Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol.
6, No. 4, Decem
ber
2015, pp. 736~
746
I
S
SN
: 208
8-8
6
9
4
7
36
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
WAMS-Based SSR Damping Cont
roll
er Desi
gn f
o
r FACTS
Devices and Investigating Eff
ect
s of Com
m
unicati
on Delays
Mor
t
az
a
Far
s
adi
,
Ar
ash Gh
asemi
Departem
ent
of
Ele
c
tri
cal
Eng
i
n
eering
Urm
i
a Un
ivers
i
t
y
,
Urm
i
a,
Iran
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Feb 17, 2015
Rev
i
sed
Au
g
11
, 20
15
Accepted
Sep 10, 2015
Recen
t techno
l
ogica
l progres
s
e
s
in the wide-area m
eas
urem
ent s
y
s
t
em
s
(WAMS) are r
ealizing
the
centrali
zed
contro
ls as a breakthrough for
improving the power sy
stems
stability
.
Th
e m
o
s
t
challengin
g
defici
e
n
c
y
against WAMS technolog
y
is related
to
communication delay
s
.
I
f
this
laten
c
y
is neglected,
it can d
e
teriorate th
e d
a
m
p
ing p
e
rform
ance of
clos
ed loop
control or
even
degrade
the s
y
s
t
em
s
t
abi
lit
y.
This
paper in
ves
tigat
es
a
conventional
Wide Area D
a
mping
Contro
ller
(WADC) for a static
s
y
nchronous series compensator (SSSC) to damp out the Sub-S
y
nchronous
Resonance (SSR) and also investigati
on of the des
t
ructiv
e ef
fect of tim
e
dela
y in r
e
m
o
t
e
feedb
ack s
i
g
n
al. A new op
tim
izat
ion a
l
gor
ithm
call
e
d
tea
c
hing-l
earn
i
n
g
-bas
ed- opti
m
i
za
tion (TLBO) algorithm has been
implemented to
normalize
and optimize
th
e parameters of the
global SSR
damping contro
ller. The IE
EE Second Ben
c
hmark Model is
consid
ered
as the
s
y
stem under stud
y
and
all simulations are carr
i
ed out in
MATLAB/S
I
MULINK environ
m
ent.
Keyword:
Co
mm
u
n
i
catio
n
laten
c
y
Static synchronous
series
com
p
ensator
Su
b-sy
nch
r
on
o
u
s reso
na
nce
W
i
de a
r
ea
dam
p
i
n
g c
ont
rol
l
e
r
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Aras
h Gasem
i
,
Depa
rtem
ent of Elect
ri
cal
E
n
gi
nee
r
i
n
g,
Urm
i
a Unive
r
s
ity
, Urm
i
a, Ira
n,
Nazlou R
o
ad,
Urm
i
a Towns
h
ip,
We
st A
zarbayj
an
C
o
u
n
t
y, I
r
a
n
.
Em
a
il: st_
a
.g
hasemi@u
rm
ia.
ac.ir
1.
INTRODUCTION
Series co
m
p
ensatio
n
of lon
g
tran
sm
issio
n
lin
es is an
i
m
p
o
rtan
t appro
a
ch
to
im
p
r
o
v
e
th
e p
o
wer
tran
sfer cap
a
b
ility o
f
po
wer
network
s
[1
]. Ho
wev
e
r, in such
co
m
p
en
sate
d n
e
two
r
k
s
, th
e
in
teractio
ns b
e
tween
the electrical
m
odes of the series co
m
p
ens
a
t
e
d net
w
or
k a
nd a m
echani
cal
m
ode of a t
u
r
b
i
n
e
gene
rat
o
r s
h
aft
can
be l
e
d
t
o
a
seri
o
u
s
det
r
i
m
ent
a
l
p
h
en
om
enon
re
fer
r
ed
t
o
Su
b-Sy
nc
hr
on
ous
R
e
so
na
nce
(SSR
)
[2]
.
SSR m
i
tig
atio
n
h
a
s
b
e
en
a t
o
p
i
c
o
f
r
e
search
in
ter
e
st
o
v
er
sev
e
r
a
l year
s. Sev
e
r
a
l counter
m
easu
r
es
have
bee
n
rec
o
m
m
e
nded
,
ra
ngi
ng
f
r
om
l
i
m
i
ti
ng l
e
v
e
l
s
of
seri
es c
o
m
p
en
sat
i
o
n
t
h
r
o
ug
h sy
st
em
pl
anni
ng
,
filterin
g
,
Po
wer System
Stab
ilizers (PSSs) [3
], Flex
ib
le
AC Tran
sm
issio
n
System
s (FACTS) [4
]-[7
]
,
And
DFI
G
b
a
sed
w
i
nd fa
rm
[8]
.
For e
x
am
pl
e, in ref
[4]
a ro
b
u
st
co
nt
rol
st
ra
t
e
gy
has bee
n
pr
o
pose
d
ba
se
d f
u
zzy
l
ogi
c co
nt
r
o
l
o
n
FAC
T
S de
vi
ces t
o
dam
p
SSR
. In
[5]
an e
c
on
om
i
cal
phase im
bal
a
nced
seri
es com
p
en
sat
i
on
co
n
c
ep
t
h
a
s
been
in
trod
u
c
ed an
d th
eir ab
ility fo
r
p
o
wer
syste
m
d
y
n
a
mic en
h
a
n
cem
en
t an
d
SSR
d
a
m
p
in
g
h
a
v
e
b
e
en
i
n
vestig
ated
. Ref [6
] presen
ts capab
ility o
f
th
e
Distribu
ted
Static Series Co
m
p
ensato
r (DSSC) as a
me
m
b
er o
f
D-FACTS fam
i
l
y
in
mitig
atin
g
th
e SSR. In [7
], two
sep
a
rate d
a
m
p
in
g
co
n
t
ro
llers
h
a
v
e
b
e
en
g
r
an
ted to
t
h
e con
v
e
n
tion
a
l
co
n
t
ro
llers of
th
e SVC and
th
e TCSC i
n
o
r
d
e
r to
d
a
m
p
th
e SSR in
a series
com
p
ensat
e
d
wi
n
d
farm
. Furt
herm
ore, t
h
e dam
p
i
ng c
o
nt
r
o
l
l
e
r o
f
t
h
e
SVC
i
s
a c
o
n
v
e
n
t
i
onal
l
e
ad-l
a
g
cont
rol
l
e
r an
d
t
h
e dam
p
i
ng charact
eri
s
t
i
c
of
t
h
e TC
SC
have bee
n
ad
ded
t
h
ro
ug
h co
nst
a
nt
cur
r
ent
co
nt
r
o
l
o
f
t
h
e TC
SC
. I
n
[
8
]
,
a dam
p
i
ng
cont
rol
a
p
p
r
oa
ch f
o
r s
u
b-sy
n
c
hr
o
n
o
u
s r
e
so
n
a
nce wi
t
h
St
at
i
c
Sy
nch
r
on
o
u
s
Seri
es
Com
p
ensator
(SSSC)
has be
en addres
sed a
nd in
[9] th
e capability
of Type-2
wind
t
u
rbines to
da
m
p
SS
R
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
WAMS
Ba
sed
SS
R Da
mpi
n
g C
ont
r
o
l
l
e
r
Des
i
gn
f
o
r
F
A
C
T
S
Devi
ces an
d In
vest
i
gat
i
n
g
.
...
(
M
ort
a
z
a
F
a
rs
adi
)
73
7
occu
rri
ng
i
n
cl
ose sy
nch
r
o
n
o
u
s
ge
ne
rat
o
rs c
o
n
n
ect
e
d
t
o
t
h
e
g
r
i
d
by
m
eans o
f
seri
es
-com
pensat
ed
tran
sm
issio
n
lin
es h
a
s b
e
en
inv
e
stig
ated.
In
t
h
e literature, it is d
e
m
o
nstrated
th
at i
f
rem
o
te sig
n
a
ls are
fed to
t
h
e d
a
m
p
in
g
con
t
ro
llers, th
e
syste
m
dyna
m
i
c perform
a
nce can be e
n
hanc
ed com
p
are
d
with the locall
y
m
easured si
gnals
[10]. T
h
e wide
-
area m
easurem
ent
sy
st
em
(WAM
S
)
,
e
n
abl
e
d
by
b
r
oa
d
de
pl
oy
m
e
nt
of
p
h
as
or m
easure
m
ent
uni
t
s
(P
M
U
s),
i
s
cap
ab
le to
m
o
nito
r d
y
n
a
m
i
c d
a
ta o
f
th
e power syste
m
su
ch as voltage
, current, a
ngle, a
n
d fre
que
n
cy. It
hence
pr
o
poses a
n
u
n
p
r
ece
dent
e
d
op
p
o
rt
uni
t
y
i
n
cont
r
o
l
l
i
ng
p
o
we
r sy
st
em
dy
nam
i
cs si
nce t
h
e obse
r
vabl
e spac
e
becom
e
s
wide
r with WAM
S
inform
ation. The
ac
hie
v
em
en
ts are m
o
stly du
e to tim
e-
sta
m
p
e
d
sy
n
c
hrono
us
measurem
ents applicable
at a
n
y
p
o
i
n
t
o
f
a g
e
og
ra
phi
cal
l
y
s
p
rea
d
el
ect
ri
c net
w
or
k [1
1]
.
All references
above cited
[
4
]
-
[
9
]
,
ha
ve u
s
ed
gl
o
b
al
si
gnal
s
l
i
k
e gene
rat
o
r
rot
o
r s
p
eed a
s
a feed
bac
k
sig
n
a
l to
d
e
si
gn
th
e aux
iliary SSR d
a
m
p
in
g
co
n
t
ro
ller with
ou
t con
s
id
erin
g
co
mm
u
n
i
ca
tio
n
ti
m
e
d
e
la
y on
rem
o
t
e
feedba
ck si
g
n
al
. The
t
i
m
e
dem
a
nded t
o
re
nde
r PM
U dat
a
t
o
war
d
t
h
e sy
st
em
or regi
o
n
al
co
nt
rol
cent
e
r
pl
us t
h
at
o
f
t
r
ansfe
rri
ng c
o
m
m
a
nds t
o
cont
r
o
l
devi
ces i
s
t
o
t
a
l
l
y
refer
r
e
d t
o
as t
h
e com
m
uni
cat
i
on del
a
y
or
l
a
t
e
ncy
.
Thi
s
t
i
m
e
del
a
y
depen
d
s
on t
h
e
com
m
uni
cat
i
on sy
st
em
l
o
ad
i
ng a
n
d
,
i
n
fe
edbac
k
c
ont
rol
l
o
o
p
,
d
i
min
i
sh
es th
e effectiv
en
ess
o
f
th
e co
n
t
ro
l
syste
m
an
d
may ev
en
resu
lt in
th
e co
m
p
le
te syste
m
in
st
ab
ility
[12
]
-[13
]. Acco
rd
ing
l
y, it is
o
f
critical i
m
p
o
rtan
ce to
co
n
s
i
d
er th
e laten
c
y d
u
r
i
n
g
th
e con
t
ro
ller
d
e
sign
p
r
o
cess. In
the literatu
re,
d
i
fferen
t
p
a
p
e
rs h
a
v
e
b
e
en
pub
lish
e
d
to
sh
ow th
e effects
o
f
laten
c
y in
rem
o
te
feedbac
k
signa
l
and also com
p
ensate dest
ru
c
tive effe
cts of t
h
ese latencies
[13]-[17].
In
[13
]
a fu
zzy lo
g
i
c wid
e
-area
d
a
m
p
in
g co
n
t
ro
ller for in
ter-area
oscillatio
n
s
d
a
m
p
in
g
an
d
co
n
tinuo
us laten
c
y co
m
p
en
satio
n
h
a
s
b
e
en p
r
esen
ted.
Referen
ces [14
]
-[1
6
]
h
a
v
e
p
r
esen
ted
m
u
lti-ag
en
t
,
mix
e
d
, an
d pr
edi
c
t
o
r
-
ba
sed
cont
rollers f
o
r tim
e
-delay
ed sy
stem
s. In ref
e
rence [
1
7]
, an ada
p
tiv
e
p
h
a
sor power o
s
cillatio
n
s
d
a
m
p
in
g
con
t
ro
ller h
a
s
b
e
en
propo
sed
wh
erei
n
th
e ro
t
a
tin
g
coo
r
d
i
n
a
tes are
ad
ju
sted
for con
tin
uou
s co
m
p
en
sation
o
f
time-v
a
ry
ing
laten
c
ies an
d m
a
ny
othe
r re
fere
nce
s
.
Al
l
o
f
t
h
e
pap
e
rs
pu
bl
i
s
he
d i
n
t
h
i
s
area
p
r
o
pos
ed
a
WAM
S
ba
sed
dam
p
i
n
g
co
nt
r
o
l
l
e
r t
o
dam
p
l
o
w
fre
que
ncy
osci
l
l
a
t
i
ons an
d t
h
e m
o
st
im
port
a
nt
n
o
t
e
t
h
at
s
h
oul
d
be i
n
vest
i
g
at
e he
re i
s
t
h
at
what
i
s
t
h
e i
m
pact
of c
o
m
m
uni
cat
i
on t
i
m
e
del
a
y
on SSR
da
m
p
i
ng cont
r
o
l
l
ers t
h
at
use
d
gl
o
b
al
si
gnal
s
as dam
p
i
ng co
nt
r
o
l
l
e
r
in
pu
t sign
al.
The m
a
jor c
o
n
t
ri
but
i
o
n
of t
h
i
s
pape
r i
s
t
o
d
e
si
gn a
WAM
S
base
d co
n
v
e
n
t
i
onal
dam
p
i
ng co
nt
r
o
l
l
e
r
base
d
on the
teaching-lea
r
ni
ng-base
d
- optimization
(TLBO) algorithm
for SSR
da
m
p
ing. The
TLB
O m
e
thod
i
s
ap
peare
d
a
s
a
pr
om
i
s
i
ng al
go
ri
t
h
m
for
m
a
nagi
ng
t
h
e opti
m
izatio
n
prob
lem
s
th
at n
o
t
on
ly eli
m
in
at
es th
e
deficiencies of other conventi
onal op
tim
ization m
e
thods,
but also, it utilizes a few para
m
e
ters and is easy to
be i
m
pl
em
ent
e
d [
1
8]
-[
2
0
]
.
I
n
or
der
t
o
bet
t
e
r
anal
y
ze t
h
e
per
f
o
r
m
a
nce of
p
r
op
ose
d
c
ont
rol
l
er, a c
o
m
p
ari
s
on
i
s
al
so a
d
o
p
t
e
d
bet
w
ee
n
pr
o
p
o
se
d TLB
O
b
a
sed
dam
p
i
n
g
co
nt
r
o
l
l
e
r a
n
d P
S
O
based
dam
p
i
n
g
co
n
t
rol
l
e
r
p
r
esen
ted
o
n
[8
]. It
is assu
med
t
h
at th
e con
t
ro
ller is
em
bedde
d
i
n
a
st
at
i
c
sy
nch
r
on
o
u
s
seri
es c
o
m
p
ensat
o
r
(SSSC
)
located
in IEEE second benc
hm
ark powe
r
system
.
To a
u
t
h
ors'
bes
t
kn
owl
e
dge
, t
h
i
s
pa
per i
s
t
h
e
fi
rst
resea
r
ch t
o
ex
pl
o
r
e t
h
e S
S
R
dam
p
i
ng y
i
el
ded
by
a
FAC
T
S
de
vi
ce equi
ppe
d
wi
t
h
a real
wi
de
-area
dam
p
i
n
g
cont
r
o
l
l
e
r (
W
ADC
). I
n
t
h
e
i
d
eal
TLB
O
base
d
WA
DC
, t
h
e T
L
B
O
t
ech
ni
q
u
e
has
bee
n
us
ed t
o
n
o
rm
al
ize an
d
opt
i
m
izat
i
on
of
pa
ra
m
e
t
e
rs of
t
h
e
gl
o
b
al
d
a
m
p
in
g
con
t
ro
ller
with
ou
t co
n
s
i
d
eri
n
g laten
c
y in rem
o
te
feed
b
a
ck
signal. In
th
e fo
llowing
the latency is
con
s
i
d
ere
d
i
n
d
a
m
p
i
ng c
o
nt
r
o
l
l
e
r i
n
put
si
gn
al
an
d e
ffect
s
of
t
h
e l
a
t
e
ncy
are
i
nvest
i
g
at
e
d
.
2.
STUDY SYST
EM
The power syst
em
conside
r
ed
in th
is study is the IEEE
SBM [21] ag
gre
g
ated
with SSSC, depicted
i
n
Fig
u
re
1
.
Th
is figu
re illu
strat
e
s th
e sing
le lin
e d
i
ag
ram
o
f
th
e po
wer syste
m
wh
ich
is
used
in
t
h
is stud
y. A
si
ngl
e
gene
rat
o
r
of
6
0
0
M
V
A,
22
k
V
i
s
c
o
n
n
ect
ed
t
o
i
n
fi
ni
t
e
b
u
s t
h
r
o
ug
h
one
t
r
a
n
sf
orm
e
r an
d t
w
o
paral
l
e
l
transm
ission lines. T
h
e m
echanical syste
m
is com
posed
of: two
-
stag
e steam tu
rb
in
e
(Hi
g
h Pre
ssu
re (
H
P
)
an
d
Lo
w Press
u
re (LP
)), the
Ge
n
e
rator
(G
), a
n
d
the rotati
ng e
x
citer (E
X) all are coupled
on the sam
e
shaft as
depi
ct
ed i
n
Fi
g
u
re 1
.
The c
o
m
p
ensat
i
on l
e
vel
whi
c
h i
s
pr
ovi
ded
by
t
h
e seri
es capaci
t
o
r i
s
set
t
o
55% of t
h
e
reactance
. Different cases
of
study are c
o
ns
idere
d
fo
r clarifying the ca
pabilitie
s of the
SSSC propos
e
d
co
n
t
ro
llers in
SSR m
i
tig
atio
n
:
The case
whic
h the
r
e is
no SSSC in t
h
e sys
t
e
m
and
a t
h
re
e-phase t
o
ground
fa
ult is applied at the
gene
rat
o
r
bu
s i
n
t
=
3
sec a
n
d
i
s
rem
oved a
f
t
e
r
0.
01
6
8
sec.
In t
h
e fi
rst cas
e, the
perform
a
nce
of t
h
e syste
m
is
stu
d
i
ed
with
ou
t an
y SSSC in
th
e
system
. Th
e
m
a
in
o
b
j
ectiv
e is to
v
a
lid
ate th
e d
o
min
a
n
t
m
o
d
e
of o
s
cillatio
n
s
in
g
e
n
e
rator ro
to
r shaft and
also
to
clarify th
e fact
th
at, withou
t an
y con
t
ro
ller, th
e
ro
t
o
r
will b
e
d
a
m
a
g
e
d
an
d
o
s
cillatio
n
s
will in
crease i
n
t
h
e syste
m
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6
,
No
.
4
,
D
ecem
b
er
2
015
:
73
6 – 746
73
8
G
Ge
nerat
o
r
2
L
Z
system
Z
2
Bus
Inf
i
nite
Bus
1
Bu
s
1
L
2
L
2
1
L
Z
2
1
L
Z
c
X
PM
U
C
q
V
SS
SC
PM
U
PMU
Figure
1.
IEE
E
SBM m
odel aggre
g
ated
with SSSC
2.
1.
Simulati
on re
sults
for
th
e fi
rst c
a
se
Th
e tran
sien
t si
m
u
latio
n
of the po
wer system
fo
r th
e
first
case is cond
u
c
ted
in
t
h
is p
a
rt
. Th
e three-
p
h
a
se to
g
r
ou
nd
f
a
u
lt o
c
cu
rs
at ti
m
e
3
sec an
d
it is
r
e
m
o
v
e
d
af
ter
0.0168
sec,
as m
e
n
t
i
o
n
e
d
b
e
for
e
and
it is
rev
ealed
in Figu
re 1. Sim
u
lati
o
n
resu
lt for roto
r sp
eed
d
e
v
i
atio
n
(
) i
s
de
pi
ct
ed i
n
Fi
gu
re
2.
Due
t
o
u
n
st
abl
e
m
o
d
e
, wh
en
t
h
e fau
lt is cleared, larg
e
o
s
cillatio
n
s
will b
e
exp
e
rien
ced
b
e
t
w
een
sectio
n
s
of th
e
tu
rb
in
e
g
e
n
e
rator sh
aft
.
Fo
r t
h
is state, th
e system
is co
m
p
letely u
n
s
tab
l
e.
0
1
2
3
4
5
6
7
-0
.
0
2
-0
.
0
1
0
0.
01
0.
02
Ti
m
e
(
s
)
R
o
t
o
r
S
p
ee
d
D
e
v
i
at
i
o
ns
(p.
u
)
Fi
gu
re 2.
Si
m
u
l
a
t
i
on
res
u
l
t
s
f
o
r
case 1, r
o
t
o
r
spee
d de
vi
at
i
on (
) in
p.
u
2.
2.
FFT anal
ysis for
the
first c
a
s
e
Fo
r an
assessm
en
t of t
h
e
o
s
cillato
ry m
o
d
e
s of th
e
system
, t
h
e Fast Fo
urier Tran
sform
(FFT) an
alysis
i
s
per
f
o
r
m
e
d b
y
M
A
TLAB
p
r
o
g
ram
on
t
h
e
IEEE
SB
M
.
Fi
gu
re.
3
de
pi
ct
s t
h
e FF
T
pl
ot
o
f
gene
rat
o
r r
o
t
o
r
sp
eed
in
ti
m
e
i
n
terv
al o
f
2
to
5
sec. it is revealed
th
at, wh
en
th
e series com
p
en
satio
n
in
lin
e 2
is set to
5
5
%,
the com
p
le
m
e
nt of the electri
cal resonance
freque
ncy
m
a
tc
hes with c
r
itical
m
ode 1 of the
IEEE SBM and the
syste
m
b
eco
mes u
n
s
tab
l
e when
th
ere is
n
o
p
o
s
sib
l
e d
a
m
p
in
g
o
f
o
s
cillatio
n
s
. It is fo
und
ed
b
y
FFT an
alysis
th
at, th
ree m
o
d
e
s ex
ist in
th
e ro
tor sp
eed
in
th
is stu
d
y
. Fu
rt
h
e
rm
o
r
e, th
e max
i
m
u
m d
e
stabilizatio
n
is fo
r m
o
d
e
1 wi
t
h
fre
q
u
e
n
cy
of 24
.6
7 Hz
, or i
n
a t
echni
cal
expressi
o
n
,
for 5
5
% c
o
m
p
ensat
i
o
n, t
h
e t
o
rsi
o
nal
m
ode 2
i
s
t
h
e
dom
i
n
ant
m
o
d
e
w
h
i
c
h
has
t
h
e su
b-sy
nc
hr
on
ous
f
r
e
que
ncy
of
2
4
.
6
7 H
z
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
WAMS
Ba
sed
SS
R Da
mpi
n
g C
ont
r
o
l
l
e
r
Des
i
gn
f
o
r
F
A
C
T
S
Devi
ces an
d In
vest
i
gat
i
n
g
.
...
(
M
ort
a
z
a
F
a
rs
adi
)
73
9
0
10
20
30
40
50
0
20
0
40
0
60
0
80
0
X:
1
.
3
3
3
Y
:
49
1.
2
F
r
e
q
u
e
nc
y (
H
z
)
M
a
g (
%
o
f
Funda
m
e
nt
a
l
)
X
:
2
4
.6
7
Y
:
69
3.
8
X
:
32.
33
Y
:
37
.77
Fi
gu
re
3.
FFT
anal
y
s
es o
n
ge
nerat
o
r
r
o
t
o
r
s
h
aft
i
n
or
der
t
o
val
i
d
at
e t
h
e
do
m
i
nant
m
ode
The FF
T anal
y
s
i
s
of t
h
e
ge
ner
a
t
o
r r
o
t
o
r s
p
ee
d i
s
pe
rf
orm
e
d am
ong
2 -
6 se
c wi
t
h
t
h
e t
i
m
e di
vi
si
o
n
o
f
1 sec
i
n
or
de
r t
o
e
xpa
n
d
t
h
e s
u
b
j
ect
of
res
o
n
a
nce a
n
d
am
pl
ifi
cat
i
on
o
f
t
h
e
dom
i
n
ant
m
o
d
e
. T
h
e r
e
sul
t
s
whi
c
h
are
obtaine
d from
FFT analys
is are
displaye
d in Fi
gure
4.
Referri
ng
to
th
is fig
u
re
, it ca
n
be
o
b
se
rve
d
t
h
at, as
t
h
e t
i
m
e pro
g
r
e
sses,
d
o
m
i
nant
m
ode c
o
m
pone
nt
i
n
crease
s
si
g
n
i
f
i
cant
l
y
.
So
, t
h
ere
sh
o
u
l
d
be
a c
ont
r
o
l
l
e
r i
n
order t
o
m
i
tigate this adve
rse
oscilla
tory com
ponent from
rot
o
r s
h
aft i
n
order t
o
ret
r
ieve the
powe
r s
y
stem
fr
om
suffe
rin
g
.
0
20
40
60
0
50
0
10
00
F
r
e
que
nc
y (
H
z
)
Mag
2
-
3 (
s
ec
)
0
20
40
60
0
500
1
000
F
r
e
que
nc
y
(
H
z
)
Mag
3
-
4 (
s
ec
)
0
20
40
60
0
50
0
10
00
F
r
e
que
nc
y (
H
z
)
Ma
g
4-
5 (
s
e
c
)
0
20
40
60
0
500
1
000
F
r
e
que
nc
y
(
H
z
)
Ma
g
5-
6 (
s
ec
)
Figure 4.
FFT
analyses
on
o
f
t
h
e
gene
rat
o
r
r
o
t
o
r s
p
eed
wi
t
h
o
u
t
dam
p
i
ng
cont
rol
l
e
r
3.
WA
DC
DES
I
GN
Th
is sectio
n
is to
d
e
m
o
n
s
trate th
e ab
ility
o
f
co
nv
en
tion
a
l d
a
m
p
in
g
con
t
ro
ller in
d
a
m
p
in
g
SSR with
using a
n
SSSC
and
WAM
S
si
gnals
in a
n
i
d
e
a
l conditio
n, i.e.,
no tim
e
delay of rem
o
te signals.
As it can be seen on Figure 1, the SSSC is
pl
aced in the com
p
ensated line betwee
n ge
nerat
o
r and
infinite bus to
cont
rol th
e power fl
ow a
n
d dam
p
the SSR. Howe
ver,
the optim
al
location of SSSC in
practical
an
d larg
e power
syste
m
s is v
ital p
o
i
n
t
and
requ
ir
es
com
p
rehe
nsi
v
e studie
s.
T
h
e S
SSC
of
fe
rs
10
com
p
ensat
i
on
i
n
t
h
e st
eady
s
t
at
e and h
a
s a
dy
nam
i
c range
of
vari
at
i
o
n f
r
om
1
to
20
. SSSC is a wel
l
-
k
nown series
co
nn
ected FACTS co
n
t
ro
ller b
a
sed on
vo
ltag
e
sou
r
ce con
v
e
rter (VSC). Figu
re
5
illu
strates
SSSC c
o
nnection t
o
the
trans
m
ission line and its control st
ructure [22]. Indeed, SS
SC
is
an a
dva
nce
d
type
of
co
n
t
ro
lled
series co
m
p
en
satio
n
an
d
con
t
ro
l
s
th
e p
o
wer fl
o
w
an
d
m
i
tig
ates th
e o
s
cillati
o
n
, alb
e
it b
y
a
p
r
op
er
cont
rol
l
e
r desi
gn
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6
,
No
.
4
,
D
ecem
b
er
2
015
:
73
6 – 746
74
0
q
V
PLL
2
)
/
(
Ga
te
ic
log
p
attern
L
i
α
Δ
θ
α
Δ
+
θ
Err
o
r
Am
p
l
if
i
e
r
Polari
ty
ecto
r
de
t
Magn
it
ud
e
com
puter
ang
l
e
and
R
e
ac
tiv
e
&
al
Re
Com
pute
r
V
o
lta
ge
)
Q
(
q
V
dc
V
)
P
(
q
V
f
Re
)
P
(
q
V
f
Re
q
V
f
Re
q
*
V
ABS
fr
o
m
Si
g
n
a
l
A
u
xi
lia
r
y
con
t
r
o
l
l
e
r
da
mpin
g
SS
R
bas
e
d
WA
M
S
f
Re
dc
V
q
V
C
SSS
C
Error
Am
p
l
if
i
e
r
L
i
Fi
gu
re
5.
B
l
oc
k
di
ag
ram
of S
SSC
co
nt
r
o
l
sy
st
em
.
Figur 5 als
o
displays the
m
a
in cont
rol sy
stem
of SSSC. It can be observed that
Ref
q
V
, as one
of
referen
ce
sign
als requ
ired
fo
r
th
e con
t
ro
l syste
m
, is th
e des
i
red m
a
gni
t
ude
of t
h
e seri
es
r
eact
i
v
e v
o
l
t
a
ge
and
determ
ines the
reactive
power exc
h
ange
for s
e
ries co
m
p
ens
a
t
i
on. B
y
i
n
jec
t
i
ng t
h
e
seri
es
vol
t
a
ge
,
nam
e
ly
q
V
,
SSSC provide
s
a variable reactance,
q
X
, in
series with
tran
sm
issio
n
lin
e an
d
ad
ju
sts t
h
e effectiv
e lin
e
reactance. T
h
e
r
efore
,
SSSC
offers a
n
active
m
eans
for the reactive
power c
o
m
p
ensa
tion as well a
s
SSR
dam
p
ing. The
varia
b
le
reacta
n
ce reali
zed
by SSSC is e
xpresse
d as
(1)
where
L
i
denotes t
h
e line
curre
nt
and
q
V
is
ob
tain
ed
b
y
(2) [22
]
.
L
q
q
i
V
X
=
(1
)
q
f
Re
q
q
V
Δ
V
V
+
=
(2
)
In steady
state,
q
V
Δ
and
Ref
q
V
are
con
s
t
a
n
t
.
Wh
ile
d
u
ri
n
g
d
y
n
a
m
i
c co
n
d
ition
s
, th
e series inj
ected voltag
e
q
V
is m
odulated t
o
dam
p
the sys
t
em
oscillations.
One
of f
u
n
d
a
m
ent
a
l
i
ssues
i
n
desi
g
n
i
n
g wi
de
-area ba
s
e
d dam
p
i
ng c
ont
rol
l
e
rs i
s
t
h
e sel
ect
i
on of
feed
bac
k
si
g
n
a
l
s
(w
hi
ch i
s
di
rect
l
y
de
pe
nde
nt
t
o
t
h
e
l
o
cat
i
ons
o
f
P
M
Us) t
o
achi
e
ve t
h
e
best
m
odal
o
b
s
erv
a
b
ility a
n
d
o
p
tim
al
o
s
cillatio
n
d
a
m
p
in
g
.
Gen
e
ra
lly sp
eak
ing
,
a PMU d
e
v
i
ce measu
r
es th
e real-ti
m
e
th
ree-ph
ase voltag
e
an
d
cu
rren
t
qu
an
tities. Th
e PMU t
h
en
co
m
p
u
t
es th
e th
ree-p
h
a
se p
h
a
sor v
a
lu
es, th
e
sequence com
p
one
n
ts, the syste
m
frequ
ency, as well as
the rate of cha
nge
of freque
ncy and rende
r
s
these
dat
a
t
o
t
h
e
co
n
t
rol
cent
e
r [
2
3
]
. Al
t
h
o
u
gh t
h
e PM
U c
o
m
put
ed f
r
eq
ue
ncy
and i
t
s
rat
e
o
f
chan
ge a
r
e
bas
e
d o
n
the local voltage m
easure
m
e
n
t, ther
e are se
veral m
e
thods whic
h let us
calculate the generator s
p
ee
d through
PMU
m
easu
r
emen
ts [
2
4
]-[2
6].
Fr
equ
e
n
c
y is a k
e
y in
d
i
cator
f
o
r
th
e system stab
ili
ty an
d
g
e
n
e
r
a
tio
n
/
d
e
man
d
b
a
lan
ce. Th
is param
e
ter o
r
its
d
e
ri
v
a
tiv
es, such
as ro
t
o
r spe
e
ds an
d t
h
ei
r r
a
t
e
of chan
ge
, are us
ual
l
y
em
pl
oy
ed
as t
h
e
dam
p
i
ng c
ont
rol
l
e
r
fe
edbac
k
si
g
n
al
s
[
4
]
-
[
9
]
.
T
o
t
h
i
s
en
d,
t
h
e
ge
ne
rat
o
r
b
u
s
i
s
ass
u
m
e
d t
o
b
e
e
q
ui
p
p
ed
with
PMU and
s
i
g
n
a
l
i
s
ch
ose
n
as global
feedback si
gn
al. Howev
e
r, in
larg
e
p
o
wer syste
m
s with
hu
n
d
re
ds
of
u
n
i
t
s
an
d
bu
ses,
a PM
U
pl
ace
m
e
nt
st
udy
t
h
a
t
m
a
xim
i
zes t
h
e dy
nam
i
c i
n
f
o
rm
at
i
on w
o
ul
d
be i
n
essence.
An
ot
he
r i
m
por
t
a
nt
su
bject
i
n
im
pl
em
ent
i
ng t
h
e FAC
T
S d
e
vi
ce’s
dam
p
i
ng c
o
nt
r
o
l
l
e
r i
s
i
d
ent
i
f
y
i
n
g
th
e b
e
st l
o
cation
for app
l
ying
au
x
iliary
d
a
m
p
in
g
si
g
n
a
l t
o
p
r
o
v
i
d
e
an
effect
iv
e d
a
m
p
in
g of o
s
cillatio
n
s
and
to
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
WAMS
Ba
sed
SS
R Da
mpi
n
g C
ont
r
o
l
l
e
r
Des
i
gn
f
o
r
F
A
C
T
S
Devi
ces an
d In
vest
i
gat
i
n
g
.
...
(
M
ort
a
z
a
F
a
rs
adi
)
74
1
m
i
nim
i
ze t
h
e i
n
t
e
ract
i
o
ns
bet
w
een
F
A
C
T
S
po
we
r fl
ow
an
d
dam
p
i
ng c
o
nt
r
o
l
l
e
rs
.
In
[27], an exam
ple of
appl
y
i
n
g
t
h
e
d
a
m
p
i
ng c
o
nt
r
o
l
l
e
r si
gnal
t
o
t
h
e
DC
o
r
AC
vol
t
a
ge
re
fere
n
ce o
f
F
A
C
T
S
was
gi
ve
n.
A
m
e
t
h
o
d
was d
e
v
e
lop
e
d
to
an
alyze th
e relativ
e effect and
to
av
o
i
d
th
e
n
e
g
a
tiv
e in
teraction
s
b
e
t
w
een
da
m
p
in
g
cont
rol
l
e
r a
n
d
ot
he
r c
ont
rol
l
o
o
p
s.
It
has
been
sh
o
w
n
t
h
at
appl
y
i
n
g
t
h
e dam
p
i
ng c
o
nt
r
o
l
l
e
r si
g
n
al
t
o
DC
vol
t
a
ge
re
fere
n
ce of
F
A
C
T
S
d
e
vi
ce cau
ses a
si
gni
fi
ca
nt
de
st
ruct
i
v
e
i
n
t
e
ract
i
on
o
n
i
t
s
ot
her
co
nt
rol
l
o
o
p
s
.
Thi
s
issu
e is ex
am
i
n
ed
h
e
re as
well an
d
it is fou
n
d
th
at app
l
yin
g
th
e aux
iliary d
a
m
p
in
g
si
g
n
a
l to AC
v
o
ltag
e
refe
rence
of SSSC yields bet
t
er res
u
lts than the ot
her si
gnals as they are
decoupled.
In
th
is stud
y, th
e
o
u
t
p
u
t
of
WADC is thus utilized to
m
odulate
Ref
q
V
and
con
s
eq
ue
nt
l
y
adj
u
st
s
q
X
t
o
y
i
el
d
a pr
ope
r dam
p
i
ng
of S
S
R
.
C
h
an
ge of
q
X
resu
lts in
m
o
v
i
ng th
e activ
e
p
o
wer
b
e
tween
gen
e
rat
o
r
bu
s an
d in
fi
n
ite bu
s up
and
do
wn
an
d
conseque
ntly adjusting the ac
celerati
ng
a
n
d decelerating of
ge
nerator rot
o
r s
p
eed a
ccordi
n
g to the equal
area
cri
t
e
ri
on
. T
h
u
s
, t
h
e
pr
ope
r c
o
nt
r
o
l
o
f
q
X
d
u
ring
power
swi
n
g situ
atio
n
s
will redu
ce the overall a
m
p
litu
d
e
o
f
o
s
cillatio
n
s
.
So
, for th
e sak
e
o
f
m
itig
a
tin
g
th
e un
stab
le o
s
cillatio
n
m
o
d
e
s, in
th
is stu
d
y
a TLBO b
a
sed
co
nv
en
tio
n
a
l da
m
p
in
g
con
t
ro
l
l
er n
a
m
e
l
y
WADC will b
e
desig
n
e
d
and
add
e
d
to
th
e m
a
i
n
con
t
ro
l loo
p
o
f
th
e
SSSC.
The dam
p
i
ng
cont
rol
l
e
r
here
i
s
a conve
nt
i
o
nal
l
ead-l
ag
da
m
p
i
ng cont
r
o
l
l
e
r w
h
i
c
h ha
s b
een wi
del
y
u
s
ed
in
th
e p
o
w
e
r system
. It
m
a
in
ly
co
n
s
ists o
f
: a g
a
in
b
l
o
c
k, a w
a
shout filter, an
d
a lead
-lag
co
m
p
en
sator
th
at is shown in
Fi
g
u
re
6
.
The d
a
m
p
in
g
contro
ller
will b
e
d
e
sign
ed
o
n
a
man
n
e
r th
at
p
r
o
v
i
d
e
s t
h
e ex
tra to
rqu
e
in
ph
ase
with
th
e po
wer
d
e
viatio
n
of th
e
gen
e
rat
o
r t
h
at will resu
lt in
su
ppression
o
f
o
s
cillatio
n
s
.
Here, the
param
e
t
e
rs of t
h
e co
nt
r
o
l
l
e
r ar
e det
e
rm
i
n
ed t
h
r
o
ug
h t
h
e si
m
u
l
a
t
i
on st
udi
es
by
t
h
e TLB
O m
e
t
hod
wi
t
h
t
h
e aim
of
achi
e
vi
n
g
t
h
e best
dam
p
i
n
g
.
s
T
1
s
T
w
w
s
T
s
T
4
3
1
1
K
ma
x
mi
n
U
s
T
1
s
T
1
2
1
Fi
gu
re
6.
C
l
assi
cal
dam
p
i
ng c
ont
rol
l
e
r
bl
ock
di
ag
ram
3.
1.
TLBO a
l
go
rithm
One
of the m
o
st recently de
velope
d m
e
taheuristics
is teac
hing-learning-base
d- optim
i
z
a
tion
(TLBO)
alg
o
rith
m
[1
8
]
. TLBO h
a
s
man
y
si
m
ilarit
i
es to
ev
o
l
u
tio
n
a
ry algo
rithm
s
(EAs): an in
itial p
o
p
u
l
atio
n
is
random
l
y sele
cted, m
oving on the way to
the teacher a
n
d class
m
ates
is
co
m
p
arable to m
u
ta
tion opera
t
or i
n
EA, and
selecti
o
n is
b
a
sed on
co
m
p
arin
g two so
l
u
tio
n
s
in
wh
ich
t
h
e
b
e
tter
o
n
e
always surv
iv
es [1
9
]
.
Sim
i
l
a
r t
o
m
o
st
ot
her e
vol
ut
i
ona
ry
opt
i
m
i
z
at
i
on m
e
t
hods,
TLB
O i
s
a pop
ul
at
i
o
n
-
base
d al
go
ri
t
h
m
inspire
d
by learni
ng
process i
n
a cla
ssroom
.
The searc
h
ing
process c
onsist
s
of two phase
s
, i.e. Teache
r
Phase
and Lea
r
ne
r Phase. In teache
r
pha
se, learne
rs first get
knowledge from
a
teacher and
the
n
from
class
m
ates in
learner phase
.
In the
entire
po
pulation, t
h
e
best solution is
considere
d
a
s
t
h
e teacher
(
X
tea
c
her
).
On t
h
e
othe
r hand, learners
learn
from
the teacher in the
teacher
pha
se.
In t
h
is phase
,
the teache
r
tries to
enh
a
n
c
e th
e resu
lts of o
t
h
e
r ind
i
v
i
du
als (
X
i
) by increasing the mean
res
u
lt of t
h
e classroom
(
X
mean
)
t
o
wa
rds hi
s/
he
r
p
o
si
t
i
on
X
tea
c
her
. In
ord
e
r to
m
a
in
tain
st
o
c
h
a
stic featu
r
es o
f
th
e search
, two
ran
domly-
gene
rat
e
d
pa
ra
m
e
t
e
rs
r
and
T
F
are ap
p
lied
in up
d
a
te
fo
rm
u
l
a fo
r t
h
e so
lu
ti
o
n
X
i
as:
(3
)
Whe
r
e
r
is a random
ly selecte
d
num
b
er
i
n
t
h
e ran
g
e of
0 an
d 1 an
d
T
F
is a teaching
factor which ca
n be
either
1 or
2:
(4
)
M
o
re
ove
r,
X
new
and
X
i
are t
h
e
new and e
x
isting sol
u
tion
of
i
, [
1
9]
-[
20]
.
In the sec
o
nd
pha
se, i.e. the
learner phase
,
the
learn
e
rs atte
m
p
t
to
in
crease th
eir in
form
at
io
n
b
y
i
n
t
e
ract
i
ng
wi
t
h
ot
hers
. T
h
er
efo
r
e, a
n
i
n
di
v
i
dual
l
ear
ns
ne
w k
n
o
wl
e
dge
i
f
t
h
e ot
her i
n
di
vi
d
u
al
s
have
m
o
re
k
now
ledg
e th
an
h
i
m
/
h
e
r
.
Th
ro
ugh
ou
t th
is
ph
ase, t
h
e stud
en
t
X
i
in
teracts
rando
m
l
y with
an
o
t
h
e
r
stud
en
t
X
j
(
i
j
) i
n
or
der
t
o
i
m
prove
hi
s
/
her
kn
o
w
l
e
d
g
e
. I
n
t
h
e ca
se
t
h
at
X
j
is b
e
t
t
er th
an
X
i
(i.
e
. f
(
X
j
) <
f
(
X
i
)
fo
r
m
i
nim
i
zat
i
on p
r
o
b
l
e
m
s
),
X
i
i
s
m
oved t
o
war
d
X
j
. Ot
her
w
i
s
e i
t
i
s
m
oved a
w
a
y
fr
om
X
j
:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6
,
No
.
4
,
D
ecem
b
er
2
015
:
73
6 – 746
74
2
(5)
If t
h
e ne
w sol
u
t
i
on
X
new
is better, it is
acce
pted in the popula
tion. T
h
e algorithm
will
continue until
th
e term
in
atio
n
con
d
ition
is m
e
t. Th
e p
s
eud
o
cod
e
sh
o
w
n
i
n
Tab
l
e
1
d
e
mo
n
s
t
r
ates th
e TLBO algorithm
step
by
-st
e
p
[
2
0]
. T
h
e
param
e
t
e
rs y
i
el
ded f
r
om
TLBO algorithm are i
n
cluded in Ta
ble
2.
Tabl
e 1.
T
h
e
p
s
eu
do
co
de fo
r TLB
O [2
0]
Set
k
=1 ;
Objective function f(
X
) ,
X
=(
x
1
,
x
2
,..
...
,
x
d
)
T
d
=no.
of desi
gn var
i
ables
Generate
initial s
t
udents of the classroo
m
rando
m
l
y
X
i
,1
,2
,.
..,
nn
=no.
of
students
Calculate objective function f(
X
)
for
whole students of t
h
e classr
oo
m
WHILE
(the ter
m
i
n
ation conditions are not
m
e
t)
{
Teacher P
hase }
Calculate the
m
ean
of
each design variable
X
Mea
n
Identif
y the best solution (teacher)
FOR
i
=1
→
n
Calculate teaching
f
actor
M
odify
solut
i
on based
on be
st solution(
te
acher)
Calculate objective f
uncti
on f
o
r
new m
a
pped student
IF
is better than
,
i.e.
END IF
{E
nd of Teacher P
hase}
{
Student P
hase}
Rando
m
l
y
select another
lear
ner
X
j
,
such that
j
i
IF
X
i
is
better than
X
j
, i
.
e
Else
END IF
IF
is better than
X
i
, i
.
e
END IF
{E
nd of Student P
hase}
END F
O
R
Set
k
=
k
+1
END W
H
ILE
Postprocess results and visualization
Tab
l
e 2
.
Param
e
ters
ob
tain
ed
fro
m
TLBO
alg
o
rith
m
par
a
m
e
ter K
value
4.
4
0.
9106
0.
0497
0.
3532
0.
7757
3.
2.
Simula
ti
o
n
Results
Fo
r th
e sak
e
of si
m
u
latio
n
,
it is assu
m
e
d
t
h
at in
th
e syst
e
m
sh
o
w
n
in
Fig
u
re 1
,
a th
ree-ph
ase t
o
g
r
ou
nd
fau
lt
occu
rs at tim
e
3
sec and it is rem
o
v
e
d
aft
e
r
0
.
0
168
sec. Sim
u
latio
n
resu
lts fo
r ro
tor sp
eed
devi
at
i
o
ns (i
n p.
u) a
nd t
h
e t
o
r
que
bet
w
ee
n l
o
w p
r
ess
u
re t
u
r
b
i
n
e an
d Hi
pr
essur
e
t
u
r
b
i
n
e
are de
pi
ct
ed i
n
Fi
gu
re
7 and Figure 8 Whe
r
e, the bl
ak lin
e corres
ponds to the co
ndition in which the SSSC
is
enha
nced
with PSO
base
d co
nve
nt
i
onal
dam
p
i
ng
cont
rol
l
e
r a
nd
t
h
e gre
e
n l
i
n
e
cor
r
es
po
n
d
s t
o
t
h
e si
t
u
at
i
on i
n
w
h
i
c
h t
h
e S
SSC
i
s
enha
nce
d
with
TLBO base
d dam
p
ing cont
rol
l
er. It shoul
d be noted that the
SSSC firstly shoul
d
be cha
r
ged in
or
der t
o
hol
d t
h
ei
r
dut
y
i
n
p
o
w
er sy
st
em
, so
, i
n
t
h
i
s
st
udy
,
t
h
e fa
ul
t
t
i
m
e
is set
t
o
3
s
ec i
n
or
der t
o
pr
ovi
d
e
t
i
m
e
for SSSC to charge its DC link. It
is obse
r
ve
d from
Figure 7 that, when
the TLBO base
d WADC is active, it
tries to
allev
i
ate th
e su
b-synch
r
on
ou
s co
mp
on
en
t of
t
h
e
g
e
n
e
r
a
tor
r
o
t
o
r s
p
eed da
wn
to zero. Due t
o
the
sel
ect
ed seri
es
com
p
ensat
i
o
n
of t
h
e t
r
a
n
sm
i
s
si
on
l
i
n
e, t
h
e
d
o
m
i
nant
su
b-s
y
nch
r
o
n
ous
f
r
e
que
ncy
c
o
m
ponent
i
s
24
.6
7 Hz
. Due
t
o
Fi
g.8,
whe
n
t
h
e faul
t
i
s
cl
eared
,
t
h
e sub
-
s
y
nch
r
o
n
ous c
o
m
ponent
of t
h
e
t
o
rq
ue bet
w
ee
n l
o
w
press
u
re turbine and
Hi
press
u
re
turbi
n
e rai
s
es up
t
o
1p
.u
. Th
en
, th
e SSSC wh
ich is en
h
a
n
c
ed
with
TLB
O
base
d
WADC
slowly control
s
this com
pone
nt to zero. As
a result, the turbin
es
of the
ge
nerat
o
r s
h
aft will still
ex
p
e
rien
ce
o
s
cillatio
n
s
d
u
e
t
o
th
e p
e
rt
u
r
b
a
tio
n
i
n
th
e
g
i
rd,
b
u
t
th
ey
will b
e
m
i
t
i
g
a
ted
and
th
e sh
aft torqu
e
will
slo
w
ly
g
o
b
a
ck to
th
e pre-fau
lt v
a
lu
e as sh
own
in Figure
8
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
WAMS
Ba
sed
SS
R Da
mpi
n
g C
ont
r
o
l
l
e
r
Des
i
gn
f
o
r
F
A
C
T
S
Devi
ces an
d In
vest
i
gat
i
n
g
.
...
(
M
ort
a
z
a
F
a
rs
adi
)
74
3
0
1
2
3
4
5
6
7
8
-5
0
5
10
x 10
-3
T
i
m
e
(
s
ec)
R
o
t
o
r
s
p
e
e
d de
v
i
a
t
i
o
n
PS
O
b
a
s
e
d
TL
B
O
b
a
s
e
d
S
u
b
s
y
n
c
h
r
o
n
o
u
s
O
s
c
illa
tio
n
s
a
t
2
4
.
6
7
H
z
L
o
w
-
F
r
e
q
u
e
n
c
y
O
s
c
illa
tio
n
s
a
t
1
.
3
3
H
z
Fi
gu
re 7.
Ge
ne
rat
o
r
R
o
t
o
r spe
e
d devi
at
i
o
n w
i
t
h
WADC
.
0
1
2
3
4
5
6
7
8
-0.5
0
0.5
1
Time
(
s
e
c
)
T
o
r
que
L
p
-
H
p (
p
.
u
)
Fi
gu
re
8.
t
h
e t
o
rq
ue
bet
w
ee
n l
o
w
p
r
ess
u
re
t
u
rbi
n
e a
n
d
Hi
pr
essur
e
t
u
rbi
n
e
wi
t
h
WA
DC
4.
IMPACT OF LETENCY
In t
h
e
prece
ding section, it
was re
vealed t
h
a
t
an
ideal
WADC (i
gnori
n
g tim
e
delay) can effectively
dam
p
t
h
e SSR
. H
o
we
ve
r, t
h
i
s
i
s
not
t
h
e ca
se i
n
t
h
e
real
wo
rl
d
w
h
ere
we ha
ve c
o
m
m
uni
cat
i
on del
a
y
s
i
n
WAMS
signals. That is, the
feedbac
k
inpu
t sig
n
a
ls are receiv
ed
at th
e con
t
ro
ller statio
n after a wh
ile, an
d
t
h
e
co
n
t
ro
l co
mman
d
app
lies in th
e syste
m
a
f
ter a tim
e
in
terv
al. Th
is sectio
n
in
ten
d
s
to
illu
strate h
o
w
a
conve
n
tional
WADC res
p
onds in t
h
e prese
n
ce of tim
e de
lays. First, a brief rev
i
ew
on
co
mm
u
n
i
catio
n
lin
ks
u
s
ed
in
WAM
S
alon
g with their typ
i
cal ti
m
e
d
e
lays
are
pre
s
ented; t
h
en, the si
m
u
l
a
ti
on
re
sul
t
s
are
gi
ven
.
4.
1.
Com
m
unic
a
ti
on Link
s
C
o
m
m
uni
cat
i
o
n l
i
nks em
pl
oy
ed i
n
WAM
S
i
n
cl
u
d
e b
o
t
h
wi
red
(t
el
eph
o
n
e l
i
n
es and
fi
be
r-
opt
i
c
s)
a
n
d
wireless (satel
lites an
d
m
i
cro
w
av
e lin
ks)
o
p
tion
s
. Delays asso
ciated
with
th
e sp
eci
fied
lin
k
s
act
as
a
fu
n
d
am
ent
a
l
i
ndi
cat
or
t
o
t
h
e a
m
ount
o
f
t
i
m
e-
l
a
g ha
p
p
eni
n
g
bef
o
re
t
h
e act
i
o
n
i
s
com
m
enced.
The
f
o
l
l
o
wi
n
g
s
are am
ong
t
h
e
com
m
uni
cat
i
on
opt
i
o
ns
f
o
r
WAM
S
:
Telep
hon
e lin
es: Th
e
m
a
in
ad
v
a
n
t
ag
e of telep
hon
e lin
es
is that they are easy to
install an
d also cost-
effectiv
e
to
u
s
e.
Fib
e
r-op
tic cab
l
es: The
b
e
n
e
fits of
u
tilizin
g fib
e
r-
op
tics inclu
d
e
its imm
u
n
ity to
RF
& at
m
o
sp
h
e
ric
in
terferen
c
e, an
d
its con
s
id
erab
le b
a
n
d
wid
t
h
th
at can
b
e
u
s
ed
b
y
th
e u
t
ilit
ies fo
r o
t
h
e
r teleco
mm
u
n
i
catio
n
need
s [2
8]
. In
spi
t
e
of hi
g
h
i
nvest
m
e
nt
cost
, fi
be
r-
o
p
t
i
c
cabl
e
s are no
waday
s
q
u
i
t
e
st
anda
rd a
nd
br
oa
dl
y
d
e
p
l
o
y
ed
b
y
u
tilit
ies.
Satellites: Th
e d
i
sadv
an
tag
e
s
o
f
u
s
i
n
g
a satellite are its h
i
g
h
co
st,
n
a
rro
w
ban
d
wid
t
h
,
and
asso
ciated
l
i
nk del
a
y
s
.
Micro
w
av
e link
s
: Micro
w
av
e lin
k
s
h
a
v
e
b
e
en
u
s
ed
b
y
u
tilities to
a great ex
ten
t
. Th
ese lin
k
s
are
co
nsid
ered
as
a b
e
tter
op
tio
n
com
p
ared to l
eased lines
, si
nce they a
r
e e
a
sy to set
up a
n
d are
highly reliable.
Sig
n
a
l
fad
i
n
g
an
d m
u
ltip
ath
p
r
op
ag
ation
are th
e m
a
in
d
i
sad
v
a
n
t
ag
es of
micro
w
av
e link
s
.
High
-sp
e
ed d
a
ta
rate cap
ab
ility
an
d
no
ise immu
n
ity of d
i
g
ital
m
i
cro
w
av
e link
s
m
a
k
e
s th
em a m
o
re su
itab
l
e ch
o
i
ce t
h
an
an
alog
micro
w
av
e link
s
t
o
serv
e th
e
n
eeds
o
f
u
tiliti
es [2
9
]
.
Tabl
e 3 i
n
di
ca
t
e
s t
h
e t
y
pi
cal
val
u
es
of t
i
m
e del
a
y
s
i
n
vari
ous c
o
m
m
uni
cat
i
on l
i
n
k
s
. Al
so,
pract
i
cal
expe
ri
ences
an
d st
at
i
s
t
i
c
s of P
M
U de
pl
oy
m
e
nt
s co
ul
d
p
r
o
v
i
d
e ot
her
use
f
ul
dat
a
f
o
r t
h
e sa
ke o
f
si
m
u
l
a
t
i
on a
n
d
perform
a
nce analysis of
WAMS [29].
Tabl
e
3.
Del
a
y
Val
u
e
s
i
n
Va
ri
ous
C
o
m
m
uni
cat
i
on Li
nks
[
2
9
]
Co
m
m
unication link
Associated delay
(m
s
)
Fiber
-
optic cables
100-
15
0
Digital m
i
crowave
links
Po
wer lin
e
(PLC
)
T
e
lephone lines
100-
15
0
150-
35
0
200-
35
0
Satellite link
500-70
0
4.
2.
Latenc
y Com
putati
o
n fr
om
Time-Stam
p Information
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6
,
No
.
4
,
D
ecem
b
er
2
015
:
73
6 – 746
74
4
The phas
or
da
ta concent
r
ator (PDC), or super PD
C, is used to comm
unicate rem
o
te
signals fro
m
PM
Us t
o
t
h
e
cont
rol
ce
nt
er
.
The
gl
obal
p
o
si
t
i
oni
ng
sy
st
em
(GPS
)
re
n
d
ers
an
exact
t
i
m
i
ng p
u
l
s
e.
B
y
expl
oiting the
GPS signal, the WAMS
preci
se tim
e
sy
nchronization is accom
p
lished. T
h
e m
a
in task for PDC
is to
syn
c
h
r
on
ize th
e m
easu
r
emen
ts o
f
en
tire PMUs and
to
send
th
e
d
a
ta ev
ery
2
0
m
s
to
th
e co
n
t
ro
l cen
t
er.
In
th
e case
o
f
con
g
e
stio
n
i
n
o
n
e o
r
m
o
re co
mm
u
n
i
catio
n
lin
es, th
e PDC
waits u
n
til co
m
p
letin
g
th
e
d
a
ta o
f
all
PMUs.
Hen
ce, th
e to
tal d
e
lay
o
f
d
e
liv
ering
th
e
WAMS
d
a
t
a
for co
n
t
ro
l cen
t
er ap
p
licatio
n
s
is th
e laten
c
y of
m
o
st
congest
e
d
l
i
n
e pl
us t
h
e
t
i
m
e
needed f
o
r sy
nc
hr
oni
zat
i
o
n
.
O
n
ce t
h
e P
D
C
has
gat
h
e
r
ed t
h
e
dat
a
fr
o
m
all
ch
ann
e
ls, it starts send
ing
t
h
e d
a
ta to
t
h
e con
t
ro
l cen
ter
at
a m
u
ch
faster
rate (1
k
H
z m
a
x
)
un
til it cle
a
rs th
e
b
ack-log
. M
o
re lik
ely th
e d
a
m
p
in
g
co
n
t
ro
ll
er is no
t lo
cat
ed at the control center; thus
,
a fraction of
data are
sent toward t
h
e controller location.
The
tot
a
l latency of
received
data is
calculated
by
subt
racting the
local
ti
m
e
a
t
th
e co
n
t
ro
l cen
ter
o
r
th
e io
n
s
in
p
r
ev
iou
s
section
are rep
eated
ag
ain
with
con
s
id
ering
th
e laten
c
y i
n
f
eedb
a
ck
sign
als and
th
e conven
tio
n
a
l
W
ADC.
4.
3.
Simula
ti
o
n
Results
In
th
e literature m
a
n
y
p
a
p
e
rs in
v
e
stig
ate t
h
e im
p
act o
f
co
mm
u
n
i
catio
n
laten
c
y o
n
WAMS b
a
sed
lo
w
frequ
en
cy
o
s
cillatio
n
(LFO)
d
a
m
p
in
g
con
t
ro
llers [12
]
-[1
3
]
an
d m
a
n
y
p
a
p
e
rs
pu
b
lished
ab
ou
t calcu
l
a
tin
g
th
e d
e
lay m
a
rg
in
, th
e m
a
x
i
m
a
l d
e
lay wh
ich
allo
ws th
e clo
s
ed
-l
o
o
p
p
o
wer
syste
m
to
retain
stab
le. To
auth
ors'
b
e
st k
nowledge, th
is p
a
p
e
r is th
e first research
to
ex
pl
o
r
e
t
h
e im
pact of
t
i
m
e
del
a
y on
WAM
S
base
d
SSR
dam
p
i
ng c
ont
r
o
l
l
e
r a
nd
det
e
r
m
i
n
i
ng t
h
e
del
a
y
m
a
rgi
n
fo
r
WAM
S
ba
sed
SSR
dam
p
i
n
g
cont
rol
l
e
r.
I
n
r
e
f [
1
3]
t
o
i
nvest
i
g
at
e i
m
pact of l
a
t
e
ncy
on
WADC
,
20
0-
41
0 m
s
lat
e
ncy
i
s
consi
d
ere
d
o
n
dam
p
i
n
g co
nt
r
o
l
l
e
r i
npu
t
si
gnal
s
or i
n
[
30]
6
0
-
4
50 m
s
t
i
m
e
del
a
y
i
s
consi
d
ere
d
o
r
rem
o
t
e
feedba
ck si
g
n
al
s, b
u
t
i
n
al
l
of t
h
e p
a
pers
p
u
b
lish
e
d
in
t
h
is subj
ect th
e
W
A
DCs are
d
e
sign
ed
to
d
a
m
p
LFO and
it see
m
s th
at t
h
e d
e
lay m
a
rg
in
for
WAM
S
base
d SSR
dam
p
i
ng
cont
rol
l
e
r s
h
o
u
l
d
be l
e
ss t
h
a
n
del
a
y
m
a
rgi
n
fo
r
WAM
S
base
d LFO
da
m
p
i
ng
co
n
t
ro
llers. To in
v
e
stig
ate th
i
s
subj
ect sim
u
l
a
tio
n
s
ar
e
rep
e
ated
with con
s
id
ering
a sm
al
l
laten
c
t (2
0 ms)
on
desi
g
n
e
d
WA
M
S
based SS
R
dam
p
i
ng co
nt
r
o
l
l
e
r i
n
p
u
t
si
gnal
.
Si
m
u
l
a
t
i
on re
sul
t
s
are
sho
w
n i
n
Fi
g
u
r
e 10
(a)
and
(
b
)
.
It
ca
n
be see
n
fr
om
thi
s
fi
gu
res t
h
at
wi
t
h
c
o
n
s
id
erin
g a sm
all ti
me
d
e
lay on
rem
o
te sig
n
a
l, th
e
WADC
p
e
rform
a
n
ce destro
yed co
m
p
letely an
d
t
h
is small ti
me
d
e
lay d
e
stab
ilize the syste
m
after clearing
the fa
ult.
0
2
4
6
8
-0.02
0
0.02
Ti
m
e
(
s
e
c
)
R
ot
or
s
p
e
e
d de
vi
a
t
i
on (
p
.
u
)
2
0
m
s
la
te
n
c
y
N
o
l
a
t
ecy
(a)
0
2
4
6
8
-2
0
2
4
6
Ti
m
e
(
se
c
)
T
o
r
que
L
p
-
H
p (
p
.
u
)
20 m
s
la
te
n
c
y
N
o
la
te
c
y
(b
)
Fi
gu
re
1
0
.
Im
pact
of
t
i
m
e
del
a
y
on
co
n
v
ent
i
onal
WA
DC
p
e
rf
orm
a
nce
5.
PERFO
R
MA
NCE IN
DE
X
In o
r
de
r
t
o
co
m
p
are
t
h
e
res
u
l
t
s
o
f
pr
op
os
ed
TLB
O bas
e
d WA
DC
wi
t
h
PS
O base
d
WADC
,
a
Perform
a
n
ce In
d
e
x (PI) is
u
tilized
b
a
sed
on
t
h
e
b
e
h
a
v
i
or of the
p
o
wer
syste
m
. Th
is i
n
d
e
x wh
ich is
main
ly
co
nsists of th
e
in
teg
r
al
o
f
th
e ti
m
e
m
u
ltip
lied
ab
so
lu
te
v
a
lu
e
o
f
th
e
po
wer syste
m
erro
rs, can
b
e
d
e
fi
n
e
d as:
(6)
Whe
r
e,
i
s
t
h
e
spee
d de
vi
at
i
o
n o
f
gene
rat
o
r,
i
s
angl
e
devi
at
i
on,
i
s
t
h
e s
p
e
e
d de
vi
at
i
o
n o
f
hi
g
h
pres
su
re t
u
r
b
i
n
e
,
a
n
d
i
s
t
h
e s
p
ee
d
dev
i
at
i
on o
f
l
o
w
p
r
essu
re
t
u
rb
in
e. It
shou
ld
b
e
n
o
t
ed
th
at, the
lo
wer v
a
l
u
e of
th
e PI, t
h
e b
e
tt
er p
e
rfo
r
m
a
n
ce o
f
co
n
t
ro
ller
will b
e
gu
aran
t
eed
.
Nu
m
e
rical resu
lts fo
r t
w
o cases
of
st
u
d
y
i
n
cl
u
d
e
PS
O
base
d
WA
DC
a
n
d T
L
B
O
base
d
W
ADC
i
s
co
n
d
u
c
t
e
d i
n
Tabl
e
4
.
Tabl
e 4. PI
i
n
d
e
x fo
r pr
o
pose
d
c
ont
rol
l
e
rs
Contr
o
ller
PSO based
W
ADC
T
L
B
O B
a
sed WADC
PI
Value
1.
05
0.
43
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
WAMS
Ba
sed
SS
R Da
mpi
n
g C
ont
r
o
l
l
e
r
Des
i
gn
f
o
r
F
A
C
T
S
Devi
ces an
d In
vest
i
gat
i
n
g
.
...
(
M
ort
a
z
a
F
a
rs
adi
)
74
5
It is obse
rved that, the
value
of PI in a case
of
TLB
O
base
d
dam
p
i
ng c
o
n
t
rol
l
e
r i
s
m
u
ch
l
o
we
r t
h
a
n
i
t
s
cou
n
t
e
r
p
art
PS
O
base
d
WA
DC
.
S
o
, t
h
e T
L
B
O
bas
e
d
dam
p
i
ng c
ont
rol
l
e
r
o
p
er
at
es effi
ci
e
n
t
l
y
t
h
a
n
con
v
e
n
t
i
onal
d
a
m
p
i
n
g
co
nt
r
o
l
l
e
r. Al
o
It
ca
n
be
o
b
sr
ve
d f
r
om
PI
val
u
es
t
h
at
aft
e
r c
o
n
s
i
d
eri
n
g
2
0
m
s
t
i
m
e
laten
c
y on
rem
o
te feedb
ack si
g
n
a
l, th
e
WADC fails t
o
stab
ilize th
e system
an
d
th
e
PI
valu
e with co
n
s
i
d
eri
n
g
ti
m
e
d
e
lay is n
o
t
a stab
le v
a
l
u
e.
6.
CO
NCL
USI
O
N
A TLBO-b
a
sed
conv
en
tion
a
l
SSR d
a
m
p
in
g co
n
t
ro
ller
d
e
sig
n
,
for an
SSSC, u
tilizin
g
glo
b
a
l sign
als
as t
h
e
fee
dbac
k
i
n
p
u
t
si
g
n
al
s i
s
de
vel
o
pe
d
.
T
h
e TLB
O
m
e
t
hod i
s
ap
p
eared
as a
p
r
o
m
i
s
i
ng al
g
o
ri
t
h
m
for
m
a
nagi
n
g
t
h
e
opt
i
m
i
z
at
i
on pr
obl
em
s t
h
at
not
o
n
l
y
el
im
i
n
at
es t
h
e defi
ci
enci
es
o
f
ot
he
r co
n
v
e
n
t
i
onal
o
p
tim
izat
io
n
meth
od
s, bu
t also
, it
u
tilizes a few
p
a
ram
e
ters an
d is easy to
b
e
im
p
l
e
m
en
te
d
.
In ord
e
r to
better
assess th
e pro
p
o
s
ed
TLB
O
b
a
sed
WADC abilit
ies, a PSO
based
WADC is also
d
e
sign
ed
an
d p
e
rform
a
n
ce of
these two c
o
ntrol strate
gies are com
p
ared.
Furt
herm
ore,
a
per
f
o
r
m
a
nce i
nde
x i
s
al
so
d
e
fi
ne
d t
o
asses
s
t
h
e
sup
e
ri
o
r
per
f
o
r
m
ance o
f
dam
p
i
n
g c
ont
rol
l
e
r
s
. T
h
e
IEEE
se
con
d
be
nchm
ark
m
odel
aggregated with an SSSC
i
s
em
pl
oy
ed as t
h
e ca
se st
u
d
y
.
In
o
r
d
e
r t
o
pr
o
v
i
d
e a
c
o
m
p
rehe
nsi
v
e
un
de
rst
a
n
d
i
n
g
of
i
ssue
,
Se
ve
ral
FF
T
an
alyses ar
e pr
ov
id
ed
. I
t
w
a
s fo
und
that
for t
h
e selected level of se
ri
e
s
com
p
ensat
i
o
n, m
ode
2
(wi
t
h t
h
e
cor
r
es
po
n
d
i
n
g
freq
u
e
n
cy
ar
ou
n
d
2
4
.
67
H
z
) has bee
n
t
h
e m
o
st
do
m
i
nant
o
n
e w
h
i
c
h m
a
kes t
h
e
sy
st
e
m
u
n
s
tab
l
e.
I
t
w
a
s also
sho
w
n
t
h
at a zero
m
o
d
e
w
ith
a
f
r
e
qu
en
cy ar
ound
1
.
3
3
H
z
app
e
ar
s in
t
h
e system
. I
t
is
found that an ideal
W
A
MS
based SSR
dam
p
ing controller of SSSC can s
u
ccess
f
ully dam
p
a
l
l SSR
m
odes but
a real
WAM
S
based S
S
R
d
a
m
p
i
ng c
ont
r
o
l
l
e
r does
not
wo
rk sat
i
s
fact
ori
l
y
and e
v
en
dest
abi
l
i
ze t
h
e po
we
r
syste
m
wh
en
th
e in
pu
t sig
n
a
l
s
h
a
v
e
sm
all
la
ten
c
ies so
in
th
ese ap
p
licatio
ns, th
e
m
o
st crit
ical p
o
i
n
t
is th
e ti
me-
vary
i
n
g c
o
m
m
uni
cat
i
o
n sy
st
em
l
a
t
e
ncy
dest
ruct
i
v
e e
ffe
ct com
p
ensation. T
h
ese is
s
u
es are
open fut
u
re
researc
h
t
opics
in the
field
of
sm
art tran
s
m
is
sio
n
grid
s.
REFERE
NC
ES
[1]
RM. Mathur, RK. Varm
a, “
T
hyristor-Based F
A
CTS
Contro
llers
for Electri
ca
l T
r
ansm
ission
S
y
st
em
s", IEEE P
r
ess
and Wiley
Interscien
ce
, New Yor
k
, USA, 2002.
[2]
IEEE
Subs
y
n
ch
ronous Resonance Working
Group, "Ter
m
s
, defin
itions
an
d s
y
m
bols for
subs
y
n
chronou
s
oscilla
tions",
IEEE Trans. Pow
e
r Apparatus and
Systems
, vol/issue: PAS-104(6), p
p
. 1326–1334
, 1
985.
[3]
A. Ghorbani, S.
Pourm
ohamm
ad
, "A novel excit
a
tion
con
t
roll
er
to dam
p
subs
y
n
chronous oscillations",
El
ectr
i
ca
l
Power and
Ener
gy Systems
, vol/issue: 33(3), pp.
411-419, 2011
.
[4]
MH.
Hos
s
e
i
ni,
H.
Sa
ma
dz
a
d
e
h
,
J.
Ola
m
a
e
i
,
M.
Fa
rsa
d
i,
"SSR mit
i
ga
tion with SSSC tha
nks to fuz
z
y
c
ontrol",
Turk
.
J.
El
ec.
Eng
.
&
Comp.
Sci
.
,
vol.
21, pp
. 2294-23
06, 2013
.
[5]
R. Kunamneni,
S. Suman,
M.
Rambabu, K. Ashok Ku
ma
r, "Implementation
of pha
se imbalance scheme for
stabili
zing torsi
onal
osci
ll
ation
s
"
,
In
ternationa
l Journal o
f
Electric
al and C
o
mputer Engineering (
I
JECE)
.
,
vol/issue:
4(5), p
p
. 697–702
, 201
4.
[6]
J. Khazae
i, M. Mokhtari, D.
Nazarpour
, "S
y
n
chronous Re
sonance d
a
m
p
ing using Distributed Stat
ic Seri
e
s
Compensator (DSSC) enhanced
with fuzzy
logic
controller",
Electrical Power and
Energy Systems
, vol. 43, pp. 80–
89, 2012
.
[7]
RK. Varm
a, S. Audd
y
,
Y. Sem
s
edini
,
"Mitigatio
n of subs
y
n
chro
nous resonance i
n
a series-com
pensated wind far
m
using FACTS co
ntrollers",
IE
EE
T
r
ans. Power Del.
Vol/issue: 23
(3), pp
. 1645–16
54, 2008
.
[8]
SMH. Hosseini,
H. Sam
a
dzadeh
, J. Olam
ae, M. F
a
rsadi,
"SSR m
itigation wi
th SSSC thanks to fuzz
y con
t
rol
,
"
Turk
J E
l
ec
Eng
&
Comp Sci
. doi: 10
.3
906/elk-1203-21
.
[9]
MD.
Pra
d
a
,
F.
Ma
nc
illa
,
JL. Domíngue
z
,
E. Mulja
di,
M.
Singh
, O. Gomis-Bellmunt, A.
Sumper, "Contribu
tion
of
ty
p
e
-2 wind turb
ines to sub-s
y
nchronous resonance damping",
Electrical Pow
e
r and Energy Systems
, vol. 55, pp
.
714–722, 2014
.
[10]
X. Xie,
J. Xi
ao,
C. Lu
, Y.
Han,
"W
ide-are
a
sta
b
ilit
y
c
ontro
l fo
r dam
p
ing int
e
r
a
rea
oscil
l
at
ions of int
e
rconn
ect
e
d
power s
y
s
t
em
s
"
,
IE
T Ge
n.
Tran.
Dis
, vol/issue: 1
53(5), 2006
.
[11]
"Real-time application of
s
y
nchrophasors for improving reliability
"
,
Nor
t
h
American Electric Reliab
ility
Corporation
,
20
10.
[12]
H.
Wu,
et
al
,
"T
he
i
m
pa
c
t
of time
de
l
a
y
on robust
c
ont
rol
de
si
gn i
n
powe
r
sy
ste
m
s",
i
n
Proc
. IE
E
E
PE
S Wi
nt
er
Meeting
,
vol. 2
,
pp. 27–31
, 2002
.
[13]
M. Mokhtari, F. Am
inifar, D. Nazarpour, S. Golshannava
z, "W
ide-Area Power Oscilla
tion Dam
p
ing W
ith a Fuzz
y
Controller
Compensating
the Co
ntinuous Communication Delay
s
",
IEEE Transaction on Pow
e
r S
y
stems
, vol/issue:
28(2), 2013
.
[14]
H. Ni, G.
T. Hey
d
t
,
L
.
Mil
i
, "Power s
y
stem
stabilit
y
agen
ts using robust wide
area
contro
l",
IE
EE T
r
ans. Powe
r
Syst
, vo
l/issue: 1
7
(4), pp
. 1123–1
131, 2002
.
[15]
Y. Zhang
,
A. B
o
se, "Design of
wide-area d
a
mp
ing controllers fo
r inte
rarea oscillations",
IEEE Trans.
Powe
r Sy
st
,
vol/issue: 23(3), pp.
1136–1143
, 2008.
[16]
B. Chaudhur
i,
R. Majumder
,
BC. Pal,
"Wide-area measuremen
t b
a
sed stab
ilizing
contro
l of
power s
y
stem
considering
sign
al
transmission delay
"
,
IEEE Trans. Power
Syst
, vol/issue: 19(4), pp.
1971–1979
, 2004.
Evaluation Warning : The document was created with Spire.PDF for Python.