Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l. 5,
N
o
.
1
,
Ju
ly 20
14
, pp
. 32
~44
I
S
SN
: 208
8-8
6
9
4
32
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Prop
osed Meth
od for Shoot-Th
rough in Three Phase ZSI
and
Comparison of Different Control Techniques
Byam
ake
s
h
Nayak
*, S
a
swati Sw
ap
na Das
h
**,
Subr
at K
u
mar
*
**
* School of
Electrical
Engin
eerin
g, KIIT University
, Bhub
aneswar
** Departmen
t
o
f
Electr
i
cal
Engineering
,
YMCA
Un
iversity
of
science an
d
technolog
y
,
Farid
a
bad
***Department
of operation
and
contro
l (Electrical), Bhar
at Petro
l
eum
Corporatio
n limited, MMBPL, Mathur
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Mar 29, 2014
Rev
i
sed
May 20
, 20
14
Accepte
d
J
u
ne 1, 2014
This paper pres
ented th
e new methodol
og
y
for
different
contro
l techn
i
ques
applied to three
phase Z-source inverter
for minimisation of switching losses.
The procedure
for proposed control
techniqu
es and its effects on th
e
performance of
operation of three phase
Z-s
ourc
e
invert
er ar
e an
al
yz
ed. Th
e
graphs for voltage gain
and vo
ltage str
e
ss are
drawn for diff
er
ent con
t
rol
methods. The flow-chart for th
e s
y
mme
trical and uns
y
mmetrical con
t
ro
l
techn
i
ques
for
c
r
eat
ing puls
e
s
i
g
n
als
for s
w
it
che
s
of thre
e ph
as
e
invert
er a
r
e
shown. All th
e
methods are stud
ied
and
compar
ed with each
other. Th
e To
tal
harmonic distortion (THD) of ou
tput vo
ltag
e
of both the control
methods has
been analy
z
ed using FFT analy
s
is. Th
e experiments done and the results
shown for capa
c
itor vo
ltag
e
,
lo
ad curr
ent
and l
o
ad lin
e vol
tage
for sim
p
le
boost and
constant boost contro
l techni
qu
es ar
e presented using
MATLAB/
Simulink.
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Keyword:
FFT a
n
alysis
M
a
xi
m
u
m
boo
st
M
a
xi
m
u
m
const
a
nt
b
o
o
st
Sh
oot
-t
hr
o
u
g
h
Sim
p
l
e
B
oost
Switch
i
ng
l
o
sses
THD
Z-Source i
nve
rter
Co
rresp
ond
i
ng
Autho
r
:
Saswati Swap
na Dash
Depa
rt
m
e
nt
of
El
ect
ri
cal
Engi
neeri
n
g
,
Y
M
CA
Un
iv
ersity o
f
Scien
ce
an
d Tech
no
logy, Far
i
d
a
b
a
d
Em
a
il: reachtoswapna
@gm
a
i
l
.com
1.
INTRODUCTION
The c
o
nve
nt
i
o
nal
v
o
l
t
a
ge
-s
o
u
rce
i
n
vert
er
(
V
SI
) i
s
use
d
i
n
i
n
d
u
st
ri
es t
o
cont
rol
t
h
e s
p
e
e
d
of
AC
m
o
t
o
r
dri
v
e
,
whi
c
h c
o
n
s
i
s
t
of
di
ode
rect
i
f
i
e
r at
f
r
ont
e
n
d,
DC
l
i
n
k ca
p
a
cito
r an
d inv
e
rter bridg
e
[1
].
Si
m
ilarly, in
ord
e
r t
o
tran
sfer en
erg
y
fro
m
PV array
in
to u
tility g
r
i
d
s, th
e
vo
ltag
e
-sou
rce inv
e
rter is
u
s
ed
t
o
con
v
e
rt th
e DC
vo
ltag
e
in
to
AC
v
o
ltage. VSI is a
buck
co
nv
erter t
h
at can
o
n
l
y produ
ce
an
AC v
o
ltag
e
limited
b
y
DC
link
vo
ltag
e
,
wh
ich
is ro
ugh
ly eq
u
a
l to
1.3
5
tim
es th
e i
n
pu
t lin
e vo
ltag
e
, if t
h
ree
phase d
i
od
e
b
r
idg
e
rectifier is
u
s
ed
at
fr
ont
e
nd
[
2
]
,
[3]
.
I
n
rus
h
a
n
d
harm
oni
c cu
rr
ent
fr
om
t
h
e di
ode
bri
dge
re
ct
i
f
i
e
r can
dec
r
eases t
h
e e
ffi
ci
ency
and
pr
o
duce
s
pul
sat
i
n
g t
o
rq
ue w
h
i
c
h c
r
eat
es t
h
e n
o
i
s
e and
vi
b
r
at
i
o
n o
f
AS
D sy
st
em
. Low
p
o
we
r f
act
or i
s
an
o
t
h
e
r issu
e of th
e trad
ition
a
l ASD system
.
Perfo
r
m
a
n
ce an
d
reliab
ility
can
b
e
ach
i
ev
ed
b
y
ov
erco
m
i
n
g
t
h
e
t
h
ree i
m
port
a
n
t
fact
ors l
i
k
e m
i
ss-gat
i
ng f
r
o
m
EM
I can caus
e shoo
t-thro
ugh
th
at leads to
d
e
stru
ction
of th
e
inve
rter, the dead tim
e
that
is n
eeded t
o
a
voi
d sh
oot
-t
hr
ou
g
h
, w
h
i
c
h i
n
crease
s
t
h
e com
p
l
e
xi
t
y
of
cont
ro
l
tech
n
i
qu
e, an
ou
tpu
t
LC filter is n
eed
ed
fo
r
prov
id
i
n
g
a si
n
u
so
id
al vo
ltag
e
co
m
p
ared
with th
e cu
rren
t sou
r
ce
in
v
e
rter, wh
ich cau
ses ad
d
ition
a
l power lo
ss
an
d con
t
ro
l co
m
p
lex
i
t
y
[4
].
Th
ere are eigh
t states in
on
e cycle o
f
ope
rat
i
o
n of
v
o
l
t
a
ge
s
o
urce
i
nve
rt
er.
Out
o
f
whi
c
h
si
x
st
ates are calle
d active states i
n
whic
h t
h
e
DC link
voltage
is im
pressed ac
ross the load a
n
d two zero states
where the l
o
ad term
inals
are sh
ort
e
d t
h
ro
u
gh
ei
t
h
er
the lowe
r a
n
d uppe
r three
device
respectively. The
vol
tage across the load is ze
ro in two ze
ro
state
co
nd
itio
ns.
Am
p
l
itu
d
e
m
o
du
latio
n con
t
ro
l th
e
wid
t
h
o
f
zero states and
thu
s
th
e vo
ltag
e
across the lo
ad
is
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Propo
sed
M
e
tho
d
f
o
r
Sh
oo
t-T
h
ro
u
g
h
i
n
Th
ree Pha
s
e Z
S
I
an
d
C
o
m
p
ar
i
s
on
of
D
i
f
f
e
r
en
t
…
(
B
ya
m
a
k
e
s
h
N
a
ya
k
)
33
regu
lated
b
u
t
rem
a
in
well b
e
lo
w th
e
DC-lin
k
vo
ltag
e
. There
f
ore, VS
I
has o
n
l
y
on
e
cont
rol
vari
abl
e
i
.
e.m
odul
at
i
on
i
nde
x w
h
i
c
h i
s
use
d
fo
r b
u
ck t
h
e v
o
l
t
a
ge acr
o
ss t
h
e l
o
ad. T
h
e Z-so
urce i
n
v
e
rt
er em
pl
oy
s
an X-
sh
ap
e n
e
twork
b
e
f
o
r
e
th
e
tr
ad
itio
n
a
l
v
o
l
tag
e
-
s
o
u
r
ce inv
e
r
t
er
b
r
i
d
g
e
. D
u
r
i
ng
shoot-
t
h
r
o
ugh
p
e
r
i
o
d
t
h
e
capacitor
voltage is boosted
up by
r
eceiving the
ene
r
gy from
induct
o
r, wh
ile produci
n
g
no
voltage to l
o
ad. It
sh
ou
l
d
b
e
em
p
h
a
sized
t
h
at both
th
e sh
oo
t-t
h
roug
h
zero
state an
d th
e two
t
r
ad
ition
a
l zero
states sh
ort th
e lo
ad
t
e
rm
i
n
al
s and pr
o
duce zer
o
vol
t
a
ge ac
ros
s
t
h
e l
o
ad, t
h
us
preser
vi
n
g
t
h
e sam
e
PW
M
pr
o
p
ert
i
e
s an
d
vol
t
a
ge
wav
e
fo
rm
to
th
e lo
ad
. Th
e
on
ly d
i
fferen
ce
is th
at th
e s
hoot-through zero state
bo
o
s
t t
h
e cap
acito
r vo
ltag
e
,
wh
ere as th
e trad
ition
a
l zero states d
o
n
o
t
h
a
v
e
bo
ostin
g
cap
ab
ility. For th
e sam
e
o
u
t
p
u
t
v
o
ltage the to
tal
h
a
rm
o
n
i
c d
i
st
ortio
n
is less in Z-so
urce inv
e
rter co
m
p
ar
ed
to
trad
ition
a
l v
o
ltag
e
-so
u
rce
in
v
e
rter b
ecau
s
e o
f
active-state vol
tage across the
load is
th
e capacito
r ou
tpu
t
vo
ltag
e
[5
], [6
].
Th
er
e ar
e fou
r
w
a
ys of
in
tro
d
u
c
i
ng
sho
o
t
t
h
ro
u
gh
i
n
a Z-s
o
u
r
ce i
nve
rt
er,
o
u
t
of
whi
c
h o
n
e m
e
tho
d
i
s
ve
ry
co
m
m
on i
n
t
r
adi
t
i
onal
m
e
t
hod,
whe
r
e
all th
e switch
e
s o
f
all th
ree l
e
g
s
are m
a
d
e
ON at a ti
me.b
u
t
in
th
is
m
e
th
od
th
e
m
a
in
d
i
sad
v
a
n
t
age is th
e
swi
c
hi
ng l
o
sse
s occu
rs d
u
ri
n
g
t
h
e swi
t
c
hi
n
g
act
i
on o
f
swi
t
ches. Thi
s
pa
p
e
r prese
n
t
s
a n
e
w t
echni
que
o
f
sh
oot
th
ro
ugh
wh
ich will no
d
oub
t min
i
m
i
ze th
e switch
i
n
g
lo
sses fu
lfillin
g
t
h
e sh
oo
t t
h
ro
ug
h pu
rpo
s
es i
n
a Z-
sou
r
ce i
n
vert
er
duri
ng
nul
l
st
at
e peri
o
d
. The
Z-s
o
u
r
ce i
nve
rter circuit analysis, crite
ria for cho
o
si
ng the
valu
e
of
passi
ve
pa
r
a
m
e
t
e
rs, pr
o
p
o
se
d co
nt
r
o
l
t
echni
que
s f
o
r
pr
ovi
di
n
g
s
h
oot
-t
hr
o
u
g
h
.
S
i
m
u
l
a
t
i
on resu
l
t
s
are
in
clu
d
e
d
t
o
p
r
ov
e th
e con
c
ep
t. Figu
re 1 shows th
e m
a
in
circ
uit confi
g
uration of t
h
e
Z-sou
r
ce inv
e
rter with
3-
p
h
a
se lo
ad
. Si
milar to
th
at of th
e trad
itio
n
a
l
v
o
ltag
e
so
urce
in
v
e
rter.
2.
CIR
C
U
IT CO
NFIG
U
RATI
O
N,
OPE
R
A
T
ING PRI
N
C
I
PLES
A
N
D
MO
DES OF OPER
ATIO
N
Fi
gu
re
1.
(a,
b
)
Z-s
o
urce i
nve
r
t
er wi
t
h
3
-
pha
se l
o
a
d
.
The Z
-
source
inve
rter circ
uit consists of three pa
rts:
a t
h
ree-
pha
se, si
n
g
l
e
-
phase
di
od
e bri
dge
rect
i
f
i
e
r or
b
a
ttery d
e
p
e
n
d
in
g
up
on
the av
ailab
ility o
f
i
n
pu
t system
, DC-lin
k
ci
rcu
it , and
an inv
e
rter bridg
e
.
Sm
all
in
pu
t
capacitors a
r
e connected t
o
th
e di
o
d
e b
r
i
d
g
e
rect
i
f
i
e
r i
f
di
ode
bri
dge
rectifier is u
s
ed
in
stead
o
f
b
a
ttery. For
battery as input, a diode is
connected
be
f
o
re
dc-l
i
n
k t
o
op
p
o
se t
h
e fl
o
w
o
f
ene
r
gy
t
o
wa
r
d
s so
ur
ce
du
ri
n
g
sho
o
t
-
t
h
r
o
ug
h
peri
od
. T
h
e dc
l
i
nk ci
rc
ui
t
o
f
Z-s
o
urce
i
n
v
e
rt
er i
s
di
ffe
re
nt
f
r
om
t
r
adi
t
i
onal
v
o
l
t
a
ge-s
ou
rce
in
v
e
rter and
it co
n
s
ist of symme
trical X sh
ap
e
n
e
two
r
k
consist of seri
es inductance
and s
h
unt ca
pacitance
(L
1
=L
2
=L, C1=C
2
=C
).
F
o
r
a
di
ode
b
r
i
d
ge r
ect
i
f
i
e
r as i
npu
t
Fi
g1(
b)
, at
any
i
n
st
ant
of t
i
m
e, onl
y
t
w
o pha
ses
t
h
at
have t
h
e l
a
rgest
p
o
t
e
nt
i
a
l
di
ffere
nce m
a
y
cond
uct
,
t
h
er
efo
r
e as vi
ewe
d
fr
om
Z-sour
c
e
net
w
o
r
k
,
t
h
e di
o
d
e
bri
dge ca
n be
m
odel
e
d as a dc so
ur
ce i
n
s
e
ri
es wi
t
h
t
w
o
di
o
d
e, act
s j
u
st
l
i
k
e as bat
t
e
ry
wi
t
h
di
ode
. The
ope
rat
i
n
g c
ont
rol
t
e
c
hni
que
of
swi
t
c
hi
ng
o
f
t
h
e i
n
v
e
rt
er
i
s
suc
h
a
way
t
h
at
t
h
e i
nve
r
t
er o
p
erat
es
i
n
t
h
ree
m
odes:
act
i
v
e m
ode, t
r
adi
t
i
o
n
a
l
zero
-
st
at
e m
ode
an
d s
h
oot
-
t
hr
ou
g
h
zer
o st
at
e
m
ode.
The
m
odes of
o
p
e
r
at
i
on
are e
xpl
ai
ne
d a
ssum
i
ng t
h
e
o
p
e
rat
i
o
n
o
f
Z
-
s
o
urce
inv
e
rter is on
ly th
ree d
y
na
m
i
c states.
2.
1.
Acti
ve-s
ta
te -1
Th
e inv
e
rter b
r
idg
e
is o
p
e
ratin
g
in
o
n
e
o
f
th
e six
trad
ition
a
l activ
e v
ecto
r
s
(1
0
0
,
0
1
0
,
1
10
,0
01
,1
0
1
,
0
1
1
)
, t
hus
act
i
n
g t
h
e
out
put
a
s
a c
u
rre
nt
s
o
u
r
ce
vi
ewed
f
r
om
t
h
e
Z-s
o
urce
ci
rc
ui
t
.
I
n
t
h
i
s
m
ode t
h
e
po
we
r i
s
t
a
ken
fr
om
t
h
e sou
r
ce and
feed t
o
t
h
e l
o
ad
. The
cont
i
n
u
ous
fl
ow
of i
n
p
u
t
cur
r
en
t
red
u
ces t
h
e
har
m
oni
c curre
nt
.
Thi
s
m
ode
of
o
p
erat
i
o
n i
s
sh
o
w
n
i
n
Fi
g
u
re
2
(
a).
2.
2.
Z
ero-sta
te-
1
Th
e
i
n
v
e
rter bridg
e
is op
erat
in
g
i
n
on
e o
f
t
h
e two
t
r
ad
ition
a
l zero
v
ectors
(111
,0
00
) an
d sh
orting
t
h
r
o
u
g
h
ei
t
h
e
r
t
h
e up
pe
r or
l
o
we
r
t
h
ree de
vi
ces,
t
hus
act
ing a
s
a
open circuit
viewe
d
from
the Z-source
circu
it. In
th
is
m
o
d
e
, t
h
e inp
u
t
is con
n
ect
ed
to
t
h
e im
p
e
d
a
n
c
e n
e
t
w
ork
and
i
n
pu
t cu
rren
t is t
h
e in
du
ctor
cu
rren
t,
wh
ich co
n
t
ri
b
u
t
e to
th
e lin
e cu
rren
t
’
s h
a
rm
o
n
i
c red
u
c
tion
.
Th
is state
may b
e
co
m
p
le
tely o
r
p
a
rtially
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
32
–
44
34
0
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
1
x 1
0
-3
-1.
5
-1
-0.
5
0
0.
5
1
1.
5
T
i
m
e
(S
ec
ond)
Ze
r
o
St
a
t
e
Ze
r
o
St
a
t
e
Ze
r
o
St
a
t
e
Ze
r
o
St
a
t
e
Ac
t
i
v
e
St
a
t
e
Ac
t
i
v
e
St
a
t
e
Ac
ti
v
e
St
a
t
e
Ac
t
i
v
e
St
a
t
e
Ac
t
i
v
e
St
a
t
e
111
00
0
11
1
00
0
R
e
f
e
renc
e S
i
n
u
s
o
i
dal
S
i
g
nal
s
C
a
rri
e
r
S
i
gna
l
com
p
ensat
e
d b
y
shoot
-t
hr
o
u
g
h
st
at
e depen
d
i
ng
on co
nt
r
o
l
t
echni
que a
ppl
i
e
d t
o
i
nve
rt
er s
w
i
t
c
hes. C
o
m
p
l
e
t
e
l
y
com
p
ensat
e
d
m
ode i
s
nam
e
d as
3
-
m
ode o
p
erat
i
o
n
w
h
ere
a
s pa
rt
i
a
l
l
y
com
p
ensat
e
d m
ode i
s
cal
l
e
d
as
2-m
o
d
e
ope
rat
i
o
n i
n
t
h
i
s
pa
per
.
T
h
i
s
m
ode of
o
p
erat
i
on i
s
sh
o
w
n
i
n
Fi
g
u
re
2
(
b
)
.
2.
3.
Shoo
t
-
t
hrough-
st
at
e-1
The i
n
v
e
rt
er b
r
i
dge i
s
ope
rat
i
ng i
n
one o
f
t
h
e seven s
h
o
o
t
-
t
h
r
o
ug
h st
at
es. Du
ri
n
g
t
h
i
s
m
o
de t
h
e i
n
p
u
t
is d
i
scon
n
ected
and
lo
ad
is sh
or
ted
t
h
ro
ugh Z-
so
ur
ce n
e
t
w
o
r
k
.
Sev
e
n
sh
oo
t-
thr
oug
h
ar
e
ach
iev
e
d
b
y
t
u
r
n
i
n
g
all sw
itch
e
s
o
r
f
i
v
e
sw
itch
e
s
or
4 sw
itch
e
s at
a ti
m
e
. Th
e con
t
ro
l techn
i
qu
e is su
ch
t
h
at the sho
o
t
-
t
hr
ough
state
i
s
i
n
sert
e
d
d
u
ri
ng
t
h
e
pe
ri
o
d
of
zer
o-
st
at
e w
i
t
hout
af
fect
i
n
g t
h
e
peri
od
o
f
act
i
v
e st
at
e.
It
can
be
see
n
t
h
at
t
h
e
sho
o
t
-
t
h
r
o
ug
h i
n
t
e
rval
i
s
onl
y
a fract
i
on of
swi
t
c
hi
ng cy
c
l
e; therefore it needs a
sm
a
l
l capacitor to suppres
s
v
o
ltag
e
. During
th
is p
e
riod
t
h
e en
erg
y
sto
r
ed
in
th
e i
n
ducto
r is transferred
to
t
h
e capacito
r and
hence th
e
cap
acito
r
vo
ltag
e
is boo
sted
u
p
. D
e
p
e
n
d
i
n
g
o
n
ho
w
m
u
ch
a boo
st vo
ltag
e
is n
e
ed
ed
, th
e shoo
t-
through
in
terv
al is
d
e
term
in
ed
. Th
is mo
d
e
of
o
p
erat
i
o
n i
s
s
h
ow
n i
n
F
i
gu
re
2(c
)
.
Fi
gu
re 2.
(a,
b
,
c) Di
ffe
rent
m
ode
s of o
p
erat
i
o
n
o
f
Z
-
s
o
u
r
ce i
nve
rt
er.
3.
DIFFE
RENT CO
NTR
O
L
T
E
CHN
I
Q
U
ES
Fig
u
re 3(a, b) sh
ows th
e t
r
ad
ition
a
l PWM switch
i
n
g
sequ
en
ce b
a
sed
on
th
e triang
u
l
ar carrier sig
n
a
ls
com
p
ared
wi
t
h
t
h
e
3 si
nus
oi
dal
si
g
n
als with
a phase difference
of 120
0
fo
r
0
.
5
. In
ev
er
y sw
itch
i
ng
cycle, the zero
states (000
or
111) ar
e cre
a
ted along
with a
c
tive states. In
Z-s
o
urce
inverter,
withou
t affecting
th
e activ
e states, th
e shoo
t-
thro
ugh
states is allo
cated
in
zero
-
state in
terv
al
s ev
en
ly to
boost th
e v
o
ltag
e
. I
f
th
e
sh
oo
t-t
h
rou
g
h
state is co
m
p
letely al
located in zero-state in
terv
al th
en
th
e op
eration
i
s
called
two
-m
o
d
e
ope
rat
i
o
n,
ot
he
rwi
s
e t
h
e
ope
ra
t
i
on i
s
cal
l
e
d
t
h
ree-m
ode
ope
r
a
t
i
on.
Fi
gu
re
3.
(a,
b
)
Swi
t
c
hi
ng
Tec
hni
que
s
of t
r
ad
i
t
i
onal
VS
I a
n
d
ZSI
usi
n
g si
m
p
l
e
b
o
o
st
c
ont
r
o
l
.
3.
1.
Simple boos
t
control
In t
h
i
s
m
e
t
hod
, t
h
e s
h
oot
-t
hr
ou
g
h
t
i
m
e per swi
t
c
hi
n
g
cy
c
l
e i
s
kept
c
o
n
s
t
a
nt
, t
h
us
havi
ng
a co
nst
a
nt
bo
ost
factor [6].
From
the figure
of VSI s
w
itching cycle it is
confirm
e
d that the
zero stat
e is
produced whe
n
all the
si
nus
oi
dal
wa
v
e
fo
rm
s are l
e
ss or
g
r
eat
er
t
h
an carrie
r
signal.
There
f
ore, to
pr
ov
id
e
shoo
t –
t
h
r
ou
gh
in zero
state
t
h
e ot
he
r t
w
o
st
eady
si
gnal
s
,
wh
ose am
pl
i
t
ude
s are eq
ual
t
o
am
pl
i
t
ude of si
n
u
s
o
i
d
al
wave
f
o
rm
and
one i
s
negat
i
v
e m
a
gn
i
t
ude o
f
ot
he
r
are com
p
ared
wi
t
h
t
r
i
a
n
gul
a
r
si
gnal
.
T
h
e pr
op
ose
d
p
r
oce
d
ures ca
n be
us
ed t
o
pr
o
duce di
ffe
r
e
nt
sho
o
t
-
t
h
r
o
ug
h com
b
i
n
at
i
ons
. Di
f
f
ere
n
t
sho
o
t
-
t
h
ro
u
g
h
com
b
i
n
at
i
ons
can be obt
ai
ned
by
includi
ng the
com
p
arative output of
steady-state signals
and carrier si
g
n
a
l. Symmetr
ical switch
i
ng
o
ccurs
w
h
en
t
h
e above co
m
p
ar
ativ
e
o
u
t
p
u
t
s ar
e
u
s
ed
for
all th
e leg
s
o
f
t
h
e inv
e
rter
. In
th
is case, th
e sho
o
t
–
t
h
r
ou
gh
peri
od i
s
p
r
o
d
u
ced
by
t
u
r
n
i
n
g
on
al
l
t
h
e s
w
i
t
c
hes. B
y
doi
n
g
th
is, th
e switch
i
n
g
freq
u
e
n
c
ies o
f
all th
e switch
e
s
are double
d as
com
p
ared to
VSI i
nve
rter
whic
h inc
r
eases th
e switch
i
ng
lo
sses.
Un
sy
mme
trical swit
ch
ing
0
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
1
x 1
0
-3
-1
.
5
-1
-0
.
5
0
0.
5
1
T
i
m
e
(S
ec
on
d)
S
h
oot
-
T
hr
ou
gh S
t
at
e
Ze
r
o
S
t
a
t
e
Ac
ti
v
e
Sta
t
e
S
t
e
a
d
y
S
t
at
e S
i
gna
l
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Propo
sed
M
e
tho
d
f
o
r
Sh
oo
t-T
h
ro
u
g
h
i
n
Th
ree Pha
s
e Z
S
I
an
d
C
o
m
p
ar
i
s
on
of
D
i
f
f
e
r
en
t
…
(
B
ya
m
a
k
e
s
h
N
a
ya
k
)
35
occurs
when the c
o
m
p
arative output
s are
u
s
ed
in an
y
on
e leg
o
r
an
y
two
leg
s
. In
t
h
is case th
e switch
i
ng
fre
que
nci
e
s
of
swi
t
c
hes
hav
e
di
ffe
re
nt
val
u
e
s
. F
o
r e
x
am
pl
e, i
f
t
h
e s
h
oot
-t
h
r
o
u
gh i
s
c
r
eat
ed i
n
a
-
p
h
ase t
h
en t
h
e
sw
itch
i
ng
f
r
e
qu
en
cy of
a -ph
a
se
sw
itch is twice th
e o
t
her switch
e
s
of b
and
c ph
ases.
As a resu
l
t
, th
e
swi
t
c
hi
n
g
l
o
s
s
e
s can
be m
i
nim
i
zed by
pr
o
v
i
d
i
n
g t
h
e s
h
oot
-
t
hr
ou
g
h
i
n
one
pha
se o
n
l
y
. H
o
we
ve
r , at
t
h
e
sam
e
ti
m
e
th
e cu
rren
t stress in
each
switches du
rin
g
sh
oo
t-t
h
ro
u
g
h
is three times(4
switch
e
s o
n
)
o
r
two
t
i
m
e
s (5
swi
t
c
hes
o
n
)
whe
n
c
o
m
p
are
d
wi
t
h
sy
m
m
etri
cal
swi
t
c
hi
ng
. A
n
ot
he
r a
dva
nt
age
o
f
t
h
i
s
c
ont
rol
m
e
t
hod
i
s
t
h
at
th
e d
c
in
du
ctor cu
rren
t an
d
cap
acito
r
v
o
ltage h
a
v
e
no
ripples that are associated
with
the o
u
t
pu
t frequen
c
y,
because of s
h
oot t
h
rough pe
riod is consta
nt ove
r on
e s
w
i
t
ching cycle. Figure
3(b)
shows
how the
shoot-
th
ro
ugh
state
is in
cl
uded i
n
zero-state int
e
rval
witho
u
t
affecting
th
e
activ
e state interv
als.[7
]-[11
]
.
Th
e
avera
g
e
DC-link
voltage
acros
s the i
nve
rter
bridge is sa
m
e
as the ca
pacitor
voltage
ca
n
be
represe
n
ted as
:
Th
e
p
e
ak
DC-l
in
k
vo
ltag
e
acro
ss t
h
e inv
e
rter bridg
e
is
represen
ted as
Whe
r
e,
Since
i
s
t
h
e
bo
ost
fact
or
res
u
l
t
i
ng
fr
om
t
h
e sho
o
t
-
t
h
r
o
ug
h
zero
st
at
e.
is th
e shoo
t-
thr
ough
zero state interval,
is th
e switch
i
ng
p
e
riod
and
is the com
b
ination of active-stat
e and zero-state
in
terv
als.
is th
e in
pu
t vo
ltage ap
peared
before Z-sou
r
ce
n
e
two
r
k
.
is the cap
acito
r voltag
e
wh
ich
is
sam
e
as the average
dc
-link
voltage
ap
pea
r
ed a
f
t
e
r
Z-s
o
ur
ce net
w
o
r
k
.
O
n
t
h
e
ot
he
r si
d
e
, t
h
e
o
u
t
p
ut
p
eak
pha
se
vol
t
a
ge
f
r
om
t
h
e i
n
vert
e
r
ca
n
be e
x
p
r
es
sed as
:
Whe
r
e,
i
s
t
h
e m
odul
at
i
on i
nde
x.
The
pea
k
DC
-l
i
n
k
v
o
l
t
a
ge acr
oss
t
h
e i
nve
rt
er
b
r
i
d
ge
i
s
rep
r
ese
n
t
e
d
as
vol
t
a
ge
st
ress
of
t
h
e i
nve
rt
er.
Let
(
s
hoo
t-
thro
ugh
d
u
t
y r
a
tio)
an
d
(assum
i
ng
no zero-state interval),the
n
(
W
he
n
t
h
e m
a
gni
t
u
de
o
f
st
e
a
dy
st
at
e si
g
n
a
l
i
s
sam
e
as t
h
e am
pl
i
t
ude o
f
si
n
u
-s
oi
d
si
gnal
)
The
rat
i
o
o
f
t
h
e
vol
t
a
ge st
re
ss t
o
t
h
e e
q
ui
v
a
l
e
nt
t
o
t
h
e e
q
ui
val
e
nt
dc
v
o
l
t
a
ge
de
not
e
d
as
vol
t
a
ge st
r
e
ss f
o
r
sam
e
out
put
v
o
l
t
a
ge (
) fo
r th
e
si
m
p
le b
o
o
s
t co
n
t
ro
l is as:
It
can
be
co
ncl
ude
d
fr
om
t
h
e abo
v
e e
q
uat
i
o
n
s
t
h
at
:
The m
odulation index a
n
d sh
oot
-through
duty ratio are interde
p
e
nde
nce
with each
othe
r if m
a
gnitude
of
stead
y-state si
g
n
a
l
is eq
u
a
l t
o
t
h
e am
p
litu
de of si
n
u
s
o
i
d
a
l sign
al an
d th
e ran
g
e
s
o
f
and
are lyin
g
i
n
bet
w
ee
n
0.
5 t
o
1 a
n
d
0
.
5
t
o
0
r
e
spect
i
v
el
y
.
Thi
s
m
e
t
hod i
s
use
d
t
o
bo
ost
t
h
e o
u
t
p
ut
v
o
l
t
a
ge, t
h
e
o
ret
i
cal
l
y
t
o
i
n
fi
ni
t
y
but
pract
i
cal
l
y
i
t
i
s
l
i
m
i
t
e
d t
o
3
to
4 ti
m
e
s d
u
e
to
p
a
rasitic elemen
ts o
f
im
p
e
d
a
n
c
e n
e
t
w
ork
an
d switch
e
s.
To m
a
ke the m
odulation index a
n
d s
hoot-through
duty ratio inde
pende
n
t with
each
other and to c
o
ntrol by
t
w
o de
grees o
f
free
d
om
s
and
for
b
o
o
s
t an
d bu
ck
th
e
ou
tpu
t
vo
ltag
e
,
th
e stead
y-stat
e sig
n
a
l is t
o
be
co
n
t
ro
lled and
it sh
ou
ld b
e
greater th
an
th
e peak
o
f
sinu
so
idal sig
n
a
l.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
32
–
44
36
3.
2.
Ma
x
i
mu
m
con
s
ta
n
t
bo
os
t
co
n
t
r
o
l
In
or
der t
o
re
duce t
h
e v
o
l
t
a
ge st
ress a
nd i
n
crease t
h
e m
o
d
u
l
a
t
i
on i
nde
x f
r
om
1 t
o
, the
Maxim
u
m
con
s
t
a
nt
bo
ost
cont
rol
t
ech
ni
q
u
e i
s
used.
A sket
ch m
a
p of M
a
xi
m
u
m
con
s
t
a
nt
bo
ost
co
n
t
rol
m
e
t
hod i
s
sho
w
n
in
Fig.4(
b)
. Th
e f
l
o
w
ch
ar
ts o
f
symmetric
al an
d
un
symmetrical co
n
t
ro
l technique for m
a
xim
u
m
constant
bo
ost
c
o
nt
rol
a
r
e sam
e
as t
h
e
sim
p
l
e
bo
ost
c
ont
rol
,
exce
pt
t
h
e
refe
rence
si
gnal
s
.
For
phase
A, B and C
res
p
e
c
tively.
Th
eo
retically, th
e g
a
in
is in
fi
n
ite wh
en
.The
ref
o
re the ra
n
g
e
s of
and
are lyin
g
in
bet
w
ee
n 0.
57
7
t
o
and
0.423
to
0 resp
ectiv
ely. Th
e
ratio
of th
e
vo
ltag
e
st
ress to th
e equiv
a
len
t
to
t
h
e
equi
val
e
nt
dc
v
o
l
t
a
ge
den
o
t
ed as
v
o
l
t
a
ge
st
ress
fo
r sa
m
e
out
p
u
t
vo
l
t
a
ge (
)
fo
r th
e
max
i
m
u
m
co
n
s
tan
t
bo
ost con
t
ro
l is as:
3.
3.
Maximum
boost contr
o
l me
thod
In
o
r
d
e
r to
com
p
le
tely e
l
i
m
i
n
ate th
e zero state and thus maximize the voltage boost and
m
i
nimize the
voltage
st
ress f
o
r t
h
e s
a
m
e
out
p
u
t
v
o
l
t
a
ge t
h
e m
a
xim
u
m
boo
st
co
nt
r
o
l
m
e
t
hod i
s
use
d
. T
h
e s
h
oot
t
h
r
o
u
g
h
st
at
e i
s
ach
iev
e
d
wh
en th
e triangu
lar carrier sign
al is eith
er
grea
ter than the maxim
u
m
curve
of t
h
ree
sinusoidal
refe
rences
or
s
m
aller than t
h
e
m
i
nim
u
m
of the
refe
rence
s
.Fig
ur
e
4
(
a
, b, c) sh
ow th
e m
o
du
latio
n techn
i
qu
e t
o
pr
o
v
i
d
e s
h
oot
-
t
hr
ou
g
h
an
d
d
r
i
v
er
si
g
n
al
s f
o
r t
h
e si
x
swi
t
ches
of
si
m
p
l
e
b
oost
c
o
nt
rol
,
m
a
xim
u
m
co
nst
a
n
t
bo
ost
co
nt
r
o
l
and m
a
xim
u
m
bo
ost
co
nt
r
o
l
.
W
i
t
h
t
a
ki
n
g
av
erage
of
vary
i
ng s
h
oot
t
h
ro
u
gh t
i
m
es from
Fi
gu
re
4(
b)
t
h
e
b
o
o
s
t
f
act
or,
v
o
l
t
a
ge
gai
n
a
n
d
vol
t
a
ge st
re
ss a
r
e
gi
ven
by
f
o
l
l
o
wi
ng
eq
uat
i
o
ns.
In
th
is con
t
ro
l, th
e rang
es o
f
and
are l
y
i
ng i
n
bet
w
ee
n 0.
6
04 t
o
1 an
d 0.
4 t
o
0 res
p
ect
i
v
el
y
.
The rat
i
o
of
t
h
e
v
o
l
t
a
ge
st
ress t
o
t
h
e
e
q
ui
val
e
nt
t
o
t
h
e
eq
ui
val
e
nt
dc
vol
t
a
ge
den
o
t
e
d as
v
o
l
t
a
ge
st
ress
fo
r
sam
e
out
put
vol
t
a
ge
(
)
fo
r t
h
e m
a
xim
u
m
const
a
nt
bo
ost
c
ont
rol
i
s
a
s
:
The range of
and t
h
e
out
put
fre
que
ncy
are
al
so deci
di
n
g
f
act
ors
fo
r sel
e
ct
i
on
of c
o
nt
ro
l
t
echni
q
u
e.
[1
2
]
,
[1
3]
. T
h
e
wav
e
fo
rm
of di
ffe
rent
c
o
nt
rol
t
e
chni
que
s a
n
d
t
h
e g
r
a
phs
f
o
r
V
o
l
t
a
ge
gai
n
an
d
Vol
t
a
ge
st
ress
com
p
ari
s
on
o
f
di
ffe
re
nt
co
nt
r
o
l
m
e
t
hods a
r
e
sho
w
n i
n
fi
gu
r
e
4
(
a,
b,
c) a
n
d
fi
g
u
re
5
(
a,
b
)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Propo
sed
M
e
tho
d
f
o
r
Sh
oo
t-T
h
ro
u
g
h
i
n
Th
ree Pha
s
e Z
S
I
an
d
C
o
m
p
ar
i
s
on
of
D
i
f
f
e
r
en
t
…
(
B
ya
m
a
k
e
s
h
N
a
ya
k
)
37
1
1.
5
2
2.
5
3
3.
5
4
4.
5
5
1
1.
1
1.
2
1.
3
1.
4
1.
5
1.
6
1.
7
1.
8
1.
9
2
V
o
l
t
age G
a
i
n
(G)
V
o
l
t
age s
t
r
e
s
s
/
E
qu
i
v
al
en
t
D
C
v
o
l
t
ag (
V
s
o
)
Si
mp
l
e
Bo
o
s
t
Ma
x
i
mu
m
B
o
o
s
t
M
a
x
i
m
u
m
Cons
t
ant
B
oos
t
0.
5
0.
55
0.
6
0.
6
5
0.
7
0.
75
0.
8
0.
8
5
0.
9
0.
95
1
0
1
2
3
4
5
6
7
8
M
odul
a
t
i
on I
n
dex
(
M
a)
Vol
t
ag
e G
a
i
n
(
G
)
Ma
x
i
mu
m
B
o
o
s
t
M
a
x
i
m
u
m
C
ons
t
ant
B
oos
t
S
i
m
p
l
e
B
oos
t
Fi
gu
re
4.
(a,
b
,
c)
Wave
fo
rm
of si
m
p
l
e
bo
ost
m
a
xim
u
m
cons
t
a
nt
b
o
o
s
t
an
d
m
a
xim
u
m
bo
o
s
t
res
p
ect
i
v
el
y
.
Fi
gu
re
5
(a,
b
)
Vol
t
a
ge
gai
n
a
n
d
V
o
l
t
a
ge
st
re
ss com
p
ari
s
o
n
of
di
f
f
ere
n
t
c
o
nt
r
o
l
m
e
t
hods
r
e
spect
i
v
el
y
.
The fl
o
w
ch
art
s
of sy
m
m
e
t
r
i
c
al
and u
n
sy
m
m
et
ri
cal
cont
r
o
l
t
echni
que
fo
r cr
eat
i
ng p
u
l
s
e si
gnal
s
of s
w
i
t
c
h
e
s of
i
nve
rt
er
of
si
m
p
l
e
boost
co
nt
r
o
l
are
s
h
o
w
n i
n
Fi
gu
re
6
(a,
b
,c)
a
n
d
Fi
g
u
re
7
(a
,b
,c)
r
e
spect
i
v
el
y
.
T
h
e
fl
o
w
chart
s
are
des
i
gne
d f
o
r ge
n
e
rat
i
ng
pul
ses
for s
w
i
t
c
hes
of ZS
I. Si
m
i
l
a
r swi
t
c
hi
n
g
phe
nom
ena can be
im
pl
em
ent
e
d t
o
ot
he
r c
ont
r
o
l
t
echni
q
u
es
.
(a)
(b)
(c
)
Fi
gu
re
6.
(a,
b
,
c) Fl
ow
cha
r
t
s
of
si
m
p
l
e
boo
s
t
sym
m
et
ri
cal
cont
rol
t
e
c
hni
q
u
e.
(a)
(b)
(c)
Fi
gu
re
7.
(a,
b
,
c) Fl
ow
cha
r
t
s
of
si
m
p
l
e
boo
s
t
un
sy
m
m
e
t
r
i
c
al
cont
rol
t
e
c
h
ni
q
u
e.
4.
OPER
ATIO
N
OF I
N
VERT
ER I
N
3
MO
DES KEEP
IN
G A
M
PLIT
U
D
E
MO
DUL
ATIO
N
CO
N
S
TANT
Di
ffe
re
nt
m
o
d
e
s o
p
erat
i
o
n i
s
achi
e
ve
d
by
si
m
p
l
e
boost
c
o
nt
r
o
l
an
d m
a
xi
m
u
m
const
a
nt
bo
ost
c
o
nt
rol
.
In t
h
e
abo
v
e co
nt
r
o
l
m
e
t
hods
, sh
oot
t
h
ro
ug
h i
s
pr
o
v
i
d
e
d
by
usi
n
g
pai
r
of st
eady
st
at
e val
u
es (st
r
ai
g
h
t
l
i
n
es) un
equa
l
t
o
t
h
e peak m
a
xi
m
u
m
and m
i
ni
m
u
m
of t
h
e si
nus
oi
dal
re
fer
e
nce si
g
n
al
s an
d n
o
n
-
si
n
u
s
o
i
d
al
si
gnal
s
(si
n
u
s
oi
da
l
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
32
–
44
38
si
gnal
s
wi
t
h
i
n
ject
e
d
t
h
i
r
d
harm
oni
c si
gn
al
) f
o
r
si
m
p
l
e
b
o
o
s
t
an
d
m
a
xim
u
m
con
s
t
a
nt
b
o
o
st
c
ont
ro
l
respect
i
v
el
y
.
T
h
e ad
va
nt
age
o
f
t
h
e a
b
o
v
e m
e
t
h
o
d
s i
s
t
h
e
ou
t
put
v
o
l
t
a
ge i
s
cont
rol
l
e
d
by
i
nde
pe
nde
nt
co
nt
r
o
l
of
am
pl
i
t
ude m
odul
at
i
on a
n
d s
h
o
o
t
-
t
h
r
o
ug
h
dut
y
r
a
t
i
o
(t
wo
de
gr
ees
of
cont
rol
)
. T
h
e
unsy
m
m
e
t
r
i
cal co
nt
r
o
l
tech
n
i
qu
e and
with
ou
t affectin
g the active
state is the adva
ntage
o
us co
nt
r
o
l
t
ech
ni
q
u
e i
s
t
h
e p
r
op
ose
d
cont
ro
l
t
echni
q
u
e a
n
d
can be ca
rri
ed o
u
t
by
u
s
i
ng
pai
r
of st
e
a
dy state values (straight lines) greater tha
n
pea
k
m
a
xim
u
m
and m
i
nim
u
m
of t
h
e si
nus
oi
dal
re
fere
nce si
g
n
al
s
and n
o
n
-si
n
u
s
oi
dal
si
g
n
al
s f
o
r si
m
p
l
e
boos
t
and
m
a
xim
u
m
con
s
t
a
nt
b
oost
c
o
nt
r
o
l
res
p
ect
i
v
el
y
and
used
fo
r com
p
ari
n
g
i
t
t
o
one
l
e
g
si
gnal
fo
r
pr
ovi
di
n
g
di
ffe
re
nt
wi
dt
h o
f
s
h
o
o
t
-
t
h
r
o
u
g
h
by
t
u
r
n
i
ng
o
n
o
n
e s
w
i
t
c
h of t
h
at
l
e
g. B
a
se
d o
n
h
i
ghest
vol
t
a
ge
bo
ost
req
u
i
r
em
ent
,
t
h
e am
pl
i
t
ude m
odul
at
i
on i
s
cho
s
en a
n
d m
a
kes t
o
be c
ons
t
a
nt
. The
v
o
l
t
a
ge b
o
o
st
i
s
co
nt
r
o
l
l
e
d
b
y
ch
ang
i
ng
the m
a
g
n
itu
d
e
o
f
straigh
t
lin
e an
d it m
u
st b
e
greater
o
r
equ
a
l
to
am
p
litu
d
e
mo
du
latio
n.
5.
SIMULATION RESULTS
To ve
ri
fy
an
d
com
p
are di
ff
erent
c
ont
r
o
l
m
e
t
hods
, M
a
t
l
a
b si
m
u
l
a
t
i
ons were
per
f
o
r
m
e
d ha
vi
n
g
f
o
l
l
o
wi
n
g
param
e
ters.L
1
=L
2
=0.5m
H
,C
1
=C
2
=2m
F
,V
0
=1
00
V
(dc
)
,
Swi
t
chi
n
g f
r
e
que
nc
y
= 2 K
H
z,
3
-
p
h
ase l
o
a
d
:
R
/
pha
se
=
5
0
ohm
,
L/
phase = 2 m
H
. The si
m
u
l
a
ti
on res
u
l
t
s
of s
i
m
p
l
e
boost
an
d m
a
xim
u
m
const
a
nt
b
o
o
st
are
sho
w
n i
n
Fi
g
u
r
e 7
(
a,
b,c)
an
d
Fi
gu
re
8(a
,
b
,
c)
res
p
ect
i
v
el
y
.
The am
pl
i
t
ude
m
odul
at
i
on i
s
kept
c
o
nst
a
nt
,
0.
5
fo
r
sim
p
l
e
bo
ost
and
0.
5
7
7
4
fo
r m
a
xim
u
m
const
a
nt
b
o
o
st
.
The s
h
o
o
t
–
t
h
ro
u
gh
d
u
t
y
ra
t
i
o
of
b
o
t
h
c
ont
rol
t
echni
q
u
es
kee
p
s at
0.6
,
so t
h
a
t
t
h
e am
pl
it
ude
m
odul
at
i
on a
nd s
h
o
o
t
-
t
h
r
o
u
gh
dut
y
rat
i
o
are i
nde
pe
nde
nt
wi
t
h
each ot
her.
W
e
obs
erve from
figures
,
that the capacitor
voltage
and
peak value of dc
link inverter
voltage
of
sim
p
l
e
boo
st
cont
rol
m
e
t
hod
are sam
e
as prod
uce
d
by
m
a
xi
m
u
m
const
a
nt
bo
ost
co
nt
r
o
l
m
e
t
hod
. Fu
r
t
her, i
t
can
b
e
ob
serv
ed
th
at
th
ere is
n
o
ov
er
shoo
t
of
cap
acito
r vo
l
t
ag
e for
b
o
t
h
pr
opo
sed techn
i
q
u
e
s (shoo
t thro
ugh
dut
y
rat
i
o
i
s
g
r
eat
er o
r
eq
ual
t
h
an am
pl
i
t
ude
m
odul
at
i
o
n.
It
can be seen
t
h
at
t
h
e fun
d
a
m
e
nt
al
out
p
u
t
l
i
n
e
vol
t
a
ge
(rm
s) of i
n
ve
rt
er i
s
abo
u
t
2
2
8
V
of
sim
p
l
e
boo
st
and
26
0
V
o
f
m
a
xi
m
u
m
const
a
nt
b
oost
t
h
ro
u
gh F
F
T
an
alysis of
o
u
t
p
u
t
vo
ltag
e
for th
e sam
e
d
c
lin
k inv
e
rter
vol
t
age. T
h
e a
b
ove analysis
indi
cates that the
voltage
st
ress acr
oss t
h
e i
n
vert
er s
w
i
t
c
hes i
s
hi
g
h
e
r
o
f
si
m
p
l
e
boost
c
ont
rol
t
e
chni
que t
h
an t
h
e m
a
xim
u
m
bo
ost
cont
rol
t
ech
ni
q
u
e. H
o
weve
r, i
n
m
a
xim
u
m
const
a
nt
b
o
o
s
t
co
nt
r
o
l
m
e
t
hod, t
h
e t
o
t
a
l
harm
oni
c di
st
ort
i
o
n (
T
HD
)
i
s
3.
31%
o
f
fu
n
d
am
ent
a
l
,
whi
c
h i
s
hi
gh
er t
h
a
n
si
m
p
le bo
ost
c
ont
r
o
l
w
hos
e TH
D i
s
ab
o
u
t
1.
36
%
o
f
fund
am
en
tal. In
m
a
x
i
m
u
m co
n
s
tan
t
boo
st con
t
ro
l, th
e 3
rd
a
nd
5
th
harm
on
i
c
com
ponent
s
of
out
put
v
o
l
t
a
ge are
abo
u
t
3.
22%
a
nd
0.
2
7
%,
w
h
ereas i
n
si
m
p
l
e
bo
ost
c
ont
ro
l
m
e
t
hod t
h
e
a
b
o
v
e
val
u
es
ar
e .1
8% a
n
d
0
.
9%
of
fu
n
d
am
ent
a
l
.Thi
s i
s
beca
us
e of t
h
e t
h
i
r
d
harm
oni
c com
p
o
n
e
n
t
i
s
i
n
je
c
t
ed i
n
re
fere
nc
e si
gnal
i
n
m
a
xi
m
u
m
con
s
t
a
nt
bo
ost
cont
rol
m
e
t
hod
f
o
r
ge
nerat
i
o
n
of
d
r
i
v
e
r
si
g
n
al
s o
f
s
w
i
t
c
hes.
0
0.
0
2
0.
04
0.
0
6
0.
0
8
0.
1
0.
1
2
0.
14
0.
1
6
0.
1
8
0.
2
-1
00
0
10
0
20
0
30
0
40
0
50
0
60
0
70
0
80
0
T
i
m
e
(S
ec
on
d)
Vo
l
t
a
g
e
I
n
v
e
rt
er DC I
n
pu
t
V
o
l
t
ag
e an
d Ca
pa
c
i
t
o
r V
o
l
t
ag
e
Cap
a
c
i
t
o
r
V
o
l
t
ag
e
0
0.
02
0.
04
0.
06
0.
08
0.
1
0.
12
0.
14
0.
16
0.
18
0.
2
-8
00
-6
00
-4
00
-2
00
0
20
0
40
0
60
0
80
0
I
n
v
e
r
t
er
Out
p
u
t
V
o
l
t
ag
e
T
i
m
e
(
s
e
c
ond
)
I
n
v
e
r
t
er
O
u
t
put
V
o
l
t
ag
e i
n
V
o
l
t
.
0
0.
0
2
0.
0
4
0.
06
0.
0
8
0.
1
0.
12
0.
1
4
0.
1
6
0.
18
0.
2
-10
-8
-6
-4
-2
0
2
4
6
8
10
Loa
d Curre
nt
T
i
m
e
(s
ec
o
nd)
O
u
t
put
C
u
r
r
e
nt
i
n
A
m
p.
(a)
(b)
(c
)
Fi
g.
7(a
,
b, c
)
S
i
m
u
l
a
t
e
d res
u
l
t
s
o
f
ca
paci
t
o
r
v
o
l
t
a
ge l
o
ad
cu
r
r
ent
a
n
d l
o
a
d
l
i
ne
vol
t
a
ge
o
f
si
m
p
l
e
boost
c
o
n
t
rol
technique.
0
0.
0
2
0.
04
0.
0
6
0.
0
8
0.
1
0.
1
2
0.
14
0.
1
6
0.
1
8
0.
2
-1
00
0
10
0
20
0
30
0
40
0
50
0
60
0
70
0
80
0
I
n
v
e
rt
er DC I
n
pu
t
V
o
l
t
ag
e an
d Ca
pa
c
i
t
o
r V
o
l
t
ag
e
T
i
m
e
(S
ec
on
d)
V
o
l
t
age
Cap
a
c
i
t
o
r
V
o
l
t
a
g
e
0
0.
0
2
0.
0
4
0.
0
6
0.
0
8
0.
1
0.
12
0.
1
4
0.
16
0.
1
8
0.
2
-
800
-
600
-
400
-
200
0
200
400
600
800
I
n
v
e
r
t
er
O
u
t
put
V
o
l
t
a
g
e
T
i
m
e
(
S
ec
o
nd)
I
n
v
e
r
t
er
O
u
t
p
ut
V
o
l
t
ag
e i
n
V
o
l
t
.
0
0.
0
2
0.
0
4
0.
06
0.
08
0.
1
0.
1
2
0.
1
4
0.
16
0.
18
0.
2
-10
-8
-6
-4
-2
0
2
4
6
8
10
T
i
m
e
(S
ec
o
nd)
O
u
t
put
C
u
r
r
ent
i
n
A
m
p.
Lo
ad Current
(a)
(b)
(c)
Fig
.
8
(
a,
b
,
c) Si
m
u
lated
resu
lts of cap
acito
r vo
ltag
e
lo
ad
cu
r
r
ent
a
n
d l
o
a
d
l
i
ne
vol
t
a
ge
o
f
m
a
xim
u
m
cons
t
a
nt
bo
ost
c
o
nt
rol
t
echni
que
.
6.
CO
NCL
USI
O
N
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Propo
sed
M
e
tho
d
f
o
r
Sh
oo
t-T
h
ro
u
g
h
i
n
Th
ree Pha
s
e Z
S
I
an
d
C
o
m
p
ar
i
s
on
of
D
i
f
f
e
r
en
t
…
(
B
ya
m
a
k
e
s
h
N
a
ya
k
)
39
Three c
ont
rol
m
e
t
hods f
o
r p
r
o
v
i
d
i
ng s
h
o
o
t
-
t
h
r
o
ug
h i
n
3
-
pha
se Z-s
o
u
r
c
e
i
nvert
er
has
been anal
y
z
e
d
an
d
com
p
ared i
n
t
h
i
s
pape
r.
The
b
oost
fact
o
r
,
V
o
l
t
a
ge gai
n
,
Ov
ershoo
t of cap
a
cito
r vo
ltag
e
,
Vo
ltag
e
stress
acro
s
s
t
h
e swi
t
c
hes a
nd
TH
D o
f
out
put
vol
t
a
ge
ha
ve bee
n
a
n
al
y
zed. Si
m
u
l
a
t
i
o
n
of Z
-
s
o
u
r
ce 3
-
pha
se i
n
vert
er
un
de
r
sim
p
l
e
bo
ost
a
nd m
a
xi
m
u
m
con
s
t
a
nt
usi
n
g
st
rai
ght
l
i
n
es
fo
r p
r
ovi
di
n
g
s
h
o
o
t
-
t
h
r
o
u
g
h
)
have
bee
n
pres
ent
e
d
,
sho
w
i
n
g o
v
e
r
s
h
o
o
t
i
n
capaci
t
o
r v
o
l
t
a
ge
wo
u
l
d not
be
occu
r
r
ed
if th
e v
a
l
u
e o
f
straigh
t
lin
es is g
r
eater than
th
e
peak
val
u
e o
f
s
i
nus
oi
dal
f
o
r si
m
p
l
e
boo
st
an
d pea
k
val
u
e
o
f
no
n
-
si
n
u
s
o
i
d
al
(com
bi
nat
i
on of
fu
n
d
am
ent
a
l
and
th
ir
d h
a
r
m
o
n
i
c sinu
so
i
d
) signal.
REFERE
NC
ES
[1]
F.
Z
.
Pe
ng,
et al
., "Z-Source Inverter for Motor Drives,"
IEEE Transaction on Po
wer Electronics
, vol. 20, pp. 85
7-
863, July
2005
.
[2]
F.
Z
.
Pe
ng,
et
al
.
,
"Z s
ource inver
t
er for adjus
t
abl
e
s
p
eed drives
,"
IEEE Pow
e
r Ele
c
tronics L
e
tt
er
,
vol. 1, pp. 33-35
,
June 2003.
[3]
Yi Huang,
et al
., "Z-Source
Inverter
for R
e
si
dential Photo
voltaic S
y
s
t
ems,"
IEEE
Transaction on
Pow
e
r
Electronics
, vol. 21, pp. 1776-17
82, Nov. 2006.
[4]
F.Z.Peng, "Z-so
u
rce
inver
t
er
,"
I
EEE Transactio
ns on
Industry Applications
, vo
l.
39, pp
. 504-510
, March/April 20
03.
[5]
F.
Z
.
Pe
ng,
et a
l
., "Maximum boo
st control
of Z-source
inv
e
rter,"
IEEE T
r
ansactio
ns on Power Ele
c
tronics
, vo
l. 20
,
no. 4
,
pp
883-83
8, July
/Aug. 200
5.
[6]
M.
She
n
,
et al.
, "
C
onstant Boost
Control of th
e
Z-Source Inver
t
er
to Minimize Cu
rrent Ripp
le
and
Voltage
Stress,
"
IEEE Transactio
ns on
Industry Applications
, vo
l.
42, pp
. 770-778
, May
/
June 2006
.
[7]
S
.
rajkarun
a,
L.J
a
ywickr
am
a, "S
t
ead
y-S
t
a
t
e Anal
ys
is
a
nd Design
ing Impedance
Networ
k of Z-Source Inverters,"
IEEE Transactio
ns on
Industrial Electronics
, vol. 57, pp. 2483-24
91, July
2010
.
[8]
B.Y. Husodo,
et al.
, "Analy
sis
an
d Simulations of
Z-Source Inver
t
er Contro
l Meth
ods, "
IEEE IPEC 2010.
[9]
Poh.Chiang Loh
,
et al.
, "Transient Modeling
and An
aly
s
is of
Pulse-width_modulat
ed Z-Source Inver
t
er
,”
IE
EE
Transactions on
Power Electonics
, vol. 22, pp. 49
8-507, Mar
c
h 20
07.
[10]
B.K. Nay
a
k and S. S. Dash,
"Transient modeling of Z-source chopper used
for adjustable speed co
ntrol of DC
motor
drive,"
I
EEE Fifth Pow
e
r India
Conference(
P
ICONF-2012)
, pp.
1-6, Dec.2012
.
[11]
B.
K.
Nay
a
k,
Saswati Swapna Dash,
"Bat
ter
y
Operated C
l
osed Lo
op Speed Contro
l of DC Separately
Excited
Moto
r
b
y
Boost-Buck
Converter
,"
IEEE International
conferen
ce
on p
o
wer electronics (
IICPE-2012)
, Dec.2012
.
[12]
Gokhan Sen an
d Malik
Elbu
luk
,
"Voltag
e
and
Current Pr
ogram
med Modes in
control of
the Z-
Source Conver
t
er,"
IEEE Transactio
ns on
Industry a
pplication,
vol.
46, pp
. 680-686
, March/April 20
10.
[13]
B.
K.
Nay
a
k,
Saswati Swapna Dash,
"
Performance Analy
s
is of
Different Cont
r
o
l Strategies in Z-source Inverter,
"
ETASR-Engin
e
ering, Techno
log
y
&
Applied Science
Research
, v
o
l. 3
,
pp
. 391-39
5, Feb
.
2013.
BIBLIOGRAPHY
Dr.B.K.Nay
ak
was born in Od
isha in 1965
, In
dia.
He received
the master
deg
r
ee
in electrical
engineering fro
m
Institute of technolog
y
from
th
e Banar
a
s Hindu Universit
y
(IT
-BHU), Banaras
,
India and
the Ph.D. degr
ee
in
electrical engi
n
e
ering from the
KIIT University, Bhuban
e
swar,
India. S
i
n
ce 199
9, he is
working
as
As
s
o
ciate P
r
ofessor in Ele
c
tr
ica
l
E
ngin
eering
Department o
f
KIIT University
of Bhubaneswar. He has a vast kn
owledge of electrical engin
eer
ing
with industr
y
experi
enc
e
. His
m
a
in res
ear
ch a
r
eas
ar
e power
ele
c
troni
cs
and
ele
c
tri
cal
driv
es
,
h
y
br
id veh
i
cl
e
,
renewable energ
y
and applicatio
n
of
PIC
Micr
oc
ontrolle
rs in sp
e
c
ia
l driv
e
appli
c
ations.
Saswati swapna dash was born in Odisha, Ind
i
a
in 1981. She r
eceived th
e bachelor degr
ee
in
Electronics And Instrumentation
engin
eering
fro
m
BPUT, Rourkela, India
and master d
e
gree in
electrical engin
e
ering from KIIT University
, Bhu
b
aneswar, Ind
i
a. Since 2008
, she is working as
Assista
n
t Profe
ssor in Elec
tric
al
Engineering D
e
partment of
YM
CA University of sc
ienc
e an
d
techno
log
y
, Faridabad, which is
a government
organisation of st
ate of h
a
r
y
ana. She has th
e
exposure to industr
y
.
Her research interests are in
power electron
i
cs, electrical drives, renewable
energ
y
and pow
er conv
erters des
i
gn.
Subrat kumar w
a
s born in
Odish
a
, Ind
i
a in
1981.
He
receiv
e
d the bachelor
d
e
gree in
Electrical
engineering
fro
m NIT, Rourkela, Ind
i
a in
2003.
Currently
he is
working as sen
i
o
r
manager
(operation
and control)
in th
e d
e
partment of
M
u
m
b
ai-M
anm
a
d-Bijwas
an p
i
pel
i
n
e
, Bh
ara
t
petroleum corpo
r
ation
limited (B
PCL) which
is a
lead
ing public
sector un
it o
f
India. He is
expertise in
electrical maintenan
c
e, contro
l,
elect
rical drives
and
po
wer el
ectronics
converters
and
s
t
atic
s
w
itch
e
s
.
His
res
ear
ch in
te
res
t
s
are
in
powe
r
el
ect
ronics
,
e
l
e
c
tri
cal
driv
es
,
co
ntrol s
y
s
t
em
and low
cost static switches
for
industr
y
applications.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 1
,
Ju
ly 20
14
:
32
–
44
40
Evaluation Warning : The document was created with Spire.PDF for Python.