Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol
.
6
,
No
. 2,
J
une
2
0
1
5
,
pp
. 20
5~
21
5
I
S
SN
: 208
8-8
6
9
4
2
05
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Therm
odynamic modelin
g and Exe
rgy An
alysi
s
of Gas
Turbine
Cycle for Different Boundary conditions
La
la
t
e
ndu Pa
tt
a
n
ay
ak
S
t
eag
Energ
y
S
e
rvices
Ind
i
a
P
v
t.
Ltd,
A-29, S
e
cto
r-16, Noid
a,
UP
, India
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Oct 29, 2014
Rev
i
sed
D
ec 15
, 20
14
Accepted
Feb 20, 2015
In this stud
y
an
exerg
y
an
aly
s
is of
88.71 MW 13
D2 gas turbine (GT) topping
cy
cle is carr
i
ed
out. Ex
erg
y
analy
s
is
based on second law was ap
plied to
the
gas cy
cle
and individual
component
s through a modeling app
r
oach.
The
anal
ys
is
s
hows
t
h
at th
e high
es
t e
x
erg
y
des
t
ru
ctio
n occurs
in
the
com
bus
tion
cham
ber (CC).
In addit
i
on,
t
h
e eff
ects
of
the gas
turb
ine
load an
d
perform
ance v
a
riations
with
a
m
bient tem
p
era
t
ure, com
p
res
s
i
o
n
ratio and
turbine inl
e
t t
e
m
p
erature (TI
T
)
are inves
tig
ate
d
to anal
y
s
e th
e change in
s
y
stem behav
i
or
. The
analy
s
is
shows th
at the
gas turbine
is signific
a
nt
l
y
affec
t
ed b
y
the
am
bient tem
p
er
ature and wi
th i
n
creas
e th
ere is
decre
a
s
e
in
GT power output. The results of the load
variation of the gas turbine show
that a redu
ction
in gas turbine load
res
u
lts
in a decreas
e in
the exe
r
g
y
efficiency
of the
cy
cle as
well as
al
l th
e
components. Th
e
compressor has th
e
larges
t
exerg
y
ef
fici
enc
y
of 92
.8
4% com
p
ared to
the oth
e
r com
p
onent of th
e
GT and combustion chamber is the highe
st source of exerg
y
destruction o
f
109.89 MW at 1
00 % load
condition. With
incr
ease in
ambient
temperature
both
ex
erg
y
d
e
s
t
ruction
rat
e
and exerg
y
effi
cien
c
y
decr
eas
es
.
Keyword:
Am
bient te
m
p
erature
Com
b
ined cycle powe
r
plant
Com
p
ression ratio
Efficiency
Exergy
TIT
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Lalaten
d
u
Patt
an
ayak
,
Depa
rt
em
ent
of Sy
st
em
Technol
ogi
es
,
Steag
E
n
ergy Services
India Pvt. Ltd,
A-
29
, Se
ct
or
-
1
6,
N
o
i
d
a,
U
P
,
20
1
3
0
1
,
I
n
di
a.
Em
a
il: la
la_
t
end
u
@red
iffm
ail
.
co
m
1.
INTRODUCTION
C
once
p
t
o
f
e
x
ergy
a
n
al
y
s
i
s
i
n
v
o
l
v
e
s
b
o
t
h
l
a
ws
of t
h
e
r
m
ody
nam
i
cs (fi
rs
t
and sec
o
nd l
a
ws) i
s
a
n
anal
y
s
i
s
t
echn
i
que a
p
pl
i
e
d
on
ene
r
gy
sy
s
t
em
s t
o
i
d
ent
i
f
y
an
d
qua
nt
i
f
y
t
h
e am
ount
of
t
h
erm
ody
nam
i
c
adve
rsi
t
y
i
n
v
o
l
ved i
n
t
h
e p
r
ocesses a
nd
or
ener
gy
sy
st
em
s. Thi
s
t
echni
q
u
e i
s
use
d
as a pot
e
n
t
i
a
l
t
ool
t
o
eval
uat
e
t
h
e
t
h
erm
a
l
perfo
rm
ance a
n
d
ef
fi
ci
ency
o
f
sy
st
em
an
d c
o
m
pone
nt
s i
n
vol
ve i
n
ener
gy
p
r
ocess
d
u
ri
n
g
desi
g
n
as wel
l
as i
n
ope
rat
i
o
n
phase
. B
y
def
i
ni
t
i
on exe
r
gy
i
s
t
h
e am
ount
of m
a
xim
u
m
wo
rk
p
o
t
e
nt
i
a
l
for a
n
en
erg
y
syste
m
in
relatio
n
to
its en
v
i
ron
m
en
t
th
ro
ugh
re
v
e
rsi
b
le p
r
o
cesses
[1
]. Ex
erg
y
an
alysis q
u
a
n
titativ
ely
det
ect
s an
d e
v
a
l
uat
e
s t
h
e t
h
er
m
ody
na
m
i
c
inefficiencies of the
proce
ss
und
er con
s
id
er
atio
n [2
],
[
3
].
In
recent years
m
a
ny studie
s
have
bee
n
perform
e
d by researche
r
s
to evaluate
the perform
a
nce
of
com
b
ined cycle powe
r pla
n
ts
(CCPPs
) and
its subsystem
s
base
d o
n
c
o
n
cept
o
f
ene
r
gy
and
exe
r
gy
[4
]
-[1
4]
.
B
okst
e
e
n
et
al
. [
15]
per
f
o
rm
ed t
h
e
seco
n
d
l
a
w base
d a
n
al
y
s
i
s
wi
t
h
st
ea
dy
st
at
e t
h
erm
ody
nam
i
c
m
odel
fo
r
KA26 gas t
u
rbine com
b
ined
cycle plan
t
t
o
i
m
prove i
t
s
o
p
e
r
at
i
onal
e
ffi
ci
ency
. A c
o
ncept
of e
x
er
gy
wa
s
use
d
b
y
I.S. Ertesv
ag
et al. [16
]
to
in
v
e
stig
ate the CO
2
cap
tu
re
in
a g
a
s tu
rb
ine p
l
an
t. Also
th
e stud
y in
v
e
st
ig
ates
the effects of change in nat
u
ral gas com
p
osition and am
bi
ent
t
e
m
p
erat
ure
.
Ak
ba
ri
et
al
. [17]
co
nd
uct
e
d a
param
e
t
r
i
c
st
u
d
y
wi
t
h
desi
g
n
param
e
t
e
rs t
o
e
v
al
uat
e
t
h
e
pe
rf
orm
a
nce
of
C
C
PP
usi
n
g e
n
er
gy
a
n
d
exer
gy
conce
p
t
.
Al
i
a
n
d
Am
eri
[
18]
eval
uat
e
t
h
e
s
y
st
em
perf
orm
a
nce
of
gas t
u
r
b
i
n
e
p
o
w
er
pl
a
n
t
f
o
r
di
ffe
re
nt
l
o
a
d
and am
bi
ent
t
e
m
p
erat
ur
e ba
sed
on e
n
ergy, exergy and e
x
ergoeconom
i
c an
alysis. Ebadi and Gorji
-
Bandpy
[1
9]
per
f
o
r
m
e
d t
h
e exe
r
gy
anal
y
s
i
s
of a
11
6 M
W
gas
t
u
r
b
i
n
e p
o
w
er
pl
ant
base
d
on
vary
i
n
g TI
T. The
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 6,
No
.
2,
Ju
ne 20
15
:
205
–
2
15
20
6
ap
p
lication
of
ex
erg
y
analysis to
d
e
term
in
e th
e irrev
e
rsib
i
lity o
f
CCPP
was
p
r
esen
ted
b
y
Am
eri et al. [2
0
]
.
Ghazi
kha
ni
et
al
. [2
1]
i
nvest
i
g
at
e t
h
e pe
rf
or
m
a
nce of
gas tu
rb
in
e air bo
t
t
o
m
i
ng com
b
ined cycle base
d on
exergy analysis. The result s
h
ows that the s
econd law e
ffi
ciency of
g
a
s tu
rb
in
e
with
air b
o
tto
m
i
n
g
cycle is 6
%
m
o
re that the second law e
fficiency of sim
p
le
gas
t
u
rbi
n
e kee
p
i
n
g sa
m
e
i
n
t
a
ke ai
r tem
p
erat
ur
e fo
r
bot
h t
h
e
cycle. An a
d
vanced e
x
ergy
analysis is
perform
e
d by
Sol
t
ani et al.
[22] for
a
CCPP co
nf
igu
r
ation o
f
an
ext
e
r
n
al
l
y
fi
red sy
st
em
, i
n
t
e
grat
e
d
wi
t
h
bi
om
ass gasi
fi
cat
i
on. They
co
ncl
u
ded t
h
at
t
h
e pe
rf
orm
a
nce of t
h
e
cy
cl
e can be i
m
prove
d by
i
m
provi
n
g
t
h
e
per
f
o
r
m
a
nce o
f
heat
e
x
cha
n
g
e
r t
h
ou
g
h
t
h
e
m
a
xim
u
m
rat
e
of e
x
er
gy
dest
r
u
ct
i
o
n
oc
curs at
t
h
e co
m
bust
i
on cha
m
ber.
W
a
n
g
a
nd
Lv
[
23]
i
n
v
e
st
i
g
at
e t
h
e M
7
0
1
F
gas t
u
r
b
i
n
e ba
se
d
com
b
i
n
ed cy
cl
e pl
ant
t
o
i
m
pro
v
e t
h
e se
r
v
i
ce l
i
f
e of
h
o
t
end c
o
m
pone
n
t
s usi
n
g eq
ui
v
a
l
e
nt
op
erat
i
o
n
t
i
m
e
anal
y
s
i
s
m
e
t
hod.
Al
-
D
oo
ri
[
2
4]
pe
rf
orm
e
d a
n
e
x
er
get
i
c
a
n
al
y
s
i
s
for
a B
a
i
j
i
pl
a
n
t
ga
s t
u
rbi
n
e
of
capaci
t
y
15
9
M
W
with effe
ct of cycle te
m
p
erature. The result sh
ows
that the TIT has an im
pa
ct on both exergeti
c
efficiency a
nd
exergy dest
ru
c
t
i
on o
f
t
h
e
pl
a
n
t
.
E
g
wa
re an
d
Oba
n
or
[2
5]
p
r
esent
e
d t
h
e
us
e of e
x
er
gy
an
al
y
s
i
s
fo
r eval
uat
i
n
g
t
h
e pe
rf
orm
a
nce of
Om
ot
osh
o
Phase
I
gas t
h
erm
a
l
power
pl
ant
.
R
e
sul
t
s
ob
t
a
i
n
ed s
h
o
w
t
h
at
t
h
e
g
a
s tu
rb
in
e
h
a
d
th
e larg
est
ex
erg
y
efficien
cy o
f
96
.17%, wh
ile th
at o
f
th
e to
tal p
l
an
t was 41
.8
3%, th
e
co
m
b
u
s
tio
n cha
m
b
e
r
h
a
d th
e
larg
est ex
erg
y
d
e
stru
ctio
n of
5
4
.15
%
wh
ile th
at of t
h
e to
tal
p
l
an
t
was
58
.17
%
.
In th
is st
u
d
y
t
h
e ex
erg
e
tic an
alysis is p
e
rfo
r
m
e
d
fo
r a
88
.7
1 M
W
GT
cycle th
r
oug
h
a m
o
d
e
lin
g
app
r
oach
. E
x
er
gy
anal
y
s
i
s
fo
r
t
h
e
gas cy
cl
e
i
s
carri
e
d
out
t
o
asse
ss t
h
e
pe
rf
orm
a
nce o
f
d
i
ffere
nt
c
o
m
ponen
t
an
d
find
ou
t
areas of ex
ergy d
e
stru
ction
at d
e
sign
and o
f
f d
e
si
g
n
co
nd
itio
n. Ex
erg
y
d
e
stru
ction o
f
th
e
com
b
ined cycle plant co
mp
on
en
t is q
u
a
n
tified
and
the effect
of
bo
und
ar
y cond
itio
n
s
lik
e amb
i
ent
te
m
p
erature
,
c
o
m
p
ression rat
i
o and
TIT
on t
h
e
perf
orm
a
nce of
gas turbine cycle is inve
s
tigated.
2.
DESC
RIPTI
O
N OF GA
S TURBI
N
E C
YCLE
Fi
gu
re
1 s
h
o
w
s a sc
hem
a
t
i
c di
ag
ram
of
GT
13
D
2
m
a
chi
n
e
wi
t
h
10
0%
out
put
(8
8.
71 M
W
)
at
a
m
bient te
m
p
erature
of 27
o
C and air pre
s
s
u
re at com
p
ressor inlet 1.
0
03
ata. The conve
rsion of
heat re
leased
by burning fuel into
m
echanical en
ergy in a gas turbi
n
e is achieved
by first com
p
ressing air in
an air
com
p
resso
r, t
h
en i
n
ject
i
n
g a
n
d b
u
r
ni
ng
f
u
el
at
(i
deal
l
y
) co
nst
a
nt
pres
su
re
, an
d t
h
e
n
e
x
p
a
ndi
ng
t
h
e
hot
gas i
n
t
h
e gas t
u
r
b
i
n
e
.
C
o
m
bust
i
o
n
pr
o
duct
e
n
t
e
rs
t
h
e GT at
t
e
m
p
erat
ure
of
1
0
05
o
C and
pr
essu
r
e
of
11
.66
ata. A
t
ful
l
l
o
ad t
h
e G
T
pr
od
uce 8
8
.
71 M
W
.
The
waste heat in flue gas exit
from GT at
te
m
p
e
r
ature
of 507.8
o
C.Th
e
turbine provi
des the necessa
ry power
t
o
operate the c
o
m
p
ressor.
Wh
atever
power i
s
left is used
as the
m
echani
cal
ou
t
put
o
f
t
h
e e
n
gi
ne. T
h
i
s
t
h
e
r
m
ody
nam
i
c
c
y
cle is called
as topping cycle. To re
pre
s
e
n
t the
phy
si
cal
pa
ra
m
e
t
e
rs of
w
o
r
k
i
n
g fl
ui
d at
d
i
ffere
nt
st
at
e i
s
m
a
rked as
1,
2,
3…
7 as s
h
o
w
n i
n
Fi
gu
re
1
.
B
a
si
c
assum
p
t
i
on i
s
t
h
at
t
h
e sy
st
em
under st
udy
i
s
i
n
st
eady
s
t
at
e and t
h
e m
echani
cal
e
ffi
c
i
ency
of
t
h
e
G
T
an
d
com
p
resso
r is
99
%.
Fi
gu
re
1.
Sc
he
m
a
t
i
c
di
agram
of
Gas
t
u
rbi
n
e
cy
cl
e
3.
EX
ER
GY
ANA
L
Y
SI
S
Exer
gy
an
al
y
s
i
s
i
s
a
m
e
t
hod
t
h
at
i
s
use
d
f
o
r a
n
al
y
s
i
s
, de
si
gn a
n
d pe
rf
o
r
m
a
nce im
pro
v
em
ent
of
ener
gy
an
d ot
her sy
st
em
s. Furt
herm
ore i
t
can be
use
d
as a tool for analyzing th
e efficient use of e
n
ergy
reso
u
r
ce a
n
d
a
l
so t
o
det
e
rm
ine t
h
e
t
y
pes a
n
d
m
a
gni
t
ude
of
wast
es a
n
d
l
o
sses
occ
u
r
r
i
n
g i
n
t
h
e sy
st
e
m
s [26]
,
[27].
According to the literat
u
re
, tota
l e
x
ergy of a
system
can be di
vi
ded into four
com
pone
nts. T
h
e t
w
o
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Th
ermod
y
na
mi
c mo
d
e
ling
and
Exerg
y
Ana
l
ysis o
f
Ga
s Tu
rb
in
e Cycle f
o
r
Differen
t
… (La
l
a
t
endu
P.)
20
7
im
portant a
r
e t
h
e
physical exergy a
n
d
chem
ical exergy. T
h
e physical exergy
is th
e m
a
x
i
m
u
m
wo
rk
ob
tain
ab
le
b
y
a syste
m
fro
m
i
t
s in
itial s
t
ate th
rou
g
h
rev
e
rsi
b
le pro
cess wh
ile in
teractin
g
with
an
eq
u
ilibriu
m
stat
e. The
chem
ical exergy is the
m
a
xi
m
u
m
work t
h
at
can be
obt
ai
na
bl
e wi
t
h
t
h
e
de
part
ure
of c
h
e
m
i
cal
co
m
posi
t
i
on o
f
th
e system
fro
m
its ch
e
m
ical
equ
ilib
riu
m
. Th
e ch
em
ica
l
ex
erg
y
p
l
ays an
i
m
p
o
r
tan
t
ro
le
o
f
ex
erg
y
an
al
ysis in
t
h
e com
bust
i
o
n p
r
oce
ss. I
n
t
h
i
s
st
u
d
y
,
t
h
e t
w
o
ot
he
r co
m
p
on
en
ts i,e k
i
netic ex
erg
y
and
po
ten
tial ex
erg
y
are
assum
e
d
t
o
be negl
i
g
i
b
l
e
.
Ap
pl
y
i
ng
t
h
e
f
i
rst
an
d sec
o
n
d
l
a
ws o
f
t
h
erm
ody
na
m
i
cs, the exergy
balanc
e
equation for steady
state
fl
o
w
of st
ream
[2
8]
-[
3
1
]
i
s
gi
v
e
n i
n
(
1
)
.
∑
1
Q
∑
m
e
W
∑
m
e
E
(1
)
whe
r
e
∑
1
is th
e rate o
f
ex
erg
y
tran
sfer
at
tem
p
erature T,
a
nd the
subscri
p
ts
and
de
not
e
in
lets and ou
tlets, resp
ectiv
el
y.
is
th
e
w
o
rk
r
a
te
ex
c
l
ud
in
g th
e
f
l
ow
wo
rk
. Th
e e
x
erg
y
tr
an
sf
e
r
r
a
te
s
a
t
in
lets and
o
u
tlets are
d
e
no
ted resp
ectiv
ely as,
a
n
d
.
The total e
x
ergy,
physical e
x
ergy, s
p
eci
fic
exergy a
n
d che
m
ical exergy
are
eval
uated usin
g (2
), (3
), (4
)
a
n
d
(5
) respectivel
y
.
E
E
E
(
2
)
E
m
e
=
m
h
h
T
s
s
(
3
)
e
= specific e
x
e
r
gy =
hh
T
s
s
(4
)
w
h
er
e
and
denote
the
s
p
ec
ific ent
h
alpy a
n
d s
p
ecifi
c entr
op
y r
e
sp
ecti
v
ely. Th
e subscr
ip
t
‘0
’
den
o
tes t
h
e re
f
e
rnce
state. Re
fere
nce
pres
su
re (
P
re
f)
a
n
d t
e
m
p
erature (T
ref) a
r
e ta
ke
n r
e
spect
i
v
el
y
as 1.
00
3
ata and 27
o
C.
E
m
e
(5
)
whe
r
e
is s
p
ecific chem
ical exergy
(m
ixture
) [4]
a
n
d
can
be
eval
uat
e
d usi
n
g (6
),
e
∑
X
e
R
T
∑
X
ln
X
G
(
6
)
whe
r
e
is
Gibb
s
free en
erg
y
wh
ich is a neg
lig
ib
le
qu
antity in
a g
a
s
mix
t
u
r
e
op
erat
ed
at
low
press
u
re. So for the calculation of fuel
exe
r
g
y
,
t
h
e expre
ssi
on i
n
(
6
)
doe
s not
h
o
l
d
g
o
o
d
.
Th
us, t
h
e f
u
l
e
exer
g
y
can be
calc
u
lated using (7)
as
the
ratio
of fue
l
exergy
to
lo
w
e
r
heating
val
u
e o
f
f
u
el
(LH
V
)
[
4
]
,
[2
0]
,
[3
2]
.
φ
(
7
)
w
h
er
e
i
s
fu
el
e
x
er
gy
.
F
o
r
t
h
e
m
a
jori
t
y
of
gas
e
ou
s
fu
el
, t
h
e
val
u
e
of
is
norm
ally close t
o
1. For
t
h
e f
u
el
l
i
k
e m
e
t
h
ane,
fal
l
o
wi
ng
rel
a
t
i
o
nshi
p
can
be
use
d
as
gi
ve
n
by
Kot
a
s [
4
]
:
φ
1.06
φ
0.985
Fo
r gaseou
s fuel with
co
m
p
o
s
itio
n
, th
e
ratio
can
be cal
c
u
l
a
t
e
d u
s
i
n
g (
8
) [
4
]
,
[1
3]
.
φ
1
.033
0
.
0169
.
(8
)
The exe
r
get
i
c
effi
ci
ency
can
be eval
uat
e
d
usi
n
g t
h
e rel
a
t
i
ons
hi
p o
f
b
o
t
h
pr
o
duct
an
d
fuel
fo
r t
h
e
syste
m
. The product exe
r
gy
represe
n
ts the desire
d
res
u
lt produce
d
by the system
and the
fuel exergy
rep
r
ese
n
t
s
t
h
e reso
u
r
ces ex
pe
nde
d t
o
gene
ra
t
e
t
h
e pro
d
u
ct
.
Thus the exe
r
getic efficiency is the ratio bet
w
een
pr
o
duct
exe
r
gy
and f
u
el
exe
r
g
y
[28]
, [
3
3]
, [3
4]
as gi
ve
n i
n
(
9
)
.
The e
x
er
gy
effi
ci
ency
an
d
exer
gy
dest
r
u
ct
i
o
n
of
al
l
ot
he
r i
n
d
i
vi
dual
c
o
m
p
o
n
ent
s
o
f
gas cy
cl
e are s
h
o
w
n i
n
Ta
bl
e
1.
Ɛ
(
9
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 6,
No
.
2,
Ju
ne 20
15
:
205
–
2
15
20
8
whe
r
e
is th
e
rate at wh
ich
fu
el is sup
p
lied and
is th
e
p
r
od
uct g
e
n
e
rated.
Tabl
e
1. T
h
e
e
x
er
gy
dest
r
u
ct
i
o
n
rat
e
a
n
d e
x
e
r
gy
e
ffi
ci
ency
equat
i
o
ns
f
o
r
GT c
o
m
pone
nt
s
Co
m
ponent
E
x
er
gy
destr
u
ction (
)
Exergy ef
f
i
ciency (
Ɛ
)
4.
RESULTS
A
N
D
DI
SC
US
S
I
ON
Exergy analys
is of a GT toppin
g cycle is prese
n
ted i
n
this section. The e
ffects
of am
bient
t
e
m
p
erat
ure
,
c
o
m
p
ressi
o
n
rat
i
o an
d
TIT
o
n
po
we
r o
u
t
put
,
exer
gy
dest
r
u
c
t
i
on
rat
e
an
d e
x
er
gy
ef
fi
ci
enc
y
are
obt
ai
ne
d
fr
om
t
h
e exe
r
gy
(sec
on
d l
a
w) a
n
al
y
s
i
s
. Fi
g
u
re
2 s
h
ows t
h
e effec
t
of am
bient tem
p
erature on e
x
ergy
destruction rat
e
of gas
cycle com
pone
nt at
100 %
loa
d
c
o
ndition
of
GT
.
W
i
t
h
inc
r
ease i
n
am
bient tem
p
erat
ure
fr
om
0
o
C to
50
o
C
t
h
e
exe
r
g
y
dest
r
u
ct
i
o
n
r
a
t
e
of c
o
m
p
res
s
or
, c
o
m
bust
i
o
n c
h
am
ber an
d
gas t
u
r
b
i
n
e
de
creases.
The m
a
xim
u
m
exer
gy
dest
r
u
ct
i
on t
a
kes
pl
ace
i
n
c
o
m
bust
i
o
n
cham
ber f
o
l
l
o
wed
by
gas
t
u
r
b
i
n
e.
Fi
gu
re
2.
Va
ri
at
i
on
of
exe
r
gy
dest
r
u
ct
i
o
n
rat
e
o
f
c
o
m
pone
n
t
s at
di
f
f
ere
n
t
a
m
bi
ent
t
e
m
p
erat
ure
fo
r
1
0
0
% l
o
a
d
.
Fi
gu
re 3
pres
ent
s
t
h
e va
ri
at
i
on o
f
exe
r
g
y
effi
ci
ency
o
f
com
pone
nt
s
wi
t
h
cha
nge
i
n
am
bi
ent
te
m
p
erature
at 100 %
loa
d
.
There
is
a
significant change
in e
x
ergy effi
c
i
ency
o
f
c
o
m
bust
i
o
n c
h
am
ber
wi
t
h
0
20
40
60
80
100
120
C
o
m
p
ressor
C
om
bust
i
on cham
ber
G
as t
u
rbi
n
e
Exergy
dest
ruct
i
on (M
W
)
Ta
m
b
= 0°C
Ta
m
b
=10°C
Ta
m
b
= 20°C
Ta
m
b
= 30°C
Ta
m
b
= 40°C
Ta
m
b
= 50°C
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Th
ermod
y
na
mi
c mo
d
e
ling
and
Exerg
y
Ana
l
ysis o
f
Ga
s Tu
rb
in
e Cycle f
o
r
Differen
t
… (La
l
a
t
endu
P.)
20
9
te
m
p
erature
.
As the am
bient te
m
p
eratur
e inc
r
eases the e
x
ergy efficiency
decr
eases. Th
is
is d
u
e
to
with
rise in
te
m
p
erature t
h
e fuel fl
ow
rate decrease
s
and thus the
total
fuel exergy also re
du
ces. T
h
us the
ove
rall exergy
dest
r
u
ct
i
on a
n
d exe
r
gy
ef
fi
ci
ency
of c
o
m
bust
i
on cham
ber
reduces with
rise in te
m
p
erature
.
At the same tim
e
the exe
r
gy effi
ciency of ga
s t
u
rbine i
n
crea
se
with
rise in
am
b
i
en
t te
m
p
eratu
r
e
fro
m
0
o
C to
30
o
C f
r
om
9
2
.
76
% to 92.92
%
and t
h
erea
fter by furt
he
r inc
r
ease in tem
p
erature e
fficie
n
cy
reduces as
the gas t
u
rbine load
reduce
with
rise in tem
p
erature from
th
e rated
cap
acity. Th
e ex
erg
y
d
e
stru
ctio
n
rate
of th
e
g
a
s turb
in
e
redu
ces
with
rise
in
am
b
i
en
t
te
m
p
eratu
r
e.
As
the t
e
m
p
erature ris
e
the
gas t
u
rbi
n
e loa
d
re
duce
s
and t
h
e turbi
n
e e
x
it
te
m
p
eratu
r
e increases. To
tal ex
erg
y
at g
a
s tu
rb
in
e in
let an
d
o
u
tlet reduces, resu
lting
red
u
ce in
g
a
s tu
rb
in
e
exer
gy
dest
r
u
ct
i
on rat
e
.
Fi
gu
re
3.
Va
ri
at
i
on
of
exe
r
gy
effi
ci
ency
of
c
o
m
pone
nt
s at
d
i
ffere
nt
am
bi
ent
t
e
m
p
erat
ure
f
o
r
GT
l
o
a
d
10
0
%.
Figure
4
de
pic
t
s the e
ffect
of am
bient te
m
p
erature
on exe
r
gy de
struction
rate and exe
r
gy efficiency
of
GT cycle.
W
i
t
h
inc
r
ease i
n
am
bien
t te
mperat
ure
both e
x
ergy dest
ructi
on
rate a
nd e
x
ergy e
fficiency
of
GT
cycle decrease
s
. Exe
r
gy efficiency decrease
s
c
ont
i
n
u
ousl
y
up t
o
am
bi
ent
t
e
m
p
erat
ure o
f
2
7
o
C
and f
r
o
m
27
o
C
t
o
30
o
C it in
creases
b
y
main
tain
ing
th
e
rated
lo
ad
o
f
8
8
.
71M
W a
nd
fu
rt
he
r dec
r
eas
es wi
t
h
i
n
c
r
eas
e i
n
te
m
p
erature
.
T
h
is indicates that the
best perform
a
nce of the gas cycle
can be
achie
ved i
n
bet
w
ee
n the
t
e
m
p
erat
ure
ra
nge
o
f
2
7
o
C to 30
o
C.
0
10
20
30
40
50
60
70
80
90
100
C
o
m
p
ressor
C
om
bust
i
on cham
ber
G
as t
u
rbi
n
e
Exergy efficiency
(%)
Ta
m
b
= 0°C
Ta
m
b
= 10°C
Ta
m
b
= 20°C
Ta
m
b
= 30°C
Ta
m
b
= 40°C
Ta
m
b
= 50°C
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 6,
No
.
2,
Ju
ne 20
15
:
205
–
2
15
21
0
Fi
gu
re 4.
Va
ri
at
i
on of
exe
r
gy
effi
ci
ency
a
n
d exer
gy
dest
r
u
ct
i
on o
f
gas
cy
cl
e
with am
bient
te
m
p
erature
Th
ou
g
h
t
h
e
ga
s t
u
r
b
i
n
e
pr
o
d
u
ces m
a
xim
u
m
po
we
r at
low a
m
bient
te
m
p
erature
bu
t at the sam
e
ti
me
the rate of exe
r
gy de
structi
o
n is high at lower am
bien
t te
m
p
erature. T
h
e high tem
p
erature air leavi
n
g from
co
m
p
ressor
b
e
co
m
e
s h
o
tter
with
th
e h
i
g
h
a
m
b
i
en
t tem
p
e
r
atu
r
e en
tering in
to
t
h
e co
m
b
u
s
tion
ch
am
b
e
r wh
ile
g
a
ses leav
ing
fro
m
co
m
b
u
s
tion
ch
am
b
e
r are also
at h
i
g
h
e
r te
m
p
eratu
r
e th
ereb
y redu
cing
th
e irrev
e
rsi
b
ility.
Fi
gu
re 5 s
h
ow
s t
h
e cor
r
es
po
ndi
ng t
e
m
p
erat
ure-e
n
t
r
o
p
y
(
t
-
s) dia
g
ram
of the gas turbi
n
e cycle at diffe
rent
a
m
b
i
en
t te
m
p
eratu
r
e.
W
ith
rise in
a
m
b
i
en
t tem
p
eratu
r
e th
e co
m
p
ression
ou
tlet te
m
p
eratu
r
e rises th
is is d
u
e
t
o
redu
ction
in air flow.
Fi
gu
re
5.
T-
S
d
i
agram
of
gas t
u
r
b
i
n
e
cy
cle at diffe
re
nt am
bie
n
t tem
p
erature
130
132
134
136
138
140
142
144
146
26.5
27
27.5
28
28.5
29
29.5
30
30.5
0
1
02
03
04
05
06
0
Exergy
dest
ruct
i
on (M
W
)
Exergy efficiency
(%)
Ta
m
b
(°C)
Exergy
efficiency (%)
Exergy
destruction
(MW)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Th
ermod
y
na
mi
c mo
d
e
ling
and
Exerg
y
Ana
l
ysis o
f
Ga
s Tu
rb
in
e Cycle f
o
r
Differen
t
… (La
l
a
t
endu
P.)
21
1
The e
x
er
gy
de
st
ruct
i
o
n an
d e
x
er
gy
effi
ci
e
n
c
y
of va
ri
o
u
s
p
l
ant
com
pone
n
t
s are sh
ow
n i
n
Fi
g
u
re
6
and
Fi
gu
re
7 f
o
r vari
o
u
s gas t
u
r
b
i
n
e
l
o
a
d
at refernce tem
p
erature
(Tre
f)
of
27
o
C and
pressu
re (
P
r
e
f)
of
1
.
00
3
ata. Th
e resu
lt
sh
ows th
at th
e
co
m
p
ressor
h
a
s th
e larg
est
e
x
ergy e
fficiency
of
92.8
4% c
o
m
p
ared to t
h
e
othe
r
com
pone
nt
of
t
h
e GT an
d co
m
bust
i
on cha
m
ber i
s
t
h
e hi
g
h
est
so
urce
of
exer
gy
dest
r
u
c
t
i
on o
f
1
0
9
.
8
9
M
W
at
1
0
0
% lo
ad
con
d
ition
.
It is also
shown
t
h
at th
e ex
erg
y
destru
ctio
n
rate in
creases with
in
crease in
lo
ad
form
5
0
% to
10
0 %.
Fi
gu
re
6.
Exe
r
gy
de
st
ruct
i
o
n
of
com
p
o
n
ent
s
at
va
ri
o
u
s l
o
ad
Fi
gu
re
7.
Exe
r
gy
ef
fi
ci
ency
o
f
c
o
m
pone
nt
s a
t
vari
ous
l
o
a
d
Figure
8 s
h
ows
the effect of a
m
bient te
m
p
erature
on
gas cy
cle power
output an
d e
x
ergy e
fficiency at
vari
ous load. The efficie
n
cy of gas tu
rbi
n
e c
y
cle decreases with increa
se
in am
bient te
mperat
ure as the
powe
r
out
put
of t
h
e gas turbine cycle decreas
e
s
wi
th increase i
n
a
m
bient te
m
p
erat
ure
.
T
h
is may be due to increase
in com
p
ress
or
work at
high te
m
p
er
ature a
n
d
the m
a
ss flow rate reduces.
0
20
40
60
80
100
120
C
o
m
p
ressor
C
om
bust
i
on cham
ber
G
as t
u
rbi
n
e
Exergy
dest
ruct
i
on (M
W
)
Load 50%
Load 75%
Load 100%
0
10
20
30
40
50
60
70
80
90
100
C
o
m
p
ressor
C
om
bust
i
on cham
ber
G
as t
u
rbi
n
e
Exergy efficiency
(%)
Load 50%
Load 75%
Load 100%
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 6,
No
.
2,
Ju
ne 20
15
:
205
–
2
15
21
2
Fi
gu
re
8.
Va
ri
at
i
on
of
gas
cy
cl
e exe
r
gy
e
ffi
ci
ency with am
bient tem
p
erature and loa
d
The effect of T
I
T and com
p
re
ssion ratio on powe
r ou
t
p
ut
and
ove
r al
l
exergy
efficiency of gas cycle
i
s
depi
ct
s i
n
F
i
gu
re 9 at
re
fe
rence t
e
m
p
erat
ure
of
27
o
C.
Exergy efficiency and
p
o
we
r
out
put
o
f
g
a
s
cy
cl
e
increases
with
increase i
n
TIT
and de
c
r
eases
with decrease i
n
com
p
ressi
on
ra
tio
.
An
i
n
crease in
th
e
TIT l
eads
to an inc
r
ease
in the
GT e
x
e
r
gy effi
ciency due to the
fact t
h
at the
GT
t
u
rbine work out
put
i
n
crease
s
. As
the
load inc
r
eases
thus leads to reduction in exergy dest
ru
ct
i
o
n. Th
ere
f
o
r
e, i
t
can be concl
ude
d t
h
at
TIT
i
s
t
h
e
m
o
st
i
m
p
o
r
tant p
a
ram
e
ter in
d
e
sign
ing
th
e
g
a
s turb
i
n
e
cycle due to the decrease i
n
exergy de
structi
o
n and
increase i
n
cyc
l
e exergy efficiency.
Fi
gu
re
9.
Ef
fec
t
of
TIT
an
d c
o
m
p
ressi
on
rat
i
o
on
ga
s t
u
rbi
n
e p
o
we
r
o
u
t
an
d
gas cy
cl
e e
x
e
r
gy
e
ffi
ci
ency
20
30
40
50
60
70
80
90
100
110
0
5
10
15
20
25
30
35
0
1
02
03
0
4
05
06
0
Power out
put
(M
W
)
Exergy efficiency
(%)
Ta
m
b
(°C)
Load 50
%
Load 75
%
Load 100%
Exergy
e
fficie
ncy
Powe
r
output
0
20
40
60
80
100
120
15
20
25
30
35
40
700
800
900
1000
1100
1200
1300
1400
1500
Power
output
(MW)
Exergy
efficiency
(%)
TIT
(°C)
CR=8
CR=10
CR=12
CR=14
CR=16
CR=18
Exergy efficiency
Power output
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Th
ermod
y
na
mi
c mo
d
e
ling
and
Exerg
y
Ana
l
ysis o
f
Ga
s Tu
rb
in
e Cycle f
o
r
Differen
t
… (La
l
a
t
endu
P.)
21
3
5.
CO
NCL
USI
O
N
An
ex
erg
y
an
alysis ap
p
lied
t
o
a pro
cess
o
r
to
to
tal p
l
an
t
g
i
v
e
s
qu
an
titativ
e in
fo
rm
atio
n
th
at how
m
u
ch wor
k
p
o
t
ent
i
a
l
,
or exe
r
gy
i
n
p
u
t
t
o
t
h
e
sy
st
em
und
er
st
udy
has
bee
n
cons
um
ed by
t
h
e pr
ocess
or
pl
ant
com
pone
nts. T
h
e e
x
ergy anal
ysis (lo
ss
of e
x
ergy,
or i
rre
versibility) provi
des qua
n
titative inform
ation of the
syste
m
and process ine
fficien
cy. In
th
is st
u
d
y
th
e ex
erg
e
tic an
alysis
is
perform
e
d for
a 13D2
GT machine.
The e
ffect
of am
bient te
mperat
ure,
co
m
p
ressi
on
ratio and
TIT
o
n
th
e e
x
ergy e
fficiency a
n
d exe
r
gy
dest
r
u
ct
i
o
n
of
gas
t
u
r
b
i
n
e
cy
cl
e and
o
n
i
ndi
vi
d
u
al
c
o
m
pone
nt
i
s
anal
y
zed.
The
res
u
l
t
s
evi
d
e
n
t
t
h
at
con
s
i
d
era
b
l
e
a
m
ount
of exe
r
gy
dest
r
u
ct
i
o
n occu
r i
n
t
h
e c
o
m
bust
i
on cha
m
ber. Thi
s
m
a
y
be due t
o
hi
g
h
er f
u
el
exergy and c
h
e
m
ical reactions
of
fuel
with air, and
heat trans
f
er ta
kes
place inside the
com
bustion c
h
a
m
ber.
The e
x
ergy efficiency of
gas t
u
rbine i
n
creas
e with
rise in
am
b
i
en
t te
m
p
eratu
r
e
fro
m
0
o
C to
30
o
C from
9
2
.
76
% to 92.92
%
and t
h
erea
fter by furt
he
r inc
r
ease in tem
p
erature e
fficie
n
cy
reduces as
the gas t
u
rbine load
redu
ce
with
ri
se in
tem
p
eratu
r
e fro
m
th
e rated
cap
acity. The
be
st pe
rform
a
nce of t
h
e gas
cycle ca
n
be
achieve
d i
n
between the tem
p
er
atu
r
e
r
a
ng
e of
2
7
to
30
o
C.
REFERE
NC
ES
[1]
H. Kurt, Z. R
e
c
e
b
li and E
.
Gredi
k
, “
P
erform
ance anal
ys
is
of open
c
y
cl
e gas
turbin
e
s
”,
Int J En
er
gy
Res
, vol. 33, no.
2, pp
. 285–94
, 2
009.
[2]
A.
Cihan,
O.
Hac
ı
haf
ı
zoglu
and K. Kahveci, “Energ
y
–
exerg
y
an
al
y
s
is and
modernization suggestions for a
com
b
ined-c
yc
le
power
plan
t”
,
In
t
J
Ener
gy
R
e
s
, v
o
l. 30
, pp
. 115–1
26, 2006
.
[3]
M. Ameri, P. Ahmadi and A.
Hamidi, “Energ
y
,
exerg
y
and
exerg
o
economic
analysis of a steam
po
wer plan
t (a case
stud
y
)
”,
In
t J En
er
gy
R
e
s
, vo
l. 33
, pp
. 499–512
, 2
009.
[4]
T. Kot
a
s,
The exergy method
of thermal plant an
alysis
,
in Butter
worths, London
, 1985.
[5]
M. Moran
and H
.
Shapiro
,
Funda
mentals of Engin
eering Thermod
y
namics
(4th
ed
n), New York:
Wiley
,
2000.
[6]
D. Sue and C. Chuang, “Eng
ineer
ing Design
and Ex
erg
y
Anal
y
s
is
for C
o
m
bustion Gas Turbine B
a
sed
P
o
werGeneratio
n S
y
s
t
em
”
,
Ener
gy
, vo
l. 29, pp. 1
183-1205, 2004
.
[7]
T.K. Ibr
a
him
an
d M
.
Rahm
an,
“
E
ffectiv
e P
a
ra
m
e
ters
on P
e
rfo
rm
ance of M
u
lt
i
p
res
s
u
re Com
b
ined C
y
cl
e P
o
wer
P
l
ants
”,
Ad
vanc
es
in M
echan
ica
l
Eng
i
neer
ing
, p
p
. 1-13
, 2014
.
[8]
S. Kaushika, V. Redd
y
a
a
nd S
.
K. T
y
agi
,
“
E
nerg
y and exerg
y
anal
ys
es
of therm
a
l
power plants
: A review”
,
Ren
e
w.
Sust. En
erg.
Rev.
, vol. 15, pp. 18
57–1872, 2011
.
[9]
T.
K.
Ibrahim,
M.
Rahman and A.N.
Abdalla, “Optimum Gas Turb
ine Confi
guratio
n for Improving
the performance
of Com
b
ined C
y
cle
P
o
wer P
l
an
t”
,
Procedia
Engin
eering
, vol. 15
,
pp. 4216-4223
,
2011.
[10]
S. Boonnasa an
d P. Nam
p
rakai
,
"Sensitivit
y
an
al
y
s
is fo
r th
e capaci
t
y
im
provem
e
nt of a
com
b
ined cy
cl
e power
plant(100-600M
W),"
Applied Th
ermal Engin
eering
, vol. 28
, no
. 1
4
-15, pp
. 1865–
1874, 2008
.
[11]
T. Sriniv
as, A.V
.
S.S.K.S. Gupta
and
B.V. R
e
dd
y, “
T
herm
od
y
n
a
m
ic m
odeli
ng a
nd optim
iza
tion
of m
u
lti-pressure
heat recover
y
steam gener
a
to
r in com
b
ined
power
c
y
c
l
e
”
,
Journal of
Scientific
and
Industrial
Resea
r
ch
, vol. 67
, no
.
10, pp
. 827–834
, 2008.
[12]
V.S. Redd
y
,
S.C
.
Kaushik,
S
.
K.
T
y
agi and N
.
L.
P
a
nwar, “
A
n Approach to Anal
ys
e Energ
y
and E
x
erg
y
Ana
l
y
s
is
o
f
Therm
a
l Power
Plants: A R
e
vie
w
”,
Smart Grid
and Ren
e
wable
Energy
, vol. 1
,
p
p
. 143-152
, 201
0.
[13]
P. Ahmadi and I. Dincer
, “Ther
m
ody
n
a
mic analy
s
is and thermoeconomic optimiz
ation of a dual pressure combined
cy
cle power plant with a
supplementar
y
f
i
ring u
n
it”,
Energy Co
nversion and Management
, vo
l.
52, p. 2296–230
8,
2011.
[14]
Lail
a M
.
F
a
rag
,
“
E
nerg
y and
Ex
erg
y
Anal
ys
es
o
f
Eg
ypt
i
an
C
e
m
e
nt Ki
ln Plan
t
W
ith Com
p
lete
Kiln Gas Dive
rsion
through b
y
Pass
”,
In
ternational
Journal of Ad
va
n
ces in
App
lied
Scien
ces(
I
JAAS)
, vol. 1
,
no
. 1
,
pp
. 35-44
, 2012
.
[15]
S.Z. Bokste
en, J.
P. Buijten
e
n and
D.v.d. Vech
t.
A
Holistic Approa
ch to GTCC Oper
ational Efficien
cy Improvement
Studies.
in Proceedings of ASME Turbo
Expo 2
014: Turbin
e
Technical Conf
erence
and Exposition, Düsseldorf
,
German
y
,
2014.
[16]
I.S
.
Ert
e
s
v
ag, H.
M
.
Kvam
s
d
al and O. Bolland, “
E
xerg
y
anal
ysis o
f
a gas-turbine c
o
m
b
in
ed-c
ycl
e
power plant with
precombustion CO2
captur
e
”,
Ene
r
gy
, vo
l. 30
, p
p
. 5–39
, 2005
.
[17]
M. Akbari, S.M.S. Mahmoudi,
M. Yari and M.A. Rosen,
“Energ
y
and Ex
erg
y
Analy
s
es of a New Combined C
y
cle
for Producing Electr
i
city
and Desalinated
Water
Using Geothermal Energ
y
”,
Sustainability
, vol. 6, pp. 1796-1820,
2014.
[18]
A. Mousafarash
and M
.
Ameri, “Exerg
y
and
exergo-econom
ic based
analy
s
is
of a g
a
s turb
ine powergen
e
ratio
n
s
y
s
t
em
”,
Journa
l of Power
Tech
nologies
, vol. 93
, no
. 1
,
pp
. 44-5
1
, 2013
.
[19]
M
.
J
.
Eb
adi
and
M
.
Gorji-Bandp
y,
“
E
xerg
eti
c
an
al
y
s
is
of g
a
s
tur
b
ine p
l
ants
”
,
In
t.
J.
E
xer
gy
, vol.
2, no. 1, pp. 31-
39
,
2005.
[20]
M. Ameri, P. A
h
madi and S. K
h
an
mohammadi, “Exerg
y
analy
s
is of a
420MW combined cy
cle p
o
wer plant”,
Int J
Energy Res
, vol. 32, pp. 175–83,
2008.
[21]
M. Ghazikhani,
H. Takdehgh
an and M.A. Shay
egh.
Exergy
Analysis of Gas
Turbine Air- Botto
m
ing Combined
Cycl
e for Diffe
rent Environme
n
t Air Temperature.
in Proceedings of 3rd In
ternational Ener
g
y
, Exerg
y
and
Environment S
y
mposium, Portugal, 2007.
[22]
S. Soltani, M
.
Y
a
ri, S. Mahmoud
i,
T.
M
o
ros
uk an
d M
.
Ros
e
n,
“
A
dvanced
ex
erg
y
anal
ys
is
appli
e
d
to an
ext
e
rna
l
l
y
-
fired
combined-
c
y
c
le power
plant integr
ated
with a b
i
omass gasification un
it”,
Ene
r
gy
, vo
l. 59, p
p
. 775–780
, 201
3.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 6,
No
.
2,
Ju
ne 20
15
:
205
–
2
15
21
4
[23]
Taixing Wang
and Xiaoqing Lv, “Analy
sis on
Service Life o
f
Hot-end
Components of Gas Turbine Using
Equivalent Oper
ation
”
,
TE
LKOMNIKA
, vo
l. 11, no. 3, pp. 1473–
1477, 2013
.
[24]
W
.
H.A.R. Al- Doori, “
E
xerg
y Anal
y
s
is
of a Gas
Turbine P
e
rform
ance W
ith Eff
e
c
t
C
y
c
l
e T
e
m
p
era
t
ures
”,
I
J
RR
AS
,
vol. 13
, no
. 2
,
pp
. 549-556
, 2012
.
[25]
E.H. Okechukw
u and O.A. Imuentin
y
a
n,
“Exerg
y
Analy
s
is of
Omotosho
Pha
s
e 1 Gas Thermal Power Plant”,
International Jo
urnal of
En
ergy and
Power Engineering
, vol. 2
,
no. 5
,
pp
. 197-2
03, 2013
.
[26]
Y.S
.
Najja
r and
S
.
Al-Abs
i, “
E
xe
rg
y
anal
ys
is
for
greener g
a
s
turbi
n
e engin
e
arr
a
ng
em
ents
”,
Journal of Engin
eering
Thermophysics
,
vol. 22
, no
. 3
,
pp
. 247-256
, 2013
.
[27]
I. Dincer
and M
.
Rosen, “Exerg
y: en
erg
y
, environ
m
ent and
sustain
a
ble dev
e
lopmen
t”,
Els
evi
er
, 200
7.
[28]
A.
Bejan and E.
Mamut.
Thermodynamic Optimization of
Compl
ex
Ener
gy
Sys
t
e
m
s
. in Proceedin
gs of the NATO
Advanced Stud
y Institut
e
, 1998.
[29]
A.
Be
ja
n, G. Tsatsa
ronis a
n
d M.
Mora
n.
Thermal
design and op
timization
.
in Wiley
, New York,
1996.
[30]
M. Kanoglu, I. Dincer
and M
.
Rose
n, “Understanding en
erg
y
and ex
erg
y
efficiencies for improved energ
y
management in power
plan
ts”,
E
n
ergy Po
lic
y
, vo
l. 35
, pp
. 3967–7
8., 2007.
[31]
P.
Ahma
di.
Exergy concepts an
d exergy anal
ysis of combin
ed
cycle pow
er
pla
n
ts (
a
case study in Iran)
. B.S
c
.
Thesis, Energ
y
Engineering
D
e
p
a
rtme
nt,Power
& Water
Univer
sity
of
Technolo
g
y
(PWUT), Teh
r
an,
Iran
,
2006
.
[32]
I. Dincer and H.
Al-M
us
lim
,
“
T
herm
od
y
n
am
ic a
n
al
y
s
is
of reheat
s
c
y
cl
e s
t
eam
power plants
”,
In
t J Ener
gy Res
,
vol. 25
, pp
. 727–
39, 2001
.
[33]
M. Lozano
and
A. Valero, “The
or
y of th
e
exerg
e
tic
cos
t
”
,
Energy
, vol. 18, pp. 93
9-60, 1993
.
[34]
G. Tsatsaronis
and M. Winhold,
“Exergoeconomic Analy
s
is and
Optimizatio
n of
Energ
y
Conversion Plants. Part I:
A New General
Methodolog
y
;
P
a
rt II
: Analy
s
is
of a Co
al –
Fired Steam Power
Plant”,
En
ergy
,
vol. 10
, no
. 1
,
p
p
.
69-94, 1985
.
Nom
e
ncla
ture
e
s
p
ecifi
c exe
r
gy
(kJ/kg)
E
t
o
tal e
x
er
gy (
k
J/
kg)
h enthalpy
(kJ/kg)
LHV
lo
wer h
eatin
g v
a
lu
e (k
J/kg
)
ṁ
m
a
ss flo
w
rate
(k
g/s)
p
press
u
re
(ata)
Q
heat tra
n
sfe
r
ra
te (M
W)
s ent
r
opy
(kJ/
kg
K)
T te
m
p
erature
(
o
C)
W
r
a
te of
w
o
rk
(M
W
)
Greek Sym
b
ol
ratio
o
f
fu
el ex
erg
y
to
l
o
wer
h
eating
valu
e
Ɛ
e
x
ergy effi
ciency (%
)
Subscrip
t
s an
d
super
s
cripts
a air
am
b am
bi
e
n
t
c com
p
ressor
ch chem
ical
D d
e
stru
ctio
n
o
u
tlet
F fuel
in
let
ph
phy
si
cal
P pr
o
duct
0
refe
rence
state
1-
7
st
at
e poi
nt
s o
n
t
h
e sc
hem
a
ti
c fl
ow s
h
eet
Abbre
v
iation
C
C
com
bust
i
o
n
ch
am
ber
GT
gas
t
u
r
b
ine
TIT
tu
rb
in
e i
n
let tem
p
eratu
r
e
Evaluation Warning : The document was created with Spire.PDF for Python.