Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l. 5,
N
o
.
1
,
Ju
ly 20
14
, pp
. 11
2
~
11
8
I
S
SN
: 208
8-8
6
9
4
1
12
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Selection of Appropriate Semico
nductor Switches for Induction
Heat
ed Pipe-Line using High
Frequency Full Bridge Inverter
Pra
d
ip Kumar Sadhu*
,
D
e
ba
bra
t
a
R
oy**
, N
i
ta
i Pa
l*
, Sourish Sa
ny
a
l
**
*
* Electr
i
cal
Engineering
Depar
t
ment, Indian Scho
ol of Mi
n
e
s (und
er MHRD, Govt. of India), Dhan
bad - 82600
4, In
dia
**
Departmen
t
o
f
Electr
i
cal
Engineering
,
Se
acom Engin
eering
Co
lleg
e
, Howrah-711302, India
**
*
Dep
a
rtment of Electronics and
Communication Engin
eering
,
Academ
y
of
Technolog
y
,
Hooghly
,
India
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Apr 15, 2014
Rev
i
sed
May 23
, 20
14
Accepte
d
J
u
n 2, 2014
An exhaustive
method for the choice
of diff
erent power semiconductor
switches for high frequency
f
u
ll bridge inv
e
r
t
er fed inductio
n heater is
presented
.
Heat
i
ng coil of the i
nduction
heater
is m
a
de of litz wire which
mi
ni
mi
se
s t
h
e
s
k
i
n
e
ffe
ct
and proximity
ef
fect at high operatin
g frequen
c
y
.
With the
calculated
optimum values of inductanc
e and r
e
sistance of heating
coil at a par
ticu
l
ar oper
a
ting fr
equenc
y
,
h
i
gh frequency
full br
id
ge inverter
topolog
y
h
a
s been simulated using P-SI
M software as well as constructing
the exper
i
m
e
nta
l
m
odel of same rating
.
Obtain
ed the voltag
e
waveform
s
across heating coil and curr
ent
waveforms through it, hav
e
been taken for
further an
al
y
s
i
s
. F
r
om
this anal
y
s
is selection of suitable power
semiconductor switches
lik
e IGBT
, GTO and MOSFET are mad
e
.
Waveforms have been shown to justif
y
th
e fe
as
ibi
lit
y for re
al im
pl
em
entat
i
on
of high fr
equen
c
y
full bridg
e
inverter
fed
ind
u
ction h
e
ater
in
industrial
applications.
Keyword:
Fu
ll Bridg
e
Inv
e
rter
GTO
IGBT
Induction heat
er
MOSFET
P-S
I
M
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Deba
brata Roy
,
Electrical Engi
neeri
n
g De
part
ment,
Seacom
Engi
neering Colle
ge
H
o
w
r
ah
, W
e
st Ben
g
a
l-71
1302
, In
d
i
a
Em
a
il: d
e
b
a
brataro
y198
5@gmail.co
m
1.
INTRODUCTION
In
d
u
ct
i
on
heat
er fo
r i
n
d
u
st
r
i
a
l
appl
i
cat
i
ons ope
rat
e
s at
a
hi
g
h
f
r
eq
u
e
ncy
ra
n
g
e
fr
om
1kH
z
t
o
10
0
k
Hz
as
des
c
ri
bed
by
Sa
d
hu
et
.al
i
n
.
I
n
t
h
e app
lic
a
tio
n
o
f
lo
w
f
r
e
q
u
e
n
c
y
in
d
u
c
tio
n
h
e
a
tin
g
[2
],
[6
] th
e
t
e
m
p
erat
ure
d
i
s
t
r
i
b
u
t
i
o
n
ca
n
be
co
nt
r
o
l
l
e
d by
sl
o
w
l
y
vary
i
ng
m
a
gnet
i
c
fi
el
ds bel
o
w
a
f
r
e
que
ncy
as
l
o
w
as
3
0
0
H
z
.
Fo
r
m
e
d
i
u
m
f
r
e
q
u
e
n
c
y
ap
p
licatio
n
,
an
au
x
iliary
v
o
ltag
e
-fed
i
n
v
e
rter
[3
],
[5
],
[
7
],
[
9
] is
o
p
erat
ed
in
pa
r
a
l
l
e
l
w
i
t
h
t
h
e
m
a
i
n
c
u
r
r
e
nt
-
f
e
d i
n
ve
r
t
e
r
s
i
nc
e
t
h
e
c
u
r
r
e
nt
-
f
e
d
pa
ral
l
e
l
i
nvert
ers
al
one
,
whe
n
us
ed
f
o
r
i
n
d
u
ct
i
on he
a
t
i
n
g
,
f
a
i
l
t
o
s
t
ar
t
.
F
u
l
l
B
r
i
d
g
e
i
nvert
er
s [1
0]
f
o
r
hi
gh f
r
e
que
ncy
[
4
]
i
n
duct
i
o
n
heat
i
n
g an
d
m
e
ltin
g
app
licatio
n
s
are self-started.
Fo
r
self-co
m
m
u
tat
i
on
, a res
o
nan
t
[1
1]
ci
rcui
t
i
s
essent
i
a
l
.
It
i
s
assum
e
d t
h
at
t
h
e ci
rcui
t
i
s
u
nde
r dam
p
ed;
a
m
a
ndat
o
ry
c
o
ndi
t
i
on
for t
h
e ci
rcui
t
.
T
h
e
capaci
t
o
r
requi
r
ed
for
u
n
d
e
r
d
a
m
p
in
g
c
a
n
b
e
c
o
n
n
ec
te
d
in
s
e
r
i
e
s
o
r
in
p
a
r
a
llel
with
th
e
lo
ad
.
In
th
e
m
o
d
e
rn
ti
m
e
s,
IGBTs,
GTOs,
MOSFET
s
are
pre
f
erred t
o
SCRs
m
a
inly
because
they
offer
c
o
nve
nie
n
t turn
OFF c
h
aracteristic
s
.
Som
e
au
x
iliary
c
i
rcu
its
a
n
d
e
q
u
i
p
m
e
n
t
a
r
e
r
e
q
u
i
r
e
d
to
m
i
n
i
m
i
z
e
s
w
i
t
ch
i
n
g
[1
] lo
s
s
e
s
o
c
cu
rr
in
g
a
t
h
i
g
h
fre
que
nci
e
s.
In
t
h
i
s
prese
n
t
p
a
per
,
res
p
o
n
se
of hi
gh
fre
q
u
e
ncy
f
u
l
l
b
r
i
d
g
e
i
nvert
er
[1
0]
i
s
t
e
st
ed
&
veri
fi
ed
w
ith
d
i
ff
e
r
en
t
p
o
w
e
r
s
w
itch
e
s
a
n
d
f
i
n
a
lly
a
p
p
r
o
p
r
i
aten
es
s
o
f
t
h
e
sw
itch
e
s
is
co
n
f
irm
e
d
.
W
ith
th
e
s
a
m
e
desi
g
n
ed
pa
ra
m
e
t
e
rs
of
t
h
e
sai
d
i
n
vert
er
ci
rcui
t
,
va
ri
o
u
s swi
t
c
hes suc
h
as IGB
T
, G
T
O an
d M
O
SF
ET
ha
ve
b
e
e
n
u
s
e
d
.
Co
m
p
le
te
in
v
e
r
t
er
c
o
n
f
ig
u
r
a
tio
n
th
e
n
h
a
s
b
e
en
s
i
m
u
la
ted
[8
] u
s
in
g
P-
SI
M.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
S
e
lectio
n o
f
App
r
op
ri
a
t
e S
e
m
i
co
ndu
cto
r
S
w
itch
e
s f
o
r
I
ndu
ctio
n
H
e
a
t
ed
Pipe-
L
in
e… (Pradip
Kuma
r
S
adhu
)
11
3
2.
AN
ALY
S
IS
O
F
HIG
H
F
R
E
Q
UEN
C
Y
F
U
LL BRID
GE
INVE
RTER
The ci
rc
ui
t
o
p
e
rat
i
on
has
be
en
di
scusse
d i
n
t
h
e
f
o
l
l
o
wi
n
g
. T
h
e e
x
act
c
i
rcui
t
di
a
g
ram
of
t
h
e
Ful
l
B
r
i
dge
i
n
vert
e
r
i
s
sh
o
w
n
i
n
Fi
gu
re
1.
Fig
u
re
1
i
n
d
i
cates a sp
ecially d
e
sign
ed
edd
y
curren
t
h
e
ated
m
e
tal
lic p
ack
ag
e wh
ich
is tigh
tly
in
corpo
r
ated
into
th
e
no
n- m
e
tallic v
e
ssel o
r
tan
k
i
n
th
e p
i
p
e
lin
e.
Th
e m
ech
an
ically processed
t
h
in
stain
l
ess-
st
eel
l
a
y
e
r pa
ckage
wi
t
h
m
a
ny
sp
ot
s a
n
d
fl
ui
d
cha
n
ne
ls for cylind
r
i
cal in
du
ctio
n-h
eated
assem
b
ly is
dem
onst
r
at
ed
i
n
Fi
gu
re
2.
Fig
u
re
1
.
Fu
ll b
r
i
d
g
e
inv
e
rter fitted
indu
ction
h
eatin
g equ
i
p
m
en
t
Fi
gu
re
2.
Heat
i
n
g
pac
k
a
g
e i
n
t
h
e
vessel
a
n
d
t
a
nk
i
n
pi
pel
i
n
e sy
st
em
Fi
gu
re
3.
I
n
t
e
r
n
al
st
r
u
ct
u
r
e
of
fl
ui
d t
h
ro
u
g
h
s
p
eci
al
l
y
desi
g
n
e
d
m
e
t
a
l l
a
y
e
r pac
k
i
n
g
t
o
ge
ne
rat
e
t
u
r
bul
e
n
ce
flo
w
Whe
n
t
h
e
fl
ui
d fl
o
w
s t
h
ro
u
gh t
h
e i
nhe
re
n
t
packa
g
e i
n
t
h
e vess
el
or t
a
nk
ha
vi
n
g
a wo
rki
n
g coi
l
connected to
pipeline, the
t
u
r
b
ul
ent
fl
ui
d
i
s
heat
ed a
b
r
u
pt
l
y
by
ed
dy
cur
r
ent
l
o
sses
gene
rat
e
d i
n
si
de t
h
e
stain
l
ess-steel p
ack
ag
e.
In
tern
al stru
ct
u
r
e
of th
is m
e
tallic
p
ack
ag
e to
be h
eated
b
y
ed
d
y
cu
rren
t losses is
i
ndi
cat
ed
i
n
Fi
gu
re
3.
F
o
r
o
p
e
r
at
i
onal
a
n
al
y
s
i
s
, e
qui
val
e
nt
ci
rcui
t
di
agr
a
m
as sh
o
w
n
i
n
Fi
g
u
re
4
.
Fi
gu
re
4.
F
u
l
l
bri
dge
seri
es
re
son
a
nt
i
nve
rt
er
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
112
–
1
18
11
4
Fu
ll bridg
e
circu
it is no
rm
all
y
u
s
ed fo
r h
i
gh
er ou
tpu
t
p
o
wer. Basic circu
it is shown in th
e Fi
g
u
re
4.
Fou
r
so
lid
state switch
e
s are u
s
ed
an
d
two switch
e
s
are t
r
igg
e
red
sim
u
l
t
an
eou
s
ly. An
ti-p
a
rallel d
i
odes are
co
nn
ected wit
h
th
e switch
t
h
at allo
ws th
e cu
rren
t t
o
fl
o
w
when
th
e m
a
in
switch
is tu
rn
ed
OFF.
The ci
rcui
t
i
s
on
w
h
e
n
s
w
i
t
c
hes
Q
1
a
n
d
Q
4
a
r
e t
r
i
gge
re
d
si
m
u
l
t
a
neousl
y
. The
c
u
r
r
ent
fl
o
w
s
f
o
r
a
hal
f
cy
cl
e o
f
t
h
e re
so
na
nt
fre
que
ncy
a
nd
be
com
e
zero w
h
en
bot
h s
w
i
t
c
h
e
s Q
1
an
d
Q
4
are t
u
rne
d
of
f.
When
Q1
an
d
Q
4
st
op
co
n
duct
i
n
g
an
d s
w
i
t
c
h
Q
2
a
n
d
Q
3
a
r
e
n
o
t
yet turn
ed ON th
e curren
t
throug
h th
e lo
ad
reve
rses and is now carried
by D1 and
D4, the IGBT
whic
h are connecte
d
with th
e res
p
ective switches
.
The
voltage
drops a
c
ross
IGBT appear as a
re
verse bias acro
ss s
w
i
t
c
h Q
1
a
nd
Q4
. I
f
d
u
r
at
i
o
n
of t
h
e re
ver
s
e
bi
as i
s
m
o
re th
an
th
e switch
tu
rn-o
ff ti
m
e
th
en
switch
Q1
a
nd
Q
4
get
co
m
m
u
t
a
t
e
d nat
u
ral
l
y
and t
h
e
r
ef
ore
,
com
m
ut
ati
on c
i
rcui
t
i
s
not
re
qui
red
.
Thi
s
m
e
t
h
o
d
o
f
com
m
u
t
a
t
i
on i
s
cal
l
e
d l
o
ad c
o
m
m
ut
at
i
on an
d
use
d
i
n
hi
g
h
fre
que
ncy
i
nve
rt
er f
o
r
i
n
duct
i
o
n heat
i
n
g.
In
v
i
ew of th
e d
i
fficu
lties of con
s
tru
c
tin
g fo
ur c
o
n
t
ro
l circu
its and
co
mp
lex
ity of firi
ng
/trigg
e
ri
ng
si
gnal
f
o
r t
h
e a
b
o
v
e m
e
nt
i
oned co
nfi
g
u
r
at
i
o
ns o
f
hi
g
h
fr
eq
uency
res
o
nant
i
nvert
er
s Ful
l
B
r
i
dge i
n
ve
rt
er
(hi
g
h
fre
que
ncy
se
ri
es res
o
n
a
nt
p
o
i
n
t
im
age cur
r
e
n
t
so
urce
i
n
vert
e
r) i
s
ch
ose
n
.
Firstly, th
e inv
e
rter circu
it i
s
si
m
u
lated
wi
th
IG
BT as
powe
r s
w
itch.
There
after
IGBT has
bee
n
replace
d by
GTO& M
O
SFE
T
. In eac
h case
,
coil curre
nt
w
a
vef
o
rm
& v
o
l
t
a
ge acr
oss i
t
h
a
ve
been
rec
o
r
d
ed
&
i
nvest
i
g
at
e
d
.
A
real
t
i
m
e experi
m
e
nt
has bee
n
carried ou
t t
o
v
a
lid
ate t
h
e si
m
u
la
tio
n
resu
lt
.
3.
SIMULATION AND RESULT
In
th
is presen
t wo
rk
, th
e
h
i
gh
frequ
en
cy Fu
ll Bri
dge Se
ri
es R
e
sona
nt
i
n
vert
er
has bee
n
si
m
u
l
a
t
e
d
usi
n
g
P
-
SIM
wi
t
h
t
h
e hel
p
of
e
qui
val
e
nt
param
e
t
e
rs
connecte
d
at the
input of
th
e ind
u
c
tion
h
eated syste
m
.
Th
e circu
it configu
r
ation
an
d
wav
e
fo
rm
s in
P-SIM is shown
b
e
l
o
w. Wi
th
t
h
e
s
e
l
e
c
t
e
d
circu
it p
a
r
a
m
e
t
e
r
s
&
c
o
n
f
i
g
u
r
a
t
i
o
n
,
fo
l
l
ow
i
n
g
wave
f
o
rm
s have bee
n
o
b
t
ai
ned
usi
n
g
P-SIM
so
ft
ware a
nd
re
al
t
i
m
e
expe
ri
m
e
nt
al
m
odel
usi
ng
d
i
ffere
nt
po
wer
sem
i
cond
uct
o
r
s
w
i
t
c
hes usi
n
g
I
G
B
T
i
n
t
h
e F
u
l
l
B
r
i
d
g
e
s
e
r
i
e
s
R
e
s
o
n
a
n
t
i
nver
t
er
ci
rcui
t
,
i
t
i
s
o
b
ser
v
e
d
i
n
Fi
gu
re 1
2
& 1
3
t
h
at
m
a
gni
t
ude
of
c
u
r
r
e
n
t
t
h
r
o
ug
h
t
h
e
c
o
i
l
has
al
m
o
st
eq
u
a
l
i
n
bo
th
p
o
s
itiv
e
an
d
m
u
st
b
e
in
d
e
n
t
ed
n
e
g
a
ti
v
e
h
a
l
f
. Su
ch
a p
eak
to
p
e
ak sy
m
m
etrical
c
u
rrent
pr
o
duces m
o
re heat
. He
nce
h
eat
i
ng e
ffect
b
ecom
e
s
very
pr
om
i
n
ent
f
o
r
t
h
e
sam
e
ope
rat
i
ng
f
r
e
que
ncy
r
a
nge
.
Fu
r
t
h
e
r, i
t
i
s
o
b
s
erv
e
d
t
h
at t
h
e r
eal vo
l
t
a
ge acr
o
s
s h
eat
i
n
g
co
i
l
and
cu
rr
en
t
t
h
r
ough
i
t
,
ar
e
al
m
o
st
i
d
en
t
i
cal
to
th
e P
-
S
I
M
si
m
u
la
ted
resu
lt.
Fi
gu
re 6
& 7
de
pi
ct
t
h
at
u
s
i
ng M
O
SFE
T i
n
t
h
e
F
u
l
l
B
r
i
d
g
e
S
e
r
i
e
s
R
e
s
o
n
a
n
t
i
nver
t
er
ci
rcui
t
&
Fi
gu
re 9 & 1
0
de
pi
ct
t
h
at
usi
n
g
G
T
O
i
n
t
h
e F
u
l
l
B
r
i
d
g
e
S
e
r
i
e
s
R
e
s
o
n
a
n
t
i
nvert
er
ci
rcui
t
,
t
h
e
real
vol
t
a
ge
a
c
r
o
s
s
h
e
a
tin
g
c
o
il
a
n
d
cu
r
r
e
n
t
th
r
o
u
g
h
it,
ar
e
a
l
m
o
s
t
s
a
m
e
to
th
e
P
-
S
I
M
s
i
m
u
lated
resu
lt.
Here
also
,
co
il
cu
rren
t
d
o
esn
’
t
h
a
v
e
eq
u
a
l
p
o
s
itiv
e
an
d
n
e
g
a
tiv
e
p
eak
s. Hen
ce,
rm
s
v
a
lu
e
o
f
th
e
cu
rren
t
will
b
e
l
e
ss.
So
h
eatin
g
effect
will
also
b
e
les
s
co
m
p
ared
to
IGBT.
3.
1.
Whe
n
usi
n
g
MO
SFE
T
Fi
gu
re.
5
.
F
u
l
l
B
r
i
dge
i
n
vert
e
r
usi
n
g
M
O
S
F
E
T
by
PSIM
so
f
t
ware
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
S
e
lectio
n o
f
App
r
op
ri
a
t
e S
e
m
i
co
ndu
cto
r
S
w
itch
e
s f
o
r
I
ndu
ctio
n
H
e
a
t
ed
Pipe-
L
in
e… (Pradip
Kuma
r
S
adhu
)
11
5
Fig
u
re 6
.
Co
il Cu
rren
t &
Co
il
Vo
ltag
e
u
s
ing
MOSFET
b
y
PSIM
So
ft
ware
Fi
gu
re 7.
C
o
i
l
cur
r
ent
&
c
o
i
l
vol
t
a
ge
u
s
i
n
g M
O
SFET
by
r
eal
t
i
m
e
experi
m
e
nt
al
m
odel
3.
2.
Whe
n
usi
n
g
GT
O
Fi
gu
re
8.
F
u
l
l
B
r
i
dge
i
n
vert
e
r
usi
n
g
GT
O
by
PSIM
so
ft
wa
r
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
112
–
1
18
11
6
Fig
u
re 9
.
Co
il Cu
rren
t &
Co
il
Vo
ltag
e
u
s
ing
GTO
b
y
PSIM So
ft
ware
Fi
gu
re
1
0
. C
o
i
l
cu
rre
nt
& c
o
i
l
vol
t
a
ge
u
s
i
n
g
GTO
by
real
t
i
m
e expe
ri
m
e
ntal
m
odel
3.
3.
Whe
n
usi
n
g I
G
B
T
Fi
gu
re
1
1
.
Ful
l
B
r
i
d
ge i
n
ve
rt
er
usi
n
g
IGB
T
b
y
PSIM
s
o
ft
wa
re
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
S
e
lectio
n o
f
App
r
op
ri
a
t
e S
e
m
i
co
ndu
cto
r
S
w
itch
e
s f
o
r
I
ndu
ctio
n
H
e
a
t
ed
Pipe-
L
in
e… (Pradip
Kuma
r
S
adhu
)
11
7
Fig
u
re
12
. C
o
il Cu
rren
t & C
o
il Vo
ltag
e
using IGB
T
b
y
PSIM Software
Fi
gu
re
1
3
. C
o
i
l
cu
rre
nt
& c
o
i
l
vol
t
a
ge
u
s
i
n
g I
G
B
T
by
real
t
i
m
e
expe
ri
m
e
ntal
m
odel
4.
CO
NCL
USI
O
N
Aft
er
ha
vi
n
g
com
p
ared t
h
e
wave
-f
o
r
m
s
of
P-S
I
M
si
m
u
l
a
t
i
on a
n
d re
al
t
i
m
e
experi
m
e
nt
, i
t
i
s
qui
t
e
ob
vi
ous
t
h
at
t
h
e
sel
e
ct
i
on
of
I
G
B
T
as a
p
o
w
er
sem
i
conduct
o
r
swi
t
c
h
i
n
hi
g
h
fre
que
nc
y
ful
l
bri
dge
i
n
vert
e
r
i
s
a
dva
nt
age
ous
an
d m
o
st
sui
t
a
bl
e
fo
r i
n
d
u
ct
i
o
n
heat
i
n
g
p
u
r
p
oses
f
o
r
fre
q
u
e
n
cy
bel
o
w
55 kHz
and
highly
acce
ptable. IGBT
offers highest
rm
s value of c
o
il curre
nt a
m
ong all the
probable
con
f
i
g
urat
i
o
n
s
usi
n
g di
ffe
r
e
nt
po
wer se
m
i
cond
uct
o
r
swi
t
c
hes. F
o
r a
freq
u
e
n
cy
range
of ab
o
v
e 55
k
H
z
,
MOSFET& GTO will
b
e
a b
e
tter o
p
tion
d
u
e
its low switch
i
ng
& con
d
u
c
tion
losses.
ACKNOWLE
DGE
M
ENTS
Aut
h
o
r
s a
r
e t
h
ank
f
ul
t
o
t
h
e
UN
IV
ER
SIT
Y
GR
A
N
T
S
C
O
M
M
I
SS
I
O
N
,
B
a
ha
du
rsh
a
h
Zafar
M
a
r
g
,
New
Delh
i,
Ind
i
a fo
r
g
r
an
ting
fi
n
a
n
c
ial su
pp
ort und
er
Maj
o
r Research
Proj
ect en
titled
“Si
m
u
l
atio
n
of h
i
gh
-
fre
que
ncy
m
i
rror i
nve
rt
er
fo
r
ener
gy
ef
fi
ci
en
t
i
ndu
ct
i
on
hea
t
ed co
o
k
i
n
g o
v
e
n” a
nd al
s
o
g
r
at
eful
t
o
t
h
e
Un
de
r
Secretary a
n
d J
o
int Sec
r
etary
of UGC,
India for
thei
r
active co-operation.
REFERE
NC
ES
[1]
PK
Sadhu, N Pa
l, A Bhattachar
ya. Choi
ce of Semiconductor Switch
e
s for Energy
Efficient Indu
ction Heated Pipe-
line using H. F. Mirror Inverter
.
Proceedings of
the Internat
ion
a
l Multi
Conf
erence of
Engineers and Compute
r
Scien
tists 2012,
Vol. II, IMECS
2
012
, Hong Kong
, Mar
c
h 14
- 16
,
2012
[2]
A Nam
a
d
m
alan,
JS
Moghani, J
Milim
onfared. A
c
urrent-f
ed pa
ral
l
el resonan
t
push-pull invert
er wit
h
a new cascaded
coil
flux contro
l for
induc
tion
heating
application
s
.
Journal of
Po
wer Electronics
. 2011;
11(5).
[3]
Luci
ca O Burdio JM, Barragan LA, Acero J, MillanI
. Series
resonant m
u
lti-invert
er for
m
u
ltiple inducti
on
heat
ers
.
I
EEE tr
ans. on Magn
etics
. 2010; 24(11): 2860-2868.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
112
–
1
18
11
8
[4]
JI Rodriguez, S
B
Leeb. Nonres
onant and reson
a
nt
frequ
enc
y
-s
e
l
ect
able indu
ct
io
n-heat
ing targ
et
s
.
IEEE TransInd.
Electron.,
2010; 57(9):
3095-310
8.
[5]
Sadhu PK,
Chakrabarti
RN,
C
howdhur
y
SP.
An
improved
in
verter
cir
c
uit
ar
rangement.
[6]
TJ Liang
,
RY Chen, JF Chen. C
u
rrent
-fedp
arallel-resonant DC-A
C inverter
for co
ld-cathode fluor
escent
lamps with
zero-curr
ent
s
w
it
ching.
IE
EE T
r
a
n
s. Power
El
ectr
o
n
., 2008; 23(4)
: 2206-2210.
[7]
Acero J, Burdio JM, Barragan LA, Navarro
D, Alonso R, Garcia
JR, Monterde F,
Hernandez P
,
L
l
orente S
,
Garde
I.
The domestic in
duction h
e
ating
appliance:
an
o
v
erview of
rec
e
n
t res
e
arch
.
Twenty-Third Annu
al IEEE App
lied
Power Electronics Conf
er
en
ce
a
nd Expos
i
tion
. 2
008; 651-657.
[8]
Achara P, Viriya P, Matsuse
K. Analy
s
is of ah
alf bridge inver
t
er for
a small size induction
coo
k
er using positive-
negative ph
ase s
h
ift
control
under ZVS and
non-
ZVS operation.
PEDS
. 2007
; 15
7-163.
[9]
MK Rahm
at, S Jovanovic, KL Lo. Reliab
ili
t
y
an
d Availabi
l
i
t
y
Modelling of Unin
terrupt
ible Power Supply
S
y
s
t
em
s
Using Monte-Carlo Simulation.
I
n
ternational Review o
f
Electrica
l
Engin
eering
(
I
REE)
. 2006; 1(3):
374-380.
[10]
AP Hu,
Grant A Covic,
JT Boy
s
.
Direct ZV
S
start-up of a
current-f
ed reso
nant inver
t
er
.
IEEE Trans.Power
Electron.
, 2006;
21(3): 809-812
.
[11]
S Llorente, F Monterde, JM Bur
d
io, J Acero. A
comparativ
e
stu
d
y
of
resonan
t
inverter
topolog
ies used in
induction
cooker.
IE
EE
Ap
plied
Power
El
e
c
tronics Con
f
.
(
A
PEC)
Rec., 20
02: 1168-1174.
[12]
Burdio JM, Monterde F, Garcia J
R
, Ba
rrag
a
n LA
, Martinez A. A two-out put se
ries resonant inverter for indu
ction-
heating cook
ing
appliance
. I
E
EE
Trans. Power Electronics
. 2005
;
20(4): 815-822
.
BIOGRAP
HI
ES
OF AUTH
ORS
Pra
d
ip Kuma
r Sa
dhu
receiv
e
d his Bachelor, Post-
G
raduate and
Ph
.D. (Eng
ineering
) degrees in 199
7,
1999 and 2002 respectiv
ely
in
Electrical Eng
g
. fro
m Jadavpur University
,
West Bengal, I
ndia.
Currently
, he
is working as a Pr
ofessor in Electr
i
cal Engin
eer
ing
Department of
Indian School o
f
M
i
nes
,
Dhanbad
,
India
.
He has
t
o
tal
experi
enc
e
of 18
years
in t
each
ing and ind
u
s
t
r
y
. He has
fo
ur
Pa
te
nts. He
ha
s
se
ve
ra
l j
ourn
a
l
a
nd confer
enc
e
p
ublic
ations
in n
a
tional
and
int
e
rn
ation
a
l
lev
e
l.
He
is
princip
a
l investigator of few Govt. funded projects
. He has guid
e
d a larg
e no. of
doctoral
candid
a
tes
and M
.
Tech s
t
u
d
ents
. His
curre
nt areas
of int
e
re
s
t
are power el
ec
tronics
appl
ica
t
i
ons
, applic
at
ion of
high frequency
converter, en
erg
y
eff
i
cient dev
i
ces,
energ
y
eff
i
cient drives
,
computer aid
e
d power
s
y
stem analy
s
is, condition moni
toring, lighting
and communicati
on s
y
stems for underground co
al
mi
ne
s.
Debabrata Ro
y
graduated in Electrical Eng
i
neering from
BITM,
Santiniketan in
2007. He did his
M.Tech
in th
e same stream fro
m the West Ben
g
al
University
o
f
Techno
log
y
in
2009. He held the
post of lecturer
in Electri
cal En
gineer
ing in Ar
y
a
bh
at
ta Institut
e
of Engg. and Managem
e
nt from
2007 to 2009.
He has been w
o
rking as an Asst. Pr
ofessor in Electrical
Engineering
at Seaco
m
Engineering Co
lleg
e
from
2009 till d
a
t
e
. He is
presentl
y
p
u
rsuing Ph.D. program
m
e
at t
h
e
Department of Electrical Eng
i
ne
ering, Indian Sch
ool of Mines,
Dhanbad-826004,
India. His special
field
of in
ter
e
st
is in
Ele
c
tri
c
a
l
S
y
stem
Desi
gn
and Performance Analy
s
is
of
In
duction
Heat
ing
in
various field
lik
e Power El
ectronics, Contro
l S
y
s
t
em.
He is
now
an
as
s
o
ciat
e m
e
m
b
e
r
of I
E
I,
India
.
Nitai P
a
l r
ece
iv
ed his
B.Te
ch.
and M
.
Te
ch. de
grees
in El
ectr
i
c
a
l Engin
eer
ing from
Univers
i
t
y
of
Calcutta, West Bengal, I
ndia. H
e
received h
i
s Ph.D. (Engin
eer
in
g) from Jadavpur University
, West
Bengal
,
Indi
a.
He has
tot
a
l
exp
e
rien
ce of
twelv
e
yea
r
s
in t
each
i
ng. He is
curren
t
l
y
working
as
a
n
Assistant Professor in the Depar
t
ment of Electr
i
cal
Engineering
,
Indian Sc
hool o
f
Mines, Dhanbad,
Jharkhand, Ind
i
a. He h
a
s sever
a
l
publications in
J
ournals, In
tern
ational
& National conf
erences. H
e
is the co-investigator of Govt funded project. Hi
s current areas of intere
st are Power electronics
appli
cat
ion,
app
lic
ation
of high
frequen
c
y
con
v
erters
,
en
erg
y
effic
i
ent
dev
i
ces
, en
erg
y
effi
cie
n
t
drives, lighting and
comm
unication s
y
stems for u
nderground co
al
mines.
Sourish San
y
al
got his B.Tech. degree
in Electronics
and Communication
Engineering from th
e
Institute of
Eng
i
neer
ing and
M
a
nagem
e
nt
, Salt
La
k
e
, Kolkat
a
in 2000. He go
t
his M.E
.
Tel.
E.
(Master’s) degree in th
e same str
eam in 2002,
an
d Ph.D (Engg.) in 2012, from Jadavpur University
.
He joined College of Engineerin
g and Management,
Kolaghat
as a lecturer
in 2002. Subsequently
he
was promoted to the post of S
e
nior Lecturer
a
nd Asst.
Professor.
He
ha
s joine
d
Aca
d
e
m
y
o
f
Techno
log
y
, Hooghly
in 2013
as an Associate Profe
ssor. He
has to his credit, eigh
t resear
ch
public
ations
in i
n
terna
tiona
l jou
r
nals,
two in
national
journals
an
d eleven
conf
erence p
a
pers.
Evaluation Warning : The document was created with Spire.PDF for Python.