Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
6, N
o
. 3
,
Sep
t
em
b
e
r
2015
, pp
. 49
8
~
50
8
I
S
SN
: 208
8-8
6
9
4
4
98
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
LabVIE
W Interf
ace f
o
r Cont
roll
ing a Tes
t
Ben
c
h f
o
r
Photovoltaic Modules and Extrac
ti
on of Various Param
e
t
e
rs
Abderrez
ak Guenounou*
,
*
*
,
Ali Ma
lek***
,
Michel Aillerie****
,
***
**
,
A
c
ho
ur Mahra
n
e*
* Unité de Développement des
Equipeme
nts Solaires (UDES), C
e
ntre d
e
Dév
e
lop
p
ement des
Ener
gies Renouv
elab
les
(CDER), R
.
N n°
11, BP 386
, 424
15, Bou
Ismail,
Tipaza, Alger
i
a
** Abou Bekr
B
e
lkaid University
, Dep
a
rt
ment of
Ph
y
s
ics
,
Tlemcen, Alger
i
a
*** Centr
e
d
e
D
é
velopp
ement d
e
s Energies Reno
uvela
b
l
es (CDER), BP 62
, Bouz
areah
, Alg
i
ers,
Algeria
****Université
de Lorr
ain
e
, LM
O
PS, EA 4423,
57070 Metz, France.
*****Centrale S
upelec, LMOPS, 57070 Metz, France.
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Apr 16, 2015
Rev
i
sed
Ju
l 27
,
20
15
Accepted Aug 15, 2015
Numerical simulation using mathematical
mod
e
ls that
tak
e
in
to account
ph
y
s
ical ph
eno
m
ena governing
the oper
a
tion of
solar cells is
a p
o
werful too
l
to predict the
en
erg
y
produ
ction of phot
ovoltaic
modules prior to installatio
n
in a given site. These mode
ls require some paramete
rs that manufactur
ers do
not generally
give. In addition,
the ava
ilab
ili
t
y
of a tool for the control and
the monitoring
of performances
of PV
modules is of gr
eat importance for
res
earch
ers
,
m
a
n
u
factur
ers
and d
i
s
t
ributor
s of P
V
solutions. In this paper
,
a
test and ch
aracterization pro
t
ocol of PV
modules is presented.
It consists of
an outdoor co
mputer controlled test
ben
c
h using a LabVI
E
W graphical
interf
ace
. In add
ition to the m
e
a
s
uring of the IV charac
ter
i
stics,
it provides
all the par
a
meters of
PV
modul
es with the possibility
to display and print a
deta
iled repo
rt f
o
r each t
e
s
t
. Aft
e
r the pres
en
tat
i
on of the tes
t
be
nch and the
develop
e
d grap
h
i
cal in
terf
ace,
th
e obtai
ned
results based on
an ex
perimental
exam
ple are
pres
ented
.
Keyword:
PV m
o
dule
I-V Characteri
s
tic
Test
be
nch
Electronic
Loa
d
Lab
V
IE
W G
U
I
Param
e
ter Ex
tractio
n
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
A
.
Gu
enou
nou
,
Uni
t
é
de Dével
o
p
p
em
ent
des Eq
ui
pem
e
nt
s
Sol
a
i
r
es (U
DES
)
,
C
e
nt
re de Dév
e
l
o
p
p
em
ent
de
s
En
e
r
gies Renouvelables
(C
DER),
R.N
n°11, BP
386, 42415, B
o
u Ism
a
il, Tipaza, Al
geria.
Em
a
il:
ag
u
e
nou
nou
@yah
oo
.fr, o
r
, g
u
e
no
unou
.ab
d
e
rrezak@u
d
e
s.d
z
1.
INTRODUCTION
Industrial de
velopm
ent and
tech
n
o
l
o
gi
cal
pr
o
g
ress
i
n
se
veral
a
r
eas s
u
ch as c
o
m
m
uni
cat
i
on a
n
d
trans
p
ort is accom
p
anied by enorm
ous
ene
r
gy needs. Muc
h
of this energy
is produce
d
from
fossil fuels such
as oil, natural gas coal or nuc
l
ear
. Howe
ve
r, fossil ene
r
gy
production is
highly poll
u
ting because it ge
nerates
em
i
ssi
ons of g
r
eenh
o
u
se gases
an
d nucl
e
a
r
w
a
st
e
pr
o
duct
re
qui
res very
e
x
pen
s
i
v
e
t
r
eat
m
e
nt
s
[
1
]
.
R
e
newa
bl
e en
ergi
es i
n
ge
ne
ral
an
d sol
a
r
ph
ot
o
v
o
l
t
a
i
c
(PV) i
n
pa
rt
i
c
ul
ar are t
h
ere
f
ore a
g
o
o
d
altern
ativ
e to
en
sure su
stain
a
b
ility in
th
e g
l
o
b
a
l en
erg
y
p
r
o
d
u
c
tion
with
en
v
i
ron
m
en
tal p
r
o
t
ectio
n b
e
cau
s
e it
is a re
newa
ble
and a
non-
po
llu
tin
g en
erg
y
so
urce.
A so
lar
PV sou
r
ce h
a
s long
b
een limited
to
au
ton
o
m
o
u
s
u
n
-g
rid-co
nn
ected
app
licatio
ns in
rem
o
te
rural sites as desert la
nds
or m
ountains
or for
nom
a
d applications. B
u
t in the last
decade
s
, s
o
lar PV
has
en
tered
in
to settle
m
e
n
t
s w
ith
th
e Bu
ild
i
n
g
In
teg
r
ated
Ph
oto
v
o
ltaic (BIPV
)
and
technolo
g
y
o
f
p
h
o
t
ov
o
ltaic
gri
d
-c
on
nect
e
d
sy
st
em
s. Thi
s
has si
gni
fi
can
t
l
y
i
n
creased t
h
e
dem
a
nd f
o
r
PV m
o
d
u
l
e
s
and
t
h
us m
a
de t
h
i
s
hi
g
h
l
y
pr
ofi
t
a
b
l
e
m
a
rket
. C
o
n
s
eq
uent
l
y
, t
h
i
s
phe
n
o
m
e
non d
r
i
v
e
d
by
t
h
e em
ergence
of n
e
w ap
pl
i
cat
i
o
n
s
of P
V
panels
and syst
e
m
s, their large diffusion a
n
d a dec
r
ease
of
t
h
eir
p
r
ice, h
a
s
led
to
a larg
e
growth
of th
e nu
m
b
er
of actors in t
h
is field, nam
e
ly researc
h
ers
,
manufact
ur
e
r
s
and
di
st
ri
b
u
t
o
r
s
. Al
l
t
h
ese act
ors
nee
d
co
nt
r
o
l
an
d
t
e
st
t
ool
s f
o
r
PV m
odul
es
o
n
t
h
e m
a
rket
but
al
s
o
com
put
at
i
onal
t
o
ol
s
t
o
p
r
edi
c
t
t
h
e
pr
o
duct
i
o
n a
nd t
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
49
8 – 508
49
9
el
ect
ri
cal
beha
vi
o
u
r
o
f
a
PV
m
odul
e
bef
o
r
e
t
h
e i
n
st
al
l
a
t
i
on
. T
h
e t
ool
s
have
t
o
t
a
ke i
n
t
o
acc
o
u
n
t
t
h
e sol
a
r
r
a
d
i
ation
,
so
me ph
ysical p
a
r
a
meter
s
as te
m
p
er
atu
r
e, an
d the po
ssib
l
e topolo
g
y
o
f
t
h
e PV g
e
n
e
r
a
tor
i
n
a
g
i
v
e
n
site. Th
is can
b
e
facilitated
fo
r a
p
a
rt
b
y
the u
s
e of
ph
ysical
m
o
d
e
l an
d nu
m
e
rical si
m
u
l
a
tio
n
o
f
th
e
operation
of P
V
m
odule
s
. Thus,
upstre
am
, new in
tegrated tools are
necessary to
be
de
velope
d by researc
h
te
am
s for,
d
o
wn
stream
facilitate
an
d
o
p
tim
ize
th
e
co
n
c
ep
tion
pro
cess of n
e
w PV syste
m
s
b
y
m
a
n
u
f
act
u
r
ers and
distrib
u
to
rs.
PV m
odul
e m
a
nu
fact
u
r
ers
p
r
ovi
de u
s
ual
l
y
dat
a
cha
r
act
eri
s
t
i
c
s of P
V
m
o
d
u
l
e
s
un
der
S
t
anda
rd Te
st
C
o
n
d
i
t
i
ons
(S
TC
), w
h
ere t
h
e i
rradi
a
n
ce i
s
10
00
W
/
m
²
a
nd the cell tem
p
erature (Tc
)
is 25°C
.
Some of the
param
e
t
e
rs t
y
pi
cal
l
y
pro
v
i
d
e
d
by
m
a
nufact
ure
r
s a
r
e t
h
e
m
a
xim
u
m
po
wer
(Pm
p
),
t
h
e sh
ort
ci
rcui
t
cu
rre
nt
(Isc), t
h
e op
en circu
it vo
ltage (Vo
c
), th
e cu
rren
t an
d volt
age at the m
a
xim
u
m
pow
er
po
in
t (Im
p
an
d
Vm
p
)
and the tem
p
erature c
o
efficients for the
shor
t circu
it current an
d op
en
circu
it vo
ltag
e
(
α
Isc
and
β
Voc
).
The
p
h
y
s
i
cal
m
odel
s
descri
b
i
ng t
h
e
fu
nct
i
o
ni
n
g
of
PV
m
odul
es
, s
u
ch
as t
h
e si
ngl
e
di
o
d
e
m
odel
need
param
e
t
e
rs t
h
at
are
n
o
t
gi
ven
i
n
t
h
e
m
a
nufact
ure
r’s
da
ta
sh
eets. Th
erefore t
h
eir
d
e
term
in
atio
n
is req
u
i
red.
Som
e
authors have presente
d
an
im
p
l
e
m
en
tatio
n
of th
e si
ng
le d
i
od
e m
o
del in
LabVIEW [2
], [3
] for
si
m
u
latio
n
n
e
ed
s.
Th
ese techn
i
qu
es
requ
ire th
e in
t
r
odu
ctio
n of m
o
d
e
l
param
e
ter v
a
lu
es. Th
ese
v
a
lu
es v
a
ry
fr
om
PV
m
odul
e t
o
anot
her
and a
r
e al
so affect
ed
by
atm
o
sp
he
ri
c con
d
i
t
i
ons suc
h
as t
e
m
p
erat
ur
e. Se
veral
t
echni
q
u
es
fo
r
cal
cul
a
t
i
ng t
h
e si
ngl
e di
ode
m
odel
param
e
t
e
rs fr
om
experi
m
e
nt
al
m
e
asurem
ent
s
of t
h
e I
V
ch
aracteristic are fou
n
d
i
n
th
e
literatu
re [4
].
LabVIEW software is a
p
o
werfu
l
too
l
for
d
a
ta acq
u
i
sition
u
s
ing
sp
ecially d
e
sig
n
e
d
card
s or
b
y
co
n
t
ro
lling
m
e
asu
r
i
n
g
i
n
strumen
t
s [5
], [6
].
It is wid
e
ly u
s
ed
in
p
h
o
t
ovo
ltaic fo
r t
h
e m
o
n
ito
ring
o
f
installatio
n
s
fo
r e
x
am
ple [7
]
.
It
i
s
i
d
eal
l
y
m
o
re conve
ni
ent
t
o
ha
ve a si
ngl
e Lab
V
I
E
W
G
r
ap
hi
cal
User I
n
t
e
r
f
ac
e (G
UI
) t
h
at
co
n
t
ro
ls
d
a
ta acq
u
i
sition
an
d
also
p
e
rform
s
all o
t
h
e
r op
eratio
n
s
su
ch
as
p
a
ram
e
ter ex
tractio
n
and
sim
u
latio
n
.
Tak
i
ng
i
n
to acco
un
t all
p
r
ev
iou
s
con
s
id
eratio
n
s
, we
p
r
esen
t an
d
v
a
lidate in
th
is co
ntrib
u
tion
an
ori
g
i
n
al
an
d c
o
m
p
l
e
t
e
out
d
o
o
r a
n
d c
o
m
put
er co
nt
r
o
l
l
e
d t
e
st
benc
h
vi
a a
Lab
V
IE
W
G
U
I
fo
r
researc
h
ers
an
d
pr
ofe
ssi
o
n
al
s
wo
rki
n
g i
n
t
h
e ap
pl
i
cat
i
on
and
de
vel
opm
ent
fi
el
d
s
rel
a
t
e
d t
o
re
newa
bl
e en
er
gi
es,
m
a
i
n
l
y
p
h
o
t
ovo
ltaic. Th
is too
l
allo
ws
th
e m
easu
r
e
m
en
t o
f
t
h
e
I-V c
h
aracteristics
of PV m
o
dules
and t
h
e ext
r
action
of
all th
e wo
rk
ing p
a
ram
e
ters an
d
all th
e p
a
rameters o
f
th
e
p
hysical
m
o
d
e
l a
n
d
th
e sim
u
lati
o
n
o
f
th
e I-V an
d
P-
V c
h
aracte
r
istics under m
eas
urem
ent condit
i
ons
and
unde
r
STC
.
A
t
ech
ni
cal
rep
o
r
t
gi
vi
ng
al
l
t
h
e
det
a
i
l
s an
d
all the pa
ram
e
ters
of the
PV
m
odule is thus
displa
yed and
pos
sibly printe
d to establish a
written re
port.
2.
FU
NDA
M
E
NTA
L
S
2.
1.
The Basic
Single Di
ode
Physical Model
Th
e m
o
d
e
l u
s
ed
in
th
is
w
o
r
k
is th
e w
e
ll-
know
n
si
n
g
l
e
d
i
ode
m
o
d
e
l. Th
is
m
o
d
e
l p
e
r
f
ectly d
e
scr
i
b
e
s
th
e o
p
e
ration
of th
e PV m
o
d
u
le tak
i
n
g
in
to
acco
un
t th
e ph
ysical p
h
e
no
m
e
n
a
go
v
e
rn
ing
th
e op
eration
of so
lar
cells. It is
defi
ned by t
h
e elec
trical
cir
c
u
it of Figu
r
e
1 and
by Eq
. 1 [8
].
Fi
gu
re
1.
The
Eq
ui
val
e
nt
ci
rc
ui
t
di
ag
ram
of
a PV
M
o
dul
e
a
ccor
d
i
n
g t
o
t
h
e
si
n
g
l
e
di
ode
m
odel
The
ph
ot
o-
gen
e
rat
e
d c
u
r
r
e
n
t
I
p
h
de
pe
nds
o
n
t
h
e sol
a
r i
r
radi
ance a
n
d
t
e
m
p
erat
ure;
i
t
i
s
re
prese
n
t
e
d
b
y
a curre
nt
gene
rator. T
h
e
diode D1
represe
n
t
s
the
diffusi
on
and rec
o
m
b
ination l
o
sses, the
series
resistance Rs
represen
ts th
e l
o
sses i
n
m
e
tall
ic b
ond
s and
the shun
t resistan
ce Rsh
all th
e o
t
h
e
r l
o
sses.
.
.
1
(
1
)
Ip
h
D1
Rs
Rs
h
V
Ish
Id
I
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Lab
V
IEW in
terfa
ce fo
r con
t
rollin
g
a test b
e
nch
for
p
h
o
t
o
v
o
l
ta
ic mo
du
les
an
d extra
ction
…
(A. G
u
enoun
ou
)
50
0
I an
d V are t
h
e
curre
nt
an
d t
h
e out
p
u
t
v
o
l
t
a
g
e
of t
h
e P
V
m
odul
e res
p
ect
i
v
e
l
y
.
I
0
is th
e satu
ratio
n
cu
rren
t
o
f
the
diode, n is the
ideality factor, Ns
the num
b
er of s
o
lar cel
ls in serial com
posing the P
V
m
odule, K
is the
B
o
l
t
z
m
a
nn co
nst
a
nt
(
1
.
38
x
10
-23
J / K), T
C
the cell
te
m
p
erature and q th
e ele
m
entary charge (1.6. 10
-
19
C
oul
om
b).
2.
2.
Principles of the P
a
rame
ter
Extr
acti
on
Th
e sho
r
t circu
it cu
rren
t Isc, th
e
o
p
e
n
circu
it vo
l
t
a
ge
Vo
c, t
h
e m
a
xim
u
m
power
Pm
p, t
h
e
vol
t
a
g
e
an
d
cu
rren
t at th
e m
a
x
i
m
u
m p
o
w
er po
in
t resp
ectiv
ely Vm
p
an
d
Im
p
,
an
d
t
h
u
s
, th
e fill facto
r
FF = (Vm
p
.Im
p
)
/ (V
oc.
I
sc) a
n
d the e
fficie
n
c
y
η
can be
ea
sily extracted
from
an e
xpe
rim
e
ntal I-V c
h
aracteristic
of a PV
m
odul
e. B
u
t
f
o
r t
h
e m
odel
pa
ram
e
t
e
rs (Ip
h,
I
0
, n, Rs, Rs
h), num
erical extracti
on t
ech
ni
q
u
es are
re
qui
re
d. T
h
e
m
e
t
hod
used i
n
t
h
i
s
w
o
r
k
i
s
t
h
e n
u
m
e
ri
cal
m
e
t
hod
wi
t
h
fi
ve p
o
i
n
t
s
.
It
i
n
vol
ves t
h
e
nu
m
e
ri
cal
resol
u
t
i
on
of a
sy
st
em
of fi
v
e
no
nl
i
n
ea
r equat
i
o
ns
obt
ai
ned
by
ap
pl
y
i
ng E
q
.
1
t
o
fi
ve p
o
i
n
t
s
of
an ex
peri
m
e
nt
al
I-
V
characte
r
istic [9]. These fi
ve
points (c
f. Fi
gure 2) ar
e: th
e sho
r
t circu
it p
o
i
n
t
, th
e open
circu
it po
int, th
e
m
a
xim
u
m
pow
er
poi
nt
an
d t
w
o
ot
he
r
poi
nt
s (
V
=
V
x
,
I =
I
x
)
an
d
(V
=
Vx
x,
I =
I
x
x
)
c
h
ose
n
s
o
t
h
at
:
and
(
2
)
Fi
gu
re
2.
The
f
i
ve p
o
i
n
t
s
o
f
t
h
e I
V
c
h
aracteri
s
tic used in t
h
e
extraction m
e
thod
The
res
o
l
u
t
i
o
n
o
f
t
h
e sy
st
em
by
t
h
e
num
eri
cal
m
e
t
hod
p
r
ovi
des t
h
e
vari
ous
val
u
es
o
f
t
h
e
desi
re
d
param
e
ters. The m
a
in drawback
of this
m
e
thod is th
at
it require
s a good estim
a
tion of the initial values
,
whic
h de
fines t
h
e accuracy of
the m
ode
lling process. Indee
d
, a
good estimati
on of these i
n
itial values leads t
o
a ra
pi
d c
o
nve
r
g
ence
of t
h
e m
e
t
h
o
d
a
n
d,
o
n
cont
rary
a
ba
d
one
i
s
sy
no
ny
m
ous wi
t
h
sl
o
w
c
o
n
v
e
r
ge
nce
o
r
e
v
en
di
ve
rge
n
ce. C
o
nsi
d
e
r
i
n
g som
e
app
r
o
x
i
m
at
i
ons, Pha
n
g et
al
[10]
ha
ve
devel
ope
d a
n
al
y
t
i
cal exp
r
essi
o
n
s
fo
r t
h
e
calcu
latio
n
of t
h
ese
p
a
ram
e
ter
s
. In th
is
p
r
esen
t work, th
e resu
lts ob
tain
ed
fro
m
th
e an
alytical ex
p
r
ession
s
of
Pha
ng a
r
e conside
r
ed as i
n
itial values for the nu
m
e
rical
m
e
thod, whic
h is based on s
u
cc
essive
app
r
oxi
m
a
t
i
ons.
2.
3.
The Tra
n
sla
t
i
o
n Equations
The
pl
ot
o
f
t
h
e
I-
V
cha
r
act
eri
s
t
i
c
of
a
PV
m
o
d
u
l
e
usi
n
g
t
h
e eq
uat
i
o
n
of
t
h
e m
odel
,
Eq
.
1,
al
l
o
ws
a
com
p
arison
of the perform
ance of the
con
s
idered
m
o
du
le with
th
e stan
da
r
d
o
n
es, gi
ve
n b
y
t
h
e
m
a
nufact
ure
r
'
s
dat
a
sheet
s.
W
e
ha
ve pl
ot
t
e
d t
h
i
s
cha
r
act
eri
s
t
i
c by
t
a
k
i
ng
into
accoun
t th
e d
e
p
e
nd
en
ce of th
e
p
a
ram
e
ters on
th
e work
i
n
g
co
nd
itio
ns, p
a
rticu
l
arly, th
e so
lar irrad
i
an
ce an
d
th
e tem
p
eratu
r
e. In
fo
rmatio
n
g
i
v
e
n
b
y
the
m
a
nufact
ure
r
s of P
V
m
odules
corre
spond to
data obtai
ned
unde
r the Standards Test Conditions (STC)
whe
r
e
th
e so
lar irrad
i
an
ce is
1
000
W / m
²
, th
e cell te
m
p
eratu
r
e
i
s
25
° C
an
d t
h
e
Ai
r M
a
ss
i
s
AM
1
.
5
.
On
c
ont
rary
,
whe
n
the
para
meters are extracted from
experim
e
ntal
m
e
asurem
ent
s
un
der
nat
u
ral
ref
e
rence c
o
n
d
i
t
i
ons
o
f
i
rradi
a
n
ce an
d
cel
l
t
e
m
p
erat
ur
e (GR
e
f a
n
d T
C
R
e
f), t
h
e
fol
l
owi
ng t
r
a
n
sl
at
i
on e
q
uat
i
ons
h
a
ve t
o
be use
d
[1
1]
,
[1
2]
.
I
.
I
α
T
T
(
3
)
I
I
.e
x
p
(
4
)
(
5
)
Voltage
Cu
rren
t
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
49
8 – 508
50
1
I
I
.
α
T
T
(
6
)
V
V
n
ln
β
T
T
(
7
)
Whe
r
e,
I
phRef
,
I
SCRef
,
V
OCRef
,
I
0R
ef
and
R
shRef
are respectively, the solar ir
radia
n
ce, the cell tem
p
erature,
th
e ph
o
t
o
c
urren
t
, th
e sh
ort circu
it cu
rren
t,
th
e op
en
circuit v
o
ltag
e
, th
e satu
ration
curren
t and
th
e
sh
un
t
resistance at refere
nce c
o
ndi
tions,
G a
nd
T
c
are the ir
radiance ant tem
p
erature
at
the translated
conditions
wh
ich
m
a
y b
e
th
e STC
.
Eg
is th
e
Gap
(eV),
α
Isc
and
β
Voc
are, res
p
ectively, the tem
p
erature coe
fficients
of the
short circ
uit curre
nt and t
h
e
open circ
uit voltage.
Two
p
a
ram
e
ters rem
a
in
to
b
e
tran
slated
: th
e
series resistan
ce Rs and
th
e ideality facto
r
n. Th
e serial
resi
st
ance af
fe
ct
s t
h
e sl
ope
o
f
t
h
e I-
V c
h
ara
c
t
e
ri
st
i
c
i
n
t
h
e area w
h
ere t
h
e PV m
odul
e ope
rat
e
s as a v
o
l
t
a
ge
g
e
n
e
rator. Its variatio
n
with
th
e te
m
p
eratu
r
e is n
o
t
so
i
m
p
o
r
tan
t
to
in
du
ce a sig
n
i
fican
t error on
th
e
m
a
x
i
m
u
m
p
o
wer po
in
t and
it is g
e
n
e
rally ad
m
itted
th
at
Rs re
m
a
in
s co
n
s
tan
t
in
th
e st
an
d
a
rd
wo
rk
ing
te
m
p
erature range
[11
]
.
We co
nsid
er also
t
h
at the id
eality fact
or
n
is
n
o
t
affect
ed
b
y
th
e tem
p
eratu
r
e.
3.
THE TEST B
E
NCH
3.
1.
Presentati
on
The
pri
n
ci
pl
e
of t
h
e t
e
st
be
n
c
h
devel
ope
d i
n
t
h
e c
o
nt
ext
of t
h
i
s
co
nt
ri
b
u
t
i
o
n
i
s
bas
e
d
on
t
h
e
bl
oc
k
di
ag
ram
of Fi
gu
re
3
an
d t
h
e ex
peri
m
e
nt
al
real
i
zat
i
o
n
i
s
sho
w
n i
n
t
h
e
ph
ot
o
of
Fi
g
u
r
e
4
.
It
co
nsi
s
t
s
o
f
a
stru
cture
o
n
wh
ich
are in
stall
e
d
th
e
PV m
o
du
les to
b
e
tested
, an
electro
n
i
c lo
ad
bu
ilt with
MOSFETs, a Data
Acqu
isitio
n and
Switch
Un
it (Ag
ilen
t
34
97
2A).
We
h
a
v
e
d
e
v
e
l
o
p
e
d
u
n
d
e
r Lab
V
IEW en
v
i
ron
m
e
n
t an
interface to
dri
v
e and control this test bench. T
h
e so
lar irradia
n
ce is
m
e
asure
d
with a
pyra
nom
eter fixed
on
the sam
e
plane as the PV m
odule to
be tested, the te
m
p
erature of the P
V
m
odule is
m
easure
d
with a PT100
sens
or
b
o
n
d
e
d
t
o
i
t
s
bac
k
a
n
d
t
h
e cu
rre
nt
i
s
m
easured
wi
t
h
a Hal
l
Ef
fect
s
e
ns
or.
Fi
gu
re 3.
B
l
oc
k di
ag
ram
of
t
h
e
i
n
st
al
l
e
d
t
e
st
benc
h f
o
r PV
m
odul
es
PV Module
Ele
c
troni
c Load
Data acqu
i
sition
and
con
t
rol
USB
Tem
p
eratur
e
Irradian
ce
Cu
rren
t
Vo
ltag
e
Electronic
load
control
PC with
LabVIEW
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Lab
V
IEW in
terfa
ce fo
r con
t
rollin
g
a test b
e
nch
for
p
h
o
t
o
v
o
l
ta
ic mo
du
les
an
d extra
ction
…
(A. G
u
enoun
ou
)
50
2
Fig
u
r
e
4
.
V
i
ew of
th
e test b
e
nch
(
a
)
PV Modu
le w
ith th
e Pyr
a
no
m
e
ter
,
(
b
)
Electr
o
n
i
c lo
ad, Ag
ilen
t
3
4972
A
u
n
it an
d PC
3.
2.
Electronic L
o
ad
To cha
r
act
eri
z
e a PV m
odul
e
,
fi
rst
we m
u
st
pl
ot
t
h
e c
u
r
r
en
t
-
v
o
l
t
a
ge (
I
-
V
)
charact
eri
s
t
i
c
and t
a
ke u
p
the tests conditions
(sola
r
irra
diance a
nd te
m
p
erature).
T
h
erefore
,
the m
e
asurem
ent
m
u
st be rapi
d enough
t
o
avoi
d p
o
ssi
bl
e
vari
at
i
o
ns i
n
s
o
l
a
r i
rra
di
ance
du
ri
n
g
t
h
e w
h
ol
e pr
oce
d
u
r
e.
Ideal
l
y
, we s
h
oul
d ha
ve t
o
v
a
ry
t
h
e
l
o
ad
o
f
t
h
e P
V
m
odul
e
fr
om
zero
t
o
i
n
fi
ni
t
y
ve
ry
ra
pi
dl
y
,
whi
c
h i
s
p
o
ssi
bl
e
by
t
h
e
use
o
f
el
ect
r
oni
c
l
o
ad
s
.
Sev
e
ral typ
e
s o
f
electro
n
i
c load
s h
a
v
e
b
een
repo
rted
in
th
e literatu
re. Some are b
a
sed
on
DC / DC conv
erters
[1
3]
;
ot
he
rs a
r
e
base
d
o
n
M
O
SFETs
co
nt
r
o
l
l
e
d
by
an
O
p
e
r
a
t
i
onal
Am
pl
i
f
i
e
r [
1
4]
.
The el
ect
r
o
ni
c
l
o
ad
use
d
i
n
t
h
i
s
co
nt
ri
b
u
t
i
o
n
i
s
base
d
o
n
M
O
SFE
Ts
w
hos
e gat
e
v
o
l
t
a
ge i
s
co
nt
r
o
l
l
e
d
by
a ca
paci
t
o
r.
The ci
rcui
t
of
t
h
e el
ect
ro
ni
c l
o
ad
p
r
evi
o
u
s
l
y
desc
ri
be
d i
n
[
15]
i
s
s
h
ow
n i
n
Fi
gu
re
5.
Fo
r sel
f
-
con
s
i
s
t
e
nt
ex
pl
anat
i
o
n
,
we s
u
m
m
a
ri
ze t
h
e operat
i
n
g m
ode
of t
h
i
s
l
o
a
d
.
Whe
n
pus
h
bu
t
t
on T i
s
cl
ose
d
, t
h
e
capacitor C is
charge
d through t
h
e
resi
stor
R1.
When T
is ope
n
, C
is
disc
h
a
rg
ed
thro
ugh
t
h
e
r
e
sistan
ce Req
(p
ot
ent
i
o
m
e
t
e
r R
and t
h
e
resi
st
ance R
2
) i
n
d
u
ci
n
g
a va
ri
at
i
on
of t
h
e gat
e
vol
t
a
ge
V
g
o
f
M
O
SFET t
r
an
si
st
ors
and t
h
ei
r
drai
n
cur
r
ent
s
w
i
t
c
hi
ng
fr
om
m
a
xim
u
m
(sho
rt
ci
r
c
ui
t
)
t
o
m
i
nim
u
m
(ope
n ci
rc
u
i
t
)
val
u
es
. I
n
o
r
de
r t
o
im
pro
v
e t
h
e r
e
sp
onse t
i
m
e
of t
h
e t
e
st
be
nch
,
t
h
e p
u
s
h
but
t
o
n i
s
repl
a
ced wi
t
h
a rel
a
y
cont
r
o
l
l
e
d by
t
h
e
Lab
V
IE
W pr
o
g
ram
(see next
para
gra
p
h)
vi
a t
h
e
A
g
i
l
e
nt
3
4
9
7
2
u
n
i
t
.
Figure
5. The
e
l
ectronic l
o
ad
circuit
+
-
a
b
Agilent 34972A
Electronic
load
PC
P
y
ranom
et
er
PV
Module
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
49
8 – 508
50
3
3.
3.
LabVIEW Gr
aphic
a
l User I
n
terface
Th
e test b
e
n
c
h
in
stalled
is fu
lly co
n
t
ro
lled
b
y
a dedi
ca
t
e
d pr
o
g
ram
devel
o
ped
un
de
r Lab
V
I
E
W
soft
ware e
n
vi
r
onm
ent
.
A
L
a
bV
IE
W
pr
og
ram
possesses
t
w
o
wi
n
d
o
w
s
. A
Fr
o
n
t
P
a
nel
al
so cal
l
e
d t
h
e
Gra
p
hical Use
r
Interface
(GUI), a
n
d a
dia
g
ram
that co
ntains the
progra
m
govern
ing
the GUI [5]. T
h
e t
w
o
page
s
of t
h
e
de
vel
o
ped
G
U
I
a
r
e s
h
o
w
n i
n
Fi
gu
re
6 a
n
d
7.
Th
e d
e
v
e
lop
e
d p
r
o
g
ram
co
n
t
ro
ls th
e electronic lo
ad
and
th
e v
a
riou
s sen
s
o
r
s v
i
a th
e Data Acqu
isitio
n
and S
w
i
t
c
h U
n
i
t
(Agi
l
e
nt
3
4
9
72
A).
Once t
h
e curre
nt
-
v
ol
t
a
ge
(I-V) ch
aracteristic is
mea
s
u
r
ed
, it is d
i
splayed
with
th
e
po
wer-v
o
ltag
e
(P-V) ch
aracteristic and
all co
rr
esp
ond
ing
p
a
rameters on
th
e first p
a
g
e
of th
e
GUI.
Tran
sl
at
i
on t
o
STC
i
s
t
h
e
n
per
f
o
rm
ed t
o
di
spl
a
y
on
a
seco
nd
pa
ge
t
h
e
param
e
t
e
rs a
n
d
I
-
V a
n
d P
-
V
charact
e
r
i
s
t
i
c
s at
STC
.
Al
l
t
e
chni
cal
dat
a
o
f
t
h
e P
V
m
odul
e are
di
spl
a
y
e
d at
t
h
e t
op
o
f
bot
h
page
s wi
t
h
t
h
e
d
r
op
do
wn
list wh
ere th
e
n
a
me o
f
th
e PV mo
du
le to
b
e
te
s
t
ed is selected. Each m
eas
ured I-V c
h
aracte
r
istic is
au
to
m
a
tical
ly s
a
v
e
d with th
e i
rrad
i
an
ce and
cell te
m
p
eratu
r
e un
d
e
r
wh
ich
it is
m
easu
r
ed
in
Ex
cel file with
a
nam
e
consi
s
t
i
n
g
of
t
h
e
dat
e
a
n
d
t
i
m
e
of m
easurem
ent
.
W
i
t
h
in
th
is d
e
v
e
lop
e
d
GUI,
si
m
u
latio
n
is a
l
so
p
e
rform
e
d
to
v
a
lid
ate th
e
m
o
d
e
l with
th
e ex
tracted
param
e
ters, and calculate the perform
a
nce at STC. A test re
p
o
rt can
b
e
prin
ted
fro
m
th
e
GUI. It is si
m
i
l
a
r to
a
dat
a
sheet
t
h
at
cont
ai
n
s
al
l
t
h
e i
n
fo
rm
at
i
on o
n
t
h
e
GU
I aft
e
r t
e
st
i
ng a
gi
ve
n P
V
m
odul
e.
The bl
oc
k di
a
g
ram
of
Fi
gu
re
8
descri
bes t
h
e
o
v
eral
l
o
p
erat
i
o
n
of t
h
e
pr
og
ram
go
ver
n
i
n
g t
h
e
de
vel
o
ped
G
U
I
a
n
d
som
e
st
ages
of
t
h
e
di
ag
ram
are sh
ow
n i
n
Fi
gu
res
9 a
n
d
10
.
Fi
gu
re
6.
De
ve
l
ope
d
GU
I:
m
e
asuri
n
g
pa
ge
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Lab
V
IEW in
terfa
ce fo
r con
t
rollin
g
a test b
e
nch
for
p
h
o
t
o
v
o
l
ta
ic mo
du
les
an
d extra
ction
…
(A. G
u
enoun
ou
)
50
4
Fi
gu
re
7.
De
ve
l
ope
d
GU
I:
Va
l
i
d
at
i
on a
n
d S
T
C
R
e
sul
t
s
pa
ge
Fi
gu
re
8.
B
l
oc
k
di
ag
ram
sho
w
i
n
g t
h
e
m
a
i
n
t
a
sks t
r
eat
e
d
b
y
t
h
e G
U
I
Parameter
Ex
traction
Param
e
ter
extraction
_
Si
m
u
latio
n
_
_
_
Simu
lation
(On
e
di
o
d
e m
o
del
)
Data acqu
i
sition
an
d test
benc
h c
o
nt
r
o
l
Translation
to
STC
Simu
lation
at
STC
Disp
lay
an
d comp
arison
with
measureme
n
ts
Bu
ild
a tex
t
re
p
or
t
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
49
8 – 508
50
5
Fig
u
re
9
.
Diag
ra
m
o
f
t
h
e
d
a
ta
acq
u
i
sition
step
Figu
re
1
0
.
Dia
g
ram
of t
h
e ste
p
‘Ext
raction
o
f
m
odel pa
ram
e
ters’ a
n
d ‘t
ran
s
lation to
STC’
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Lab
V
IEW in
terfa
ce fo
r con
t
rollin
g
a test b
e
nch
for
p
h
o
t
o
v
o
l
ta
ic mo
du
les
an
d extra
ction
…
(A. G
u
enoun
ou
)
50
6
4.
VALI
D
ATIO
N
We ha
ve chos
en as an exam
ple study case
,
a
single crys
talline Silicon PV m
odule wi
th 36 cells
con
n
ect
ed
i
n
seri
es.
S
e
ve
ral
t
e
st
s
ha
ve b
een real
i
zed wi
t
h
t
h
e
de
ve
l
ope
d benc
h f
o
r di
f
f
ere
n
t
p
a
i
r
s
o
f
Irradia
n
ce a
n
d Tem
p
erature.
As
we e
x
plained ea
rlier,
t
h
e
GU
I al
l
o
ws t
h
e co
nt
r
o
l
o
f
t
h
e be
nch
,
ob
ser
v
i
n
g
resu
lts an
d
also
th
e
v
a
lid
ation
of th
ese. As
sh
own
in
Fi
gure 7, the
r
e is a
perfect ove
r
lap
betwee
n the m
easure
d
IV a
n
d P
V
ch
aract
eri
s
t
i
c
s (d
i
s
cont
i
u
e
d
poi
nt
s) a
n
d
t
h
ose
sim
u
l
a
t
e
d (co
n
t
i
nue
d
red
cu
rves
). T
h
i
s
ha
s be
e
n
verifie
d
fo
r se
v
e
ral tests.
For
f
u
rt
h
e
r
val
i
d
at
i
on,
we
ha
ve pe
rf
o
r
m
e
d a com
p
ari
s
on
am
ong t
h
e t
e
st
resul
t
s
t
r
a
n
sl
a
t
ed t
o
STC
fr
om
di
ffere
nt
Ir
radi
a
n
ce-Te
m
p
erat
ure pai
r
s an
d
val
u
es
of
t
h
e dat
a
sheet
of t
h
e P
V
m
o
d
u
l
e
(see
Tabl
e.
1)
. T
h
i
s
com
p
ari
s
on c
o
ncer
ns t
h
e sh
o
r
t
-
ci
rc
ui
t
curre
nt
(Isc
)
, o
p
e
n
ci
rcui
t
vol
t
a
ge
(Voc
), m
a
xi
m
u
m
power
(
P
m
a
x),
vol
t
a
ge a
n
d cu
rre
nt
at
t
h
e
m
a
xi
m
u
m
powe
r
poi
nt
(Im
ax an
d Vm
ax). As a
com
p
ari
s
on cr
i
t
e
ri
on,
we use
d
t
h
e
relativ
e
error defin
e
d
b
y
th
e fo
llo
wi
n
g
expressio
n
.
.
100
(
8
)
Whe
r
e,
X
m
eas
and X
datatasheet
are res
p
ectively the m
easured a
n
d the
d
a
tash
eet v
a
lu
e
of th
e
p
a
ram
e
ter X.
Table
1. C
o
m
p
arison
betwee
n datas
h
eet P
V
m
odule pe
rf
orm
a
nce and t
h
ose m
easured at
diffe
re
nt conditions
and eval
uated
at STC
Values tr
anslated to ST
C fr
o
m
differ
e
nt conditions o
f
G and T
c
Para
m
e
ter
(X)
Datasheet
values at
STC
G = 687.
19 W
/
m
²
T
c
= 36.
84°
C
G = 722.
28 W
/
m
²
T
c
= 37.
37°
C
G = 770.
38 W
/
m
²
T
c
= 26.
79°
C
G = 850.
97 W
/
m
²
T
c
= 31.
88°
C
X
ΔX
X
ΔX
X
ΔX
X
ΔX
Pm
ax
(W
c)
75 ± 10%
67.
01
-
10.
65 %
67.
41
-
10.
12 %
67.
43
-
10.
09 %
67.
52
-
9
.
97 %
I
s
c
(
A
)
4.
67
4.
27
-
4
.
72 %
4.
32
-
4
.
07 %
4.
32
-
3
.
70 %
4.
38
-
3
.
89 %
Voc (
V
)
21.
6
20.
58
-
8
.
57 %
20.
72
-
7
.
49 %
20.
80
-
7
.
49 %
20.
76
-
6
.
21 %
Im
ax
(
A
)
4.
34
3.
98
-
8
.
29 %
4.
02
-
7
.
37 %
3.
97
-
8
.
53 %
4.
07
-
6
.
22 %
Vm
ax
(
V
)
17.
35
16.
82
-
3
.
05 %
16.
77
-
3
.
34 %
17.
00
-
2
.
02 %
16.
57
-
4
.
50 %
Beyond the e
x
perim
e
ntal errors
,
we note that each
group of
e
x
tracte
d
mode
l param
e
ter
s
re
produc
e
the corresponding m
easured
I-V characteri
s
tic in an acceptable m
a
nne
r. In addition, fro
m
Tables 1, the
measured
val
u
es are c
onsiste
nt with t
hose
of the
datash
eet
o
f
PV m
o
du
le if th
e to
leran
c
e in
th
e
g
i
v
e
n
v
a
lu
es
by
t
h
e m
a
nufa
c
t
u
rer i
s
t
a
ke
n
i
n
t
o
acco
u
n
t
(±
10%
fo
r t
h
e m
a
xi
m
u
m
power
). I
n
a si
m
i
l
a
r com
p
ari
s
on
be
t
w
een
t
h
e val
u
es
o
f
s
o
m
e
param
e
t
e
r
s
o
f
dat
a
sheet
s
of
som
e
PV m
o
d
u
l
e
s a
n
d t
h
e
si
ngl
e
di
o
d
e m
odel
res
u
l
t
s
o
b
t
a
i
n
ed
fr
om
m
easure
m
ent
s
at
850
W /
m
²
of i
rrad
i
ance, M
e
rm
ou
d [
16]
f
o
un
d si
m
i
l
a
r gaps t
o
t
hos
e i
n
Ta
bl
e 1 f
o
r t
h
e
sam
e
ty
pe
of
PV
m
o
d
u
l
e
,
e
x
cept
f
o
r V
o
c whe
r
e ou
r ga
p
is larg
er.
Th
at
can
b
e
du
e to th
e ag
ing
o
f
o
u
r PV
m
odul
e.
Th
us, wi
t
h
t
h
i
s
ori
g
i
n
al
t
e
st
bench
devel
o
pe
d i
n
t
h
i
s
w
o
r
k
and
prese
n
t
e
d i
n
t
h
e cu
rre
nt
cont
ri
b
u
t
i
o
n
,
researc
h
er
s an
d p
r
o
f
essi
o
n
al
s
wo
rki
ng i
n
t
h
e appl
i
cat
i
on a
nd
devel
o
pm
ent
fi
el
ds rel
a
t
e
d t
o
p
h
o
t
o
vol
t
a
i
c
can
easi
l
y
perfo
r
m
a co
m
p
l
e
t
e
el
ect
ri
cal
t
e
st
of com
m
erci
al
PV
m
odul
es or pa
nel
s
bef
o
re t
h
ei
r u
s
e i
n
expe
ri
m
e
nt
al
wo
rk
s
or t
h
ei
r i
m
pl
ant
a
t
i
on i
n
new
re
ne
wabl
e el
ect
ri
c
a
l
gene
rat
o
rs.
The
res
u
l
t
s
are
ver
y
i
m
p
o
r
tan
t
, as
in
add
itio
n to th
e valid
ation
o
f
t
h
e
v
a
lu
es of th
e electrical p
a
ram
e
ters ex
tracted
from
th
e
com
m
e
rci
a
l
and/
o
r
m
a
nufact
ure
r
dat
a
s
h
eet
s
of t
h
e P
V
m
odul
e
un
de
r co
n
s
i
d
erat
i
o
n, t
h
e
benc
h
base
d o
n
t
h
e
si
m
p
le d
i
o
d
e
m
o
d
e
l p
r
ov
id
es all p
a
n
e
l p
a
ra
m
e
ters, as th
e series resistance, th
e shu
n
t
resistan
ce, th
e id
eality
facto
r
, th
e sat
u
ratio
n
cu
rren
t an
d
t
h
e pho
to
cu
rren
t,
no
t g
e
nerally in
clu
d
e
d in
th
e d
a
tash
eets an
d
it reali
zes th
e
fu
ll sim
u
latio
n
o
f
its I-V and
P-V characteri
s
tics at
m
easu
r
e
m
en
t co
nd
ition
s
and
u
n
d
e
r STC.
5.
CO
NCL
USI
O
N
The
Gra
f
ical User Interface
(GUI)
presente
d in t
h
is pa
pe
r
is associ
ated t
o
a fairly com
p
lete test and
characte
r
ization tools allowi
ng its
use by
researc
h
er
s a
nd
p
r
o
f
essi
o
n
a
l
s wo
rki
ng i
n
t
h
e ap
pl
i
cat
i
on a
n
d
d
e
v
e
l
o
p
m
en
t field
s
related to ph
o
t
o
v
o
ltaic.
Th
e t
w
o m
a
in
ob
j
ecti
v
es
o
f
th
is orig
i
n
al dev
e
lop
e
m
e
n
t
are the
cont
rol
of a
n
out
do
o
r
t
e
st
b
e
nch
f
o
r
PV
m
odul
e an
d t
h
e ext
r
act
i
o
n
of
al
l
t
h
e el
ect
ri
cal
param
e
t
e
rs of
PV
m
odul
e base
d
on t
h
e o
n
e
d
i
ode m
odel
pa
ram
e
t
e
rs. Thes
e so o
b
t
a
i
n
e
d
wo
rki
ng
pa
ra
m
e
t
e
rs are of
pri
o
r
im
portance
.
T
h
ey are neces
sary for the im
ple
m
enta
tion of the m
odel in a sim
u
lation
program
a
nd a
r
e
gene
rally not
given
by the
m
a
nufacture
r
in the da
ta sheets of P
V
m
odules. Additionally, we ha
ve
i
m
p
l
e
m
en
ted
th
e
fun
c
tion
related
to th
e
sim
u
la
tio
n
o
f
t
h
e PV p
a
n
e
l
wi
th
in
th
is GUI.
It is
p
e
rform
e
d
u
n
d
e
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6, No
. 3, Sep
t
em
b
e
r
2
015
:
49
8 – 508
50
7
measu
r
em
en
t co
nd
itio
ns to
v
a
lid
ate th
e m
o
d
e
l an
d at standard
test con
d
itio
n
s
, STC, to
calcu
l
ate th
e v
a
l
u
es
o
f
the electrical param
e
ters of the
PV module. T
h
is
a
l
l
o
ws t
h
e c
o
m
p
ari
s
on bet
w
een t
h
e so
-
obt
ai
ne
d
expe
ri
m
e
nt
al
val
u
es
wi
t
h
t
h
o
s
e p
r
o
v
i
d
e
d
b
y
t
h
e m
a
nufac
t
u
rer
i
n
t
h
e
da
t
a
sheet
of
t
h
e
PV
m
odul
e.
I
n
t
h
i
s
work, a s
p
ecia
l
care was
brought in t
h
e
use
r
interface
by the ass
o
ciation
of a
LabVIE
W GUI
offeri
ng
m
u
c
h
in
teractiv
ity in
th
e test b
e
n
c
h allo
wing
to
easily p
e
rfo
r
m
i
n
g
co
m
p
lete el
ectrical tests o
f
v
a
riou
s co
mmercial
PV m
o
d
u
l
e
s
or
pa
nel
s
b
e
f
o
re t
h
ei
r
use
i
n
ex
peri
m
e
nt
al
wo
rk
s o
r
t
h
ei
r i
m
pl
ant
a
t
i
on
i
n
new
re
newa
bl
e
el
ect
ri
cal
gene
rat
o
r
s
. Fi
nal
l
y
,
an ex
peri
m
e
nt
al
appl
i
cat
i
on,
do
ne wi
t
h
a co
m
m
e
rci
a
l
PV
m
odul
e fo
r di
f
f
ere
n
t
p
a
irs
o
f
irrad
i
an
ce and
tem
p
eratu
r
e illu
strates th
is stu
d
y
and
v
a
lid
ates t
h
e co
n
c
ep
t and
the d
e
v
e
l
o
p
m
en
t o
f
the
t
e
st
benc
h a
n
d
i
t
s
associ
at
ed
GU
I.
ACKNOWLE
DGE
M
ENTS
Thi
s
w
o
r
k
i
s
d
one at
“
U
ni
é d
e
Dével
o
p
p
em
ent
de
s Equ
i
p
e
men
t
s So
laires (UDES)” within
th
e team
“App
licatio
n of Pho
t
ov
o
ltaic
Equ
i
p
m
en
t”, th
e au
tho
r
s wi
sh
to ack
nowled
g
e
all tho
s
e
who
con
t
ribu
ted
to its
co
m
p
letio
n
.
REFERE
NC
ES
[1]
Alice N
a
poleon
et al, “The R
eal
Costs of Clean
in
g Up Nu
clear Waste: A Full Cost
Accounting of
Cleanup Options
for the
W
e
st Va
lle
y Nu
cle
a
r W
a
s
te Site
”,
Technical Report o
f
Synaps
e Energy Economics, In
c
, November
2008:
avai
labl
e at
ww
w.s
y
naps
e-
energ
y
.
c
om
.
[2]
Dr. J. Abdul Jaleel et al, “Simul
ation on Maximum Power Po
int Tracki
ng of
the Photovoltaic Module using
LabVIEW
”
,
International Jour
nal of Advanced Research
in Electrical, Electroni
cs and Instrumentation
Engineering
, 20
12
,
1
(3), 190-19
9.
[3]
M. Abdulkadir
et al, “Modelling and
simulation of a solar p
hotovoltaic
s
y
stem, its d
y
namics and tr
ansient
chara
c
t
e
ris
t
i
c
s
in LABVIEW
”
,
International
Jo
urnal of Power El
ectronics and Drive System (
I
JPEDS)
, 2013, 3
(2), 185-192
.
[4]
D.T. Cotf
as et
al, “Methods to
determine the dc
parameters
o
f
solar cells: A
critical rev
i
ew”,
Ren
e
wable an
d
Sustainable Energy Reviews
, 20
13, 28
, 588–596
.
[5]
Rick Bitter
, Taq
i
Mhiuddin, Matt Nwrocki,
“Lab
VIEW Advenced Programming
Techn
i
ques”,
Second edition, CRC
Press, Taylor
&
Francis Group
, 2006.
[6]
J
i
ang Chao et
al
,
“
D
es
ign of Ins
t
rum
e
nt Control Sy
stem Based on
LabVIEW”,
TELKOMNIKA Indonesian Journal
of Electrical En
gineering
, 2013
, 11 (6)
,
3427-34
32.
[7]
S.
Vergura, E. Natangelo,
“Labview in
terfa
ce
for data analysis of PV plants”
,
P
r
oceed
ing IE
EE Int
e
rnat
iona
l
Conference on
C
l
ean
Electric
al Power (ICCEP), 2
009, 236-241
.
[8]
H. Tian et al, “A cell-to-module-to-arr
ay
detailed model for photovoltaic pan
e
ls”,
Solar Energy
, 2012, 86, 2695
–
2706.
[9]
E. Karatepe, M. Boztep
e, M. Çolak,
“Development of a suitable
model for ch
aracter
i
zing photov
oltaic arr
a
y
s
with
sha
d
e
d
sola
r ce
lls”
, Solar
Energy
, 2007
, 81
(8), 9
77-992.
[10]
J.C.H. Phang, D
.
S.H. Chan
and
J.R. Phillips. “Accurate
analy
t
ical me
thod for
th
e extr
action of s
o
lar cell model
parameters
”,
El
e
c
tronics Le
tters
,
1984, 20
(10), 4
06-408.
[11]
W.
De Soto,
S.
A.
Klein,
W.
A
.
B
eckman
,
“Improvement and valid
ation
of
a model for p
hotovoltaic
arr
a
y
perform
ance
”,
So
l
a
r E
n
e
r
g
y
, 200
6, 80
(1), 78-88.
[12]
G.
Blae
sse
r a
nd
E.
Rossi,
“Extrapola
tion
of outd
oor m
eas
urem
ents
of P
V
arra
y I
–
V chara
c
ter
i
s
t
i
c
s
to s
t
and
a
rd t
e
s
t
conditions”,
So
l
a
r Cells
, 1988, 2
5
, 91-96
.
[13]
Vicente Leite
and Faustino Chenlo, “
An Improved Electronic Circuit for
Tracing the I-
V
Characteristics
of
Photovoltaic M
odules and Strings
”, P
r
oceed
in
g of Interna
tion
a
l Confer
ence o
n
Renewabl
e E
n
ergies
and P
o
wer
Quality
(ICREP
Q
’10) Granada (
S
pain), 2010
.
[14]
O.M. Midtgård
and T.O. Sætr
e,
“Seasonal variations in
yield
for differ
ent
typ
e
s of PV modules measured under
real life conditio
ns
in northern
Europe”
, Proceed
ing 21st Europ
e
an Photovolt
a
i
c
Solar En
erg
y
Co
nferenc
e
, 2006,
2383-2386.
[15]
A. Mahrane, A. Guenounou, Z.
Sm
ara, M. Chikh, M. Lakehal,
“Test bench for Photovolta
ic Mod
u
les”
, P
r
oceedin
g
International S
y
mposium on Environmen
t Frien
d
ly
En
ergies
in
Electri
cal Applications (
E
FEEA1
0
), 2010
.
[16]
A.
Mermoud, “Conception
et Dimensionneme
nt de S
y
stèmes Phot
ovoltaïques : I
n
troduction
des
Modules PV en
couches minces
dans
le
logicie
l
PVsy
st”,
R
e
search report of
the
Institute
for
En
vi
ronmental Sci
e
n
ces, Uni
versity
o
f
Geneva
, Switzer
land, 2005
:
available at
: ht
tp://www.pvsy
s
t.com
Evaluation Warning : The document was created with Spire.PDF for Python.