Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
6, N
o
. 3
,
Sep
t
em
b
e
r
2015
, pp
. 61
5
~
62
4
I
S
SN
: 208
8-8
6
9
4
6
15
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Simulation and dSPACE Based
Implementation of Variou
s
PWM St
rategies for a New H-Typ
e
F
C
ML
I Top
o
logy
C.
R. B
a
lam
u
r
u
gan
*
,
S.P.
N
a
t
a
r
a
j
a
n
*
*, B.
Sh
ant
h
i**, T
.
S.
An
and
h
i**
* Departm
e
nt
of
Ele
c
tri
cal
and
E
l
ectron
i
cs
Eng
i
neering, Arunai En
gg. College,
India
** Departmen
t
o
f
ElE, Annamalai
Uni
v
e
r
sity
, Chida
m
ba
ra
m,
India
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
May 16, 2015
Rev
i
sed
Ju
l 12
,
20
15
Accepte
d
J
u
l 26, 2015
Depending on the number of l
e
vels in
output voltage, inverters can be
divided
into tw
o categories: tw
o leve
l inv
e
rte
r
and Multi
Lev
e
l Inver
t
ers
(MLIs). An inverter topolog
y
fo
r high
voltage and high power applications
that seem
s to be gaining inter
e
st
is
the MLI. In h
i
gh power and high voltag
e
applications, the two level inver
t
ers
have some limitations in operating at
high frequency
mainly
du
e to switching
losses and constraints
of device
rating
.
In th
is pa
per,
a thr
e
e
phas
e
H
+
ty
pe FC
MLI (Fly
ing Capacitor MLI)
using sinusoidal refer
e
nce,
th
ir
d harmonic injection r
e
fer
e
nce, 60 degree
referen
c
e and
stepped wa
v
e
referen
c
e
ar
e initi
all
y
dev
e
lo
ped
using
S
I
M
U
LINK and then
im
plem
ent
e
d in
re
al time environment usin
g dSPACE.
In
H-typ
e
FC
MLI with
R-load
it is in
ferred
th
at b
i
po
lar
COPW
M
-
C
pr
o
v
i
d
es
out
pu
t
wi
t
h
rel
a
t
i
v
el
y
l
o
w di
st
o
r
t
i
o
n f
o
r
60
de
gre
e
refere
nc
e
and
bi
pol
a
r
C
O
P
W
M
-
C
st
ra
t
e
gy
i
s
f
o
un
d
t
o
pe
rf
o
r
m
bet
t
e
r si
nce
i
t
pr
o
v
i
d
es rel
a
t
i
v
el
y
hi
ghe
r fu
ndam
e
nt
al
R
M
S
o
u
t
p
ut
v
o
l
t
a
ge fo
r
T
H
I
refe
rence
.
Th
e
five
level ou
tput voltages of
the
chosen MLIs ob
tain
ed using
the MATLAB and dSPACE
based PW
M (Pulse Width Modulation
)
strateg
i
es and th
e corresponding
%T
HD (Total
Harmonic Distortion), V
RMS
(fundamental)
,
CF (Crest Facto
r) a
nd FF (Form Factor) ar
e p
r
esented
an
d
anal
yz
ed
.
Keyword:
C
ont
r
o
l
Des
k
dSP
A
C
E
FCMLI
H-Ty
pe
RTI
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
C.R. Balam
u
ru
g
a
n,
Depa
rtem
ent of Electrical a
n
d
El
ect
ro
ni
cs E
n
gi
nee
r
i
n
g,
Ar
un
ai
En
gi
ne
eri
n
g C
o
l
l
e
ge,
Tiruvannam
ala
i
, India.
Em
a
il: crb
a
lain
2
010
@g
m
a
il.c
o
m
1.
INTRODUCTION
Si
nce, t
h
e m
u
l
t
i
l
e
vel
conve
rt
e
r
has bee
n
i
n
t
r
od
uce
d
i
n
t
h
e y
ear of 1
9
7
5
.
I
t
conve
rt
s DC
-
t
o-
AC
whi
c
h
requ
ires m
a
n
y
DC so
urces and
su
m
s
th
e
m
to
o
u
t
p
u
t
a tim
e
-
v
a
ryin
g wav
e
. Mu
ltilev
e
l con
v
e
rters h
a
v
e
a lo
t of
ad
v
a
n
t
ag
es to
o
f
fer i
n
m
e
d
i
u
m
- to
h
i
g
h
-vo
l
tag
e
ran
g
e
of ap
p
lication
s
. The term
m
u
l
tile
v
e
l states th
at
p
o
wer
co
nv
ersion
s are p
r
o
d
u
c
ed
b
y
u
tilizin
g
m
u
lt
i
p
le sm
a
ll v
o
lta
g
e
lev
e
ls. Sm
a
ll v
o
ltag
e
step
mak
e
s th
e
m
u
ltilev
e
l
i
nve
rt
er has t
o
wi
t
h
st
a
nd
bet
t
e
r v
o
l
t
a
ge
, fewe
r ha
rm
oni
cs
, l
o
we
r swi
t
c
hi
n
g
l
o
ss
es, el
ect
rom
a
gnet
i
c
com
p
atibility, voltage
with
high
capa
b
ility
and
good power quality.
Multilevel converters can synthesiz
e
wav
e
fo
rm
s u
s
in
g
m
o
re t
h
an
two
vo
ltage lev
e
ls. C
ontro
l sch
e
m
e
s e
m
p
l
o
y
ed
i
n
m
u
l
tilev
e
l co
nv
erter
appl
i
cat
i
o
ns
i
n
cl
ude, P
W
M
and Li
ne
f
r
e
q
uency
c
ont
rol
.
Th
e form
er
allo
ws
v
a
riatio
n
of ou
tpu
t
v
o
ltage
whe
r
eas the lat
t
er does not.
In ge
ne
r
a
l, PWM co
n
t
ro
l r
e
quir
e
s th
e use of
m
o
re than one
carrier
wa
veform
to
cater fo
r t
h
e
variou
s lev
e
ls.
Th
is m
u
ltilev
e
l in
v
e
rter
p
r
odu
ces
AC
o
u
t
p
u
t v
o
ltag
e
in
step
p
e
d
wav
e
(staircase
sha
p
e) get
fr
o
m
si
nusoi
dal
w
a
vef
o
rm
.
B
a
t
s
chaue
r
et
al
., [1]
pr
op
ose
d
a l
a
rge
p
o
rt
i
on
of e
n
e
r
gy
c
a
n be
pr
ocesse
d by
t
h
e
VS
I b
y
em
pl
oy
i
n
g
a single m
u
lti-pulse
rectifier,
while sm
aller
powe
r sha
r
es
a
r
e processe
d within the
half-bridge m
odules. Thus
,
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
61
5 – 624
61
6
th
e requ
irem
en
ts for g
a
l
v
an
i
cally
in
su
lated d
c
so
urces
are reduced. Changliang Xi
a e
t
al
., [2]
pr
op
ose
d
a
bo
ost
t
h
ree
-
l
e
v
e
l
ch
op
per
on
t
h
e f
r
ont
of
a t
h
ree
-
l
e
vel
di
o
d
e
-cl
a
m
p
ed i
n
v
e
rt
er i
s
use
d
a
n
d
t
h
e
swi
t
c
h
-
si
gna
l
pha
se del
a
y
cont
rol
i
s
bal
a
nci
n
g t
h
e
n
e
ut
ral
p
o
i
n
t
pot
e
n
t
i
a
l
of t
h
ree
-
p
h
ase i
n
vert
er
base
d
on t
h
e
charact
e
r
i
s
t
i
c
s of b
o
o
st
t
h
ree
-
pha
se ch
op
per
.
As t
h
e bo
ost
cho
p
p
er i
s
al
so use
d
f
o
r m
a
xi
m
u
m
powe
r
poi
nt
track
ing
,
th
e co
n
t
ro
ller with
d
u
a
l
PI regu
lato
rs
is
de
signe
d
for t
h
e
chopper. Da
voodnezha
d
et
al., [3]
pr
o
pose
d
a co
nt
r
o
l
l
e
r whi
c
h
achi
e
ves a l
i
n
e-t
o
-l
i
n
e
harm
oni
c pe
rf
o
r
m
a
nce t
h
at
i
s
ver
y
cl
ose t
o
ope
n-l
o
o
p
pha
se dis
p
osition pulse
width m
odulation,
while
retaining
all of t
h
e
dynam
i
c benefits
of hysteresis
c
u
rrent
r
e
gu
latio
n. Ewan
chuk
an
d
Sal
m
o
n
[4
] pr
oposed
a thr
e
e-
ph
ase p
a
r
a
llel in
v
e
r
t
er
system
can
b
e
o
p
e
r
a
ted
usin
g
a sing
le three-li
m
b
cou
p
l
ed in
du
ctor, sign
ifican
tly
im
p
r
ov
ing
t
h
e sy
ste
m
p
o
w
e
r co
nv
er
sion
d
e
nsity.
Ghaza
n
f
ari
et
al
., [
5
]
p
r
op
os
ed a
n
i
nve
rt
er
co
nfi
g
u
r
at
i
o
n
i
s
capa
b
l
e
of
ge
nerat
i
n
g l
o
w
di
st
ort
i
o
n,
near
-
si
nus
oi
d st
ep
p
e
d o
u
t
p
ut
vol
t
a
ge eve
n
wi
t
h
fu
n
d
am
ent
a
l
freque
ncy
swi
t
c
hi
n
g
. The t
o
t
a
l
harm
oni
c di
st
ort
i
o
n
(THD), switchin
g
l
o
sses, fault-to
lera
n
t
featu
r
e of th
e prop
o
s
ed
m
u
ltilev
e
l in
v
e
rter-b
ased
p
o
wer su
pp
ly is
co
m
p
ared
with th
at of th
e conv
en
tion
a
l two-lev
e
l inv
e
rt
er-based
powe
r s
u
pplies.
Gupta e
t
al., [6] proposed a
gene
ralized m
u
ltiband
hysteresis m
odulation a
n
d its cha
r
acterization
ha
ve
been proposed
for the
sliding-
m
o
d
e
co
n
t
ro
l
o
f
cascad
e
d H-bridg
e
m
u
ltilev
e
l-in
v
e
rt
er (C
HBMLI)-co
n
t
ro
lled syste
m
s. Net h
y
steresis
ban
d
w
i
d
t
h
f
o
r a gi
ven
desi
re
d m
a
xim
u
m
swi
t
c
hi
n
g
fre
q
u
e
n
c
y o
f
th
e inv
e
rter is d
e
termin
ed
. Haseg
a
wa and
Ag
ak
i [7
] propo
sed
th
e
d
c
mean
vo
ltag
e
s of all th
e fo
ur sp
lit d
c
cap
acit
o
rs can
b
e
b
a
lan
ced, ind
e
p
e
nd
en
t
of
i
nve
rt
er c
ont
r
o
l
.
Ji
n
W
a
n
g
and
Aham
adi [8]
based on
equal a
r
ea c
r
i
t
e
ri
a an
d
har
m
oni
c i
n
ject
i
o
n. T
h
e
m
a
xim
u
m
of fi
ve swi
t
c
hi
n
g
a
ngl
es s
h
o
w
t
h
a
t
t
h
e pro
p
o
s
ed
m
e
t
hod can
be use
d
t
o
achi
e
v
e
excel
l
e
nt
har
m
oni
c
eli
m
in
atio
n
p
e
rfo
r
m
a
n
ce. Ui-Min
Ch
o
i
et al., [9
] p
r
esen
t
e
d
a stron
g
balan
c
in
g
ab
ility at a
ll reg
i
o
n
s an
d
furthe
rm
ore it
is very sim
p
le to
im
plem
ent in
both s
p
ace ve
ctor m
odula
tion and carrier-based P
W
M m
e
thods.
Zou
b
i
r et al., [10
]
su
gg
ested a n
e
w m
u
lt
ile
v
e
l activ
e p
o
wer filter u
s
ing
switch
e
s m
e
t
i
cu
lou
s
ly co
n
t
rolled
.
Heru
Prat
o
m
o
et al.,
[11
]
prop
o
s
ed a sim
p
le strateg
y
of co
n
t
ro
lling
a b
a
lan
ced vo
ltag
e
cap
acitor i
n
sin
g
l
e
pha
se fi
ve-l
e
v
e
l
i
nve
rt
er.
2.
H-TY
PE
F
C
MLI (Flyin
g Ca
paci
to
r Multi Lev
e
l Inv
e
rter)
Meyn
ar
d an
d
Fo
ch
i
n
tr
odu
ced
a f
l
ying
-
c
ap
acito
r b
a
sed
in
v
e
r
t
er
i
n
1
9
9
2
. Th
e stru
ctu
r
e
of
th
is
i
nve
rt
er i
s
sim
i
l
a
r t
o
t
h
at
of
t
h
e di
o
d
e-cl
am
ped i
nve
rt
er e
x
cept
t
h
at
i
n
st
ead o
f
usi
ng c
l
am
pi
ng di
ode
s, t
h
e
inve
rter
uses c
a
pacitors in
their place. The
circuit topol
ogy of the
H-type flying capacitor m
u
ltilevel inve
rter
is shown in Fi
gure 1. T
h
is topol
ogy has a ladde
r stru
cture
of DC side ca
pacito
rs
whe
r
e
the voltage on each
capacitor
diffe
r
s from
that of the ne
xt capac
itor. T
h
e voltage inc
r
em
ent
between two a
d
jacent ca
pacitor legs
gi
ves
t
h
e
si
ze
of
t
h
e
v
o
l
t
a
ge
st
eps
i
n
t
h
e
out
put
wa
vef
o
rm
. One
ad
va
nt
age
o
f
t
h
e
fl
y
i
ng ca
paci
t
o
r
base
d
in
v
e
rter is th
at it
h
a
s redu
nd
an
cies for inn
e
r vo
lta
g
e
lev
e
ls; in
o
t
h
e
r wo
rd
s, two
o
r
m
o
re v
a
lid switch
co
m
b
in
atio
n
s
can
syn
t
h
e
size an
o
u
t
p
u
t
vo
ltage. Tab
l
e 1 shows a list
o
f
all
th
e co
m
b
in
ation
s
o
f
ph
ase
vo
ltag
e
lev
e
ls th
at are po
ssib
l
e
for th
e circu
it
sh
own
in
Figure
1. T
h
ese
re
dundancies
allow a
choice of
char
gi
n
g
/
d
i
s
c
h
argi
ng s
p
eci
fi
c
capaci
t
o
rs a
n
d can
be i
n
c
o
rp
orat
e
d
i
n
t
h
e cont
rol
sy
st
em
for
bal
a
nci
ng t
h
e
v
o
ltag
e
s acro
s
s th
e v
a
ri
ou
s lev
e
ls. In
ad
d
i
t
i
o
n
to
t
h
e (m
-1
)/
2
DC link
cap
acito
rs, th
e
m
-
lev
e
l FCM
L
I will
requ
ire (m
-1
)
× (m
-2
)/2
aux
iliary cap
acito
rs p
e
r ph
ase if
th
e v
o
ltag
e
ratin
g
of th
e capacito
rs is id
en
t
i
cal to
th
at of th
e m
a
i
n
switch
e
s.
Tab
l
e
1
.
H-type flyin
g
cap
aci
to
r m
u
ltilev
e
l i
n
v
e
rter
- switch
e
s states and
o
u
t
p
u
t
vo
ltag
e
lev
e
ls
S
a1
S
a2
S
a3
S
a4
S
b1
S
b2
S
b3
S
b4
V
ao
V
bo
V
ab
=V
RN
0
0
1 1 1
1
0
0
-
1
/2
Vdc
1/2Vdc
-
V
dc
0
0
1 1 0
1
0
1
-
1
/2
Vdc
0
-
1
/2
Vdc
0
1
0 1 1
1
0
0
0
1/2
Vdc
-
1
/2
Vdc
1
0
1 0 1
1
0
0
0
-
1
/2
Vdc
1/2
Vdc
1
1
0 0 1
1
0
0
1/2
Vdc
1/2
Vdc
0
0
0
1 1 0
0
1
1
-
1
/2
Vdc
-
1
/2
Vdc
0
0
1
0 1 0
0
1
1
0
-
1
/2
Vdc
-
1
/2
Vdc
1
1
0 0 0
1
0
1
1/2
Vdc
0
1/2
Vdc
1
0
1 0 0
0
1
1
0
-
1
/2
Vdc
1/2
Vdc
1
1
0
0
0
0
1
1
1/2 Vdc
-
1
/2 Vdc
Vdc
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Si
m
u
l
a
t
i
o
n an
d
d
S
PAC
E Base
d Im
pl
eme
n
t
a
t
i
on
of
Vari
ou
s PWM St
rat
e
gi
e
s
f
o
r…
(
C
.R. B
a
lamur
ugan)
61
7
Fi
gu
re
1.
Si
n
g
l
e
p
h
ase
H-t
y
pe
fl
y
i
ng
capaci
t
o
r
m
u
l
t
i
l
e
vel
i
nve
rt
er
3.
SIM
U
LATI
O
N
RESULTS
AN
D A
NAL
Y
S
IS
Th
e sim
u
lated
o
u
t
pu
t vo
ltage is sh
own
for on
ly o
n
e
sam
p
le v
a
lu
e o
f
m
a
=0.8. T
h
e
following
param
e
t
e
r val
u
es are use
d
fo
r
sim
u
l
a
t
i
on:
V
dc
= 4
4
0
V
,
R(
l
o
ad
)
= 100
oh
ms, C
1
= C
2
= C
3
and C
4
= 1
000
e-3
Fara
d, f
c
=2000
H
z
and
f
m
= 50 Hz
. Fi
g
u
r
e 2 sh
o
w
s t
h
e sam
p
l
e
fi
ve l
e
vel
out
p
u
t
v
o
l
t
a
ge ge
nerat
e
d by
PDP
W
M
st
rat
e
gy
wi
t
h
si
ne
refere
nce a
n
d
i
t
s
FFT pl
ot
i
s
sho
w
n i
n
Fi
gu
re 3
.
Tab
l
es 2 t
o
5 s
h
ow t
h
e
com
p
arison
of %THD, V
RMS
(
f
u
n
d
am
ental), CF an
d
FF
fo
r
diffe
re
nt P
W
M
strategies
with
va
rio
u
s
refe
re
nces.
Fi
gu
re
2.
Sam
p
l
e
out
put
v
o
l
t
a
ge
gene
rat
e
d
b
y
PDP
W
M
st
ra
t
e
gy
f
o
r
H
-
t
y
p
e
FC
M
L
I
wi
t
h
si
ne re
fere
nce
Fi
gu
re 3.
F
F
T pl
ot
fo
r out
put
vol
t
a
ge
ge
ne
rat
e
d by
P
D
P
W
M
st
rat
e
gy
fo
r H-
t
y
pe
FC
M
L
I w
i
t
h
si
ne refe
re
n
ce
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
61
5 – 624
61
8
Tabl
e
2. %
T
H
D
of
o
u
t
p
ut
vol
t
a
ge (R
-p
hase
)
of
H
-
t
y
pe FC
M
L
I f
o
r
vari
o
u
s
val
u
es
of
m
a
(R
-l
oa
d,
by
si
m
u
latio
n
)
m
a
Sinusoidal refer
e
n
ce
Third har
m
onic i
n
jection
refe
renc
e
PD
POD
APO
D
CO-
A
CO-B
CO-
C
PS
VF
PD
POD
A
PO
D
C
O-
A
C
O-B
CO-
C
PS
VF
1 27.
38
27.
30
27.
96
32.
29
31.
59
26.
02
27.
53
27.
4
28.
92
28.
67
29.
0
31.
12
32.
34
30.
81
29.
0
28.
9
0.
9
34.
20
34.
10
34.
67
38.
81
36.
50
29.
97
33.
38
34.
0
36.
31
35.
78
36.
08
36.
17
37.
27
34.
84
36.
1
36.
3
0.
8
39.
12
38.
88
39.
36
45.
59
41.
48
33.
94
39.
01
39.
0
41.
89
41.
73
42.
21
41.
71
41.
16
38.
01
41.
9
42.
0
0.
7
42.
85
42.
66
43.
01
55.
42
47.
33
37.
14
42.
17
43.
2
44.
93
44.
85
45.
28
51.
14
44.
56
40.
70
45.
1
44.
9
0.
6
44.
98
45.
03
45.
01
66.
62
55.
71
40.
67
44.
88
45.
0
43.
70
43.
24
43.
66
60.
39
51.
17
43.
38
43.
7
43.
7
m
a
60 degree PWM
r
e
ferenc
e
Stepped
w
a
ve ref
erence
PD
POD
APO
D
CO-
A
CO-B
CO-
C
PS
VF
PD
POD
A
PO
D
C
O-
A
C
O-B
CO-
C
PS
VF
1 22.
57
22.
21
22.
61
26.
75
27.
98
23.
56
22.
55
22.
6
24.
67
25.
54
24.
66
29.
65
31.
53
25.
47
25.
0
24.
6
0.
9
31.
69
31.
47
32.
09
33.
33
34.
41
29.
59
31.
93
31.
7
33.
76
33.
71
33.
32
38.
81
36.
02
29.
82
33.
2
33.
80
0.
8
38.
26
38.
11
38.
38
38.
47
38.
70
33.
13
38.
86
38.
3
39.
68
39.
12
39.
29
46.
81
40.
01
31.
88
39.
4
39.
9
0.
7
42.
66
42.
38
42.
69
47.
17
42.
91
36.
16
42.
69
42.
6
42.
41
42.
03
42.
77
56.
28
47.
72
37.
16
42.
9
42.
6
0.
6
43.
46
43.
18
43.
78
58.
71
46.
94
39.
31
42.
66
43.
2
46.
88
47.
56
46.
92
68.
12
54.
42
40.
49
45.
5
47.
1
Tabl
e 3.
V
RMS
(f
un
dam
e
nt
al
)
of
o
u
t
p
ut
vol
t
a
ge (R
-
phase
) o
f
H
-
t
y
pe FC
M
L
I fo
r vari
ous
val
u
es
o
f
m
a
(R-load
,
by
si
m
u
l
a
t
i
on)
m
a
Sinusoidal refer
e
n
ce
Third har
m
onic i
n
jection
refe
renc
e
PD
POD
APO
D
CO-
A
CO-B
CO-
C
PS
VF
PD
POD
A
PO
D
C
O-
A
C
O-B
CO-
C
PS
VF
1 308.
9
308.
8
308.
4
315.
8
331.
7
332.
3
309.
1
308
359
359
359.
4
363.
5
369.
4
369.
8
358
358.
8
0.
9
277.
4
277.
3
276.
9
288.
2
310.
4
311.
2
277.
7
277
322.
6
322.
7
323
335.
5
345.
2
345.
6
323
322.
5
0.
8
245.
6
246
245.
5
258
286.
6
287.
8
245
245
285.
6
286.
3
286.
2
305.
2
322.
1
323.
2
285
285.
8
0.
7
213.
6
213.
3
213.
6
221.
1
259.
8
260.
5
214.
4
213
249
249
249.
1
264.
8
297.
4
298.
9
249
249.
4
0.
6
182
181.
6
182
182.
5
231.
1
233
180.
5
182
212
211.
7
211.
8
219.
1
267.
5
268.
5
211
212.
2
m
a
60 degree PWM
r
e
ferenc
e
Stepped
w
a
ve ref
erence
PD
POD
APO
D
CO-
A
CO-B
CO-
C
PS
VF
PD
POD
A
PO
D
C
O-
A
C
O-B
CO-
C
PS
VF
1
363.
5
363.
3
1652.
2
365.
5
372.
2
356.
7
363.
4
363
313.
6
309.
1
307.
9
318.
8
333.
6
332.
3
312
313.
6
0.
9
326.
2
326.
6
881.
3
336.
4
345.
1
331
326.
9
326
280.
5
278.
5
276.
9
288.
8
307.
4
306
279
280.
3
0.
8 289
288.
9
506.
8
306.
3
321.
7
308.
8
290.
1
289
248.
6
250.
4
247.
8
259.
7
287.
5
285.
5
249
248.
1
0.
7
251.
8
251.
6
310.
4
267.
8
296.
7
283.
8
251.
9
251
218.
1
221.
8
218.
4
226
260.
3
260.
5
218
217.
5
0.
6
214.
6
214.
7
193.
2
222.
1
271.
1
257
214.
3
214
185.
7
188.
1
186
186.
5
233.
8
235.
4
186
185.
1
Tabl
e
4.
C
F
of
o
u
t
p
ut
v
o
l
t
a
ge
(R
-
p
hase)
o
f
H-t
y
pe
FC
M
L
I
f
o
r
va
ri
o
u
s
val
u
es
of
m
a
(R
-l
o
a
d,
by
si
m
u
l
a
t
i
on
)
m
a
Sinusoidal refer
e
n
ce
Third har
m
onic i
n
jection
refe
renc
e
PD
POD
APOD
CO-
A
CO-B
CO-
C
PS
VF
PD
POD
APOD
CO-
A
CO-B
CO-
C
PS
VF
1
1.
414
1.
414
1.
414
1.
413
1.
413
1.
414
1.
414
1.
41
1.
414
1.
414
1.
414
1.
414
1.
414
1.
414
1.
414
1.
414
0.
9
1.
414
1.
414
1.
414
1.
414
1.
413
1.
4142
1.
4141
1.
41
1.
4141
1.
414
1.
414
1.
414
1.
4142
1.
4140
1.
414
1.
4142
0.
8
1.
414
1.
414
1.
414
1.
413
1.
414
1.
4141
1.
4142
1.
41
1.
4142
1.
414
1.
414
1.
414
1.
4141
1.
4142
1.
4143
1.
4142
0.
7
1.
414
1.
414
1.
414
1.
414
1.
414
1.
4142
1.
4141
1.
41
1.
4144
1.
414
1.
414
1.
414
1.
4142
1.
4142
1.
139
1.
4141
0.
6
1.
414
1.
414
1.
414
1.
413
1.
414
1.
4141
1.
4144
1.
41
1.
4141
1.
414
1.
414
1.
414
1.
4138
1.
4141
1.
4145
1.
4142
m
a
60 degree PWM
r
e
ferenc
e
Stepped
w
a
ve ref
erence
PD
POD
APOD
CO-
A
CO-B
CO-
C
PS
VF
PD
POD
APOD
CO-
A
CO-B
CO-
C
PS
VF
1
1.
414
1.
4142
1.
4140
1.
4142
1.
4142
1.
4140
1.
4144
1.
414
1.
4142
1.
4141
1.
4140
1.
4140
1.
4142
1.
4142
1.
4144
1.
4142
0.
9
1.
414
1.
4139
1.
4142
1.
4140
1.
4143
1.
4141
1.
4141
1.
413
1.
4139
1.
4143
1.
4145
1.
4141
1.
4141
1.
4143
1.
4140
1.
4141
0.
8
1.
414
1.
4143
1.
4143
1.
4139
1.
4143
1.
4145
1.
4139
1.
414
1.
4139
1.
4141
1.
4144
1.
4143
1.
4142
1.
4143
1.
4146
1.
4139
0.
7
1.
414
1.
4145
1.
4143
1.
4141
1.
4142
1.
4143
1.
4140
1.
414
1.
4140
1.
4143
1.
4143
1.
4141
1.
4141
1.
4142
1.
4145
1.
4142
0.
6
1.
414
1.
4145
1.
4139
1.
4142
1.
4142
1.
4143
1.
4143
1.
414
1.
4141
1.
4141
1.
4145
1.
4144
1.
4140
1.
4141
1.
4142
1.
4143
Tabl
e
5.
FF
o
f
o
u
t
p
ut
v
o
l
t
a
ge
(R
-
p
hase)
o
f
H-t
y
pe
FC
M
L
I
f
o
r
va
ri
o
u
s
val
u
es
of
m
a
(R
-l
o
a
d,
by
si
m
u
l
a
t
i
on
)
m
a
Sinusoidal refer
e
n
ce
Third har
m
onic i
n
jection
refe
renc
e
PD
POD
APO
D
CO-
A
CO-B
CO-
C
PS
VF
PD
POD
A
PO
D
C
O-
A
C
O-B
CO-
C
PS
VF
1
792.
0
701.
8
685.
3
45.
90
1184.
6
I
N
F
I
N
F
404.
6
I
N
F
1631
1562.
6
98.
50
2462.
6
I
N
F 3581
0
2990
0.
9 533.
4
462.
1
453.
9
30.
49
862.
22
I
N
F
2777
0
533.
4
2304
827.
807.
5
59.
91
1380.
8
I
N
F
I
N
F
1007.
0.
8 279.
8
311.
3
21.
7
21.
16
636.
88
I
N
F
2450
0
351
446.
2
485.
477
38.
05
894.
7
I
N
F
2850
0
408.
2
0.
7 284.
8
213.
3
211.
48
12.
77
463.
92
I
N
F
2144
0
239.
4
503.
1
383.
289.
6
19.
27
619.
5
I
N
F
2498
0
300.
4
0.
6 176.
6
146.
4
146.
77
7.
753
355.
53
I
N
F
1805
0
152
322.
3
177
177.
98
9.
78
453.
3
I
N
F
2118
0
228.
1
m
a
60 degree PWM
r
e
ferenc
e
Stepped
w
a
ve ref
erence
PD
POD
APO
D
CO-
A
CO-B
CO-
C
PS
VF
PD
POD
A
PO
D
C
O-
A
C
O-B
CO-
C
PS
VF
1
I
N
F
1730
1652.
2
100.
1
2658.
5
I
N
F
I
N
F
2796.
1
1568
0
657
699.
7
48.
30
1235.
5
I
N
F 1040
0
627.
3
0.
9 858.
4
882.
7
881.
3
60.
61
1380.
4
I
N
F
1634.
5
881.
3
475.
4
464
477.
4
32.
93
768.
5
I
N
F
2799
0
2548.
1
0.
8 672.
0
515.
8
506.
8
39.
52
919.
1
I
N
F
I
N
F
444.
7
147.
1
329
427.
2
22.
46
598.
9
I
N
F
2496
0
322.
2
0.
7 387.
3
310.
6
310.
4
21.
89
659.
3
I
N
F
8396.
6
426.
9
84.
53
233
240
13.
90
456.
6
I
N
F
2188
0
148.
97
0.
6
206.
3
193.
4
193.
2
10.
83
475.
6
I
N
F
I
N
F
206.
3
70.
87
160
163.
1
8.
68
354.
2
I
N
F 6220
107.
61
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Si
m
u
l
a
t
i
o
n an
d
d
S
PAC
E Base
d Im
pl
eme
n
t
a
t
i
on
of
Vari
ou
s PWM St
rat
e
gi
e
s
f
o
r…
(
C
.R. B
a
lamur
ugan)
61
9
4.
dSPACE B
A
SED IMPLEMENTATION
The
req
u
i
r
e
d
o
ffl
i
n
e
si
m
u
l
a
tions
o
f
gat
e
si
g
n
al
ge
ne
rat
i
o
n
bl
oc
ks/
m
odel
s
fo
r t
h
e
ch
ose
n
fi
ve l
e
vel
in
v
e
rter using
v
a
ri
o
u
s
PW
M
strateg
i
es are i
n
itially carried
o
u
t
u
s
ing
SIMULINK. Th
e
m
o
d
e
ls d
e
v
e
l
o
p
e
d
in
SIM
U
L
I
NK a
r
e t
h
en com
p
i
l
e
d, d
o
w
nl
oade
d
and e
x
ecut
e
d i
n
real
t
i
m
e
on dSP
A
C
E
sy
st
em
. Si
nce dSP
A
C
E
syste
m
can be
easily interfac
e
d wit
h
SIMULINK,
a ‘b
u
ild
’
fun
c
tion
in
SIMULINK au
to
m
a
tical
ly c
o
nv
erts
any
S
I
M
U
L
I
N
K
m
odel
i
n
t
o
a
t
a
rget
e
d
C
c
o
de
usi
n
g t
h
e
re
al
t
i
m
e
wor
k
s
h
op
o
f
dS
PAC
E
sy
st
em
. The C
co
de
becom
e
s sourc
e
for t
h
e
real t
i
m
e
interface
of dSPAC
E
sy
ste
m
, whic
h
with the
help of a C c
o
m
p
iler/linker,
pr
o
duces a
nd
do
w
n
l
o
a
d
s t
h
e
m
achi
n
e
co
de in
th
e d
S
PACE bo
ard
.
Fin
a
lly to
read
o
r
write th
e in
tern
al
vari
a
b
l
e
s of t
h
e cont
r
o
l
sy
st
em
, dSPAC
E
c
o
nt
r
o
l
desk
pr
ov
i
d
es a user f
r
i
e
ndl
y
G
U
I en
vi
ro
nm
ent
t
h
at
enabl
e
s
th
e u
s
er t
o
ob
serv
e
v
ital d
a
ta in
th
e
syste
m
. Th
e ex
te
rn
al
v
o
ltag
e
in
t
h
e
r
a
ng
e
-
10V
to
+1
0V
ar
e co
nver
t
ed
in
to
qu
an
tized
v
a
lu
es in
th
e ran
g
e
-1V to
+1V for ADC and
v
i
ce v
e
rsa
for th
e DAC un
it o
f
d
S
PACE syste
m
.
Hence
gai
n
s
o
f
0.
1 a
n
d
10
a
r
e i
n
cl
ude
d
t
o
com
p
ensat
e
f
o
r t
h
i
s
si
g
n
al
c
o
n
v
e
r
si
o
n
.
The
ge
nerat
e
d s
w
i
t
chi
n
g
pul
ses a
r
e t
a
ke
n f
r
om
t
h
e DA
C
or i
n
p
u
t
/
out
put
po
rt
s o
f
d
SPAC
E
sy
st
e
m
and fe
d t
o
p
u
l
s
e am
pl
i
f
i
e
rs bef
o
r
e
bei
n
g a
ppl
i
e
d t
o
t
h
e
gat
e
s
o
f
M
O
SFET
s
of t
h
e
pr
ot
ot
y
p
es
of
t
h
e c
h
osen
i
nve
rt
ers
.
5.
HA
RD
WA
RE
RES
U
LTS
Thi
s
sect
i
o
n
pr
esent
s
t
h
e
res
u
l
t
s
of e
x
peri
m
e
nt
al
w
o
r
k
ca
r
r
i
e
d
out
o
n
c
h
ose
n
H
-
t
y
pe
F
C
M
L
I usi
n
g
dSP
A
C
E
DS
1
1
0
3
c
ont
rol
l
e
r
boa
r
d
. T
h
e r
e
sul
t
s
o
f
t
h
e e
xpe
ri
m
e
nt
al
study
a
r
e sh
o
w
n i
n
t
h
e
f
o
rm
of t
h
e
o
s
cillo
gram
s
o
f
PWM ou
t
p
u
t
s
o
f
ch
osen
MLI an
d
co
rresp
ond
ing
h
a
rm
o
n
i
c sp
ectra. Exp
e
rim
e
n
t
s are
p
e
rf
or
m
e
d
w
ith
ap
pr
opr
iate m
f
(sa
m
e as in
sim
u
latio
n
stud
ies)
a
n
d f
o
r di
ffe
ren
t
values
o
f
m
a
. The
corres
ponding V
RMS
(fu
nd
am
ent
a
l
)
of
out
pu
t
vol
t
a
ges an
d
t
h
ei
r
% THD and CF val
u
es
are calculated (from
t
h
e FFT
spect
r
u
m
obt
ai
ned
)
, t
a
bul
at
ed
an
d a
n
al
y
zed. T
h
e e
xpe
ri
m
e
nt
al
ou
t
put
vol
t
a
ges
a
nd t
h
e c
o
r
r
es
p
o
n
d
i
n
g
harm
onic s
p
ec
tra are s
h
own
for only one s
a
m
p
le value
of
m
a
=0
.8
. Figu
re 4
sh
ow the en
tire h
a
rd
ware setu
p
fo
r H
-
t
y
pe FC
M
L
I. Fi
gu
re 5
t
o
8 s
h
ows t
h
e sam
p
l
e
experi
m
e
nt
al
out
pu
t
vol
t
a
ge
of c
hos
en M
L
I o
b
t
ai
ne
d
usi
n
g
dS
PAC
E
/
R
TI
wi
t
h
t
r
i
a
ng
ul
ar
car
ri
er
PD
P
W
M
st
ra
t
e
gy
an
d
si
ne,
TH
I,
6
0
de
gr
ee an
d
st
ep
pe
d
wav
e
refe
rence
.
Ta
b
l
es 6
–
8 s
h
o
w
t
h
e
com
p
ari
s
on
o
f
%
T
H
D
,
V
RMS
(f
u
nda
m
e
nt
al
) an
d C
F
f
o
r
di
f
f
ere
n
t
P
W
M
strateg
i
es with
v
a
ri
o
u
s
references. Figu
res
9
to
11
d
i
sp
lay th
e co
n
t
ro
l d
e
sk
settin
g
s
, bu
ilt fu
n
c
tion
settin
gs and
v
a
riation
s
o
f
mo
du
latin
g sign
als.
The f
o
l
l
o
wi
n
g
param
e
t
e
r val
u
es are us
ed
for e
x
peri
m
e
nt
at
i
on:
V
dc
=
3
0V
i
n
vi
ew o
f
l
a
bo
rat
o
ry
li
mitatio
n
s
, R(l
o
ad)=1
0
0
Ω
, f
c
=2
000
H
z
and
f
m
=50Hz, m
f
=40.
Fi
gu
re
4.
Ent
i
r
e ha
rd
ware
set
u
p
f
o
r
H
-
t
y
pe
FC
M
L
I
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
61
5 – 624
62
0
Fi
gu
re
5.
Sam
p
l
e
out
put
v
o
l
t
a
ge
of
H
-
t
y
pe F
C
M
L
I wi
t
h
P
D
P
W
M
st
r
a
t
e
gy
(m
a
=0.8, si
ne
r
e
f.)
Fi
gu
re
6.
Sam
p
l
e
out
put
v
o
l
t
a
ge
of
H
-
t
y
pe F
C
M
L
I wi
t
h
P
D
P
W
M
st
r
a
t
e
gy
(m
a
=0
.
8
,
TH
I ref
.
)
Fi
gu
re
7.
Sam
p
l
e
out
put
v
o
l
t
a
ge
of
H
-
t
y
pe F
C
M
L
I wi
t
h
P
D
P
W
M
st
r
a
t
e
gy
(m
a
=0.8,
60 de
gree
re
f.)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Si
m
u
l
a
t
i
o
n an
d
d
S
PAC
E Base
d Im
pl
eme
n
t
a
t
i
on
of
Vari
ou
s PWM St
rat
e
gi
e
s
f
o
r…
(
C
.R. B
a
lamur
ugan)
62
1
Fi
gu
re
8.
Sam
p
l
e
out
put
v
o
l
t
a
ge
of
H
-
t
y
pe F
C
M
L
I wi
t
h
P
D
P
W
M
st
r
a
t
e
gy
(m
a
=0.8, ste
p
ped
wave
re
f.
)
Fi
gu
re
9.
d
S
A
P
C
E
scree
n
t
o
set
t
h
e am
pl
i
t
ude
of
t
h
e m
o
d
u
l
at
i
ng si
g
n
al
Fig
u
re 10
. d
S
APCE
screen
t
o
set
th
e b
u
ilt
fun
c
tio
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
61
5 – 624
62
2
Fi
gu
re 1
1
. dS
A
P
C
E
scree
n
wi
t
h
co
nt
r
o
l
desk
o
p
t
i
o
n
Tabl
e
6. %
T
H
D
of
o
u
t
p
ut
vol
t
a
ge (R
-p
hase
)
of
H
-
t
y
pe FC
M
L
I f
o
r
vari
o
u
s
val
u
es
of
m
a
(R
-l
oa
d,
by
si
m
u
latio
n
)
m
a
Sinusoidal refer
e
n
ce
Third har
m
onic i
n
jection
refe
renc
e
PD
POD
APO
D
CO-
A
CO-B
CO-
C
PS
VF
PD
POD
A
PO
D
C
O-
A
C
O-B
CO-
C
PS
VF
1 21.
79
16.
58
22.
91
30.
41
20.
61
20.
61
7.
07
7.
07
18.
02
13.
22
11.
99
16.
58
8.
66
13.
22
11.
2
8.
66
0.
9
23.
45
22.
36
22.
36
33.
16
27.
38
28.
28
8.
66
9.
01
22.
27
15.
55
14.
73
18.
2
13.
22
29.
15
12.
4
13.
22
0.
8
26.
62
23.
97
23.
45
33.
54
30.
16
34.
64
11.
45
10.
3
25.
23
17.
02
17.
32
19.
36
15.
81
38.
40
14.
1
15.
81
0.
7
29.
15
24.
67
28.
1
37.
74
31.
62
39.
83
13.
22
11.
1
26.
92
19.
97
20.
0
21.
21
31.
51
49.
43
18.
4
21.
79
0.
6
30.
41
30.
0
30.
0
46.
57
34.
17
47.
95
35.
36
15.
0
30.
26
20.
68
20.
5
26.
45
33.
06
51.
42
24.
1
27.
45
m
a
60 degree PWM
r
e
ferenc
e
Stepped
w
a
ve ref
erence
PD
POD
APO
D
CO-
A
CO-B
CO-
C
PS
VF
PD
POD
A
PO
D
C
O-
A
C
O-B
CO-
C
PS
VF
1
13.
22
10.
0
7.
90
27.
18
18.
02
18.
70
12.
24
16.
5
25.
0
19.
36
22.
91
25.
0
25.
49
29.
15
8.
66
7.
70
0.
9
19.
36
11.
18
8.
66
30.
17
23.
97
23.
16
13.
46
19.
9
28.
24
22.
91
22.
36
34.
27
27.
83
33.
6
14.
1
8.
66
0.
8
20.
61
20.
0
15.
81
36.
22
29.
58
27.
49
14.
14
28.
2
29.
5
27.
38
27.
83
35.
0
30.
0
36.
79
15.
0
10.
0
0.
7
24.
49
27.
83
18.
02
47.
63
32.
97
39.
61
18.
6
28.
7
36.
40
28.
28
29.
1
44.
65
32.
5
37.
08
19.
3
13.
22
0.
6
30.
2
30.
14
21.
21
48.
67
41.
25
46.
36
24.
3
35.
6
39.
6
30.
38
30.
82
46.
09
35.
70
43.
08
26.
2
15.
81
Tabl
e 7. V
RMS
(
f
u
n
d
am
ent
a
l
)
o
f
out
put
v
o
l
t
a
g
e
(R
-
p
hase)
o
f
H-t
y
pe
FC
M
L
I
f
o
r va
ri
o
u
s val
u
es of
m
a
(R-lo
a
d,
by
si
m
u
l
a
t
i
on)
m
a
Sinusoidal refer
e
n
ce
Third har
m
onic i
n
jection
refe
renc
e
PD
POD
APO
D
CO-
A
CO-B
CO-
C
PS
VF
PD
POD
A
PO
D
C
O-
A
C
O-B
CO-
C
PS
VF
1
10.
7
10.
8
10.
6
11.
3
11.
4
10.
8
10.
5
10.
6
12.
2
12.
1
12.
0
12.
7
12.
4
12.
7
11.
5
12.
2
0.
9
9.
87
9.
84
9.
67
11.
1
11.
0
9.
76
9.
45
9.
75
11.
21
11.
1
11.
2
12.
0
11.
9
11.
6
10.
4
11.
23
0.
8
9.
07
8.
77
8.
56
10.
5
10.
6
8.
95
8.
82
8.
82
10.
52
10.
5
10.
2
11.
4
11.
5
10.
2
9.
82
10.
4
0.
7
8.
0
8.
32
8.
06
9.
78
9.
78
8.
09
8.
01
7.
92
9.
56
9.
39
9.
18
10.
3
10.
2
9.
5
9.
01
9.
37
0.
6
6.
97
7.
10
7.
11
9.
04
8.
97
7.
17
7.
11
7.
16
8.
45
8.
49
8.
23
9.
23
9.
45
9.
1
8.
11
8.
7
m
a
60 degree PWM
r
e
ferenc
e
Stepped
w
a
ve ref
erence
PD
POD
APO
D
CO-
A
CO-B
CO-
C
PS
VF
PD
POD
A
PO
D
C
O-
A
C
O-B
CO-
C
PS
VF
1
12.
4
12.
2
12.
3
12.
4
12.
9
12.
5
12.
2
12.
4
10.
8
10.
7
10.
9
11.
8
11.
5
10.
8
10.
7
10.
9
0.
9
11.
4
11.
4
11.
3
12.
3
12.
2
11.
3
10.
4
11.
4
9
.
5
0
9.
79
10.
2
11.
2
11.
2
9.
87
9.
31
10.
8
0.
8
10.
3
10.
3
10.
3
10.
8
11.
5
10.
6
10.
1
10.
3
9
.
0
5
8.
90
9.
02
10.
5
10.
8
8.
90
9.
27
9.
87
0.
7
9.
28
9.
23
9.
15
10.
7
10.
8
9.
85
9.
68
9.
14
8.
28
8.
00
8.
20
9.
90
10.
0
8.
42
8.
77
9.
08
0.
6
7.
91
7.
81
7.
84
10.
2
10.
0
8.
56
8.
97
8.
03
7.
08
7.
02
7.
02
9.
11
9.
18
7.
13
7.
78
7.
90
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Si
m
u
l
a
t
i
o
n an
d
d
S
PAC
E Base
d Im
pl
eme
n
t
a
t
i
on
of
Vari
ou
s PWM St
rat
e
gi
e
s
f
o
r…
(
C
.R. B
a
lamur
ugan)
62
3
Tabl
e
8.
C
F
of
o
u
t
p
ut
v
o
l
t
a
ge
(R
-
p
hase)
o
f
H-t
y
pe
FC
M
L
I
f
o
r
va
ri
o
u
s
val
u
es
of
m
a
(R
-l
o
a
d,
by
si
m
u
l
a
t
i
on
)
m
a
Sinusoidal refer
e
n
ce
Third har
m
onic i
n
jection
refe
renc
e
PD
POD
APO
D
CO-
A
CO-B
CO-
C
PS
VF
PD
POD
A
PO
D
C
O-
A
C
O-B
CO-
C
PS
VF
1
1.
420
1.
379
1.
603
1.
353
1.
5 1.
555
1.
619
1.
443
1.
377
1.
404
1.
491
1.
283
1.
395
1.
425
1.
573
1.
48
0.
9
1.
671
1.
504
1.
530
1.
567
1.
472
1.
772
1.
798
1.
507
1.
311
1.
684
1.
464
1.
416
1.
453
1.
560
1.
732
1.
59
0.
8
2.
050
1.
870
1.
880
1.
476
1.
471
1.
810
1.
927
1.
689
1.
416
1.
542
1.
529
1.
561
1.
504
1.
774
1.
843
1.
82
0.
7
1.
875
1.
899
1.
836
1.
758
1.
738
1.
953
2.
122
1.
931
1.
600
1.
810
1.
873
1.
519
1.
696
1.
905
2.
008
1.
93
0.
6
2.
266
2.
183
2.
095
1.
847
1.
694
2.
078
2.
390
2.
067
1.
751
1.
802
1.
834
1.
641
1.
830
1.
989
2.
231
2.
08
m
a
60 degree PWM
r
e
ferenc
e
Stepped
w
a
ve ref
erence
PD
POD
APO
D
CO-
A
CO-B
CO-
C
PS
VF
PD
POD
A
PO
D
C
O-
A
C
O-B
CO-
C
PS
VF
1
1.
225
1.
229
1.
227
1.
266
1.
310
1.
224
1.
385
1.
395
1.
388
1.
383
1.
477
1.
271
1.
530
1.
611
1.
691
1.
70
0.
9
1.
385
1.
429
1.
318
1.
292
1.
254
1.
353
1.
673
1.
421
1.
578
1.
705
1.
539
1.
589
1.
553
1.
722
1.
718
1.
40
0.
8
1.
611
1.
524
1.
699
1.
555
1.
504
1.
443
1.
831
1.
436
1.
657
1.
719
1.
718
1.
514
1.
462
2.
101
1.
682
1.
50
0.
7
1.
799
1.
744
1.
715
1.
523
1.
453
1.
705
1.
735
1.
652
1.
799
1.
875
2.
256
1.
494
1.
61
1.
912
1.
812
1.
83
0.
6
2.
212
1.
907
2.
334
1.
647
1.
53
1.
775
1.
694
2.
129
2.
090
2.
435
2.
378
1.
964
1.
764
2.
089
2.
275
2.
02
6.
CO
NCL
USI
O
NS
Based
on
th
e research
on
h
ybrid
m
u
lti
le
v
e
l in
v
e
rter to
po
log
y
, th
is
work
p
r
esen
ted
a g
e
n
e
ral
m
u
l
tilev
e
l h
y
b
r
id
to
po
log
y
.
Accord
ing
to
th
e con
t
ro
llab
l
e freedo
m
s g
i
v
e
n
in
th
is g
e
neral h
y
b
r
i
d
top
o
l
o
g
y
,
sev
e
ral
n
e
w
h
ybrid
top
o
l
og
ies m
a
y
b
e
co
nstru
c
ted
,
wh
ich
enrich
es th
e m
u
lt
ile
v
e
l in
v
e
rter t
o
po
log
y
co
llectio
n
.
In
H-typ
e
FCMLI with
R
-
lo
ad it is in
ferred th
at b
i
po
lar
COPW
M
-
C pro
v
i
d
e
s
o
u
t
p
u
t
with
rel
a
t
i
v
el
y
l
o
w di
st
ort
i
o
n f
o
r 6
0
de
gree
refe
re
nce an
d bi
pol
a
r
C
O
P
W
M
-
C
s
t
rat
e
gy
i
s
fo
un
d t
o
pe
rf
o
r
m
b
e
t
t
e
r
si
nce i
t
p
r
o
v
i
d
es rel
a
t
i
v
el
y
hi
ghe
r
fu
n
d
am
ent
a
l
R
M
S out
pu
t
vol
t
a
ge
f
o
r
T
H
I
refe
re
nce. T
h
e
hy
bri
d
t
o
p
o
l
ogy
i
s
si
m
u
lated
u
s
ing
MATLAB
-
SIMULINK and
th
en
im
p
l
e
m
ented i
n
real time using
dSPACE. T
h
e
results are
satisfacto
r
y.
REFERE
NC
ES
[1]
A.L. Ba
ts
chaue
r
,
et al
.,
“Thr
ee-Phase H
y
br
i
d
Multilev
e
l In
verter Bas
e
d on Half-Bridge
Modules”,
IEEE
Transactions on
Indus
trial Electronics
, vo
l. 59, n
o
. 2
,
pp
. 668-67
8, 2012
.
[2]
Xia Changliang Xia,
et al
.,
“Neu
tral-po
i
nt poten
tial balancing of three-
level inverters in direct-d
riv
e
n wind ener
g
y
conversion s
y
stem”,
IEEE Transactions on
En
ergy Conversion,
v
o
l. 26
, no
.1, pp.
18 – 29
, 2011
.
[3]
R. Davoodnezhad,
et al.
,
“
A
Novel Thre
e-Lev
e
l
Hy
s
t
eres
is
Current Regula
tion
S
t
rateg
y
for Thr
ee-P
h
as
e Thre
e-
Level Inv
e
rters”,
IEEE Transactions
on Power
Electronics
, vo
l. 2
9
, no
. 11
, pp
.
61
00 – 6109
, 2014
.
[4]
J. Ewanchuk,
an
d J. Salm
on, “Three-l
i
m
b
coupl
ed operati
on for
parall
el m
u
lti-
l
e
vel thr
ee-ph
ase voltage source
d
inverters”,
IEEE Transactions on
Industrial
Electronics,
vol. 60
,
no. 5
,
pp
. 1979
–
1988, 2013.
[5]
A. Ghazanf
a
ri
,
et al
.,
“
S
im
ple Voltage
Bal
a
n
c
ing Approa
ch
for CHB Multil
evel
Invert
er C
onsidering Low
Harmonic Content Based on
a Hy
brid
Optimal
Modulation Str
a
teg
y
”,
IEEE Tr
ansactions on Power Delivery
,
vo
l
.
27, no
. 4
,
pp
. 21
50-2158, 2012
.
[6]
R. Gupta,
et
al.
,
“Multiband h
y
steresis m
odulat
ion and swit
chi
ng char
act
erizat
ion for sliding-
m
ode-controll
ed
cas
cad
ed m
u
lt
ile
vel
invert
er”
,
IEEE Transactions
on
Industrial Electronics
, vo
l. 5
7
, no
. 7
pp. 2344
– 2353
, 2010
.
[7]
K. Hasegawa
an
d H. Akagi, “A
Ne
w Dc-Voltag
e
-Balancing C
i
r
c
uit In
cluding A
Single Coupled
Inductor For
A
F
i
ve-Lev
el Diod
e-Clam
ped PWM Inverter”,
IEEE Transactions on Indus
trial Applications
, vol.
47, no. 2, pp
. 84
1
– 852, 2011.
[8]
Jin W
a
ng and D.
Ahm
a
di, “A Pre
c
ise And Practic
al
Harm
onic Eli
m
i
nation Metho
d
For
Multilev
e
l
Inverters”,
IEEE
Transactions on
Industrial App
lications
, vo
l. 46, n
o
. 2
,
pp
. 857
– 8
65, 2010
.
[9]
Ui-Min Choi,
et
al.,
“New Modulation Str
a
teg
y
To Balan
ce Th
e Ne
utral-Point
Voltage For Thr
ee-Level Neu
t
ral-
Clamped Inverter S
y
stems”,
I
E
EE Transactions
on Energy Conversion
, vol. 29
, n
o
. 1
,
pp
. 91
– 10
0, 2014
.
[10]
Zahzouh Zoub
ir
,
et al.
,
“
A
Ne
w Multilevel A
c
tiv
e Power Filter Us
ing Switches Meticulousl
y
Control
l
ed
”,
International Jo
urnal of
Power
Electronics and
Drive System,
vo
l. 6
,
no
. 1
,
pp
. 16
8-177, 2015
.
[11]
Heru Pratomo,
et al.,
“A Simple
Strateg
y
of
Controlling
a Balanced
Voltag
e
Cap
a
citor
in S
i
ngl
e P
h
as
e F
i
ve-L
eve
l
Inverter
”, vol. 6
,
no.
1, pp. 160-1
67, 2015
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
61
5 – 624
62
4
BIOGRAP
HI
ES OF
AUTH
ORS
C.
R.
Balamuru
gan
was born in 1978 in Kumbakonam. He
h
a
s obtained
B.E
(Electrical and
Electronics) and
M.E (Power
Electron
i
cs and Drives) degrees in 2000 and 2005 respectiv
ely
from Arunai En
gineer
ing Colleg
e
, Tiruv
a
nnamalai a
nd Sath
yab
a
m
a
Universi
ty
, Chennai. He has
been working i
n
the t
each
ing
field for
about
10
y
e
ars. His a
r
eas of int
e
rest
includ
e power
ele
c
troni
cs,
ele
c
t
r
ica
l
m
achin
es a
nd solar en
erg
y
s
y
stem
s. He h
a
s 30 public
ations
i
n
intern
ation
a
l
journals. His re
search pap
e
rs 25 have been pr
esented in va
rio
u
s/IEEE in
terna
tional
/
nat
i
ona
l
conferen
ces
.
Cu
rrentl
y
,
h
e
is
working as
As
s
i
s
t
a
n
t Professor in
the Department o
f
EEE, Arunai
Engineering Co
llege, Tiruvann
amal
ai.
He
is
a
li
fe m
e
m
b
er of In
strument Society
of
India and
Indian Society for Techn
i
cal Edu
cati
on. Contact
number-
+91-989452
2351. E-mail:
crbalain2010@g
m
ail.com.
S.P. Natarajan
was born in 1
955 in Chidambaram.
He has obtained B
.
E
(Electrical
and
Electronics) and
M.E (Power S
y
stems) degrees
in 1978 and 1984 respectively
fr
om Annamalai
Universit
y
secu
ring distinc
tion
and then Ph.D
in Power Electronics from Anna University
,
Chennai in
2003
. He is curr
ently
Professor and H
ead of Instrumen
t
ation
Engin
eering Department
at Annamalai University
where
he has put in 31
y
ears of service. He produced eight Ph.Ds and
presently
guid
i
n
g
eight Ph.D Scholars and so
far guided eighty
M.E st
ude
nts. His re
se
a
r
c
h
papers 66 have
been presented
in various/IEEE
interna
tiona
l/na
tional
confer
enc
e
s in Mexico,
Virginia, Hong
Kong, Malay
s
ia, I
ndia, Singapor
e and
Korea. He
has 20 publications in national
journals and 43
in intern
ational
journals. His re
s
earch
inter
e
sts are in modeling
and contro
l of
DC-DC converters and m
u
ltiple connect
ed power
electroni
c co
nverters, con
t
rol
of perm
anent
magnet brushles
s DC motor, embedded contro
l fo
r multilev
e
l
inverters and m
a
trix
conver
t
ers
etc
.
He is
a lif
e m
e
m
b
er of I
n
s
t
rum
e
nt S
o
cie
t
y
o
f
Indi
a and
Indian S
o
ci
et
y for Te
chnic
a
l
Education. Cont
act
num
ber- +91
-
9443185211. E
m
ail: spn_ann
am
alai @r
ediffm
ail
.
com
.
T.
S.
Anandhi
obtain
e
d th
e B.
E.
(El
ectron
i
cs
an
d Ins
t
rum
e
ntat
io
n), M
.
E
(P
roces
s
Control and
Instrumentation)
and Ph.D degrees
from Anna
ma
l
a
i
Uni
v
e
r
sity
She
is
pres
entl
y a
Reader in th
e
Department of I
n
strumentation
E
ngineering, An
namalai Univ
ersity
where she has put in a total
service of 16
y
ears. Her r
e
search
inter
e
sts are in
modeling and
co
ntrol of multiple
connected DC-
DC convert
ers and m
u
ltil
evel
in
verters.
B.
Shant
hi
wa
s born in 1970
in Chidambaram. She
has o
b
tain
ed B.E (Electronics and
Instrumentation)
and M.Tech (I
nstrument Tech
nolog
y
)
from Annamalai Univ
er
sity
and Indian
Institute of Science, B
a
ngalo
re i
n
1991 and 1998
respect
ivel
y
.
She obtained her
Ph.D in Power
Electronics fro
m Annamalai
University
in
2
009.
She
is pr
esently
a Professor in Centr
a
l
Instrum
e
ntation
Service
L
a
borat
or
y of Annam
a
l
a
i Universi
t
y
whe
r
e she h
a
s put
in
a
tota
l serv
ic
e
of 22
y
ears since 1992
.Her r
e
search
pap
e
rs
(30) have been presen
ted
in various/IEEE
intern
ation
a
l/n
at
ional
confer
enc
e
s. She h
a
s 3 public
ations
i
n
nation
a
l
jour
nal and
35 in
intern
ation
a
l jou
r
nals. Her ar
eas
of inter
e
st are
:
modeling, simulation and
inte
lli
gent cont
rol for
invert
ers. Con
t
act num
ber-
+91-
9443185211.
E
m
ail: shan
cisl@
gm
ail.
com
.
Evaluation Warning : The document was created with Spire.PDF for Python.