Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
5, N
o
. 3
,
Febr
u
a
r
y
201
5,
pp
. 32
6
~
33
5
I
S
SN
: 208
8-8
6
9
4
3
26
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Analysis of Variable Speed
PFC Chopper FED BLDC Motor
Dri
v
e
A.
Je
ya Selvan Re
nius,
K.
Vinoth
K
u
mar
Department o
f
Electrical and
Electronics Engin
e
ering, Schoo
l of
Ele
c
tri
cal
S
c
i
e
nc
es
,
Karun
y
a Institute of
Technolog
y
& Sciences
Un
iv
ersity
, Coimbato
re – 641114
, Tamilnadu, Ind
i
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Oct 17, 2014
R
e
vi
sed Dec 2,
2
0
1
4
Accepted Dec 16, 2014
This pap
e
r pro
v
ides th
e detailed
analy
s
is of
the DC-DC chopper fed
Brushless DC
motor drive used for low-power applications
. The various
methods used to improve the
power qua
lity
at the
ac mains with less
er
number of components are d
i
scussed. Th
e most effective metho
d
of power
qualit
y
im
provem
e
nt is also simula
ted using MATLAB Simulink. Improved
m
e
thod of speed control b
y
contr
o
lling the dc lin
k voltage of Voltage Source
Inverter is also
discussed with redu
ced switch
i
n
g
losses. The continuous and
discontinuous modes of operatio
n of the
converters are also discussed based
on the
im
prove
m
e
nt in power
q
u
alit
y.
The p
e
rfo
rm
ance of
the
m
o
s
t
effe
ctiv
e
solution is sim
u
lat
e
d in MATL
AB Si
mulink environment and the obtained
res
u
lts
ar
e pr
es
e
n
ted.
Keyword:
B
r
i
dgel
e
ss
Co
mm
o
n
-
m
o
de no
ise
D
C
-D
C chopper
Power factor
c
o
rrection
Power qu
ality
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
A. Jeya
Selva
n
Renius
,
Depa
rt
m
e
nt
of
El
ect
ri
cal
and
El
ect
roni
cs
E
n
gi
nee
r
i
n
g,
School
of Elec
trical Sciences, Ka
runya
Uni
v
ersity,
Co
im
b
a
to
r
e
–
6
411
14
, Tam
i
l
n
adu
,
Ind
i
a.
Em
a
il: ren
i
u
s
28
@g
m
a
il.co
m
1.
INTRODUCTION
Lo
w
po
we
r m
o
t
o
r
dri
v
es s
u
c
h
as
fa
ns
,
wat
e
r
pum
ps,
bl
o
w
ers,
m
i
xers, H
VAC
t
r
a
n
sm
i
s
si
on
, m
o
t
i
o
n
cont
rol etc. use BLDC m
o
tor
for t
h
eir
efficient
op
era
t
i
on.
Si
nce
B
L
DC
of
fers
h
i
gh e
ffi
ci
e
n
cy
,
l
o
w
el
ect
rom
a
gnet
i
c
i
n
t
e
rfere
nce,
l
o
w m
a
i
n
t
e
nan
ce and
hi
g
h
fl
u
x
de
nsi
t
y
per u
n
i
t
vol
um
e, we use B
L
DC
f
o
r
l
o
w
po
we
r appl
i
cat
i
ons
. B
L
DC
m
o
t
o
rs are ve
ry
po
p
u
l
a
r i
n
a wide variety of applications. Com
p
ared with
a DC
m
o
tor, the BLDC
m
o
tor use
s
an electric c
o
mm
uta
t
or ra
ther tha
n
a
m
e
chanical co
mm
u
t
a
t
o
r
, so
it is
m
o
re
reliab
l
e th
an
th
e DC m
o
to
r. In
a BLDC mo
tor, ro
to
r m
a
g
n
e
ts g
e
n
e
rate th
e ro
tor’s m
a
g
n
e
tic flux
, so BLDC
m
o
t
o
rs achi
e
v
e
hi
ghe
r effi
c
i
ency
. There
f
ore
,
B
L
DC
m
o
t
o
rs
m
a
y
be use
d
i
n
h
i
gh
-en
d
w
h
i
t
e
go
ods
(re
fri
ge
rat
o
rs,
washi
n
g m
achi
n
es,
di
s
h
wa
she
r
s, et
c
.
),
hi
gh
-e
nd
p
u
m
p
s, a
n
d
fa
ns a
n
d i
n
ot
her
ap
pl
i
a
nces
whi
c
h
requ
ire h
i
gh
reliab
ility
an
d
efficien
cy.
In
th
is
resp
ect, th
e BLDC mo
tor is equ
i
v
a
l
e
n
t
to
a rev
e
rsed
DC co
mm
u
t
ato
r
m
o
to
r, in wh
ich
th
e
mag
n
e
t ro
tates wh
ile th
e cond
u
c
t
o
rs
rem
a
in
statio
n
a
ry. In
th
e DC co
mmu
tato
r m
o
to
r, t
h
e curren
t
po
larity i
s
al
t
e
red
by
t
h
e c
o
m
m
ut
at
or a
n
d
b
r
us
hes.
Ho
we
ver
,
i
n
t
h
e br
ushl
es
s D
C
m
o
t
o
r, p
o
l
a
r
i
t
y
reversal
i
s
per
f
o
r
m
e
d by
po
we
r t
r
ansi
st
ors s
w
i
t
c
hi
n
g
in
syn
c
hron
izatio
n
with
th
e
ro
t
o
r po
sition
.
Th
erefore,
B
L
DC m
o
to
rs o
f
ten
in
corp
orate eith
er in
tern
al or
ex
tern
al
po
sitio
n
sen
s
ors
t
o
sen
s
e
t
h
e
actu
a
l ro
t
o
r po
sitio
n, o
r
th
e po
sitio
n
can
b
e
d
e
tected
with
ou
t
sen
s
o
r
s.
The c
h
oi
ce
of
m
ode of
ope
rat
i
o
n
o
f
a
PFC
c
o
n
v
e
r
t
e
r
is
a c
r
itical issue bec
a
use it
directly affects the
cost
an
d rat
i
ng
of t
h
e com
p
o
n
ent
s
use
d
i
n
t
h
e PFC
c
o
nve
r
t
er. The
co
nt
i
n
uo
us c
o
nd
uct
i
on m
ode
(C
C
M
) an
d
di
sco
n
t
i
n
uo
us
con
d
u
ct
i
on m
ode (DC
M
) are t
h
e t
w
o m
odes of o
p
e
r
at
i
on i
n
whi
c
h a PFC
con
v
e
r
t
e
r i
s
desi
gn
e
d
to operate.
In
CCM, the cu
rren
t in
th
e i
n
du
ctor or th
e vo
ltag
e
acro
ss t
h
e in
term
ed
iate cap
acito
r
remain
s
co
n
tinuo
us,
but it r
e
qu
ir
es t
h
e sen
s
i
n
g of
t
w
o vo
ltag
e
s (dc lin
k
vo
ltag
e
an
d su
pp
ly vo
l
t
ag
e)
and
input sid
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
An
al
ysi
s
of
V
a
ri
abl
e
S
p
eed
P
F
C
C
h
op
per
F
E
D B
L
DC
Mot
o
r
Dri
ve (
A
. Je
ya
Sel
v
a
n
Re
ni
us)
32
7
cur
r
ent
f
o
r P
F
C
operat
i
o
n,
whi
c
h i
s
not
cost
-e
ffect
i
v
e
.
On t
h
e
ot
her
h
a
nd
, DC
M
req
u
i
r
es a si
ngl
e
vol
t
a
ge
sens
or
f
o
r
dc l
i
nk
v
o
l
t
a
ge c
o
nt
r
o
l
,
a
n
d
i
n
he
rent
PFC
i
s
ac
hi
eve
d
at
t
h
e
ac m
a
i
n
s,
but
at
t
h
e co
st
o
f
hi
g
h
er
stresses on
the
PFC
converte
r switch; hence
,
DC
M is preferred fo
r low-p
o
wer app
licatio
n
s
.
Fi
gu
re
1.
B
l
oc
k
di
ag
ram
of P
F
C
ch
o
ppe
r-
fe
d B
L
DC
m
o
t
o
r
d
r
i
v
e
B
L
DC
wi
t
h
di
ode
bri
dge
rect
i
f
i
e
r wi
t
h
a hi
g
h
val
u
e DC
l
i
n
k capaci
t
o
r ha
s
a THD
(T
ot
al
Harm
oni
c
Di
st
ort
i
o
n
)
of
65
% a
nd
p
o
we
r fact
or
as l
o
w
as 0.
8.
S
o
the
powe
r
factor is
corrected
usi
n
g t
h
e
PFC
c
o
n
v
ert
e
r
s
.
Bo
th
co
n
tinuou
s an
d
d
i
sco
n
t
in
uo
us m
o
d
e
s
o
f
t
h
e co
nv
er
t
e
r
s
ar
e d
i
scu
s
sed
an
d
t
h
e
d
i
sco
n
tinuo
us m
o
d
e
o
f
co
ndu
ctio
n
is b
e
st
su
ited
for th
e
low p
o
wer ap
p
lication
s
. Sin
ce
th
e d
i
sco
n
tin
u
o
u
s
cond
u
c
tio
n
requ
ires on
ly
a
si
ngl
e
vol
t
a
ge
sens
or
fo
r
DC
l
i
nk
vol
t
a
ge c
o
nt
r
o
l
.
B
u
t
c
o
n
v
ent
i
o
nal
P
F
C
uses m
o
re
nu
m
b
er of c
o
m
pone
nt
s
that increases
the cost
of t
h
e
cont
ro
l circu
it. Also
th
e co
nv
en
tion
a
l PFC u
s
ed
PW
M
-
VSI for sp
eed
co
n
t
rol
with
co
nstan
t
DC link
v
o
ltage wh
ich
produces h
i
g
h
e
r switch
i
ng
losses.
Thus the analy
s
is is
m
a
de for
diffe
re
nt
m
e
thods t
h
at
im
prove the power
quality
at the ac
m
a
ins. For
fu
rthe
r im
pro
v
e
m
e
nt in efficiency
, b
r
id
geless (BL) co
nv
ert
e
rs are use
d
which allow the
elimination of DBR
in
th
e f
r
on
t end
.
A
b
u
c
k–
boost co
nv
er
ter
con
f
i
g
ur
atio
n
is
b
e
st su
ited
amo
n
g
v
a
r
i
ou
s B
L
co
nv
er
ter
top
o
l
o
g
i
es
fo
r
a
ppl
i
cat
i
o
n
s
re
qui
ri
ng
a wi
de ran
g
e o
f
dc
l
i
n
k vol
t
a
ge
co
nt
rol
(i
.e.
,
buc
ki
n
g
a
n
d b
oost
i
ng
m
ode
).
These
can p
r
o
v
i
d
e t
h
e vol
t
a
ge
buc
k
or v
o
l
t
a
ge
bo
ost
w
h
i
c
h l
i
m
i
t
s t
h
e ope
rat
i
n
g
ran
g
e o
f
dc l
i
nk
vol
t
a
ge co
n
t
rol
.
A
new f
a
m
i
l
y
of
B
L
SEPIC
an
d
C
uk co
nv
ert
e
r
s
has bee
n
re
p
o
rt
e
d
b
u
t
req
u
i
r
es a l
a
rge n
u
m
ber of com
pone
nt
s
and ha
s los
s
es
associated
with it.
Th
is p
a
p
e
r presen
ts a d
e
tailed
an
alysis of
ch
opp
er-fed
B
L
DC m
o
to
r driv
e with
v
a
riab
le d
c
link
voltage
of
VS
I
for im
proved powe
r
quality
at ac m
a
ins with
reduce
d c
o
m
ponents
.
2.
EX
I
S
T
I
N
G
TO
P
O
L
O
G
Y
The
c
o
nve
nt
i
o
nal
PFC
us
es Pul
s
e Wi
dt
h M
o
d
u
l
a
t
e
d V
o
l
t
a
ge
S
o
u
r
ce I
n
vert
er
(
P
W
M
-
V
SI
) f
o
r spee
d
cont
rol
wi
t
h
c
onst
a
nt
DC
l
i
nk
vol
t
a
ge
. T
h
i
s
causes hi
gh
er switch
i
ng
lo
sses. Th
e switch
i
ng
lo
sses in
th
is
conve
n
tional
a
p
proach incre
a
s
es as a
sq
ua
re fu
nct
i
o
n of swi
t
chi
n
g
f
r
eq
ue
n
c
y
.
T. Go
p
a
lar
a
t
h
n
a
m
an
d
H
.
A. To
liyat [
1
] i
n
20
03
pro
posed
a Sing
le End
e
d
Pr
im
ar
y I
n
du
ctan
ce
C
o
n
v
ert
e
r (
S
E
P
IC
)
base
d B
L
DC
w
h
i
c
h al
so
has
hi
ghe
r l
o
s
s
es i
n
t
h
e
VSI
due
t
o
c
o
nve
nt
i
onal
P
W
M
s
w
i
t
c
hi
ng
an
d larg
e
n
u
m
b
e
r of cu
rren
t an
d vo
ltag
e
senso
r
s are u
s
ed th
at add
ition
a
lly ad
ds to th
e co
st
o
f
t
h
e co
nverter.
S. Si
n
gh an
d
B
.
Si
ng
h [2]
i
n
20
11 p
r
op
ose
d
a pape
r ab
ou
t
B
u
ck-B
o
o
st
con
v
e
r
t
e
r base
d
on co
nst
a
nt
DC
l
i
n
k
vol
t
a
g
e
an
d al
s
o
use
P
W
M
-
VS
I
fo
r
spee
d c
ont
r
o
l
whi
c
h a
g
ai
n i
n
creases t
h
e s
w
i
t
c
hi
ng
l
o
sse
s.
S. Si
n
g
h
an
d B
.
Si
n
gh
[
3
]
aga
i
n i
n
2
0
12
p
r
o
pos
ed a c
u
k co
nve
rt
er
fed B
L
DC
m
o
t
o
r wi
t
h
a va
ri
abl
e
DC lin
k
vo
ltag
e
th
at redu
ces th
e switch
i
ng
lo
sses sin
ce
it u
s
es o
n
l
y th
e fu
nd
am
en
tal switch
i
n
g
freq
u
e
n
c
y.
Sp
eed
con
t
ro
l
is p
e
rform
e
d
b
y
con
t
ro
lling
the
v
o
ltag
e
at
th
e
DC
b
u
s
of
VSI.
In this p
a
p
e
r, Con
t
in
uo
us
C
o
n
d
u
ct
i
on M
ode
(C
C
M
) i
s
use
d
. B
u
t
t
h
e
m
a
jor
di
sad
v
a
n
t
a
ge
is th
at it requ
ires three sen
s
ors.
So
it
is n
o
t
encourage
d
for low-c
o
st and l
o
w-power rating
ap
p
lication
s
.
Sin
ce on
ly th
e
b
r
i
d
g
e
co
nv
erters are
u
s
ed
in
all
the above used topol
ogies
, it
al
so cont
ri
b
u
t
e
d f
o
r t
h
e
swi
t
c
hi
n
g
l
o
ss
es. T
hus
t
h
e
bri
dgel
e
ss t
o
p
o
l
o
gi
es are
preferred. T
h
e
diffe
re
nt bridgeless topologi
es are
an
alysed
b
a
sed on
th
e power
q
u
a
lity of th
e ac m
a
in
s.
3.
BRIDGELESS CONVERT
E
R TOPOLOGIES
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
3
,
Feb
r
uar
y
201
5 :
3
26 –
33
5
32
8
The
bri
dgel
e
ss
co
nve
rt
ers
el
i
m
i
n
ate the us
e of di
ode rec
tifiers. T
h
e
diode
rectifiers
cause m
o
re
sw
itch
i
ng
st
r
e
sses. Th
is is
no
t go
od
fo
r
t
h
e
pr
op
er fun
c
tio
n
i
n
g
of
t
h
e co
nver
t
er
.
3.
1. B
o
ost
C
o
nver
ters
Y.
Jan
g
a
n
d M
.
M
.
J
ova
n
ovi
c
[4]
i
n
t
h
e
y
ear
20
1
1
pr
o
pose
d
a c
once
p
t
bas
e
d
on
bo
ost
c
o
nve
rt
er
fe
d
B
L
DC
m
o
t
o
r d
r
i
v
e. T
h
e ba
si
c t
opol
o
g
y
of t
h
e bri
d
gel
e
ss P
F
C
bo
ost
rect
i
f
i
e
r i
s
sho
w
n i
n
Fi
gu
re 2. C
o
m
p
are
d
to
con
v
e
n
tion
a
l PFC b
o
o
s
t rectifier o
n
e d
i
od
e is eli
m
in
ate
d
fro
m
th
e lin
e-curren
t
p
a
t
h
, so
th
at th
e lin
e
cu
rren
t
si
m
u
ltan
e
o
u
s
ly
f
l
ow
s thr
oug
h
o
n
l
y two
sem
i
c
o
ndu
ctor
s,
res
u
l
t
i
ng i
n
red
u
ce
d c
o
n
d
u
ct
i
on l
o
sses.
H
o
weve
r, t
h
e
bri
dgel
e
ss
PFC
bo
ost
rect
i
f
i
e
r
i
n
Fi
g
u
re
2
ha
s si
gni
fi
cant
l
y
l
a
rger c
o
m
m
on-m
ode n
o
i
s
e t
h
an t
h
e c
o
n
v
e
n
t
i
onal
PFC bo
ost rect
ifier. In
fact, in th
e con
v
en
tion
a
l PFC
b
o
o
s
t
rectifier, th
e
ou
tpu
t
groun
d
is always con
n
e
cted
to
the ac source through the
ful
l
-bri
dge
r
ectifi
e
r wh
ereas, in th
e bridg
e
less
PFC boo
st rectifier in
Fig.
2
,
th
e
o
u
t
p
u
t
g
r
o
und
is co
nn
ected
to th
e ac so
urce
o
n
l
y du
ri
n
g
a
p
o
s
itiv
e
h
a
lf-lin
e cycle, th
ro
ug
h
t
h
e bo
d
y
d
i
o
d
e
of
switch
,
wh
ile
d
u
ring
a n
e
g
a
tiv
e
h
a
lf-lin
e cy
cle th
e ou
tpu
t
g
r
ou
nd
is
pu
lsatin
g
relativ
e to
th
e ac sou
r
ce with
a
hi
g
h
f
r
eq
ue
nc
y
(HF
)
an
d wi
t
h
an am
pl
i
t
ude equal
t
o
t
h
e out
put
vol
t
a
ge
.
Thi
s
HF
p
u
l
s
at
i
ng v
o
l
t
a
ge s
o
u
r
ce
ch
arg
e
s and
disch
a
rg
es th
e
eq
u
i
v
a
len
t
p
a
rasitic cap
acitan
ce
b
e
tween
t
h
e
o
u
t
p
u
t
g
r
ou
nd
and
th
e ac lin
e
g
r
ou
nd
, resu
ltin
g in
a sign
ifican
tly in
creased co
mm
o
n
-
m
o
d
e
no
ise.
Fi
gu
re
2.
B
r
i
d
g
e
l
e
ss PFC
B
o
o
s
t
co
nve
rt
er
Th
e br
idg
e
less b
o
o
s
t conv
er
t
e
r
pr
ov
id
es
on
ly v
o
ltag
e
b
o
o
s
t wh
ich
lim
i
t
s
th
e op
erating
ran
g
e
o
f
DC
l
i
nk
vol
t
a
g
e
c
o
nt
r
o
l
.
T
h
u
s
we
m
ove fo
r a
not
h
e
r t
o
p
o
l
o
gy
.
3.2. CUK Converters
Fi
gu
re
3.
M
o
di
fi
ed C
u
k
co
n
v
e
r
t
e
r
wi
t
h
Negat
i
ve o
u
t
p
ut
pol
a
r
i
t
y
L. Hu
be
r, Y.
Jan
g
and M
.
M
.
Jova
n
ovi
c
[5]
i
n
t
h
e y
e
ar 20
0
8
pr
o
p
o
s
ed a pape
r b
a
sed o
n
cu
k
con
v
e
r
t
e
r
base
d B
L
DC
.
I
n
t
h
i
s
sect
i
o
n
,
t
h
e t
o
p
o
l
o
gy
deri
va
t
i
on
of
t
h
e
p
r
o
pos
ed
co
n
v
ert
e
r i
s
pre
s
ent
e
d.
Fi
gu
re
3 sh
o
w
s a m
odi
fi
ed C
uk c
o
nve
rt
er al
so
k
n
o
w
n as a “S
el
f-l
i
f
t
C
uk” c
o
n
v
e
r
t
e
r. R
e
fe
rri
n
g
t
o
Fi
gu
r
e
3, t
h
e
co
nv
erter can
b
e
m
a
n
i
p
u
l
ated
to
pro
d
u
ce a p
o
s
itiv
e
o
u
t
p
u
t v
o
ltag
e
fro
m
a n
e
g
a
tiv
e i
n
pu
t vo
ltag
e
. Si
milarly,
for a con
v
e
rter it is p
o
ssib
l
e to
produ
ce a n
e
g
a
tiv
e ou
tpu
t
vo
ltag
e
fro
m
a n
e
g
a
tiv
e inp
u
t
vo
ltag
e
.
No
te that th
e
conve
r
ters
ha
ve similar output charact
eristic
s and they a
r
e i
d
entical except
for t
h
eir inpu
t
v
o
ltag
e
po
larit
y
an
d
swi
t
c
h
drai
n-t
o
s
o
u
r
ce c
o
nn
ect
i
on.
The
r
ef
ore
,
i
t
i
s
p
o
ssib
le to
co
m
b
i
n
e th
e two
con
v
e
rters i
n
to
a sin
g
l
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
An
al
ysi
s
of
V
a
ri
abl
e
S
p
eed
P
F
C
C
h
op
per
F
E
D B
L
DC
Mot
o
r
Dri
ve (
A
. Je
ya
Sel
v
a
n
Re
ni
us)
32
9
bri
dgel
e
ss ac
-
d
c PFC
c
o
nv
e
r
t
e
r c
ont
ai
ni
ng
a bi
-
d
i
r
ect
i
o
n
a
l
swi
t
c
h a
nd
an al
t
e
rnat
i
ng
i
n
p
u
t
v
o
l
t
a
ge
sou
r
ce
.
Likewise, the
conve
r
ter can
be com
b
in
ed
i
n
to
a sing
le bridg
e
less ac-dc
PFC convert
e
r which offe
rs an
i
nve
rt
ed o
u
t
p
u
t
vol
t
a
ge p
o
l
a
r
i
t
y
. Unl
i
k
e t
h
e
con
v
e
n
t
i
onal
bri
dgel
e
ss P
F
C
con
v
ert
e
r
s
,
al
l
co
m
pone
nt
s i
n
t
h
e
propose
d
converter are fully utilized
as there are no i
d
le com
pone
nts du
ring bot
h
the positive and ne
gative
ac-lin
e cycle. Also
,
n
o
ad
d
iti
o
n
a
l d
i
o
d
e
s o
r
cap
acito
rs are ad
d
e
d
to
th
e top
o
l
o
g
y
to
filter o
u
t
co
mm
o
n
m
o
d
e
noi
se
si
nce t
h
e
out
put
i
s
n
o
t
fl
oat
i
n
g
.
Th
is con
v
e
rter
also
h
a
s a seri
o
u
s
d
i
sadv
an
tag
e
of switch
i
ng
lo
sses. So
th
i
s
to
po
log
y
is also
no
t u
s
ed
no
w.
3.
3. Bu
ck-B
o
o
s
t
Co
nver
ter
W
.
Lei, L.
Hon
g
p
e
n
g
, J.
Sh
i
g
ong
and
X
.
D
i
ang
uo [6
] in
t
h
e year 2008
p
r
op
o
s
ed a
sch
e
m
e
w
ith
buc
k
-
b
o
o
st
co
nve
rt
er
fe
d B
L
DC
.
Acc
o
rd
i
ng t
o
t
h
e
ab
o
v
e a
n
al
y
s
i
s
, S
w
i
t
c
hes
and
sh
oul
d ha
ve a
sym
m
et
ri
cal
bl
ocki
ng
v
o
l
t
a
ge
char
act
eri
s
t
i
c
.
So,
t
h
e R
B
-
I
G
B
T
(R
eve
r
se B
l
ocki
n
g
I
G
B
T
)
i
s
use
d
.
It
ca
n
bl
oc
k
bot
h fo
r
w
ar
d and re
ve
rse v
o
l
t
a
ge d
u
ri
ng
i
t
s
off st
at
e. C
o
m
p
ari
ng I
G
B
T
wi
t
h
a seri
es connect
e
d
di
o
d
e,
el
im
i
n
at
i
on
of
t
h
e seri
es
di
od
e hel
p
s t
o
re
du
ce l
o
sses
b
y
d
e
creasing
th
e on-state vo
ltag
e
acro
ss th
e switch
i
ng
ele
m
en
t. Co
mp
ar
i
n
g w
ith brid
g
e
bu
ck
b
oost PFC co
nv
erter
br
idg
e
less
b
u
c
k-
boo
st PFC con
v
e
r
t
er
has on
e
m
o
re swi
t
c
h a
nd c
a
paci
t
o
r, t
w
o l
e
ss
sl
o
w
di
o
d
es.
H
o
we
ver
,
com
p
ari
n
g t
h
e c
o
nd
uct
i
on
pat
h
o
f
t
h
e
s
e t
w
o
ci
rcui
t
s
, at
e
v
e
r
y
m
o
m
e
nt
, t
h
ree sem
i
cond
u
c
t
o
r
devi
ces
ar
e o
n
l
y
co
nd
uct
i
ng
fo
r
bri
dgel
e
ss b
u
c
k
-
b
o
o
st
PFC
co
nv
er
ter
,
b
u
t
f
o
u
r
sem
i
co
n
d
u
c
tor
s
are co
ndu
ctin
g
for
br
idg
e
bu
ck-
boo
st PFC co
nv
er
ter
.
Th
eref
or
e,
co
ndu
ctio
n lo
ss can b
e
red
u
c
ed
, esp
ecially in lo
w lin
e
v
o
ltag
e
.
Fi
gu
re
4.
B
r
i
d
g
e
l
e
ss PFC
B
u
c
k
-B
oost
co
n
v
er
t
e
r
The ab
o
v
e PF
C
buc
k-
b
oost
con
v
e
r
t
e
r use
s
t
h
ree s
w
i
t
c
hes
whic
h is cost e
ffective a
nd al
so inc
r
eases
the switching losses. T
h
us this
m
e
thod of
power quality
improvem
ent als
o
has som
e
limitations. So we
go for
so
m
e
o
t
h
e
r t
o
po
log
y
fo
r b
e
tter
p
o
wer qu
ality.
3.4. SEPIC
P
F
C Recti
f
ier
A.
A. Far
d
o
u
n
,
E.H
.
Ism
a
il, A.J. Sabzali an
d M
.
A.
A
l
-
S
af
f
a
r
[
7
] in
th
e year
20
12
pr
opo
sed
a
m
e
th
od
of SEP
I
C
PFC
rectifier for B
L
DC.
Figure
5 shows t
h
e
po
wer
st
age
o
f
a
bri
dgel
e
ss
SE
P
I
C
PFC
rect
i
f
i
e
r.
I
n
th
is cir
c
u
it, th
e SEPI
C conv
erter
is co
m
b
in
ed
w
ith
th
e input r
ectif
ier
an
d
o
p
e
r
a
tes lik
e a co
nv
en
tio
n
a
l SEPI
C
PFC co
nv
erter. Th
e
o
p
e
ration
o
f
th
is con
v
erter is
sy
mmetrical in
two h
a
lf-lin
e cycl
es of inpu
t
v
o
ltag
e
.
Th
erefo
r
e, t
h
e co
nv
erter op
eratio
n
is exp
l
ain
e
d
du
ring
o
n
e
switch
i
ng
p
e
rio
d
i
n
th
e po
sitiv
e h
a
lf-lin
e cy
cle of
th
e inp
u
t
vo
ltag
e
.
It is assu
med
th
at t
h
e co
nv
erter op
erat
es in
DCM. It m
eans t
h
at
t
h
e
o
u
t
p
ut
di
ode
t
u
r
n
s
of
f
b
e
fo
re th
e m
a
i
n
switch
is tu
rn
ed
o
n
. In
o
r
der to
si
m
p
lify
th
e an
alysis, it
is su
p
p
o
s
ed
th
at th
e co
nv
erter is
o
p
e
rating
at a
stead
y state, an
d all circu
it ele
m
en
ts are ideal. In add
ition
,
t
h
e
o
u
t
p
u
t
cap
acitan
ce is assu
m
e
d
su
fficien
tly larg
e to
b
e
co
nsid
ered
as an
ideal d
c
vo
ltag
e
sou
r
ce (
). Also
, t
h
e i
n
pu
t
vo
ltag
e
is
assumed
con
s
t
a
nt
an
d e
qual
t
o
V
ac (
)
in a switchi
ng cycle. Based
on t
h
e
aforementione
d as
sum
p
ti
ons, t
h
e c
i
rcui
t
o
p
e
ration
in a switch
i
ng
cycle
can
b
e
d
i
v
i
ded
in
to
three m
o
des.
The ci
rc
ui
t
di
a
g
ram
gi
ves t
h
e
Si
ngl
e E
n
ded
Pri
m
ary
Ind
u
c
t
a
nce C
o
nve
r
t
er (SE
P
IC
) c
o
nve
rt
er
fed
BLDC m
o
to
r
fo
r th
e im
p
r
ov
emen
t in
th
e power qu
ality.
Th
us t
h
e SEP
I
C
con
v
ert
e
r i
s
effi
ci
ent
b
u
t
i
t
req
u
i
r
es l
a
r
g
e
num
ber o
f
co
m
ponent
s. S
o
i
t
i
s
not
cost
effective
.
Th
ese are so
me o
f
th
e bridg
e
less PFC co
nverter techn
i
qu
es for th
e i
m
p
r
ov
em
en
t o
f
p
o
wer qu
ality in
th
e ac m
a
in
s.
Bu
t all th
ese t
ech
n
i
q
u
e
s
h
a
ve so
m
e
li
m
i
t
a
ti
ons
. T
h
ey
al
s
o
ca
nn
ot
be
u
s
ed
fo
r l
o
w
p
o
we
r
appl
i
cat
i
o
ns. S
o
t
h
e pr
o
p
o
s
ed
t
echni
q
u
e bel
o
w i
s
desi
gne
d i
n
suc
h
a wa
y
t
h
at
i
s
best
sui
t
e
d f
o
r l
o
w po
we
r
ap
p
lication
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
3
,
Feb
r
uar
y
201
5 :
3
26 –
33
5
33
0
Fig
u
re
5
.
Bridgeless SEPIC PFC conv
erter
4
.
PROPOSE
D
TOPOLOGY
Fig
u
r
e
6
shows th
e pr
opo
sed BL b
u
c
k–
boost co
nv
er
ter
-
b
a
sed
VSI-
f
e
d
B
L
D
C
m
o
to
r
driv
es. Th
e
param
e
t
e
rs of t
h
e B
L
buck
–
b
o
o
st
co
nve
rt
e
r
are desi
g
n
e
d
such t
h
at
i
t
ope
rat
e
s i
n
di
sco
n
t
i
n
u
o
u
s i
n
duct
o
r
current m
ode
(DICM) to ac
hi
eve a
n
inhere
nt
powe
r fact
or
c
o
r
r
ect
i
o
n
at
ac
m
a
i
n
s. The
spe
e
d c
ont
r
o
l
of B
L
DC
m
o
t
o
r i
s
achi
e
ved
by
t
h
e
dc
l
i
nk
vol
t
a
ge
co
nt
r
o
l
o
f
V
S
I
u
s
i
ng a
B
L
b
u
c
k
–
b
oost
c
o
nve
rt
er. T
h
i
s
red
u
ces t
h
e
swi
t
c
hi
n
g
l
o
ss
es i
n
VS
I d
u
e
t
o
t
h
e l
o
w f
r
e
que
ncy
o
p
erat
i
on
of
VSI
fo
r
t
h
e el
ect
roni
c
com
m
ut
ati
on of t
h
e
B
L
DC
m
o
t
o
r. The pe
rf
orm
a
nce of t
h
e p
r
o
p
o
se
d dri
v
e i
s
eval
uat
e
d
fo
r a wi
de ra
n
g
e of
spee
d co
nt
rol
wi
t
h
i
m
p
r
ov
ed power qu
ality at ac m
a
in
s. Mo
reov
er, th
e effect o
f
supp
ly vo
ltag
e
v
a
riation
at
u
n
i
v
e
rsal ac main
s is
also
stud
ied to d
e
m
o
n
s
trate t
h
e
p
e
rform
a
n
ce of th
e dr
iv
e in
p
r
actical su
pp
ly con
d
ition
s
. Vo
ltag
e
and
cu
rrent
st
resses
on
t
h
e
PFC
c
o
n
v
ert
e
r swi
t
c
h are a
l
so eval
uat
e
d
fo
r
det
e
rm
i
n
i
ng t
h
e
swi
t
c
h
r
a
t
i
ng a
nd
heat
si
n
k
desi
g
n
.
Fi
nal
l
y
, a soft
ware i
m
pl
em
ent
a
t
i
on
of t
h
e
pr
o
pose
d
B
L
D
C
m
o
t
o
r d
r
i
v
e
i
s
carri
ed
out
t
o
dem
onst
r
at
e
th
e
feasi
b
ility
o
f
th
e p
r
op
osed
d
r
i
v
e o
v
e
r
a wid
e
ran
g
e
of
sp
eed
co
n
t
ro
l
with
im
p
r
ov
ed po
wer
qu
ality
at ac
main
s
.
Th
e pro
p
o
s
ed circu
it d
i
agram o
f
th
e Bu
ck
-bo
o
s
t co
nv
erter fed
BLDC
m
o
to
r is sh
own
in
th
e
Fi
gu
re 6.
Fi
gu
re
6.
Pr
o
p
o
se
d C
i
rc
ui
t
di
agram
of t
h
e B
u
ck
-
b
o
o
st
c
o
n
v
e
rt
er
fed
B
L
D
C
Th
e abo
v
e
circu
it is p
e
rfectly
su
itab
l
e for th
e lo
w power app
licatio
n
s
.
5
.
OPERATING
PRINCIPLE OF THE
PR
OPOSE
D
PFC BL B
UCK–
B
OOST
CONVERTER
Th
e
op
eration
o
f
th
e
PFC B
L
bu
ck
–bo
o
s
t
co
nv
erter is cl
assified
i
n
to
t
w
o p
a
rts
wh
ich
in
cl
u
d
e
the
o
p
e
ration
d
u
ri
n
g
th
e po
sitiv
e
and
n
e
gativ
e h
a
lf
cycles o
f
su
pp
ly v
o
ltag
e
and
d
u
ring
t
h
e
co
m
p
lete
switch
i
n
g
cycle.
5.
1.
Oper
ati
o
n
duri
n
g P
o
si
ti
ve
and
Ne
g
a
ti
ve H
a
l
f
C
y
cl
es
o
f
Su
ppl
y
V
o
l
t
a
g
e
I
n
th
e
p
r
op
osed
sch
e
m
e
of the BL bu
ck
–boo
st con
v
e
r
t
er
,
sw
itch
e
s
and
o
p
e
rate
fo
r th
e po
sitiv
e
an
d
n
e
g
a
tiv
e half cycles o
f
th
e supp
ly v
o
l
t
a
g
e
, resp
ectiv
ely. Du
ri
n
g
the p
o
s
itiv
e
h
a
lf
cycle o
f
th
e su
pp
ly
v
o
ltag
e
, switch
, inductor
, and di
o
d
es
and
are ope
rated to trans
f
er e
n
erg
y
to
d
c
link
cap
acitor
as
sh
o
w
n
i
n
Fi
gu
re 7(a
)
–(c
)
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
An
al
ysi
s
of
V
a
ri
abl
e
S
p
eed
P
F
C
C
h
op
per
F
E
D B
L
DC
Mot
o
r
Dri
ve (
A
. Je
ya
Sel
v
a
n
Re
ni
us)
33
1
Si
m
ilarly, fo
r th
e n
e
g
a
tiv
e
h
a
lf cycle o
f
th
e
su
pp
ly vo
ltag
e
, switch
, i
n
du
ct
or
, an
d di
od
es
and
co
ndu
ct
as
sh
ow
n
i
n
Figu
r
e
8
(
a)
–(
c). In
t
h
e d
i
sco
n
tinu
o
u
s
m
o
d
e
o
f
o
p
e
r
a
tion
o
f
t
h
e
BL bu
ck–boo
st
co
nv
er
ter
,
t
h
e
cu
rr
en
t i
n
inducto
r
bec
o
m
e
s di
scont
i
n
u
ous
f
o
r cert
a
i
n
d
u
r
at
i
o
n
i
n
a
s
w
i
t
c
hi
ng
pe
ri
o
d
.
5.
2.
Oper
ati
o
n
duri
n
g
Com
p
l
e
te Sw
i
t
chi
n
g
C
y
cl
e
Th
ree m
o
d
e
s
of op
eration
durin
g
a co
m
p
lete switch
i
ng
cycle are d
i
scussed fo
r t
h
e po
sitive h
a
lf cycle
o
f
supp
ly vo
ltag
e
as show
n h
e
r
e
in
af
ter
.
Mode I:
In
t
h
is m
o
d
e
, switch
conducts to cha
r
g
e
th
e in
du
ctor
; hence, an i
n
ductor current
increa
ses
i
n
t
h
i
s
m
ode as sh
ow
n i
n
F
i
gu
re 7
(
a)
. Di
ode
co
m
p
letes th
e in
pu
t side circu
itry, wh
ereas t
h
e d
c
lin
k
capacitor
i
s
di
schar
g
e
d
by
t
h
e
VSI
-fe
d B
L
DC
m
o
t
o
r.
Mod
e
II
:
A
s
sh
own
in
Fig
u
r
e
7(
b)
, i
n
th
is m
o
d
e
o
f
oper
a
tio
n, sw
itch
is turne
d
off,
and t
h
e stored
energy in
in
du
ctor
is tran
sferred
t
o
d
c
lin
k
cap
acito
r
u
n
til th
e i
n
d
u
c
to
r is co
m
p
letely d
i
sch
a
rg
ed
.
Th
e cu
rren
t in
in
du
ctor
reduc
e
s and
reache
s
zero.
Mod
e
II
I:
In th
is m
o
d
e
,
in
du
ctor
en
ters
d
i
scon
tinu
ous co
ndu
ctio
n, i.e.,
n
o
en
erg
y
is left i
n
th
e i
n
du
ctor;
hence
,
cu
rre
nt
bec
o
m
e
s zer
o
f
o
r
t
h
e
rest
o
f
t
h
e
swi
t
c
hi
ng
p
e
ri
o
d
.
As
s
h
ow
n
i
n
Fi
gu
re
7(c
)
,
no
ne
o
f
t
h
e
switch
o
r
d
i
ode is co
ndu
cting
in
t
h
is m
o
d
e
, and
d
c
lin
k cap
acito
r
supplies ene
r
gy t
o
the l
o
ad;
he
nce,
vol
t
a
ge
acr
oss
dc l
i
nk ca
paci
t
o
r
starts decre
a
sing. The
ope
r
a
tio
n
is
rep
eat
ed
wh
en
switch
is tu
rn
ed
on agai
n a
f
ter
a com
p
lete switching cycle.
(a) M
o
de
1
(b
) M
o
de
2
(c) M
o
de
3
Fig
u
re
7
.
Op
eratio
n
o
f
th
e
prop
o
s
ed conv
erter in d
i
ffer
en
t m
o
d
e
s (a)-(c) fo
r a po
sitiv
e
h
a
lf cycle o
f
th
e sup
p
l
y
vol
t
a
ge
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
3
,
Feb
r
uar
y
201
5 :
3
26 –
33
5
33
2
(a) M
o
de
1
(b
) M
o
de
2
(c) M
o
de
3
Fi
gu
re
8.
O
p
er
at
i
on
of
t
h
e
p
r
o
pos
ed
co
n
v
ert
e
r i
n
di
f
f
ere
n
t
m
ode
s (a
)-
(c)
f
o
r
a ne
gat
i
v
e
hal
f
cy
cl
e of
t
h
e
su
pp
ly v
o
ltag
e
6.
SI
MUL
A
T
I
ON CI
R
CUI
T
The pr
op
ose
d
bri
dgel
e
ss b
u
c
k
-
b
oost
c
o
n
v
e
r
t
e
r
fed
B
L
DC
wi
t
h
va
ri
abl
e
DC
l
i
nk vol
t
a
g
e
of VS
I
t
o
i
m
p
r
ov
e th
e
p
o
wer
qu
ality at
ac
m
a
in
s with
redu
ced
co
m
p
on
en
ts is sim
u
lated
in
MATLAB an
d
t
h
e resu
l
t
s are
sho
w
n bel
o
w.
Fi
gu
re
9.
Si
m
u
l
a
t
i
on ci
rc
ui
t
o
f
B
u
c
k
-b
o
o
st co
nv
erter
fed BLDC in MATLAB Sim
u
lin
k
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
An
al
ysi
s
of
V
a
ri
abl
e
S
p
eed
P
F
C
C
h
op
per
F
E
D B
L
DC
Mot
o
r
Dri
ve (
A
. Je
ya
Sel
v
a
n
Re
ni
us)
33
3
The a
b
ove ci
rc
ui
t
co
nsi
s
t
s
o
f
t
h
e m
a
i
n
bl
ock
s
w
h
i
c
h a
r
e
us
ed f
o
r t
h
e B
L
DC
co
nt
r
o
l
.
T
h
e s
u
b
-
bl
oc
ks
are
prese
n
t
e
d
b
e
l
o
w.
T
h
e m
a
in s
u
b
-
bl
oc
k i
s
t
h
e
buc
k
-
b
o
o
st
con
v
e
r
t
e
r
bl
oc
k.
Fi
gu
re 1
0
. Si
m
u
l
a
t
i
on su
b-
bl
o
c
k of
b
u
c
k
-
b
o
o
s
t
co
nve
rt
er
The
pr
o
p
o
s
ed
m
e
t
hod i
s
si
m
u
l
a
t
e
d i
n
M
A
TL
AB
as
gi
ve
n a
b
ove
an
d t
h
e
res
u
l
t
s
are e
v
al
uat
e
d.
7.
SI
MUL
A
T
E
D RE
SULT
S
Th
e sim
u
lated
r
e
su
lts fo
r
var
i
ou
s p
a
r
t
s of
th
e pr
opo
sed
cir
c
u
it ar
e
sh
own
in
Fi
gu
r
e
1
1
. The
p
e
rf
or
m
a
n
ce of
th
e
pr
opo
sed BLD
C
m
o
to
r
d
r
i
v
e is si
m
u
lated
in
M
A
TLAB/Sim
u
lin
k
en
v
i
ron
m
en
t u
s
in
g the
Sim
-
Po
wer Sy
st
em
t
ool
bo
x.
The
per
f
o
r
m
a
nce eval
uat
i
o
n
o
f
t
h
e
pr
o
pose
d
dri
v
e i
s
cat
eg
o
r
i
zed i
n
t
e
rm
s
of t
h
e
p
e
rform
a
n
ce o
f
th
e BLDC m
o
to
r an
d
BL b
u
c
k
–bo
o
s
t co
nv
erter and
th
e ach
iev
e
d
po
wer qu
ality i
n
d
i
ces
obtaine
d at ac
mains. T
h
e
pa
ram
e
ters assoc
i
ated with
the
BLDC m
o
tor
s
u
ch as
spee
d (N), electrom
a
gnetic
t
o
r
que (
), and
stator c
u
rrent
(
) are a
n
alysed
for the
proper
functioni
ng
of
th
e BLDC m
o
to
r. Param
e
ters
su
ch
as su
pp
ly vo
ltag
e
(
)
,
s
u
p
p
l
y cu
rr
en
t (
), d
c
link
vo
ltag
e
(
)
,
i
n
du
ctor’
s
cu
rr
en
ts
(
,
,
), switch
vol
t
a
ge
s (
,,
), and s
w
i
t
c
h c
u
r
r
e
nt
s (
,
)
of
th
e
PFC BL bu
ck–b
oo
st
converte
r are evaluated to
dem
onst
r
at
e i
t
s
p
r
o
p
er
f
u
nct
i
o
ni
n
g
.
(a)
St
at
or
cu
rre
nt
an
d el
ect
r
o
m
o
ti
ve f
o
rce
o
u
t
p
ut
wa
ve
fo
r
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
3
,
Feb
r
uar
y
201
5 :
3
26 –
33
5
33
4
(b
) R
o
t
o
r
S
p
ee
d
out
put
wa
vef
o
rm
(c)
Electrom
a
gnetic To
rq
ue
o
u
tp
ut wa
ve
fo
r
m
(d
)
Varia
b
le D
C
v
o
ltage
out
p
u
t wa
ve
fo
rm
(e)
Voltage ac
ross
phase a
&
b
(f
)
P
u
lses fo
r VSI
Figu
re
1
1
. T
h
e
sim
u
lated resu
lts fo
r
va
r
i
ou
s
p
a
r
t
s
of
th
e pr
op
o
s
ed cir
c
u
i
t
7. CO
N
C
L
U
S
I
ON
A PFC
B
L
b
u
c
k
–
b
oost
c
o
n
v
e
r
t
e
r-ba
s
ed
VS
I-
fed B
L
DC
m
o
tor
dri
v
e has
be
en p
r
o
p
o
se
d t
a
rget
i
n
g l
o
w
p
o
wer app
licatio
n
s
. A
n
e
w m
e
th
od
of sp
eed
co
n
t
ro
l
h
a
s
b
e
en
u
tilized
b
y
co
n
t
ro
lling
th
e
v
o
ltag
e
at
d
c
bu
s and
ope
rat
i
n
g t
h
e
VSI at
fu
n
d
am
ent
a
l
fre
que
nc
y
for t
h
e el
ect
r
oni
c c
o
m
m
ut
ati
on
of t
h
e B
L
DC
m
o
t
o
r f
o
r r
e
duci
n
g
th
e sw
itch
i
ng
l
o
sses i
n
V
S
I. Th
e fro
n
t
-
e
nd
B
L
bu
ck
boo
st co
nv
er
ter
h
a
s
b
e
en
o
p
e
r
a
ted in
D
I
CM
f
o
r
ach
i
ev
ing
an i
nhe
rent
power fact
or correctio
n at ac
mains. A satis
factory
pe
rfor
mance has
bee
n
ac
hieve
d
for spee
d
co
n
t
ro
l and
sup
p
l
y vo
ltag
e
variatio
n
with
po
wer qu
ality
i
n
d
i
ces. Mo
reov
er, vo
ltag
e
and
curren
t
stresses o
n
th
e PFC
switch
h
a
v
e
b
een ev
alu
a
ted for
determin
in
g
t
h
e
practical application
of the
proposed sc
heme. T
h
e
pr
o
pose
d
sc
he
m
e
has sh
ow
n
sat
i
s
fact
ory
p
e
rf
orm
a
nce, an
d i
t
i
s
a recom
m
ended
sol
u
t
i
on a
p
pl
i
cabl
e
t
o
l
o
w-
po
we
r BL
DC
m
o
tor dri
v
es.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
An
al
ysi
s
of
V
a
ri
abl
e
S
p
eed
P
F
C
C
h
op
per
F
E
D B
L
DC
Mot
o
r
Dri
ve (
A
. Je
ya
Sel
v
a
n
Re
ni
us)
33
5
REFERE
NC
ES
[1]
T Gopalarathnam, HA Toliy
a
t. A new
topolog
y
for unipolar brushless dc motor
drive with high power factor
.
IEEE
Trans. Power Electron.
, 2003
; 1
8
(6): 1397–1404
.
[2]
S Singh, B Sing
h.
Pow
e
r quality improved
PMBLDCM drive for
adjus
table speed application
with reduced sens
or
buck-boost PFC
converter
. Proc.
4th ICETET. 20
11: 180–184.
[3]
S Singh, B
Singh. A voltage-controlle
d PFC Cuk converter b
a
sed PMBLDC
M drive for air conditioners
.
IEEE
Trans. Ind. App
l
.,
2012; 48(2): 83
2–838.
[4]
Y Jang, MM Jo
vanovi´
c
. Bridgeless
high-power-factor buck con
v
erter
.
IEEE Trans. Power Electron.,
2011; 26(
2):
602–611.
[5]
L Huber, Y Jan
g
, MM Jovanovi´
c
. Performance
ev
alu
a
tion
of bridgeless PFC boost rectifiers.
I
E
EE T
r
ans. Powe
r
Electron.,
2008;
23(3): 1381–139
0.
[6]
W Wei, L Hongpeng, J Shigong,
X Dianguo.
A novel bridgele
ss buck-boost PFC converter.
IEEE PESC/I
E
E
E
Power Electron.
Spec. Conf.,
200
8: 1304–1308.
[7]
AA
Fardoun, EH Ismail, AJ Sa
bzali, MA
Al-Saffar
.
New efficien
t bridgeless Cuk rectifiers for PFC
applicatio
ns.
IEEE
T
r
ans. Po
wer El
ectron
.
,
2
012; 27(7): 3292
–3301.
BIOGRAP
HI
ES OF
AUTH
ORS
M
r
.
A.
Jey
a
Selvan Re
nius
received
his B
.
Tech. degr
ee
in
Electronics and
Co
mmunication
Engineering fro
m Anna University
, Tamilnadu
,
Indi
a. P
r
es
ent
l
y
h
e
is
purs
u
ing M
.
Tech in P
o
wer
Ele
c
troni
cs
and Drives
from
Karun
y
a Univ
ers
i
t
y
,
Coim
batore, T
a
m
il Nadu,
India. His present
research in
ter
e
sts are Power converters and i
nverters, Special machines, Solar and wind
Applica
tions.
Prof. K. Vinoth Kumar
recei
ved his
B.E. de
gree in El
ectr
i
c
a
l and El
ectron
i
cs
Engineer
ing
from Anna
Uni
v
e
r
si
ty
,
Che
n
na
i,
T
a
mi
l
Na
du,
Indi
a. He obtained
M.Tech in Power Electronics
and Drives from
VIT
Universit
y
, Vellor
e
, T
a
m
il Na
du, India. Presently
h
e
is working as an
Assistant Professor in the Scho
ol of El
ectrical
Science, Karun
y
a Institu
te of
Technolog
y
an
d
S
c
ienc
es
(Karunya Univ
ers
i
t
y
)
,
Coim
batore,
Ta
m
il Nadu, India. He is pursuing PhD degree in
Karun
y
a Univer
sity
, Coimbatore, India. His pres
ent research interests are Condition Monitoring
of Industrial Drives, Neural Networks and Fuzz
y
Logic, Special machines
, Application of Sof
t
Computing Technique. He has published various
papers in intern
ational journals
an
d
conferen
ces
and
also published
four tex
t
books.
He is a member of IEEE (USA), MISTE
and
als
o
in
Int
e
rnat
io
nal
as
s
o
ciat
ion o
f
El
ectr
i
c
a
l
Engi
neers
(IAENG).
Evaluation Warning : The document was created with Spire.PDF for Python.