I
nte
rna
t
io
na
l J
o
urna
l o
f
P
o
w
er
E
lect
ro
nics
a
nd
Driv
e
Sy
s
t
e
m
(
I
J
P
E
DS
)
Vo
l.
8
,
No
.
4
,
Dec
em
b
er
2017
,
p
p
.
1
5
3
4
~
1
5
4
7
I
SS
N:
2
0
8
8
-
8
6
9
4
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
p
ed
s
.
v8
i
4
.
pp
1
5
3
4
-
1547
1534
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JP
E
DS
A Nov
el App
ro
a
ch f
o
r
Spa
ce
Vec
to
r Ba
sed PWM
Al
g
o
rith
m
f
o
r
Dio
de Cla
m
ped
T
hree level
VSI
Fe
d Induct
io
n Mo
tor Drive
Deba
nja
n Ro
y
1
,
M
a
dh
u si
ng
h
2
,
T
a
pa
s
Ro
y
3
1,
2
De
p
a
rt
m
e
n
t
o
f
El
e
c
tri
c
a
l
a
n
d
E
lec
tro
n
ics
En
g
i
n
e
e
rin
g
,
Na
ti
o
n
a
l
I
n
stit
u
te
o
f
T
e
c
h
n
o
lo
g
y
Ja
m
sh
e
d
p
u
r
,
I
n
d
ia
3
S
c
h
o
o
l
o
f
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
,
Ka
li
n
g
a
In
stit
u
te o
f
In
d
u
strial
T
e
c
h
n
o
l
o
g
y
Un
iv
e
r
sit
y
,
Bh
u
b
a
n
e
s
w
a
r
,
In
d
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Sep
1
7
,
2
0
1
7
R
ev
i
s
ed
No
v
2
4
,
2
0
1
7
A
cc
ep
ted
Dec
3
,
2
0
1
7
P
e
rf
o
rm
a
n
c
e
o
f
v
o
lt
a
g
e
so
u
rc
e
i
n
v
e
rter
d
e
p
e
n
d
s
o
n
p
u
lse
w
id
th
m
o
d
u
latio
n
a
lg
o
rit
h
m
s.
V
a
rio
u
s
a
lg
o
rit
h
m
s
e
x
ist
f
o
r
c
o
n
v
e
n
ti
o
n
a
l
sp
a
c
e
v
e
c
to
r
a
s
w
e
ll
a
s
sp
a
c
e
v
e
c
to
r
b
a
se
d
b
u
s
c
lam
p
e
d
p
u
lse
w
id
th
m
o
d
u
latio
n
f
o
r
m
u
lt
il
e
v
e
l
in
v
e
rter
in
th
e
li
tera
tu
re
.
I
n
th
is
p
a
p
e
r
a
p
p
ro
p
riate
re
g
io
n
se
lec
ti
o
n
a
lg
o
rit
h
m
f
o
r
c
o
n
v
e
n
ti
o
n
a
l
sp
a
c
e
v
e
c
to
r
p
u
lse
w
id
th
m
o
d
u
latio
n
(CS
VP
W
M
)
a
n
d
b
u
s
c
la
m
p
e
d
p
u
lse
w
id
th
m
o
d
u
lati
o
n
(BC
P
W
M
)
tec
h
n
i
q
u
e
s
a
re
p
r
o
p
o
se
d
f
o
r
d
io
d
e
c
lam
p
e
d
th
re
e
lev
e
l
v
o
lt
a
g
e
so
u
rc
e
in
v
e
rter.
T
h
e
p
ro
p
o
se
d
tec
h
n
iq
u
e
s
a
re
i
m
p
le
m
e
n
ted
o
n
a
th
re
e
lev
e
l
v
o
lt
a
g
e
so
u
rc
e
in
v
e
rter
fe
e
d
in
g
p
o
w
e
r
to
in
d
u
c
ti
o
n
m
o
to
r
d
riv
e
f
o
r
o
p
e
n
lo
o
p
o
p
e
ra
ti
o
n
.
T
h
e
sc
h
e
m
e
s
a
r
e
si
m
u
late
d
in
M
AT
LAB/S
IM
UL
INK
e
n
v
iro
n
m
e
n
ts.
T
h
e
m
e
rit
o
f
p
ro
p
o
s
e
d
re
g
io
n
se
lec
ti
o
n
a
lg
o
rit
h
m
is
tes
ted
a
n
d
v
e
rif
i
e
d
th
r
o
u
g
h
sim
u
latio
n
re
su
lt
.
F
u
r
th
e
r
p
e
rf
o
r
m
a
n
c
e
c
o
m
p
a
riso
n
s
b
e
twe
e
n
S
VP
W
M
a
n
d
BC
P
W
M
f
o
r
d
if
fe
re
n
t
m
o
d
u
latio
n
in
d
e
x
a
re
d
isc
u
ss
e
d
.
K
ey
w
o
r
d
:
B
u
s
cla
m
p
i
n
g
P
W
M
C
o
n
v
en
t
io
n
al
s
p
ac
e
v
ec
to
r
P
W
M
Har
m
o
n
ic
d
is
to
r
tio
n
Mu
ltil
e
v
el
i
n
v
er
ter
R
eg
io
n
s
elec
tr
io
n
Co
p
y
rig
h
t
©
201
7
In
s
t
it
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Deb
an
j
an
R
o
y
,
Sch
o
o
l o
f
E
lectr
ical
an
d
E
lectr
o
n
ics E
n
g
i
n
ee
r
in
g
,
Natio
n
al
I
n
s
tit
u
te
o
f
T
ec
h
n
o
lo
g
y
,
J
a
m
s
h
ed
p
u
r
,
J
h
ar
k
h
a
n
d
-
8
3
1
0
1
4
,
I
n
d
ia
.
E
m
ail:
2
0
1
4
r
s
ee
0
0
6
@
n
itj
s
r
.
ac
.
in
1.
I
NT
RO
D
UCT
I
O
N
No
w
ad
a
y
s
,
m
u
ltil
e
v
el
i
n
v
er
ter
b
ec
o
m
e
s
v
er
y
p
o
p
u
lar
i
n
h
i
g
h
-
p
o
w
er
m
ed
iu
m
v
o
lta
g
e
ap
p
licatio
n
s
.
T
h
e
m
o
s
t
i
m
p
o
r
tan
t
to
p
o
lo
g
ies
f
o
r
m
u
lti
lev
el
i
n
v
er
ter
s
ar
e
g
iv
e
n
i
n
[
1
]
-
[
2
]
.
T
h
er
e
ex
is
t
d
if
f
er
e
n
t
t
y
p
e
s
o
f
co
n
v
e
n
tio
n
al
an
d
ad
v
a
n
ce
d
P
W
M
tech
n
iq
u
e
s
f
o
r
m
u
lti
lev
el
in
v
er
ter
s
[
3
]
-
[
4
]
.
(
SHEP
W
M)
an
d
C
o
n
v
e
n
tio
n
al
Sp
ac
e
Vec
to
r
P
W
M
(
C
SVP
W
M)
ar
e
m
o
s
t
p
o
p
u
lar
co
n
v
e
n
tio
n
al
P
W
M
s
tr
ate
g
i
es
f
o
r
th
r
ee
le
v
el
in
v
er
ter
s
[
5
]
-
[
6
]
.
B
u
s
C
la
m
p
i
n
g
P
W
M
(
B
C
P
W
M)
tech
n
iq
u
e
is
o
n
e
o
f
th
e
m
o
s
t
p
o
p
u
l
ar
ad
v
an
ce
d
P
W
M
tech
n
iq
u
e
f
o
r
m
u
l
tile
v
el
in
v
er
t
er
s
[
7
]
-
[
9
]
.
I
n
t
h
is
p
ap
er
,
a
MO
S
FET
b
a
s
ed
th
r
ee
-
lev
e
l
d
io
d
e
cla
m
p
e
d
in
v
er
ter
i
s
co
n
s
id
er
ed
.
An
ad
v
an
ce
d
P
W
M
tech
n
iq
u
e
i.e
.
s
p
ac
e
v
ec
to
r
b
ased
b
u
s
cla
m
p
in
g
P
W
M
is
in
tr
o
d
u
ce
d
i
n
[
9
]
.
B
C
P
W
M
is
b
etter
co
m
p
ar
ed
to
co
n
v
en
tio
n
al
SVP
W
M
in
r
esp
ec
t
o
f
cu
r
r
en
t
r
ip
p
le;
s
w
itc
h
in
g
lo
s
s
is
g
i
v
e
n
in
[
9
]
-
[
1
2
]
.
A
n
o
v
el
ap
p
r
o
ac
h
h
as
b
ee
n
p
r
o
p
o
s
ed
f
o
r
im
p
le
m
en
tin
g
t
h
ese
b
o
th
P
W
M
tech
n
iq
u
es
i
s
in
tr
o
d
u
ce
d
in
[
1
1
]
.
I
n
th
is
p
ap
er
th
e
m
o
d
i
f
ied
ap
p
r
o
ac
h
is
d
is
cu
s
s
e
d
an
d
v
er
if
ied
in
M
A
T
L
A
B
/SI
MU
L
I
NK
o
n
a
n
o
p
en
lo
o
p
th
r
ee
-
p
h
ase
i
n
d
u
c
tio
n
m
o
to
r
.
T
h
er
e
ar
e
d
if
f
er
en
t
tec
h
n
iq
u
es
to
i
m
p
le
m
e
n
t
co
n
v
e
n
tio
n
al
a
s
w
ell
ad
v
a
n
ce
d
P
W
M
tech
n
i
q
u
es
f
o
r
th
r
ee
-
le
v
el
in
v
er
ter
.
T
h
o
s
e
tec
h
n
iq
u
es
ar
e
b
ased
o
n
m
ap
p
i
n
g
co
n
ce
p
t
[
5
]
-
[
1
0
]
.
I
n
th
i
s
p
ap
er
a
n
e
w
tec
h
n
i
q
u
e
is
in
tr
o
d
u
ce
d
to
i
m
p
le
m
e
n
t
C
SVP
W
M
an
d
B
C
P
W
M
tec
h
n
iq
u
es
f
o
r
th
r
ee
-
le
v
el
i
n
v
er
ter
.
T
h
e
p
r
o
p
o
s
ed
tech
n
iq
u
e
is
b
ased
o
n
al
g
eb
r
aic
eq
u
atio
n
s
.
I
t is ea
s
y
to
u
n
d
er
s
tan
d
as
w
ell
a
s
s
i
m
p
le
to
i
m
p
l
e
m
en
t.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
A
N
o
ve
l A
p
p
r
o
a
ch
fo
r
S
p
a
ce
V
ec
to
r
B
a
s
ed
P
W
M A
lg
o
r
ith
m
fo
r
…
(
Deb
a
n
ja
n
R
o
y
)
1535
T
h
e
ef
f
ec
ti
v
en
e
s
s
o
f
t
h
e
p
r
o
p
o
s
ed
tech
n
iq
u
e
is
ac
h
iev
ed
b
y
p
r
o
p
er
s
im
u
latio
n
o
f
th
r
ee
-
lev
el
in
v
er
ter
i
n
M
A
T
L
A
B
.
I
t
is
o
b
s
er
v
ed
th
at
t
h
e
B
C
P
W
M
tech
n
iq
u
e,
b
ased
o
n
p
r
o
p
o
s
ed
te
ch
n
iq
u
e
h
a
s
all
t
h
e
ad
v
an
ta
g
es
co
m
p
ar
ed
to
C
SV
P
W
M
tech
n
iq
u
e.
Fu
r
t
h
er
,
f
o
r
h
ig
h
er
(
ab
o
v
e
th
r
ee
)
lev
el
i
n
v
er
ter
,
th
is
tech
n
iq
u
e
is
also
ap
p
lica
b
le.
2.
CSVP
WM
T
E
CH
NI
Q
U
E
F
O
R
T
H
RE
E
-
L
E
VE
L
I
N
VE
RT
E
R
T
h
e
h
ex
a
g
o
n
f
o
r
m
ed
b
y
s
p
ac
e
v
ec
to
r
s
f
o
r
t
h
r
ee
-
le
v
el
in
v
e
r
ter
is
s
h
o
w
n
i
n
F
ig
u
r
e
1
.
I
t
co
n
s
is
ts
o
f
2
7
n
u
m
b
er
o
f
s
p
ac
e
v
ec
to
r
s
.
T
h
er
e
ar
e
f
o
u
r
k
i
n
d
s
o
f
s
p
a
ce
v
ec
to
r
s
n
a
m
el
y
lar
g
e,
m
ed
i
u
m
,
s
m
all
a
n
d
ze
r
o
.
T
h
er
e
ar
e
s
ix
n
u
m
b
er
o
f
lar
g
e
,
s
ix
n
u
m
b
er
o
f
m
ed
i
u
m
,
th
r
e
e
n
u
m
b
er
o
f
ze
r
o
an
d
1
2
n
u
m
b
er
o
f
s
m
al
l
s
p
ac
e
v
ec
to
r
s
in
t
h
e
h
e
x
ag
o
n
.
Ou
t
o
f
t
w
el
v
e
n
u
m
b
er
s
o
f
s
m
al
l
s
p
ac
e
v
ec
to
r
s
,
s
ix
ar
e
k
n
o
w
n
as
r
ed
u
n
d
a
n
c
y
s
p
ac
e
-
v
ec
to
r
s
.
T
h
e
h
e
x
a
g
o
n
is
d
iv
id
ed
i
n
to
s
ix
s
ec
to
r
s
o
f
eq
u
al
d
u
r
atio
n
o
f
6
0
w
h
ic
h
is
s
h
o
w
n
in
Fi
g
u
r
e
1
.
T
h
er
e
h
as
b
ee
n
d
if
f
er
e
n
t
ap
p
r
o
ac
h
es
r
ep
o
r
ted
in
th
e
liter
atu
r
e
i.e
.
ca
r
r
ier
b
ased
a
p
p
r
o
ac
h
an
d
p
r
o
g
r
am
b
ased
ap
p
r
o
ac
h
.
I
n
p
r
o
g
r
am
b
ased
ap
p
r
o
ac
h
co
n
ce
p
t
o
f
m
ap
p
in
g
i
s
in
tr
o
d
u
ce
d
in
[
1
3
]
.
E
ac
h
s
ec
t
o
r
h
as
f
o
u
r
r
eg
io
n
s
.
So
f
o
r
g
en
er
ati
n
g
r
e
f
er
en
ce
v
ec
to
r
th
e
s
ec
to
r
,
r
eg
io
n
an
d
v
ec
to
r
s
eq
u
en
ce
s
elec
tio
n
ar
e
v
er
y
i
m
p
o
r
tan
t.
Af
ter
s
ec
to
r
s
elec
tio
n
,
i
n
w
h
ic
h
r
eg
io
n
t
h
e
r
ef
er
e
n
ce
v
ec
to
r
is
lo
ca
ted
is
n
ee
d
ed
to
b
e
f
in
d
o
u
t.
A
f
ter
r
e
g
io
n
s
elec
tio
n
,
t
h
e
r
ef
er
en
ce
v
ec
to
r
is
g
e
n
er
ated
b
y
ap
p
l
y
in
g
n
ea
r
b
y
s
p
ac
e
v
ec
to
r
s
.
Fig
u
r
e
1
.
Div
is
io
n
o
f
s
ec
to
r
s
an
d
r
eg
io
n
s
f
o
r
th
r
ee
-
lev
e
l in
v
e
r
ter
3.
B
CP
WM
T
E
CH
NIQ
U
E
F
O
R
T
H
RE
E
-
L
E
VE
L
I
NVER
T
E
R
B
u
s
cla
m
p
ed
P
W
M
tech
n
iq
u
e
is
o
n
e
o
f
th
e
m
o
s
t
p
o
p
u
lar
ad
v
an
ce
d
t
y
p
e
o
f
P
W
M
tech
n
iq
u
e
.
I
n
th
is
tech
n
iq
u
e,
ea
ch
p
h
ase
o
f
i
n
v
er
ter
is
cla
m
p
ed
to
o
n
e
o
f
th
e
DC
b
u
s
ter
m
in
al
s
f
o
r
ce
r
tain
d
u
r
atio
n
o
v
er
th
e
f
u
n
d
a
m
en
ta
l
c
y
cle.
D
u
r
i
n
g
th
e,
cla
m
p
i
n
g
d
u
r
atio
n
,
t
h
e
cla
m
p
ed
p
h
ase
is
n
o
t
s
w
i
tch
in
g
b
u
t
th
e
o
th
er
t
w
o
p
h
ases
k
ee
p
s
w
itc
h
i
n
g
.
B
ased
o
n
th
e
r
eg
io
n
o
f
cla
m
p
in
g
f
o
u
r
t
y
p
es
o
f
b
u
s
cla
m
p
ed
P
W
M
n
a
m
e
l
y
T
YP
E
1
,
T
Y
P
E
I
I
,
T
Y
P
E
I
I
I
an
d
T
YPE
I
V
ca
n
b
e
d
ef
in
ed
[
9
]
.
T
h
e
clam
p
i
n
g
r
eg
io
n
an
d
th
e
cla
m
p
in
g
p
h
ase
f
o
r
T
YP
E
I
I
B
C
P
W
M
a
r
e
s
h
o
w
n
i
n
F
ig
u
r
e
2
.
I
n
ea
ch
s
ec
to
r
,
th
er
e
h
a
s
a
c
la
m
p
ed
p
h
ase.
So
cla
m
p
i
n
g
d
u
r
atio
n
i
s
6
0
°.
T
h
is
B
C
P
W
M
is
p
o
p
u
lar
ly
k
n
o
w
n
as 6
0
° B
C
P
W
M
tech
n
iq
u
e.
I
n
s
ec
to
r
1
,
R
-
p
h
ase
g
ets
cla
m
p
ed
to
p
o
s
itiv
e
DC
b
u
s
w
h
e
r
ea
s
in
s
ec
to
r
4
,
R
-
p
h
ase
is
cl
a
m
p
ed
to
n
eg
at
iv
e
D
C
b
u
s
.
So
o
v
er
a
f
u
n
d
a
m
en
tal
c
y
cle,
t
h
e
to
tal
cl
a
m
p
in
g
d
u
r
atio
n
is
1
2
0
°.
I
t
h
a
s
b
ee
n
o
b
s
er
v
ed
th
at
at
h
i
g
h
m
o
d
u
latio
n
in
d
e
x
t
h
e
i
n
v
er
ter
p
er
f
o
r
m
s
b
ette
r
in
B
C
P
W
M
co
m
p
ar
ed
to
co
n
v
e
n
tio
n
al
P
W
M
tech
n
iq
u
es [
9
]
.
V
1
V
2
V
3
V
4
V
5
V
6
V
7
V
8
V
9
V
10
V
11
V
12
V
13
V
14
V
15
V
16
V
17
V
18
1
0
0
0
-
1
-
1
1
-
1
-
1
10
-
1
1
1
0
00
-
1
11
-
1
01
-
1
-
1
1
-
1
-
1
1
0
-
1
1
1
-
1
0
1
-
1
-
11
0
-
11
1
-
11
1
-
10
1
1
1
-
1
-
1
-
1
0
0
0
0
1
0
-
10
-
1
0
1
1
-
1
0
0
0
0
1
-
1
-
10
1
0
1
0
-
10
S
e
c
t
o
r
I
I
S
e
c
t
o
r
V
V
re
f
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
8
,
No
.
4
,
Dec
em
b
er
2
0
1
7
:
1
5
3
4
–
1
5
4
7
1536
V
1
V
2
V
3
V
4
V
5
V
6
V
7
V
8
V
9
V
10
V
11
V
12
V
13
V
14
V
15
V
16
V
17
V
18
100
0
-
1
-
1
1
-
1
-
1
10
-
1
110
00
-
1
11
-
1
01
-
1
-
1 1
-
1
-
110
-
111
-
101
-
1
-
11
0
-
11
1
-
11
1
-
10
111
-
1
-
1
-
1
000
010
-
10
-
1
011
-
100
001
-
1
-
10
101
0
-
10
S
e
c
t
or
I
I
S
e
c
t
or
V
R
=
1
B
=
1
Y
=
1
R
=
1
B
=
1
Y
=
1
Fig
u
r
e
2
.
Sp
ac
e
v
ec
to
r
d
iag
r
am
f
o
r
T
YP
E
I
I
clam
p
i
n
g
A
t
s
a
m
e
ca
r
r
ier
f
r
eq
u
e
n
c
y
,
t
h
e
s
w
itc
h
in
g
lo
s
s
o
f
in
v
er
ter
is
less
f
o
r
B
C
P
W
M
as
co
m
p
ar
ed
t
o
C
SVP
W
M
w
h
er
ea
s
at
s
a
m
e
s
w
itc
h
in
g
f
r
eq
u
en
c
y
a
n
d
h
i
g
h
m
o
d
u
lat
io
n
in
d
e
x
,
th
e
o
u
tp
u
t
cu
r
r
en
t
r
ip
p
le
is
s
ig
n
i
f
ica
n
tl
y
les
s
in
B
C
P
W
M
co
m
p
ar
ed
to
co
n
v
en
t
io
n
a
l
P
W
M
tech
n
iq
u
e
s
[
9
]
.
I
n
th
is
p
ap
er
,
T
YP
E
I
I
B
C
P
W
M
is
s
elec
ted
f
o
r
an
al
y
s
is
.
4.
P
RO
P
O
SE
D
RE
G
I
O
N
SE
L
E
CT
I
O
N
T
E
CH
NI
Q
U
E
Fo
r
g
en
er
atin
g
t
h
e
r
ef
er
en
ce
v
ec
to
r
,
th
e
r
eg
io
n
i
n
w
h
ic
h
t
h
e
r
ef
er
en
ce
v
ec
to
r
is
lo
ca
ted
n
ee
d
s
to
f
i
n
d
o
u
t.
I
n
t
h
e
p
r
o
p
o
s
ed
m
et
h
o
d
,
th
e
ac
t
u
al
s
ec
to
r
co
n
ta
i
n
i
n
g
th
e
tip
o
f
t
h
e
r
ef
er
e
n
ce
s
p
a
ce
v
ec
to
r
n
ee
d
n
o
t
b
e
id
en
ti
fi
ed
.
A
g
e
n
er
al
m
eth
o
d
is
p
r
o
p
o
s
ed
in
[
1
3
]
f
o
r
th
e
m
u
ltil
e
v
el
i
n
v
er
ter
s
.
T
h
e
SVP
W
M
is
i
m
p
le
m
e
n
ted
u
s
i
n
g
m
ap
p
in
g
co
n
ce
p
t.
T
h
e
p
r
o
p
o
s
ed
m
et
h
o
d
is
to
id
en
tify
th
e
ce
n
ter
o
f
a
s
u
b
-
h
e
x
a
g
o
n
co
n
ta
in
i
n
g
th
e
r
ef
er
en
ce
s
p
ac
e
v
ec
to
r
.
Usi
n
g
th
e
ce
n
ter
o
f
th
e
s
u
b
h
e
x
ag
o
n
,
th
e
r
ef
er
e
n
ce
s
p
ac
e
v
ec
to
r
is
m
ap
p
ed
to
th
e
i
n
n
er
m
o
s
t
s
u
b
h
e
x
ag
o
n
,
an
d
th
e
s
w
itc
h
i
n
g
s
eq
u
e
n
ce
co
r
r
esp
o
n
d
in
g
to
a
t
w
o
-
le
v
el
in
v
er
ter
is
esteb
lis
h
ed
.
A
n
e
w
tech
n
iq
u
e
b
ased
o
n
alg
eb
r
aic
eq
u
atio
n
s
is
p
r
o
p
o
s
ed
in
t
h
is
p
ap
er
to
f
in
d
o
u
t
t
h
e
r
e
g
io
n
i
n
a
n
y
s
ec
to
r
.
T
h
er
e
ar
e
f
o
u
r
r
eg
io
n
s
in
a
s
ec
to
r
f
o
r
th
r
ee
lev
el
i
n
v
er
ter
as
s
h
o
w
n
in
th
e
Fig
u
r
e
2
.
Fig
u
r
e
3
s
h
o
w
s
t
w
o
co
n
s
ec
u
ti
v
e
s
ec
to
r
s
(
s
ec
to
r
1
a
n
d
s
ec
to
r
2
)
.
As
th
e
h
e
x
a
g
o
n
is
s
y
m
m
etr
ic
,
th
e
p
r
o
ce
d
u
r
e
f
o
r
r
eg
io
n
s
ele
ctio
n
i
n
o
n
e
s
ec
to
r
is
ap
p
licab
le
to
o
th
er
s
ec
to
r
s
.
V
D
C
V
D
C
/
4
3
V
D
C
/
4
x
y
1
2
3
4
1
2
3
4
V
0
V
1
0
0
0
1
1
1
-
1
-
1
-
1
V
1
3
V
D
C
/
2
V
7
V
1
4
V
2
V
3
V
1
5
V
8
0
-
1
-
1
1
0
0
0
0
-
1
1
1
0
1
0
-
1
1
1
-
1
0
1
-
1
-
1
1
-
1
0
1
0
1
0
-
1
S
e
c
t
o
r
1
S
e
c
t
o
r
2
V
2
7
V
2
5
V
1
9
1
-
1
-
1
V
2
0
4
3
DC
V
2
3
DC
V
Fig
u
r
e
3
.
R
eg
io
n
s
elec
tio
n
tec
h
n
iq
u
e
f
o
r
s
ec
to
r
1
an
d
2
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
A
N
o
ve
l A
p
p
r
o
a
ch
fo
r
S
p
a
ce
V
ec
to
r
B
a
s
ed
P
W
M A
lg
o
r
ith
m
fo
r
…
(
Deb
a
n
ja
n
R
o
y
)
1537
C
o
n
s
id
er
ze
r
o
v
ec
to
r
s
(
V
0
,
V
25
,
V
27
)
as
o
r
ig
i
n
,
t
h
e
co
-
o
r
d
in
ates
f
o
r
o
t
h
er
v
ec
to
r
s
in
a
s
ec
to
r
ca
n
b
e
f
o
u
n
d
i
n
x
-
y
p
lan
e
as
s
h
o
w
n
Fi
g
u
r
e
4.
T
h
e
x
co
o
r
d
in
ate
is
in
p
h
a
s
e
w
i
th
t
h
e
s
tar
tin
g
v
ec
to
r
o
f
a
n
y
s
ec
to
r
an
d
y
co
o
r
d
in
ate
is
p
er
p
en
d
ic
u
lar
to
th
e
x
co
o
r
d
in
ate.
T
h
eta
(
)
is
th
e
an
g
le
b
et
w
ee
n
th
e
r
ef
er
en
ce
v
ec
to
r
an
d
th
e
s
tar
ti
n
g
v
ec
to
r
o
f
a
n
y
s
ec
to
r
.
T
h
e
co
-
o
r
d
in
ates f
o
r
d
if
f
er
en
t
v
ec
to
r
s
in
s
ec
to
r
1
ar
e
as f
o
llo
w
s
.
T
ab
le
1
.
T
h
e
P
e
r
f
o
r
m
a
n
ce
o
f
T
h
e
C
o
-
o
r
d
in
ates
F
o
r
D
if
f
er
e
n
t
V
ec
to
r
s
in
S
ec
to
r
1
V
e
c
t
o
r
N
a
me
C
-
o
r
d
i
n
a
t
e
(
X
,
Y
)
V
0
, V
27
,
V
25
Z
e
r
o
(
0
,
0
)
V
1
, V
19
S
mal
l
,0
2
DC
V
V
13
L
a
r
g
e
,0
DC
V
V
7
V
14
V
2
, V
20
M
e
d
i
u
m
L
a
r
g
e
S
mal
l
3
,0
4
DC
V
3
,
22
DC
DC
V
V
3
,
44
DC
DC
V
V
Fo
r
r
eg
io
n
s
elec
tio
n
,
t
w
o
al
g
eb
r
aic
eq
u
atio
n
s
ar
e
n
ee
d
ed
t
o
f
o
r
m
.
On
e
eq
u
atio
n
is
f
o
r
s
tr
aig
h
t
lin
e
b
et
w
ee
n
v
ec
to
r
s
V
1
an
d
V
2
.
O
th
er
eq
u
at
io
n
i
s
f
o
r
s
tr
ai
g
h
t
li
n
e
b
et
w
ee
n
v
ec
to
r
s
V
1
an
d
V
7
.
T
h
e
eq
u
atio
n
s
ar
e
as f
o
llo
w
s
.
3
(
)
2
DC
V
yx
(
1
)
3
(
)
2
DC
V
yx
(
2
)
T
h
e
r
ef
er
en
ce
v
ec
to
r
r
e
f
V
h
as t
w
o
co
m
p
o
n
e
n
t
s
1
r
e
f
x
V
C
o
s
(
3
)
1
r
e
f
y
V
S
i
n
(
4
)
No
w
b
y
u
s
i
n
g
(
1
)
,
(
2
)
an
d
(
3
)
,
th
e
y
co
m
p
o
n
e
n
t
s
co
r
r
esp
o
n
d
in
g
1
x
ca
n
b
e
f
o
u
n
d
o
u
t
f
o
r
r
eg
i
o
n
s
elec
tio
n
.
B
y
p
u
ttin
g
(
3
)
in
(
1
)
an
d
(
2
)
,
th
e
f
o
llo
w
i
n
g
y
co
m
p
o
n
e
n
t v
a
lu
e
s
ar
e
ac
h
iev
ed
.
1
1
1
3
(
)
2
DC
V
yx
(
5
)
2
2
1
3
(
)
2
DC
V
yx
(
6
)
No
w
b
y
co
m
p
ar
i
n
g
th
e
ab
o
v
e
co
o
r
d
in
ates,
it c
an
b
e
f
o
u
n
d
o
u
t i
n
w
h
ich
r
e
g
io
n
t
h
e
r
ef
er
e
n
ce
v
ec
to
r
is
lo
ca
ted
.
T
h
e
co
n
d
itio
n
s
f
o
r
r
eg
io
n
s
elec
tio
n
ar
e
tab
u
lated
in
T
a
b
le
2
.
Fo
r
o
th
er
s
ec
to
r
,
th
e
r
eg
io
n
s
elec
tio
n
is
s
a
m
e
as t
h
at
f
o
r
s
ec
to
r
1
ex
p
ec
t th
e
x
-
y
co
o
r
d
in
ate
s
h
i
f
ted
b
y
6
0
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
8
,
No
.
4
,
Dec
em
b
er
2
0
1
7
:
1
5
3
4
–
1
5
4
7
1538
T
ab
le
2
.
C
o
n
d
itio
n
s
f
o
r
r
eg
io
n
s
elec
tio
n
i
n
s
ec
to
r
1
R
e
g
i
o
n
C
o
n
d
i
t
i
o
n
1
1
0
/
4
DC
xV
a
n
d
0
6
0
Or
1
/
4
/
2
D
C
D
C
V
x
V
a
n
d
1
1
1
yy
2
1
/
4
/
2
D
C
D
C
V
x
V
a
n
d
1
1
1
3
/
4
DC
y
y
V
Or
1
/
2
3
/
4
D
C
D
C
V
x
V
a
n
d
2
2
1
3
/
4
DC
y
y
V
3
1
/
2
3
/
4
D
C
D
C
V
x
V
a
n
d
1
2
2
yy
Or
1
3
/
4
D
C
D
C
V
x
V
a
n
d
0
3
0
4
C
o
n
d
i
t
i
o
n
s
f
o
r
r
e
g
i
o
n
s 1
,
2
a
n
d
3
a
r
e
n
o
t
sat
i
sf
i
e
d
t
h
e
n
r
e
g
i
o
n
4
w
i
l
l
b
e
se
l
e
c
t
e
d
5.
VE
C
T
O
R
SE
Q
U
E
NC
E
AN
D
DWE
L
L
T
I
M
E
CALC
UL
AT
I
O
N
F
O
R
CS
VP
WM
Fo
r
g
en
er
ati
n
g
t
h
e
r
ef
er
e
n
ce
v
ec
to
r
in
an
y
r
e
g
io
n
o
f
a
n
y
s
ec
t
o
r
th
e
f
o
llo
w
in
g
t
w
o
co
n
d
itio
n
s
s
h
o
u
ld
b
e
s
atis
f
ied
:
a.
On
l
y
o
n
e
s
w
itc
h
i
s
s
w
itc
h
ed
d
u
r
in
g
s
tate
tr
a
n
s
it
io
n
.
T
h
at
is
t
r
an
s
itio
n
f
r
o
m
s
tate
1
to
s
tate
-
1
an
d
v
ice
-
v
er
s
a
is
n
o
t a
llo
w
ed
.
b.
Fin
al
s
tate
o
f
t
h
e
p
r
esen
t
s
a
m
p
le
is
th
e
f
ir
s
t
s
tate
o
f
t
h
e
n
e
x
t s
a
m
p
le.
T
h
e
v
ec
to
r
s
eq
u
en
ce
in
ea
c
h
r
eg
io
n
i
s
s
elec
ted
i
n
s
u
c
h
w
a
y
t
h
at
t
h
e
ab
o
v
e
t
w
o
co
n
d
itio
n
s
ati
s
f
y
.
T
h
e
v
ec
to
r
s
eq
u
en
ce
s
f
o
r
d
if
f
e
r
en
t r
eg
io
n
s
in
s
ec
to
r
1
ar
e
tab
u
lated
in
T
ab
le
3
.
T
ab
le
3
.
Vec
to
r
s
eq
u
en
ce
f
o
r
d
if
f
er
e
n
t r
eg
io
n
in
s
ec
to
r
1
R
e
g
i
o
n
V
e
c
t
o
r
S
e
q
u
e
n
c
e
1
V
27
V
19
V
20
V
0
V
1
V
2
V
25
(
-
1
-
1
-
1
)
(
0
-
1
-
1
)
(
0
0
-
1
)
(
0
0
0
)
(
1
0
0
)
(
1
1
0
)
(
1
1
1
)
2
V
19
V
20
V
7
V
1
V
2
(0
-
1
-
1
)
(
0
0
-
1
)
(
1
0
-
1
)
(
1
0
0
)
(
1
1
0
)
3
V
19
V
13
V
7
V
1
(0
-
1
-
1
)
(
1
-
1
-
1
)
(
1
0
-
1
)
(
1
0
0
)
4
C
o
n
d
i
t
i
o
n
s
f
o
r
r
e
g
i
o
n
s
1
,
2
a
n
d
3
a
r
e
n
o
t
sa
t
i
sf
i
e
d
t
h
e
n
r
e
g
i
o
n
4
w
i
l
l
b
e
se
l
e
c
t
e
d
B
y
v
o
lt
-
s
ec
b
alan
ce
t
h
e
d
w
ell
ti
m
e
s
ar
e
ca
lcu
lated
an
d
tab
u
l
ated
in
T
ab
le
4
f
o
r
s
ec
to
r
1.
W
h
er
e
S
T
Sa
m
p
le
T
i
m
e
a
b
c
T
T
T
m
Mo
d
u
latio
n
I
n
d
ex
2
(/
3
)
r
e
f
D
C
VV
Fig
u
r
e
4
s
h
o
w
s
t
h
e
ti
m
i
n
g
d
iag
r
a
m
f
o
r
r
eg
io
n
1
in
s
ec
to
r
1
.
I
t
is
o
b
s
er
v
ed
th
at
at
a
ti
m
e
o
n
l
y
o
n
e
s
w
itc
h
is
s
w
i
tch
ed
f
o
r
ea
ch
tr
an
s
it
io
n
.
T
h
e
ti
m
i
n
g
d
iag
r
a
m
s
f
o
r
o
th
er
r
eg
io
n
s
in
s
ec
to
r
1
ar
e
as p
er
T
ab
le
3
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
A
N
o
ve
l A
p
p
r
o
a
ch
fo
r
S
p
a
ce
V
ec
to
r
B
a
s
ed
P
W
M A
lg
o
r
ith
m
fo
r
…
(
Deb
a
n
ja
n
R
o
y
)
1539
V
2
7
-
1
-
1
-
1
V
1
9
0
-
1
-
1
V
2
5
1
1
1
V
2
1
1
0
V
1
1
0
0
V
0
0
0
0
V
2
0
0
0
-
1
V
2
1
1
0
V
1
1
0
0
V
0
0
0
0
V
2
0
0
0
-
1
V
1
9
0
-
1
-
1
V
2
7
-
1
-
1
-
1
V
R
Z
V
B
Z
V
Y
Z
T
b
/
8
T
a
/
4
T
c
/
4
T
a
/
4
T
b
/
4
T
c
/
4
T
b
/
8
T
a
/
4
T
c
/
4
T
b
/
4
T
a
/
4
T
c
/
4
T
b
/
4
V
D
C
/
2
-
V
D
C
/
2
T
s
/
2
T
s
T
s
/
2
Fig
u
r
e
4
.
T
im
in
g
d
iag
r
a
m
o
f
v
ec
to
r
s
eq
u
en
ce
f
o
r
r
eg
io
n
1
in
s
ec
to
r
1
f
o
r
C
SVP
W
M
T
ab
le
4
.
Dw
el
l ti
m
es
f
o
r
s
ec
to
r
1
R
e
g
i
o
n
V
e
c
t
o
r
s
D
w
e
l
l
T
i
me
1
V
1
2
(
/
3
)
aS
T
T
m
S
i
n
V
0
V
27
V
25
1
2
(
/
3
)
bS
T
T
m
S
i
n
V
2
2
cS
T
T
m
S
i
n
2
V
1
V
19
1
2
aS
T
T
m
S
i
n
V
7
2
(
/
3
)
1
bS
T
T
m
S
i
n
V
2
V
20
1
2
(
/
3
)
cS
T
T
m
S
i
n
3
V
1
V
19
2
2
(
/
3
)
aS
T
T
m
S
i
n
V
7
2
bS
n
TT
m
S
i
V
13
2
(
/
3
)
1
cS
T
T
m
S
i
n
4
V
14
2
1
aS
T
T
m
S
i
n
V
7
2
(
/
3
)
bS
T
T
m
S
i
n
V
2
V
20
2
2
(
/
3
)
cS
T
T
m
S
i
n
6.
VE
C
T
O
R
SE
Q
U
E
NC
E
AN
D
DWE
L
L
T
I
M
E
CALC
UL
AT
I
O
N
F
O
R
B
CP
WM
Fo
r
g
en
er
ati
n
g
t
h
e
r
ef
er
e
n
ce
v
ec
to
r
in
an
y
r
e
g
io
n
o
f
a
n
y
s
ec
t
o
r
th
e
f
o
llo
w
in
g
t
w
o
c
o
n
d
itio
n
s
s
h
o
u
ld
b
e
s
atis
f
ied
:
a.
On
l
y
o
n
e
s
w
i
tch
is
s
w
itc
h
ed
d
u
r
in
g
s
tate
tr
a
n
s
i
tio
n
.
T
h
at
is
t
r
an
s
itio
n
f
r
o
m
s
tate
1
to
s
tate
-
1
an
d
v
ice
-
v
er
s
a
i
s
n
o
t a
llo
w
ed
.
b.
Fin
al
s
tate
o
f
t
h
e
p
r
esen
t
s
a
m
p
le
is
th
e
f
ir
s
t
s
tate
o
f
t
h
e
n
e
x
t s
a
m
p
le.
T
h
e
v
ec
to
r
s
eq
u
en
ce
in
ea
c
h
r
eg
io
n
i
s
s
e
lecte
d
in
s
u
c
h
w
a
y
th
at
t
h
e
ab
o
v
e
t
w
o
co
n
d
it
io
n
s
s
atis
f
y
.
T
h
e
v
ec
to
r
s
eq
u
en
ce
s
f
o
r
d
if
f
er
e
n
t
r
eg
io
n
s
in
s
ec
to
r
1
a
r
e
tab
u
lated
i
n
T
ab
le
5
a
.
Dw
e
ll
ti
m
e
s
f
o
r
s
ec
to
r
1
as
s
h
o
w
n
in
T
ab
le
5
b
T
ab
le
5
a
.
Vec
to
r
s
eq
u
en
ce
f
o
r
d
if
f
er
e
n
t r
eg
io
n
in
s
ec
to
r
1
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
8
,
No
.
4
,
Dec
em
b
er
2
0
1
7
:
1
5
3
4
–
1
5
4
7
1540
R
e
g
i
o
n
V
e
c
t
o
r
S
e
q
u
e
n
c
e
C
l
a
mp
e
d
P
h
a
se
1
V
1
V
2
V
25
(
1
0
0
)
(
1
1
0
)
(
1
1
1
)
+R
2
V
2
V
1
V
7
(
1
1
0
)
(
1
0
0
)
(
1
0
-
1)
+R
3
V
1
V
7
V
13
(
1
0
0
)
(
1
0
-
1
)
(
1
-
1
-
1)
+R
4
V
2
V
14
V
7
(
1
1
0
)
(
1
1
-
1
)
(
1
0
-
1)
+R
T
ab
le
5
b
.
Dw
ell
ti
m
e
s
f
o
r
s
ec
t
o
r
1
R
V
e
c
t
o
r
s
D
w
e
l
l
T
i
me
1
V
1
2
(
/
3
)
aS
T
T
m
S
i
n
V
0
1
2
(
/
3
)
bS
T
T
m
S
i
n
V
2
2
cS
T
m
T
S
i
n
2
V
1
1
2
aS
T
T
m
S
i
n
V
7
2
(
/
3
)
1
bS
T
T
m
S
i
n
V
2
1
2
(
/
3
)
cS
T
T
m
S
i
n
3
V
1
2
2
(
/
3
)
aS
T
T
m
S
i
n
V
7
2
bS
T
m
T
S
i
n
V
13
2
(
/
3
)
1
cS
T
T
m
S
i
n
4
V
14
2
1
aS
T
T
m
S
i
n
V
7
2
(
/
3
)
bS
T
T
m
S
i
n
V
2
2
2
(
/
3
)
cS
T
T
m
S
i
n
Fig
u
r
e
6
(
a)
an
d
6
(
b
)
s
h
o
w
t
h
e
ti
m
i
n
g
d
iag
r
a
m
s
o
f
v
ec
to
r
s
eq
u
en
ce
f
o
r
r
eg
io
n
1
an
d
r
e
g
io
n
4
o
f
s
ec
to
r
1
.
I
t
is
o
b
s
er
v
ed
th
at
R
p
h
ase
g
et
s
cla
m
p
ed
to
p
o
s
itiv
e
DC
b
u
s
ter
m
i
n
al.
I
n
s
i
m
ila
r
f
ash
io
n
t
h
e
o
th
er
s
ec
to
r
s
ca
n
b
e
an
al
y
ze
d
.
V
2
1
1
0
V
1
1
0
0
T
a
/
2
T
a
/
2
T
c
/
2
T
b
/
2
T
c
/
2
V
R
Z
V
Y
Z
V
B
Z
T
s
/
2
T
s
/
2
T
s
V
D
C
/
2
V
D
C
/
2
V
2
5
1
1
1
V
1
1
0
0
V
2
1
1
0
V
D
C
/
2
+
R
C
l
a
m
p
e
d
V
2
1
1
0
V
1
4
1
1
-
1
T
c
/
2
T
c
/
2
T
a
/
2
T
b
/
2
T
a
/
2
V
R
Z
V
Y
Z
V
B
Z
T
s
/
2
T
s
/
2
T
s
V
D
C
/
2
-
V
D
C
/
2
V
7
1
0
-
1
V
2
1
1
0
V
D
C
/
2
V
1
4
1
1
-
1
+
R
C
l
a
m
p
e
d
(
a)
(
b
)
Fig
u
r
e
6
(
a)
.
T
im
i
n
g
d
ia
g
r
a
m
o
f
v
ec
to
r
s
eq
u
e
n
ce
f
o
r
r
eg
io
n
1
in
s
ec
to
r
1
f
o
r
B
C
P
W
M
(
b
)
.
T
im
i
n
g
d
ia
g
r
a
m
o
f
v
ec
to
r
s
eq
u
en
ce
f
o
r
r
eg
io
n
4
i
n
s
ec
to
r
1
f
o
r
B
C
P
W
M
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
A
N
o
ve
l A
p
p
r
o
a
ch
fo
r
S
p
a
ce
V
ec
to
r
B
a
s
ed
P
W
M A
lg
o
r
ith
m
fo
r
…
(
Deb
a
n
ja
n
R
o
y
)
1541
7.
SI
M
UL
AT
I
O
N
R
E
S
UL
T
S
AND
CO
M
P
ARIS
O
N
ST
UD
Y
T
h
e
alg
o
r
ith
m
s
u
s
in
g
p
r
o
p
o
s
e
d
r
eg
io
n
s
elec
tio
n
tec
h
n
iq
u
e
f
o
r
co
n
v
en
tio
n
a
l
SVP
W
M
an
d
B
C
P
W
M
f
o
r
th
r
ee
-
lev
e
l
in
v
er
ter
ar
e
v
er
if
ied
th
r
o
u
g
h
s
i
m
u
latio
n
o
n
a
4
KW
4
0
0
V
5
0
Hz
1
4
3
0
r
p
m
i
n
d
u
ctio
n
m
o
to
r
d
r
iv
e
s
u
p
p
lied
f
r
o
m
a
th
r
ee
p
h
ase
th
r
ee
lev
el
d
io
d
e
cla
m
p
ed
in
v
er
ter
.
A
co
m
p
ar
is
o
n
h
as
b
ee
n
s
tu
d
ied
f
o
r
d
if
f
er
e
n
t
P
W
M
tec
h
n
iq
u
e
u
s
i
n
g
t
h
r
ee
p
h
a
s
e
i
n
d
u
c
tio
n
m
o
to
r
.
T
h
e
in
v
er
ter
i
s
m
o
d
elled
u
s
i
n
g
MA
T
L
A
B
/SIM
U
L
I
NK.
T
h
e
c
o
m
p
ar
is
o
n
i
s
co
n
s
id
er
ed
f
o
r
s
a
m
e
s
a
m
p
li
n
g
f
r
eq
u
en
c
y
.
B
u
t
f
sw
o
f
C
SVP
W
M
is
1
.
8
6
6
6
7
tim
es t
h
at
o
f
b
u
s
cla
m
p
in
g
P
W
M.
T
h
e
s
im
u
lat
io
n
i
s
d
o
n
e
b
y
co
n
s
i
d
er
in
g
t
h
e
f
o
ll
o
w
i
n
g
co
n
d
itio
n
s
:
1.
DC
b
u
s
v
o
lta
g
e,
V
DC
=
4
0
0
V
2.
5
HP
,
3
p
h
ase,
3
w
ir
e,
2
3
0
V,
4
p
o
le
s
q
u
ir
r
el
ca
g
e
i
n
d
u
ct
io
n
m
o
to
r
w
it
h
p
ar
a
m
eter
s
r
s
=
0
.
5
3
1
Ω
,
r
r
=
0
.
4
0
8
Ω
,
J
=
0
.
1
k
g
−
2
m
L
ls
= L
lr
=
2
.
5
2
m
H,
L
ls
=
8
4
.
7
m
H.
3.
Mo
d
u
latio
n
i
n
d
ex
=0
.
9
; S
w
itc
h
in
g
f
r
eq
u
e
n
c
y
,
f
sw
=
1
0
k
Hz.
(
a)
Fig
u
r
e
7
.
Si
m
u
latio
n
r
esu
l
ts
:
Vp
,
V
L
, I
N
L
an
d
th
eir
h
ar
m
o
n
ic
an
al
y
s
is
at
n
o
lo
ad
f
o
r
m
=0
.
9
.
(
a)
C
SVP
W
M
(
b
)
B
C
P
W
M
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8
694
IJ
PEDS
Vo
l.
8
,
No
.
4
,
Dec
em
b
er
2
0
1
7
:
1
5
3
4
–
1
5
4
7
1542
(
b
)
Fig
u
r
e
7
.
Si
m
u
latio
n
r
esu
l
ts
:
Vp
,
V
L
, I
N
L
an
d
th
eir
h
ar
m
o
n
ic
an
al
y
s
is
at
n
o
lo
ad
f
o
r
m
=0
.
9
.
(
a)
C
SVP
W
M
(
b
)
B
C
P
W
M
T
h
e
p
lo
t
o
f
p
o
le
v
o
ltag
e
s
(
V
P
)
,
lin
e
v
o
lta
g
e
(V
L
)
,
li
n
e
c
u
r
r
en
t
an
d
h
ar
m
o
n
ic
a
n
al
y
s
is
o
f
lin
e
cu
r
r
en
t
f
o
r
b
o
th
t
h
e
P
W
M
t
ec
h
n
iq
u
es
h
as
b
ee
n
s
h
o
w
n
i
n
Fig
u
r
e
7
an
d
Fi
g
u
r
e
8
u
n
d
er
n
o
-
lo
ad
an
d
f
u
ll
lo
ad
r
esp
ec
tiv
el
y
at
0
.
9
m
o
d
u
latio
n
in
d
ex
.
T
h
e
r
m
s
v
al
u
e
o
f
f
u
n
d
a
m
en
tal
co
m
p
o
n
e
n
t
is
3
6
0
V
f
o
r
C
SVP
W
M
an
d
3
6
1
.
3
V
f
o
r
V
f
o
r
B
C
P
W
M.
T
h
e
r
m
s
v
al
u
e
o
f
f
u
n
d
a
m
e
n
ta
l
co
m
p
o
n
e
n
t
o
f
th
e
m
o
to
r
n
o
-
lo
ad
c
u
r
r
en
t
I
NL
1
i
s
3
.
7
1
2
A
f
o
r
C
SVP
W
M
an
d
3
.
7
3
8
A
f
o
r
C
SVP
W
M
an
d
B
C
P
W
M
r
esp
ec
tiv
el
y
.
T
h
e
to
tal
h
ar
m
o
n
ic
d
is
to
r
tio
n
lin
e
cu
r
r
e
n
t is 2
.
6
5
% f
o
r
C
SV
P
W
M
an
d
2
.
1
2
% f
o
r
B
C
PW
M
at
n
o
lo
ad
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
A
N
o
ve
l A
p
p
r
o
a
ch
fo
r
S
p
a
ce
V
ec
to
r
B
a
s
ed
P
W
M A
lg
o
r
ith
m
fo
r
…
(
Deb
a
n
ja
n
R
o
y
)
1543
(
a)
(
b
)
Fig
u
r
e
8
.
Si
m
u
latio
n
r
esu
l
ts
:
V
L
, I
F
L
an
d
th
e
ir
h
ar
m
o
n
ic
an
a
l
y
s
i
s
at
f
u
ll lo
ad
f
o
r
m
=0
.
9
.
(
a)
C
SVP
W
M
(
b
)
B
C
P
W
M
Evaluation Warning : The document was created with Spire.PDF for Python.