SR
M
Fig
u
re
6
shows th
e Miller con
v
e
rter
for 3 ph
ase SRM.
Wh
en
T1
and
T2 are tu
rn
ed
o
n
th
e curren
t
f
l
ow
s th
rou
g
h
p
h
a
se w
i
nd
i
n
g 1
.
W
h
en
T2
is tu
r
n
ed
o
n
and T1
, T3
ar
e t
u
r
n
ed
on
th
e cu
rr
en
t
f
l
ow
s thr
oug
h
p
h
a
se w
i
n
d
i
ng
2
.
W
h
en
T3
is tu
rn
ed
of
f and
T1
,
T4 ar
e t
u
rned
o
n
th
e cur
r
en
t f
l
o
w
s th
roug
h ph
ase
w
i
nd
i
n
g 3.
The phase 1
a
n
d
Phase 2
curr
ents
not re
duc
e
to ze
ro
whe
n
the
dri
v
e is
runni
ng at
highe
r
s
p
eeds
because it
free
w
heels thr
o
ugh T1, D
1
and T
2
,
D
2
. A
g
ain
whe
n
ph
ases 1
is switched
on
th
e cu
rren
t
s in
ph
ase
2
and
pha
se 3
not re
duce t
o
Zero.
The ne
gative t
o
rque and th
e excessive heat in
the
wi
ndi
ngs are produced becaus
e
the curre
nt in e
ach
pha
se re
duces to
ze
ro
at higher
spee
ds
. The phase
s
h
if
ts betwee
n a
d
jacent legs
duri
ng the
no
rm
al operat
i
on
. B
u
t
t
h
e fre
que
ncy
of t
r
a
n
si
t
i
on i
s
so hi
g
h
at
hi
ghe
r spe
e
ds, t
h
at
t
h
e p
h
ase cu
rre
nt
d
o
es n
o
t
dr
o
p
t
o
zer
o
be
fo
re t
h
e
ne
xt
t
u
rn
o
n
,
an
d t
h
e
cur
r
ent
g
o
es
o
n
ri
si
ng
i
n
t
h
e
pha
se
wi
n
d
i
n
g
s
.
2.
6.
M
O
D
I
FIED
POWER CONV
ER
TER
The
num
ber
of
de
vi
ces o
f
m
odi
fi
ed
po
we
r
con
v
e
r
t
e
r i
s
l
e
ss t
h
a
n
asy
m
met
r
i
c
bri
dge
co
nve
rt
er
a
n
d
m
o
re th
an
Miller con
v
e
rter [8
]. Th
e
Ov
erlap
p
i
n
g
o
f
ph
ase cu
rren
ts
p
r
ob
lem
h
a
s b
een i
m
p
r
ov
ed, since th
e
cu
rren
t i
n
ph
ase wind
ing
reach
to
zero.
Here in
th
is co
nv
ert
e
r also, th
e
u
p
p
e
r switch
e
s are u
s
ed
to
con
t
ro
l th
e
cu
rren
t and
the lo
wer switch
e
s are
u
s
ed
for
po
sitio
n sensing of ro
tor.
Fi
gu
re 7.
M
o
di
fi
ed p
o
we
r
c
o
n
v
ert
e
r
The M
odi
fi
ed
po
we
r co
n
v
ert
e
r i
s
s
h
o
w
n i
n
Fi
gu
re
7.
Wh
e
n
t
h
e
swi
t
c
h
e
s
T1 a
n
d T
2
1
ar
e t
u
r
n
e
d
o
n
th
e cu
rr
en
t
f
l
ow
s t
h
ro
ugh
phase1
.
W
h
en
T1
an
d T2
1 are
t
u
r
n
e
d
of
f a
n
d T
2
2,
T3
ar
e
turned on t
h
e
current
fl
o
w
s t
h
ro
u
gh
pha
se 2 a
n
d t
h
e cur
r
ent
i
n
t
h
e pha
se 1
re
du
ces t
o
zer
o t
h
r
o
u
g
h
D
2
1 an
d
D1
.
W
he
n t
h
e s
w
i
t
c
h
T22 is turned
off a
n
d T
3
,
T4 are t
u
rne
d
on the
current flows
t
h
rough ph
ase 3 and t
h
e c
u
rrent i
n
t
h
e
phase
2
doe
s n
o
t
re
duc
e t
o
zero
.
It
f
r
eewheel
s t
h
r
o
u
gh T
3
a
nd
D
2
2.
whe
n
t
h
e
p
h
a
se 1 i
s
swi
t
c
h
e
d o
n
t
h
e c
u
r
r
e
nt
i
n
pha
se wi
n
d
i
n
g
3 a
n
d
p
h
ase
wi
ndi
ng
2
re
d
u
ce
t
o
ze
ro
. H
e
re
onl
y
t
h
e
cu
rre
n
t
i
n
p
h
ase
2
wi
l
l
t
a
ke som
e
t
i
m
e
t
o
redu
ce t
o
zero. In
th
is con
v
e
rt
er a
ll ph
ase
curren
ts
will red
u
ce to
Zero.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Ope
n
Lo
o
p
an
d C
l
ose
d
Lo
o
p
Perf
or
ma
nce
o
f
Sw
i
t
c
hed
Rel
u
ct
a
n
ce M
o
t
o
r
w
i
t
h
Vari
ous…
(
M
.K
i
r
an
ku
m
a
r)
87
3.
SIMULATION RESULTS
Th
e
sim
u
lat
i
o
n
o
f
th
e conv
erters is don
e i
n
M
A
TL
AB/S
IM
UL
IN
K.
He
re the
sim
u
lation
of
eve
r
y
co
nv
erter is
don
e in two
co
nfi
g
uration
s
.
a)
Op
en
l
o
op
co
nfigu
r
ation
In this c
o
nfiguration the s
p
ee
d error cannot be pr
oce
ssed
because he
re no controller has
been
use
d
.
so t
h
e t
o
rq
ue c
a
nn
ot
be l
i
m
it
ed a
n
d
he
nce t
h
e cu
rre
nt
al
so
c
a
nn
ot
be l
i
m
it
ed.
b
)
Clo
s
ed
loop
co
nf
igu
r
ation
In
th
is configuratio
n
th
e sp
eed
error is p
r
o
c
esse
d t
h
ro
u
gh
pr
o
p
o
r
t
i
onal
i
n
t
e
gral
(P
I) co
n
t
rol
l
e
r an
d
th
e li
m
iter yiel
d
s
th
e to
rqu
e
co
mman
d
an
d
fro
m
th
e to
rque co
mm
an
d
the cu
rren
t co
m
m
an
d
is
o
b
t
ained
.
In
this case the
torque a
n
d s
p
eed are c
o
ntrolle
d
as desi
red.
3.
1.
ASYMMETRIC B
R
IDGE
CONVERTER
C
a
se 1:
Ope
n
l
o
o
p
m
odel
of
Asy
m
m
e
t
r
i
c
br
i
dge c
o
nve
rt
er
Fig
u
re
8
.
Sim
u
latio
n
resu
lts sh
ow t
h
e Ph
ase
cu
rren
ts,
Tor
q
ue,
Spee
d
of
Asy
m
m
e
t
r
i
c
b
r
i
d
ge c
o
n
v
ert
e
r i
n
ope
n l
o
o
p
co
n
f
i
g
urat
i
o
n
of
6
/
4 SR
M
Fig
u
re
9
.
Sim
u
latio
n
resu
lts sh
ow
th
e
ph
ase
cur
r
ent
s
, T
o
r
q
ue ,
S
pee
d
o
f
as
ym
m
e
t
r
i
c
bri
d
ge
con
v
e
r
t
e
r i
n
o
p
e
n l
o
o
p
c
o
n
f
i
g
urat
i
o
n
of
8/
6
SR
M
C
a
se 2:
C
l
ose
d
l
o
o
p
m
odel
of
Asy
m
m
e
t
r
i
c
br
i
dge c
o
nve
rt
er
Fig
u
re 10
. Simu
latio
n
resu
lts sh
ow
t
h
e Ph
ase
cur
r
ent
s
, T
o
r
q
ue,
spee
d
of
as
ym
m
e
t
r
i
c
bri
d
ge
co
nv
er
ter
in cl
o
s
ed
loop
co
nfig
ur
atio
n of
6
/
4
SRM
Fig
u
re 11
. Simu
latio
n
resu
lts sh
ow
t
h
e Ph
ase
cur
r
ent
s
,
T
o
r
q
ue, Spee
d o
f
A
s
ym
m
e
t
r
i
c
bri
d
ge
co
nv
er
ter
in cl
o
s
ed
loop
co
nfig
ur
atio
n of
8
/
6
SRM
0
0.
05
0.
1
0.
1
5
-5
0
5
10
15
CU
RR
E
N
T
I
(
A
)
<
I
(A
)>
0
0.
05
0.
1
0.
1
5
0
0.
5
1
1.
5
<
T
e
(N*
m
)>
T
O
RQ
UE
T
(
N
m
)
0
0.
05
0.
1
0.
1
5
0
50
0
10
00
15
00
20
00
25
00
S
P
EED
TI
M
E
(
s
e
c
)
S
PEE
D
(
r
p
m
)
0
0.
0
5
0.
1
0.
1
5
-5
0
5
10
15
CU
RR
E
N
T
I
(
A
)
<
I
(A)>
0
0.
0
5
0.
1
0.
1
5
0
1
2
3
4
<
T
e
(N*
m
)>
T
O
RQ
UE
T
(
N
m
)
0
0.
0
5
0.
1
0.
1
5
0
1
000
2
000
3
000
4
000
5
000
S
P
EED
TI
M
E
(
s
e
c
)
S
PEE
D
(
r
p
m
)
0
0.
05
0.
1
0.
15
-5
0
5
10
15
CUR
RE
NT
I
(
A
)
<
I
(A
)>
0
0.
05
0.
1
0.
15
0
0.
5
1
1.
5
<
T
e
(N
*
m
)>
T
O
RQ
UE
T
(
N
m
)
0
0.
05
0.
1
0.
15
0
500
1000
1500
2000
2500
SPE
E
D
TI
M
E
(
s
e
c
)
SPE
ED
(
r
p
m
)
0
0.
05
0.
1
0.
1
5
-5
0
5
10
15
CUR
RE
NT
I
(
A)
<I
(
A
)
>
0
0.
05
0.
1
0.
1
5
-1
0
1
2
3
4
<T
e
(
N
*
m
)
>
T
O
RQ
UE
T
(
Nm
)
0
0.
05
0.
1
0.
1
5
0
50
0
10
00
15
00
20
00
25
00
SPE
E
D
TI
M
E
(
s
e
c
)
S
PEE
D
(
r
p
m
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
83
–
92
88
3.
2.
R- D
U
M
P
CO
NVE
RTER
C
a
se 1:
Ope
n
l
o
o
p
m
odel
of
R
-
d
u
m
p
con
v
e
r
t
e
r
Fi
gu
re
1
2
.
Si
m
u
l
a
t
i
on
res
u
l
t
s
sho
w
t
h
e
Phas
e cu
rre
nt
s, T
o
r
que
, S
p
ee
d
of
R
-
d
u
m
p
con
v
e
r
t
e
r i
n
o
p
e
n
l
o
o
p
co
nf
igu
r
ation of
6
/
4 SRM
C
a
se 2:
C
l
ose
d
l
o
o
p
m
odel
of
R
-
d
u
m
p
con
v
e
r
t
e
r
Fi
gu
re
1
3
.
Si
m
u
l
a
t
i
on
res
u
l
t
s
h
o
w
t
h
e
pha
se
cur
r
ent
s
, T
o
r
q
ue,
spee
d
of
R
-
dum
p co
n
v
ert
e
r i
n
cl
ose
d
l
o
o
p
co
nf
igu
r
ation
of
6
/
4
SRM
3.
3.
C-
DU
MP
C
O
NVE
RTER
C
a
se 1:
Ope
n
l
o
o
p
m
odel
of
C
-
d
u
m
p
con
v
e
r
t
e
r
Fig
u
r
e
14
.
Simu
latio
n
r
e
su
lts
sh
ow
t
h
e
ph
ase cur
r
e
n
t
s, t
o
rq
ue, sp
eed of
C-du
m
p
co
nv
er
ter
in
op
en
loop
co
nf
igu
r
ation
of
6
/
4
SRM
0
0.
0
5
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0
5
10
15
CURR
E
N
T
I
(
A
)
<I
(
A
)
>
0
0.
0
5
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0
2
4
6
8
<T
e
(
N
*
m
)
>
T
O
RQ
UE
T
(
Nm)
0
0.
0
5
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0
500
1
000
1
500
2
000
2
500
SPE
E
D
TI
M
E
(
s
e
c
)
S
PEE
D
(
r
p
m
)
0
0.
05
0.
1
0.
1
5
0.
2
0.
25
0.
3
0.
3
5
0.
4
0
5
10
15
CURRE
NT
I
(
A)
<
I
(A
)>
0
0.
05
0.
1
0.
1
5
0.
2
0.
25
0.
3
0.
3
5
0.
4
0
2
4
6
8
<T
e
(
N
*
m
)
>
T
O
RQUE
T
(
Nm
)
0
0.
05
0.
1
0.
1
5
0.
2
0.
25
0.
3
0.
3
5
0.
4
0
500
1
000
1
500
2
000
2
500
S
P
EED
TI
M
E
(
se
c
)
SPE
ED
(
r
pm
)
0
0.
0
5
0.
1
0.
1
5
0.
2
0.
2
5
0.
3
0.
3
5
0.
4
0.
45
0
5
10
15
CU
RR
E
N
T
I
(
A)
<I
(
A
)
>
0
0.
0
5
0.
1
0.
1
5
0.
2
0.
2
5
0.
3
0.
3
5
0.
4
0.
45
0
2
4
6
8
<
T
e
(N
*
m
)>
TO
R
Q
U
E
T(
N
m
)
0
0.
0
5
0.
1
0.
1
5
0.
2
0.
2
5
0.
3
0.
3
5
0.
4
0.
45
0
50
0
10
00
15
00
20
00
25
00
SPE
E
D
TI
M
E
(
s
e
c
)
SP
EED
(
r
p
m
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Ope
n
Lo
o
p
an
d C
l
ose
d
Lo
o
p
Perf
or
ma
nce
o
f
Sw
i
t
c
hed
Rel
u
ct
a
n
ce M
o
t
o
r
w
i
t
h
Vari
ous…
(
M
.K
i
r
an
ku
m
a
r)
89
C
a
se 2:
C
l
ose
d
l
o
o
p
m
odel
of
C
-
d
u
m
p
con
v
e
r
t
e
r
Fi
gu
re
1
5
.
Si
m
u
l
a
t
i
on
res
u
l
t
s
sho
w
t
h
e
Phas
e cu
rre
nt
s, T
o
r
que
, S
p
ee
d
of
C
-
d
u
m
p
con
v
e
r
t
e
r i
n
cl
ose
d
l
o
o
p
co
nf
igu
r
ation
of
6
/
4
SRM
3.
4.
3
-
LEVEL
CONVE
RTER
C
a
se 1:
Ope
n
l
o
o
p
m
odel
of
3
-
Level
c
o
nv
ert
e
r
Fi
gu
re 1
6
. Si
m
u
l
a
t
i
on res
u
l
t
s
sho
w
t
h
e Phas
e
cu
rre
nt
s,
T
o
r
que
,
S
p
ee
d of
3-Le
vel
c
o
n
v
e
r
t
e
r
i
n
o
p
en
l
o
o
p
co
nf
igu
r
ation
of
6
/
4
SRM
Case 2
:
Clo
s
ed lo
op
m
o
d
e
l
o
f
3-
Lev
e
l conver
t
er
Fi
gu
re
1
7
.
Si
m
u
l
a
t
i
on
res
u
l
t
s
sho
w
t
h
e
Phas
e cu
rre
nt
s, T
o
r
que
, S
p
ee
d
of
3-Le
vel
c
o
n
v
e
r
t
e
r i
n
cl
osed
l
o
op
con
f
i
g
urat
i
o
n
of
6/
4 SR
M
0
0.
05
0.
1
0.
15
0.
2
0.
2
5
0.
3
0.
35
0.
4
0.
45
0
5
10
15
CU
RRE
NT
I
(
A)
<
I
(A
)>
0
0.
05
0.
1
0.
15
0.
2
0.
2
5
0.
3
0.
35
0.
4
0.
45
0
2
4
6
8
<
T
e
(N
*
m
)>
T
O
RQU
E
T
(
Nm
)
0
0.
05
0.
1
0.
15
0.
2
0.
2
5
0.
3
0.
35
0.
4
0.
45
0
50
0
10
00
15
00
20
00
25
00
SP
E
E
D
TI
M
E
(
s
e
c
)
SPEED
(
r
pm
)
0
0.
0
2
0.
0
4
0.
06
0.
0
8
0.
1
0.
1
2
-1
0
0
0
10
0
20
0
30
0
CURR
E
N
T
I
(
A)
<
I
(A
)>
0
0.
0
2
0.
0
4
0.
06
0.
0
8
0.
1
0.
1
2
0
50
10
0
15
0
<
T
e
(N
*
m
)>
T
O
RQ
UE
T
(
Nm)
0
0.
0
2
0.
0
4
0.
06
0.
0
8
0.
1
0.
1
2
0
50
0
10
00
15
00
20
00
25
00
S
P
EED
TI
M
E
(
s
e
c
)
S
PEED
(
r
p
m
)
0
0.
02
0.
0
4
0.
0
6
0.
0
8
0.
1
0.
1
2
-1
0
0
0
10
0
20
0
30
0
C
U
R
R
EN
T I
(
A
)
<
I
(A
)>
0
0.
02
0.
0
4
0.
0
6
0.
0
8
0.
1
0.
1
2
0
50
10
0
15
0
<T
e
(
N
*
m
)
>
TO
R
Q
U
E T
(
N
m
)
0
0.
02
0.
0
4
0.
0
6
0.
0
8
0.
1
0.
1
2
0
50
0
10
00
15
00
20
00
25
00
S
P
EED
TI
M
E
(
s
e
c
)
SPEE
D
(rp
m
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
83
–
92
90
3.
5.
MILLER CONVE
RTER
Case 1
:
Op
en
l
o
op
m
o
d
e
l
o
f
Miller co
nv
ert
e
r
Fig
u
re 18
. Simu
latio
n
resu
lts sh
ow
t
h
e Vo
ltag
e
, Ph
ase
cu
rren
ts, Torqu
e
, Speed
o
f
Miller co
nv
erter in op
en
lo
op
co
nf
igu
r
at
io
n
of
6
/
4 SR
M
Case 2
:
Clo
s
ed lo
op
m
o
d
e
l
o
f
Miller Co
nv
ert
e
r
Fig
u
re 19
. Simu
latio
n
resu
lts sh
ow
th
e
Vo
ltag
e
, Ph
ase
cu
rren
t
s, Torqu
e
, Sp
eed of
Miller con
v
e
rter i
n
cl
o
s
ed
l
o
o
p
c
o
n
f
i
g
urat
i
on
o
f
6/
4 SR
M
2.
6.
M
O
D
I
FIED
POWER CONV
ER
TER
C
a
se
1:
Ope
n
l
o
o
p
m
odel
of
M
odi
fi
e
d
po
we
r
c
o
n
v
ert
e
r
Fi
gu
re 2
0
. Si
m
u
l
a
t
i
on res
u
l
t
s
sho
w
t
h
e Phas
e
cu
rre
nt
s,
T
o
r
que
,
S
p
ee
d of
M
odi
fi
e
d
po
we
r
c
o
n
v
ert
e
r
i
n
o
p
en
l
o
o
p
c
o
n
f
i
g
urat
i
on
o
f
6/
4 SR
M
0
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
1
-
400
-
200
0
200
400
VO
L
T
A
G
E
(
V
)
VO
L
T
A
G
E
0
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
1
-
100
0
100
200
300
<
I
(A
)>
CU
RRE
N
T
I
(
A)
0
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
1
-
100
-5
0
0
50
100
<T
e
(
N
*
m
)
>
T
O
RQUE
T
(
N
m
)
0
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
1
0
1000
2000
3000
SPE
E
D
TIM
E
(
se
c
)
S
PEE
D
(
r
p
m
)
0
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
1
-
400
-
200
0
200
400
VO
L
T
A
G
E (
V
)
VO
L
T
A
G
E
0
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
1
-
100
0
100
200
<
I
(A
)>
C
URR
E
N
T
I
(
A)
0
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
1
-5
0
0
50
100
<
T
e
(N
*
m
)>
T
O
RQ
UE
T
(
N
m
)
0
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
1
0
1000
2000
3000
SPE
E
D
TIM
E
(
se
c
)
SPE
ED
(
r
pm
)
0
0.
0
2
0.
04
0.
06
0.
08
0.
1
0.
12
-5
0
0
50
100
150
C
U
R
R
EN
T I
(
A
)
<I
(
A
)
>
0
0.
0
2
0.
04
0.
06
0.
08
0.
1
0.
12
0
20
40
60
80
<T
e
(
N
*
m
)
>
TO
R
Q
U
E T
(
N
m
)
0
0.
0
2
0.
04
0.
06
0.
08
0.
1
0.
12
0
500
1
000
1
500
S
P
EED
TI
M
E
(
s
e
c
)
S
PEED
(r
p
m
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Ope
n
Lo
o
p
an
d C
l
ose
d
Lo
o
p
Perf
or
ma
nce
o
f
Sw
i
t
c
hed
Rel
u
ct
a
n
ce M
o
t
o
r
w
i
t
h
Vari
ous…
(
M
.K
i
r
an
ku
m
a
r)
91
Case 2
:
C
l
ose
d
l
o
o
p
m
odel
of
M
odi
fi
e
d
po
we
r
c
o
n
v
ert
e
r
Fi
gu
re 2
1
. Si
m
u
l
a
t
i
on res
u
l
t
s
sho
w
t
h
e
P
h
as
e
cu
rre
nt
s,
T
o
r
que
,
S
p
ee
d of
M
odi
fi
e
d
po
we
r
c
o
n
v
ert
e
r
i
n
c
l
osed
lo
op
co
nf
igu
r
at
io
n
of
6
/
4 SR
M
3.
CO
NCL
USI
O
N
In
t
h
i
s
pape
r
vari
ous
co
n
v
e
r
t
e
r t
o
p
o
l
o
gi
es
f
o
r s
w
i
t
c
he
d
rel
u
ct
a
n
ce m
o
t
o
r
have
bee
n
di
scus
sed
.
Closed l
o
op
perform
a
nce of each c
o
nve
rt
er system
is
obtaine
d t
h
rough sim
u
lation. In the cl
ose
d
loop
con
f
i
g
urat
i
o
n t
h
e p
r
op
ort
i
ona
l
Int
e
g
r
al
co
nt
rol
l
e
r
has
been
use
d
f
o
r
fast
resp
o
n
se a
nd e
r
r
o
r m
i
nim
i
si
n
g
.
I
n
cl
osed l
o
o
p
c
o
n
f
i
g
urat
i
o
n t
h
e t
o
r
q
ue an
d
t
h
e cur
r
e
n
t
coul
d be l
i
m
it
ed an
d we c
o
u
l
d ru
n t
h
e m
o
t
o
r at
a
part
i
c
ul
a
r
spee
d w
h
ere as i
t
i
s
not
p
o
ssi
bl
e i
n
ope
n l
o
op c
o
n
f
i
g
urat
i
o
n. T
h
e
t
o
rq
ue ri
ppl
es
are al
so ve
ry
l
e
ss i
n
closed loop confi
g
uration.
REFERE
NC
ES
[1]
R Krishnan. Switch
e
d Re
luct
anc
e
Motor Driv
es: Modeling
,
Simulation
,
Analy
s
is, Design,
and
Applications. C
R
C
Press. 2001.
[2]
E Ey
hab
,
Khar
ashi, Design
an
d Analy
s
is of
Rolled Ro
tor.S
w
itched R
e
lu
ctance Motor
.
Jou
r
nal of Electrical
Engineering and
Technolog
y
. 20
06; 1(4): 472-48
1.
[3]
MNF
Nashed, K Oh
y
a
m
a
, K Aso, H Fujii H. Autom
a
tic Turn
-o
ff
Angle control f
o
r High Speed SRM, Eds. Drives.
Journal of Power Electronics
.
20
07; 2(1): 81-8.
[4]
Adel Deris Zad
e
h, Ehsan Adib,
Hosein Farzaneh
fard, Se
y
e
d Mor
t
aza Saghaian-N
e
jad
.
New Converter for Switched
Reluct
anc
e
M
o
t
o
r Drive with
W
i
de S
p
eed Ra
nge Opera
tion.
Power Electronics, Drive system
s and Technolo
g
ies
systems and Technologies Con
f
erence.
2011.
[5]
R Krishnan, PN Materu. Analy
s
is and design of a low-
cost converter for switch
e
d reluctance motor drives.
IEEE
Transactions on
Ind
. 1993; 29(2): 320-327.
[6]
M
Ehs
a
ni, I Hus
a
in, KR Ram
a
ni
, J
H
Gallowa
y.
Dual dec
a
y
con
v
erter for s
w
it
ch
ed relu
ctan
ce m
o
tor drives
in lo
w
voltag
e
app
l
ications.
IEEE Trans. Pow
e
r Electronics
. 1993
; 8(2)
:
224-230.
[7]
Adel Deris Zadeh, Hosein Farzaneh
fard
. A New 3-Level Converter for Sw
itch
e
d Reluctance Motor Drive. IEEE
conferen
ce
.
[8]
S Gairola
,
Pri
ti,
LN Paliwa
l
.
A N
e
w Power Conv
erter
for SRM D
r
ive.
IE
EE conf
e
r
ence.
2010
.
[9]
TJE Mill
er.
Con
v
erter
volt–
am
pe
re requ
irem
ents
of the
switch
e
d r
e
luc
t
anc
e
m
o
tor
drive.
IE
EE T
r
a
n
s.
[10]
M Ehsani, JT Bass, TJE Miller R
L
. Steig
e
rwald
,
Developm
en
t of
a unipolar
converter for vari
abl
e
reluctance m
o
tor
drives.
IEEE Trans.
Ind. Appl.,
1987; 23(3): 545
–553.
[11]
TJE Miller
,
et
al. Regen
e
rative
Unipol
ar Converter for Switched Reluct
ance
Motors Using One
Switching Devi
ce
per Phase.
US Patent
. 1987; 4: 6
84,867.
[12]
H Farzanehfard
, R Krishnan.
A
fully con
t
rolled
convert
e
r for switch
e
d reluctan
c
e
motor.
Proc. VPEC Ann.
Sem.,
Virginia Tech.,
Blacksburg, VA. 1986; 4
.
[13]
S
y
eda Fat
i
m
a
Ghousia. A Mu
ltil
evel Quasi
Matrix Conve
rt
er Design for SRM Drives In
EV Applicatio
ns.
International Jo
urnal of
Power
Elec
tronics and
Drive
System (
I
JPEDS)
. 2012: 2(
2): 170-176.
[14]
S
r
inivas
P
r
atapg
i
ri, P
VN P
r
as
ad. Direc
t
Ins
t
ant
a
neous
Torque
Control of F
our P
h
as
e 8/6 S
w
i
t
ched Re
luct
anc
e
Motor.
International Journal of
Power Elec
tronics and Drives
System (
I
JPEDS)
.
2011; 1(2): 251-
258.
0
0.
0
2
0.
04
0.
0
6
0.
08
0.
1
0.
12
-5
0
0
50
10
0
15
0
C
URRE
NT
I
(
A)
<I (
A
)
>
0
0.
0
2
0.
04
0.
0
6
0.
08
0.
1
0.
12
0
20
40
60
80
<T
e
(
N
*
m
)
>
T
O
RQUE
T
(
Nm
)
0
0.
0
2
0.
04
0.
0
6
0.
08
0.
1
0.
12
0
50
0
10
00
15
00
20
00
S
P
EED
TI
M
E
(
s
e
c
)
SP
EED
(
r
p
m
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
83
–
92
92
BIOGRAP
HI
ES OF
AUTH
ORS
M. Kiran Kum
a
r
receiv
e
d B.Te
c
h
Degree in Elec
tric
al and Ele
c
tr
onics Enginee
r
in
g from Gokula
Krishna College of Engineering
and Technolog
y
,
JNTU, H
y
d
e
rabad, Ind
i
a, in
2007, M.E.
Degree
in Power El
ec
tronics
and Drives fro
m
Sree Sastha
Institut
e
of E
ngineer
ing and
Techno
log
y
, A
nna University
,
Chennai, Ind
i
a, in 2010 and
Pursuing Ph.
D
in Electrical
Engineering at K L University
, Guntur, Ind
i
a.
His resear
c
h
interest in
clu
d
es Switched
Reluct
anc
e
M
a
c
h
ines
, P
o
wer
El
e
c
troni
cs
and
Con
t
rol S
y
s
t
em
s
.
G. Radhakr
ishna Murth
y
obtain
e
d his BE
in
Electr
i
cal Eng
i
neering from Andhra University
,
India in 1960
and his M.Tech
and Ph.D from th
e Indian Institute of
Technolo
g
y
, Kharagpur
,
India in 1971
and 1979 respectively
. He work
ed for 38
y
e
ars
in diff
erent
capacities in
the
Departm
e
nt of
Ele
c
tri
cal
Engin
eering
at J
N
T Univers
i
t
y
, Ind
i
a. He is
curr
ent
l
y
working
as
professor in Electr
i
cal Eng
i
neering at K
.
L. Un
ivers
i
t
y
,
Vadd
es
waram
,
Guntur District. His
res
earch in
ter
e
s
t
s
include energ
y
cons
ervation an
d elect
ric driv
es
,
developm
ent of Hy
br
id P
o
wer
s
ources
,
appli
cat
ion of Art
i
fi
cia
l
i
n
tell
igen
ce
a
nd
i
d
entifi
c
a
tion o
f
f
a
ults
in power
equipment.
S
S
S
r
inivas
Addala re
ce
ived B.
Tech degr
ee in
Ele
c
tri
cal
and El
ectron
i
cs
Engine
ering from
B V
C Engineering
College, Odalar
evu,
JNTU, Kak
i
nada, India, in
2011. Currently
, he is pursuing
M
.
Tech
in P
o
wer El
ectron
i
cs
a
nd Drives
in El
ectr
i
ca
l Eng
i
nee
r
ing at K L Uni
v
ers
i
t
y
, Guntu
r
,
India. His ar
eas
of interest involve Power
electr
o
n
ics, Con
t
rol s
y
s
t
ems a
nd Electrical
machin
es.
Evaluation Warning : The document was created with Spire.PDF for Python.