Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
6, N
o
. 1
,
Mar
c
h
20
15
,
pp
. 45
~55
I
S
SN
: 208
8-8
6
9
4
45
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Experimental Study of SBPWM for Z-Source Inverter Five
Phase
M.S
.
Ba
kar
*
,
N.
A.
Ra
him*
*,
H.
Da
niy
a
l*,
K.H.
Gh
az
ali*
**
* S
u
P
E
R, F
acu
lt
y
of E
l
e
c
tri
cal
&
El
ectron
i
cs
Eng
i
neer
ing,
Univer
s
i
t
y
M
a
l
a
y
s
ia P
a
hang
** UMPEDAC, Faculty
of
Engin
eering
,
Univ
ersity
M
a
lay
a
*** ViSIS, Facu
lty
of
Electric
al
& Electronics E
ngineer
ing, Univ
ersity
Malay
s
ia
Pahang
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Oct 6, 2014
R
e
vi
sed Dec 3,
2
0
1
4
Accepted Dec 25, 2014
On the ba
si
s of
a conventio
nal Z-so
urce inver
t
er, this pape
r
present
s
a
n
extensi
on of t
h
e existing
stu
d
y
about a drivi
ng
sche
me i
m
ple
m
e
n
tation of a
si
mple bo
ost p
u
l
s
e widt
h modula
tion unde
r o
p
en
loop sy
stem f
o
r five phase
two level
sy
stem. The impact of
design
para
meter (
f
ixed
mo
dulatio
n
index an
d
switc
hing
freq
u
e
ncy
)
versus p
e
rfor
m
ance
par
a
meter
(capacit
o
r v
o
ltage,
inducto
r current,
total harmonic di
storti
on and
DC l
i
nk voltage) are
studied and
anal
y
s
ed. To va
lidate the advantages
of Z
-
source five-pha
s
e
inverter, the
drivin
g sche
me
are si
mulated u
s
ing Ma
tlab/
Si
mu
link and veri
fied
with real-
tim
e target boa
rd e
Z
d
s
p
TM
TMS3
20F283
35. Fro
m
the study
, it was fou
nd that
under specifie
d
mo
dulatio
n
inde
x
and sw
itc
hing
frequency
,
the THD
of an
output current ful
f
illed the E
N
61000-3-2 standard
.
Keyword:
Fi
ve-phase i
n
v
e
rt
er
M
odul
ati
on i
ndex
Pul
s
e wi
dt
h
m
o
dul
ati
on
Tot
a
l
har
m
oni
c di
st
orti
on
Z-source i
nverter
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
M.S.Bak
a
r
,
SuPER
,
Facu
lty of Electrical &
Electroni
c
s
E
n
gin
e
e
r
i
n
g,
Pe
ka
n
C
a
mp
u
s
,
University
Malay
s
ia Pahang
, 266
00, Pekan
, Pa
ha
ng, Malaysia.
Em
a
il: sh
afie@u
m
p
.edu
.m
y
1.
INTRODUCTION
Ove
r
the
past forty years, the
r
e has bee
n
a dram
at
ic increase in the use
of fivephase
volt
a
ge source
i
nve
rt
er
(V
SI
)
fe
d m
o
t
o
r
dr
i
v
e [
1
]
,
a
wel
l
-k
no
w
n
sy
st
e
m
t
h
at
can
be
fa
bri
cat
ed
us
i
ng l
o
w
-
c
o
st
,
hi
g
h
-
perform
a
nce insulate
d gate
bipolar tra
n
sis
t
or (IGB
T
)
m
o
dules or inte
lligent
power m
odules
[2]. Recent
devel
opm
ent
s
i
n
VS
I fe
d m
o
t
o
r
dri
v
e
ha
ve
hei
g
ht
ene
d
t
h
e
need
f
o
r a
n
al
y
z
i
ng t
h
e t
o
p
o
l
ogy
,
d
r
i
v
i
n
g sc
hem
e
,
cont
rol
t
e
c
hni
que
a
n
d
ap
pl
i
cat
i
on.
O
n
e t
y
pe
of
V
S
I
fe
d
m
o
t
o
r
dri
v
e
i
s
t
h
e Z
-
s
o
u
r
c
e
i
n
vert
er
(Z
S
I),
as
pr
o
pose
d
by
F
.
Z. Pe
ng
[
3
]
.
Ot
he
r resea
r
ch
er f
o
u
n
d
[
4
]
t
h
at
ZSI
has
pr
og
resse
d act
i
v
el
y
wi
t
h
t
h
e el
ect
ri
c
vehi
cl
e w
h
e
r
eb
y
t
h
e dri
v
e v
o
l
t
a
ge i
s
st
ress i
n
hu
ge a
nd
its inv
e
stig
ation
h
a
s also
b
e
co
m
e
a
co
n
tinu
i
ng
con
c
ern
wi
t
h
i
n
t
h
e sco
p
e of m
u
l
t
i
pha
se sy
st
em
s. There i
s
a l
a
rge vol
um
e of pu
bl
i
s
he
d st
udi
es d
e
scri
bi
n
g
t
h
e r
o
l
e
s o
f
ZSI i
n
m
u
l
t
i
phase sy
st
em
s [5]
–
[
7
]
;
ho
we
ver
,
t
h
i
s
pa
per
foc
u
ses
o
n
l
y
o
n
t
h
e
fi
ve
p
h
ase i
n
ve
rt
er
si
nce i
t
comm
only used a
n
d the
sm
allest num
b
er
of
pha
ses in a m
u
ltiphase system
s [8].
ZSI h
a
s th
e cap
ab
ility to
reso
lv
e m
u
tu
al p
r
o
b
l
em
s eith
er in
VSI fed
o
r
in
cu
rren
t so
urce in
v
e
rter
(CSI
)
f
e
d
m
o
tor drive
,
whic
h are
[
3
]
:
a)
I
ssu
es in bu
ck
in
g and
bo
osting
m
o
d
e
o
p
e
r
a
tio
n. Th
e
ou
tpu
t
pr
odu
ced b
y
a H-
br
idg
e
inv
e
r
t
er
is
r
e
str
i
ct
ed
ei
t
h
er t
o
great
er t
h
a
n
o
r
sm
al
l
e
r t
h
an t
h
e i
n
put
vol
t
a
g
e
. B
y
cont
r
o
l
l
i
ng t
h
e m
odul
at
i
o
n
i
nde
x (
M
i
) o
f
the
dri
v
i
n
g sc
hem
e
, t
h
e
r
e i
s
a
ra
ng
e o
f
M
i
t
h
at
ca
n be use
d
f
o
r b
u
cki
n
g
an
d b
o
o
st
i
n
g pu
rp
ose
s
.
b)
The i
n
p
u
t
ci
rc
ui
t
t
o
t
h
e
H-
bri
dge i
n
v
e
rt
er i
s
fi
xe
d.
Du
ri
n
g
buc
ki
n
g
m
ode,
a speci
fi
c
buc
k co
n
v
ert
e
r ci
r
c
ui
t
m
u
st
be adde
d, w
h
i
l
e
d
u
ri
n
g
b
o
o
s
t
i
ng m
ode, a b
o
o
st
co
nve
rt
er ci
rc
ui
t
m
u
st
be pr
ov
i
d
ed.
Wi
t
h
ZS
I
,
buc
ki
n
g
a
n
d
b
oost
i
ng
m
odes
can
be
pr
o
v
i
d
e
d
usi
n
g
wi
t
h
si
m
i
l
a
r t
opol
ogy
an
d si
ngl
e st
a
g
e c
o
n
v
e
r
si
o
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
IJPE
DS
V
o
l
.
6, N
o
. 1,
M
a
rc
h 20
1
5
:
4
5
– 55
46
c)
The ef
fect
o
f
e
l
ect
rom
a
gnet
i
c
i
n
t
e
rfe
rence
(
E
M
I) i
n
c
o
nve
nt
i
onal
i
n
ve
rt
er sy
st
em
cont
ri
but
es t
o
t
h
e l
e
vel
of h
a
rm
oni
c cont
e
n
t
.
B
y
avo
i
di
ng a dea
d
t
i
m
e appl
i
cat
i
o
n
i
n
ZSI f
o
r ea
ch o
f
t
h
e u
ppe
r an
d l
o
we
r l
e
g
wo
ul
d
m
i
nim
i
se t
h
e
harm
oni
c
co
nt
ent
i
n
t
h
e
sy
st
em
.
Gi
ve
n ZS
I’s m
a
ny
be
nefi
t
s
, t
h
i
s
pa
per
pre
s
e
n
t
s
an
i
n
vest
i
g
at
i
on as f
o
l
l
o
w
s
. Sect
i
on
2
de
scri
bes t
h
e
m
o
ti
vat
i
on an
d resear
ch g
o
a
l
usi
ng ZS
I f
i
vep
h
ase t
h
at
em
pl
oy
s a sim
p
l
e
boost
p
u
l
se wi
dt
h m
odul
at
i
o
n
(SB
P
W
M
).
D
e
t
a
i
l
e
d expl
an
at
i
on of t
h
e
SB
P
W
M
p
r
oc
ess i
s
present
e
d i
n
Sect
i
o
n
3. Si
m
u
l
a
ti
on an
d
ex
p
e
rim
e
n
t
al resu
lts are illu
strated
i
n
Section
4
to sh
ow t
h
at th
e
h
a
rm
o
n
i
c con
t
en
t
b
a
sed
o
n
th
e EN610
00-3-2
st
anda
rd
f
o
r cl
ass D
o
r
de
r i
s
com
p
l
i
e
d. I
n
Sect
i
ons
5,
6
and
7
,
t
h
e
det
a
i
l
s
expe
ri
m
e
n
t
al
t
e
st
pl
at
for
m
i
s
clarified unde
r ope
n
l
o
op system
w
ith selected c
o
m
pone
nt
conditions. C
o
nclusi
ons
are
given i
n
Secti
o
n 8.
2.
MOTI
VATI
O
N
& RESE
AR
CH GO
AL
Pul
s
e wi
dt
h m
o
d
u
l
a
t
i
on
(P
W
M
) has bec
o
m
e
a vi
t
a
l
and signi
fi
cant
el
em
ent
of a m
u
l
t
i
phase sy
st
em
[9]
.
A p
r
el
i
m
inary
w
o
r
k
co
n
duct
e
d usi
ng
P
W
M
f
o
r f
o
u
r
-p
hase ZS
I wa
s un
dert
a
k
en
b
y
[2]
.
In t
h
e s
t
udy
,
P
W
M
f
o
r si
n
g
l
e
, t
h
r
ee an
d
fo
ur
ph
ases
un
de
r co
nt
i
n
u
ous a
n
d di
sc
o
n
t
i
n
u
o
u
s m
ode
were a
n
al
y
s
ed usi
ng
sim
u
lation plat
fo
rm
. The
har
d
ware
ve
rifica
tio
n w
a
s don
e
un
d
e
r
t
h
r
e
e-
ph
ase system
.
I
n
20
13
, A. Ko
u
z
ou
[5
] r
e
por
ted
the use of PW
M i
n
m
u
lt
ip
h
a
se
system
s
,
in
w
h
ich
case am
ax
i
m
u
m
bo
ost
co
nt
r
o
l
(
M
B
C
)
st
rat
e
gy
fo
r m
u
l
t
i
phas
e
sy
st
em
from
3, 5
,
7
,
1
1
,
1
3
,
15
, 1
7
,
19
and
2
1
p
h
ases
un
der
sim
u
l
a
t
i
on t
a
sk
were em
pl
oy
ed. I
n
t
h
e ex
peri
m
e
nt
al
set
up, t
h
e resea
r
c
h
ers
fed t
w
o
paral
l
e
l
l
o
ads, a
fi
ve
-
pha
se
resistiv
e lo
ad
an
d
a
fiv
e
-ph
a
se in
du
ction
m
a
ch
in
e to v
e
rify
th
e sim
u
lat
i
o
n
resu
lt. Th
ey fo
und
th
at th
e syste
m
coul
d accom
p
lish any
desire
d output m
u
ltipha
se AC
volt
a
ge whose m
a
gnitude is
grea
ter than t
h
e input
DC
vol
t
a
ge
[5]
.
Th
e perf
orm
a
nce param
e
t
e
rs of t
h
e sy
st
em
was
also im
proved, which
incl
ude
the decrease in the
Z-s
o
u
r
ce ca
pac
i
t
o
r
vol
t
a
ge
an
d Z
-
s
o
u
r
ce
inductor
c
u
rrent ri
pple [5].
The findi
ngs
above be
cam
e
the
m
o
tivations for th
is research
to
inv
e
stig
ate o
t
h
e
r PWM d
r
i
v
ing
schem
e
s
,
su
ch
as SBPW
M wi
th
DSP
b
a
sed
for Z
S
I
f
i
v
e
phase. SBPW
M i
s
a well-kn
own
driv
ing
sch
e
me in
ZSI, as i
t
m
a
t
h
em
at
i
call
y
unc
om
pl
i
cat
ed [10
]
, easy
t
o
im
plem
ent
[10]
, an
d has bee
n
t
e
st
ed usi
n
g m
a
ny ne
w
t
o
p
o
l
o
gi
es of Z
S
I [1
1]
–
[
1
5
]
.
3.
BA
C
KGR
OUN
D
ZS
I
F
I
V
E
-
P
HA
S
E
TOPO
LO
GY
A
ND I
T
S
OP
ERATI
O
N
The t
o
p
o
l
o
gy
of Z
S
I
f
i
v
e
p
h
a
s
euse
d i
n
t
h
is resear
ch
is
show
n
i
n
Figur
e 1. The l
o
ad is c
o
nnected in
a
star form
ation and t
h
e load
on each
phas
e
consists
of
a pa
rallel conne
ction
of a re
sistance, a capacita
nce and
an i
n
duct
a
nce.
The f
r
ont
e
nd
of t
h
e t
o
pol
ogy
con
s
i
s
t
s
of
a
DC
i
n
put
vol
t
a
ge t
h
at
i
s
ass
u
m
e
d t
o
be a
ri
p
p
l
e
-f
ree
con
s
t
a
nt
DC
v
o
l
t
a
ge so
urc
e
,
an ul
t
r
afa
s
t
di
o
d
e use
d
t
o
p
r
e
v
ent
ci
rc
ul
at
i
on o
f
t
h
e reve
rs
e
cu
rre
nt
t
o
w
a
rds
t
h
e
DC power supp
ly
, a Z-sou
r
ce n
e
two
r
k
acti
n
g
as a seco
nd
o
r
d
e
r filter
(con
sistin
g of two id
en
tical cap
a
cito
rs
and
i
n
duct
o
rs
)
and
an
H
-
bri
d
g
e
i
nve
rt
er
(c
on
si
st
i
ng
of
t
e
n
I
G
B
T
s).
Fi
gu
re
1.
Z-s
o
urce
fi
ve
p
h
ase
i
nve
rt
er a
p
pl
i
cat
i
on
un
de
r st
a
r
f
o
rm
ati
o
n
A
d
e
r
i
v
a
tion
of
ZSI
f
i
v
e
ph
aseis si
m
i
lar
to
th
at o
f
a conven
tio
n
a
l f
i
v
e
ph
ase VSI
bu
t,
r
e
f
e
r
r
i
ng
to
Fig
u
re 1
,
with
t
h
e
ad
d
ition
of a
Z-so
urce
n
e
twork as an
inpu
t to
th
e
fiv
e
p
h
a
se H-bridge in
v
e
rter m
a
k
e
s th
e
anal
y
s
i
s
di
f
f
er
ent
fr
om
t
h
at
of t
h
e c
o
n
v
e
n
t
i
o
nal
fi
ve
p
h
ase
VSI
.
T
h
e Z
-
so
urce
net
w
or
k
v
o
l
t
a
ge
of t
h
e
Z
S
I fi
ve
p
h
a
se m
u
stsati
sfy th
e
fo
llo
wi
n
g
equ
a
lities [3
]:
L
L
L
V
V
V
2
1
(
1
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Experi
me
nt
al
S
t
udy
of
SBPW
M f
o
r
Z-
S
ourc
e
I
n
vert
e
r Fi
ve
Ph
ase (
M
.
S
.
B
aka
r
)
47
C
C
C
V
V
V
2
1
(
2
)
Tw
o l
e
vel
s
o
f
ZSI fi
ve
phase
pr
od
uces t
h
re
e st
at
es [1
6]
, nam
e
ly
, no
rm
al
state (active state), non-
shoot through
state (zero stat
e) and
sh
oo
t thr
oug
h
state,
wh
ich
repr
esen
t syn
c
hr
on
ized
sw
itch
i
ng
cond
itio
n
fo
r
an
y tw
o
p
o
w
e
r
d
e
v
i
ces w
ithin
th
e leg
.
In
activ
e an
d
n
on-
shoo
t th
ro
ugh state th
e ZSI
f
i
v
e
ph
ase oper
a
tes
u
n
d
e
r
co
nv
en
tio
n
a
l PW
M str
a
teg
y
. Ho
w
e
ver
,
in
th
e shoot-
t
h
r
o
ugh
state, th
e o
u
t
pu
t f
i
v
e
ph
ase H
-
brid
g
e
in
v
e
r
t
er
ter
m
in
als ar
e sho
r
ted
at b
o
t
h
th
e upper
an
d
t
h
e l
o
wer
sw
itch
i
ng
d
e
v
i
ces
o
f
an
y
o
f
th
e
p
h
a
se leg
s
[
1
6
]
,
while sim
u
ltaneously, the capacitor voltage
is boosted
by receiving the
energy fr
om
the induct
o
r [17]
. The
to
tal n
u
m
b
e
r
of
shoo
t-
thr
ough
states of
ZSI
f
i
v
e
ph
ase
dealin
g
w
i
t
h
the stan
d
a
r
d
fo
rm
u
l
a
tio
n
is 2
n
– 1
[
5
]
,
whe
r
e
n
repres
ents
the num
b
er
of phases. Thus, for ZSI
five
phase, t
h
e a
v
a
ilable tota
l shoo
t-
thr
oug
h states ar
e
31
, as
sh
o
w
n
i
n
Ta
bl
e
1 t
h
at
has
bee
n
a
d
o
p
t
e
d
fr
om
[2]
.
The s
h
oot
-t
hr
o
u
g
h
st
at
es
sh
or
t
-
ci
rcui
t
al
l
fi
v
e
A
C
out
put term
inals and produce
0 V across the AC load.
T
h
e od
d an
d eve
n
n
u
m
b
er of s
w
i
t
c
hes re
pres
ent
t
h
e
u
p
p
e
r an
d lower switch
e
s, resp
ectiv
ely.
T
a
b
l
e
1
.
Swi
t
c
hi
n
g
st
at
e s
h
o
o
t
-t
hr
ou
g
h
fo
r Z
-
so
ur
ce
phase
i
nve
rt
er
(!
SX
re
prese
n
t
s
c
o
m
p
l
e
m
e
nt
of
S
X
,
whe
r
e
X
=
1, 3
,
5
,
7
or
9
)
.
Sta
t
e
S1
S2
S3
S4
S5
S6 S7
S8 S9
S10
F1(0
V
)
1
1
S3
!S3
S5 !S5
S7
!S7
S9
!S9
F2(0
V
)
S1
!S1
1
1
S5 !S5
S7
!S7
S9
!S9
F3(0
V
)
S1 !S1
S3 !S3
1
1
S7 !S7
S9 !S9
F4(0
V
)
S1
!S1
S3
!S3
S5 !S5
1
1
S9
!S9
F5(0
V
)
S1
!S1
S3
!S3
S5 !S5
S7
!S7
1
1
F6(
0
V)
1 1 1 1
S5
!
S
5
S7
!
S
7
S9
!
S
9
F7(0
V
)
1
1
S3
!S3
S5 !S5
S7
!S7
1
1
F8(
0
V)
1
1
S3
!
S
3
S5 !
S
5
1
1
S9
!
S
9
F9(0
V
)
1
1
S3
!S3
S5 !S5
S7
!S7
1
1
F10(
0
V
)
1
1
S3 !
S
3
1
1
S7 !
S
7
S9 !
S
9
F11(
0
V
)
S1 !
S
1
1
1
1
1
S7 !
S
7
S9 !
S
9
F12(
0
V
) S1
!
S
1
1
1
S5 !
S
5
1
1
S9
!
S
9
F13(
0
V
) S1
!
S
1
1
1
S5 !
S
5
S7
!
S
7
1
1
F14(
0
V
)
S1 !
S
1
S3 !
S
3
1
1
1
1
S9 !
S
9
F15(
0
V
)
S1 !
S
1
S3 !
S
3
1
1
S7 !
S
7
1
1
F16(
0
V
) S1
!
S
1
S3
!
S
3
S5 !
S
5
1
1
1
1
F17(
0
V
)
1 1 1 1
S5
!
S
5
1 1
S9
!
S
9
F18(
0
V
)
1 1 1 1
S5
!
S
5
S7
!
S
7
1 1
F19(
0
V
)
1 1
S3
!
S
3
1
1 1 1
S9
!
S
9
F20(
0
V
) 1
1
S3
!
S
3
1
1
S7
!
S
7
1
1
F21(
0
V
)
1 1
S3
!
S
3
S5
!
S
5
1 1 1 1
F22(
0
V
)
S1
!
S
1
1 1 1
1 1 1
S9
!
S
9
F23(
0
V
)
S1
!
S
1
1 1 1
1
S7
!
S
7
1 1
F24(
0
V
)
S1
!
S
1
1 1
S5
!
S
5
1 1 1 1
F25(
0
V
)
S1
!
S
1
S3
!
S
3
1
1 1 1 1 1
F26(
0
V
)
1 1 1 1 1
1 1 1
S9
!
S
9
F27(
0
V
)
1 1 1 1 1
1
S7
!
S
7
1 1
F28(
0
V
)
1 1 1 1
S5
!
S
5
1 1 1 1
F29(
0
V
)
1 1
S3
!
S
3
1
1 1 1 1 1
F30(
0
V
)
S1
!
S
1
1 1 1
1 1 1 1 1
F31(
0
V
)
1 1 1 1 1
1 1 1 1 1
4.
SIMPLE B
O
OST PWM
WO
RK
IN
G P
R
I
NCI
PLE
The SB
PW
M
was t
h
e ear
l
y
d
r
i
v
i
ng schem
e
in ZSI.
The schem
e
was approved for boost
i
ng crit
eria by
t
u
rni
ng t
h
e zer
o
st
at
e
i
n
t
o
shoot
-t
hrough st
ate, keepi
ng
t
h
e
acti
v
e st
at
e unchanged,
m
a
i
n
t
a
i
n
i
ng t
h
e out
put
l
o
ad
i
n
si
nusoi
dal
f
o
rm
and,
m
o
st im
port
a
n
t
, boost
i
ng t
h
e DC l
i
nk vol
t
a
ge f
r
om
t
h
e shoot
-t
hrough affect
. Thi
s
dri
v
i
ng schem
e
was used t
o
c
ont
rol
t
h
e shoo
t
-
t
h
rough d
u
t
y
rat
i
o
, i
n
whi
c
h
t
h
e
m
a
xim
u
m shoot
-t
hrou
gh
dut
y
rat
i
o
i
s
lim
ited by
(1
-
M
i
)
[
3
]
,
[
1
8
]
.
A
s no
ted b
y
[
3
], [18
]
,
t
h
e rel
a
t
i
ons
hi
p bet
w
een
M
i
and b
oost
fa
ct
or (
B
)
un
de
r
SB
P
W
M
t
h
at
i
s
usedt
o
det
e
rm
i
n
e
vol
t
a
ge gai
n
(
G
)
ca
n be descri
bed
as:
B
M
V
V
i
DC
AC
2
(
3
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN:
2
088
-86
94
IJPE
DS
V
o
l. 6, N
o
. 1,
M
a
rc
h 20
1
5
:
4
5
– 55
48
Where
V
AC
is the output peak
phase voltage and
V
DC
is the
input DC
voltage. B
y
rearran
g
ing Equation
(3), the
DC
link voltage can be
obtain
e
d under specific
M
i
as
:
DC
DClink
BV
V
(
4
)
Whe
r
e
V
DClink
is the voltage
across th
e input to the H-bridge
inve
rter.
The effect of
M
i
and
V
DClink
will be
analyzed a
n
d
com
p
ared
with the re
sult of
si
m
u
lation established on t
h
e Matlab/Si
m
u
link and the
result of
expe
rim
e
ntal. In SB
P
W
M
,
a
sho
o
t-t
h
r
o
ug
h
peri
ods a
r
e
ge
nerate
d by
a fe
w p
r
oce
sses [
1
9]
. A
s
a
m
p
l
e
f
o
r
t
h
e
driving schem
e
of SB
PWM
for phase A is derived as show
n in Figure 2. F
i
r
s
t
,
t
h
e
t
w
o c
o
nstant sig
n
als (
u
p
p
e
r
and lowe
r level) are com
p
ared to
the
pe
ak of a triangular carrier si
gnal. Sec
o
nd
,
the carrier signal is
com
p
ared to a
50Hz sinusoi
d
al refe
re
nce
signal as
in conventional PW
M.
Th
ir
d,
th
e pr
odu
ct of
th
e two
com
p
arison
s is loade
d
into th
e logical pr
oce
ss to obtai
n a f
i
nal P
W
M
f
o
r
ZSI fi
ve p
h
ase
.
The P
W
M
signals
are the
n
se
nt t
o
control the
power de
vices
(
I
GBTs) thr
oug
h iso
l
atio
n and
gate d
r
iv
e.
Figu
re
2.
D
r
ivi
n
g
sc
hem
e
Z
S
I
f
i
v
e
phase
fo
r P
h
ase
A
5.
DESIG
N
CO
NSI
D
ER
ATI
O
NS
FO
R KEY CO
MPO
N
ENTS
To
veri
fy the feasibility of th
e t
o
pology, a m
a
xi
m
u
m
2-kW (unde
r
star form
ation) laborat
o
ry
prototype
operated at 1.5k
Hz switching frequency
was buil
t. The si
m
u
lati
on and experim
e
ntal results will be
sho
w
n a
nd
dis
c
usse
d in th
e n
e
xt section
.
T
h
e desig
n
c
onsi
d
eratio
ns
fo
r t
h
e key
c
o
m
p
o
n
ents
fo
r this
r
e
search
will be
discussed i
n
detail as
follows.T
he laboratory
protot
ype for Z
S
I
f
i
v
e
phase used in this st
udy, shown in
Figu
re 3
a
n
d Figu
re 4,
is
c
a
pable
of
p
e
rfo
r
m
in
g
o
p
e
n-
lo
op
op
er
ation
fo
r
five
-
phas
e
resistive
loa
d
wit
h
varia
b
le
M
i
u
p
to a m
a
xim
u
m
of
12
5
Watt/p
h
a
se (m
axim
u
m
of
6
2
5
Watt u
nde
r star f
o
rm
ation)
. Table 2 s
h
o
w
s
the detail
param
e
ters of th
e l
a
bo
rato
ry
p
r
ototy
p
e.
Figu
re
3.
The
labo
rato
ry
p
r
ototy
p
e
of
Z
S
I
f
i
v
e
-
p
hase
for linear load
and LC
filter
Figu
re 4.
C
l
ose
r
view of
the o
f
I
G
B
T
s,
g
a
te dri
v
es
and controller
syste
m
s
2
2.
1
2.
2
2.
3
2.
4
2.
5
2.
6
2.
7
2.
8
2.
9
3
x 1
0
-3
-1
-0
.
5
0
0.
5
1
Time
Si
gn
a
l
s
/
PU
R
e
fe
re
nc
e
s
i
g
n
a
l
, c
a
rri
e
r
s
i
g
n
a
l
, uppe
r a
nd
l
i
ne
s
i
g
n
a
l
s
0
0.
5
1
1.
5
2
2.
5
3
x 1
0
-3
-0
.
2
0
0.
2
0.
4
0.
6
0.
8
1
Tim
e
Z
-
s
o
u
r
ce I
n
v
e
r
t
er
P
W
M
P
W
M
S
i
gn
a
l
:
ga
t
e
1
upp
e
r
l
i
ne
bo
t
t
o
m
l
i
ne
s
h
oot
-
t
hroug
h pe
ri
od
carr
i
er
l
i
n
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
S
SN:
208
8-8
6
9
4
Experime
ntal
S
t
udy
of
SBPW
M
for
Z-
S
ourc
e
I
n
verter Five
Ph
ase (
M
.
S
.
B
aka
r
)
49
T
a
b
l
e
2
.
Z
-
source inve
rter five
phase system
param
e
ters fo
r
the sim
u
lation and
ex
pe
rim
e
n
t
P
a
r
a
m
e
t
er V
a
l
u
e
DC
input voltag
e
(
V
DC
) 40
V
Sa
m
p
ling ti
m
e
1
3
µ
s
e
c
Switching fr
equen
c
y
(
f
s
)
1.
5
k
H
z
Fundam
e
ntal fr
equ
e
ncy
5
0
H
z
Z-source capa
c
itor
(
C
1
&C
2
)(
V
DC
)
1000 uF,
400
V
Z
-
sour
ce inductor
(
L
1
& L
2
) (A
rm
s
)
1000 uH, 10.
6
A
Load capacitance/
phase (
V
AC
)
30 uF,
420
V
L
o
ad inductance/p
h
ase (
A
rm
s
)
5
m
H
,
10
A
Load resistance/phase
25
, 125
Watt
5.
1.
Com
p
onent Selection in Z
-
source
Ne
twor
k
The selectio
n
of
Z-s
o
urce
n
e
two
r
k com
p
onent
(capacitor and induct
o
r
)
in
ZS
I fi
ve
pha
se is
no
t
s
t
r
a
ig
h
t
f
o
rw
ar
d.
T
h
e fu
nd
ame
n
ta
l c
once
p
t that needs to be
conside
r
ed
is that the cap
acitor vol
t
age is
assum
e
d to be
con
s
tant [
2
0]
.
This is
do
ne
by
selecti
ng a
large e
n
o
u
g
h
c
a
pacitor
so t
h
a
t
its ripple
volt
a
ge is
sensible l
o
w
[20].
Once the capacitor
has been deci
ded, the inductor is
selected using a t
r
ial-and-e
r
ror
procedure as its value is related to
that of the capacitor.
A
ccording to the proce
d
ure,
after fulfilling
all the
req
u
irem
ents, the value
of the
induct
o
r ca
n b
e
increm
enta
lly
increased w
h
ile followin
g
the pr
oce
d
ure s
o
as to
m
eet the require
m
ent.
5.
2.
Main contr
o
ller ez
DSP TMS320F28335
A eZ
dsp
TM
T
M
S32
0
F
2
81
2
DSP
was selec
t
ed to ap
ply
th
e cont
rol algorith
m
as it has a 32-bit CPU
per
f
o
r
m
i
ng at
15
0M
Hz
[
2
1]
,
[2
2]
.
A
featu
r
e
o
f
this
target
boa
r
d
is its
ge
neral
p
u
r
p
o
s
e i
n
p
u
t-
o
u
tp
ut (
G
PIO
)
po
rts: GP
IO
A,
B
and C
that
contains
8
8
pins
. These
ports are able to integrat
e wi
th the target support
packa
g
e t
ool
b
ox i
n
M
a
tlab/S
i
m
u
link an
d ea
sily
loaded to
t
h
e target board. In this
stu
d
y
,
the de
velo
pm
ent o
f
SBPW
M
was
perform
e
d in the Matlab/Si
m
u
link platform
and
bee
n
c
o
nnected
to the
specific port of
GPIO
by
setting the
ap
p
r
o
p
riate
pin a
s
s
i
gnm
ent. The
logical alg
o
r
ith
m
has also bee
n
devel
ope
d i
n
the M
a
tlab/Si
m
u
link
platfo
rm
to gai
n
a
final si
gn
al o
f
P
W
M
.
6.
PERFO
R
MA
NCE IN
DI
CA
TOR
In t
h
is resea
r
c
h
, the
f
o
cu
s is
on
the sy
stem
’s pe
rf
o
r
m
a
nce indicato
r
,
whi
c
h ha
s bee
n
de
fine
d as its
per
f
o
r
m
a
nce and
de
sig
n
para
m
e
ters. Per
f
o
r
m
a
nce pa
ram
e
te
r [23] is associated with
the output control
(T
HD
of
o
u
tp
ut v
o
ltage/cu
rre
nt, a
n
d
V
DClink
,
vo
ltag
e
cap
acito
r
an
d
in
du
ctor
cur
r
e
n
t
of
Z-
sour
ce n
e
twor
k)
,
wh
ile
design
param
e
ter is
related to
the input control (
M
i
an
d s
w
itchin
g
fre
que
nc
y
)
.
6.
1.
Perfor
mance Par
a
meter
Total ha
rm
onic disto
r
tion
(
T
HD
) is
ge
neral
l
y
used
to m
easure
dist
ortio
n
fo
r a
n
in
ve
rter
[2
4]
.
In
this
study
, the o
u
t
p
ut cur
r
ent T
H
D of the sy
ste
m
was
m
a
de
t
o
com
p
ly with
EN61
000
-3
-2
stan
d
a
r
d
,
wh
ich
stated
that the m
a
xim
u
m
perm
issible cu
rre
nt o
f
t
h
e
3
rd
ha
rm
onic
is
2.
3 A [2
5]
.
6.
2.
D
e
s
i
g
n
Pa
r
a
me
t
e
r
The
M
i
u
s
e
d
i
n
t
h
i
s
r
e
s
e
a
r
c
h
i
s
i
n
th
e r
a
ng
e
o
f
0
.
56
to 1.
0
(
lin
ear
m
o
d
u
la
tion)
. T
h
e
resu
lts obtaine
d
fr
om
sim
u
lation s
h
o
w
that th
e
m
odulatio
n i
ndices
were
ca
pable of b
oosti
ng
a
n
d
p
r
od
uci
ng v
o
ltage gains
that
are eq
ual to th
at predicted
fr
om
theory
as
m
a
ny
pa
ram
e
ters are set as ideal com
pone
nts in the sim
u
lation
platfo
rm
. Ho
w
e
ver
,
the
v
o
lta
ge
gains
obtained from
the
expe
rim
e
nts are on
ly equal t
o
that
predicted
from
theory when
M
i
in the
ra
ng
e of
0
.
6 t
o
1.
0
is use
d
. Sm
aller
M
i
res
u
lts in bi
g
g
er s
h
oot
-thr
o
u
g
h
peri
o
d
that
causes m
o
re c
u
r
r
ent t
o
flo
w
thr
o
ug
h t
h
e
I
G
B
T
.
Othe
r
fa
ctors
suc
h
as
t
h
e s
o
lde
r
in
g t
echni
que
used
in t
h
e
IGB
T
pr
e-m
o
d
u
le, inter
f
er
en
ce fr
om
the lengt
h o
f
th
e wi
rin
g
sy
stem
am
ong the
pass
ive com
p
o
n
ent
s
an
d
equi
pm
ent noise also affect
the sh
oot
-thr
o
u
g
h
pe
rio
d
,
w
h
ich c
ontri
but
e to the o
v
era
ll interference of the
syste
m
. To stabilize the system
,
the problem
is com
p
en
sated by lim
iting the shoot-
th
r
o
u
gh
pe
rio
d
, w
h
i
c
h can
be ac
hieve
d
by
co
nfi
n
in
g the
r
a
nge
o
f
M
i
is used
.
The relatio
nshi
p betwee
n
M
i
, sho
o
t-t
h
r
o
ug
h duty
ratio
(
D
0
) and volta
ge
gai
n
(
G
) can
be e
x
presse
d as
follows [10]:
i
M
D
1
0
(
5
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN:
2
088
-86
94
IJPE
DS
V
o
l. 6, N
o
. 1,
M
a
rc
h 20
1
5
:
4
5
– 55
50
0
2
1
D
M
G
i
(
6
)
Equ
a
tio
n (5
) sh
ows th
at
D
0
is inversely proportional to
M
i
. Rearranging
Equation (6) results in t
h
e
follo
win
g
e
x
pr
ession
[
1
0]
:
1
2
G
G
M
i
(
7
)
And
V
DClink
can be
determ
ined as:
DC
DClink
V
G
V
)
1
2
(
(
8
)
B
a
sed
on
Eq
ua
tion (
7
) a
nd
(
8
), the
sm
aller the
value
of
M
i
, the bi
gger t
h
e
value
of
V
DClink
achieve
d,
an
d th
e
b
i
gg
er
th
e cur
r
e
n
t
f
l
ows thro
ugh
th
e I
G
B
T
.
7.
RESULTS
A
N
D
DI
SC
US
S
I
ONS
7.
1.
Simula
ti
o
n
Results
To
verify
t
h
e e
ffective
n
ess
of
the to
pol
ogy
,
sim
u
la
tions we
re pe
rf
o
r
m
e
d to vali
date the
con
s
istency
of t
h
e boost fa
ctor,
voltage gain, the lim
i
t
ati
on
of t
h
e ca
pac
itors v
o
ltage st
ress an
d t
h
e in
duct
o
rs c
u
rre
nt rip
p
le
usin
g M
a
tlab/Sim
u
link. T
h
e
sim
u
lation
m
odel
uses the
pa
ram
e
ter as stated in Tabl
e 2, with two levels
five
phase
H-
b
r
id
ge inve
rter that consists o
f
ten (1
0) IG
BTs. The swit
ching fre
quency and the sam
p
l
i
ng
fre
que
ncy
are
f
s
= 1.
5
kHz a
n
d
f
sam
=76 kHz, respectively. T
h
e
M
i
is
0.62,
which results i
n
D
0
= 0.38,
B
=
4.17
and
G
=
2.58. The the
o
retical
peak
outp
ut p
h
ase v
o
ltage t
o
neut
ral is
V
AC
≈
5
1
.
7
V
,
w
h
ile that obtaine
d
fr
om
the sim
u
lat
i
on, shown in Fi
gure
5, is
V
AC(
s
i
m
ulation
)
≈
55.
6
V with
TH
D
= 2.
0%
. Fi
g
u
r
e
6 sh
o
w
s the
out
put
current of
the resistive
load
that is connected in star
form
ati
o
n.
Under steady state condit
i
on, THD =
2% and
the peak m
a
gnitude = 1.96A.Under steady stat
e condition,
the theoretical DC link voltage
V
DClink
≈
166
.
8
V,
while that
obt
ained
fr
om
the sim
u
lation
V
DClink
(
simu
lation
)
≈
15
0
V, as
sh
o
w
n i
n
Fi
gu
re
7. T
h
is
diffe
re
nce is
believed due to the
parasitic effects that cause
in
reducing t
h
e voltage
gain the e
xperim
e
nt.
The steady state condition for the capacitor voltage is
93.6 V,
while the av
erage value of induct
o
r
current
unde
r
steady state is 7.14
A,
as
s
h
ow
n i
n
Fi
gu
re
8.
Th
e ri
pple
capacito
r
volt
a
ge
obtaine
d i
n
this
si
m
u
lation is
0.92%, while the ripple
i
n
d
u
ct
or
cu
rre
nt gain
ed fo
r
t
h
is res
u
lt is
10A, which is
considered
as
h
i
gh
. Th
e r
e
sults ab
ov
e should
b
e
co
nsid
ered
as a
gr
eat ad
v
a
n
t
ag
e for
usin
g ZSI
f
i
v
e
p
h
a
se instead
o
f
th
e
con
v
e
n
tional
fi
ve-
p
hase in
ve
rter sinc
e the
sim
u
la
tion result
nea
r
ly equale
d that of t
h
e the
o
retical val
u
es.
Figu
re 5.
Five
-
pha
se out
put v
o
ltage
at
M
i
=
0.
62
,
V
DC
= 40 V at
f
s
= 1.5
kHz and
sam
p
ling ti
m
e
= 13
µsec with 25
resistiveohm
load
Figu
re
6.
Five
-
pha
se
out
put c
u
r
r
ent at
M
i
= 0.
62
, V
DC
= 40
V at
f
s
=
1.5
kHz and sam
p
l
i
ng tim
e = 13 µsec
with
25 resisti
v
eohm
load
0
0.
02
0.
04
0.
0
6
0.
0
8
0.
1
0.
1
2
0.
1
4
-6
0
-4
0
-2
0
0
20
40
60
Ti
me
Vo
l
t
a
g
e/
V
0
0.
02
0.
04
0.
06
0.
08
0.
1
0.
12
0.
14
-2
.
5
-2
-1
.
5
-1
-0
.
5
0
0.
5
1
1.
5
2
2.
5
Ti
m
e
Cu
r
r
e
n
t
/
A
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
S
SN:
208
8-8
6
9
4
Experime
ntal
S
t
udy
of
SBPW
M
for
Z-
S
ourc
e
I
n
verter Five
Ph
ase (
M
.
S
.
B
aka
r
)
51
Figu
re 7.
Test result
V
dclink
at
M
i
= 0.
62
, V
DC
= 40
V at
f
s
=
1.5
kHz and sam
p
l
i
ng tim
e = 13 µsec
with
25
resistiveohm
load
(a)
(b
)
Figu
re
8.
Sim
u
lation res
u
lts
f
o
r
Z-s
o
urce
net
w
o
r
k
f
o
r
(a
) ca
pacitor
v
o
ltage
, an
d
(
b
) i
n
d
u
ct
or
cu
rre
nt
7.
2.
Experimental Results
R
e
al-tim
e laboratory
prot
oty
p
e is based on eZ
d
s
p
TM
TMS32
0
F281
2DSP.
P
a
r
a
m
e
te
r
s
o
f
t
h
e
Z
-
s
o
u
r
c
e
network, the lo
ad and the five phase H-bridg
e
inverter us
ed in the sim
u
lation were kept
the
sa
m
e
as
in Ta
ble 2.
T
h
e
sam
p
ling
tim
e
used in
t
h
e e
xpe
rim
e
ntal setup
is si
m
ilar to that
applied in t
h
e sim
u
lation environm
ent,
whic
h is 13µsec. The
sam
p
li
ng tim
e was chosen as itm
us
t be at least twice the
highe
s
t analog frequency
com
pone
nts (
1
50
0
H
z s
w
itchi
ng
f
r
eq
ue
ncy
a
n
d
5
0
H
z
fu
n
d
a
m
ental fre
que
n
c
y
)
.
The output vol
tage is
m
e
asured for
the four
phases
in the stead
y
state co
ndition and is as shown i
n
Figure 9. The
fifth phase is
not shown
due
to the lim
it
ed
num
ber of channels availab
l
e on the oscilloscope.
Figure 10 sh
o
w
s the output
voltage and current for Phas
e
A under steady sta
t
e condi
t
i
on. These results ar
e
nearly
the sam
e
as the ones p
r
esente
d
in the sim
u
lation. In order to c
onfir
m
the
shoot-throu
gh period,
which
occurred in each leg of
the fivephase H-
bridge i
nverter
, the PWM
signals during the steady
state are
experi
m
e
nta
l
ly
m
e
a
s
ured in real-
t
i
m
e
,
where the PW
M si
gnals for S1, S2
, S3 and S4
are shown in Fig
u
re 11.
The P
W
M
signals for S5, S
6
,
S7 and S8
are s
hown
in Figure
12
and the P
W
M
signals for S9 and
S10
are s
hown
in Figure 13
.
The shoot-through condition (indicated
in b
l
ack dotted-circle) can be
clearly observed in each leg,
where the PW
M gat
e
s
i
gnals
of each l
e
g are
in
the “ON”
h
i
gh sta
t
e
s
i
m
u
lt
aneously, whi
c
h
m
e
ans tha
t
th
e two
switches of the sam
e
leg are in
the c
onduction state. C
onsequently
, the output of the fivephase H-bridge inv
e
rter
is short-circuited and equal to zero.
Fig.
9 Out
put v
o
ltage fo
r fo
ur
-
pha
se un
der
M
i
= 0.
62
,
with
25 ohm
resistiveload
Figu
re 1
0
. O
u
tput v
o
ltage (C
H1
)
a
n
d out
put
cu
rre
nt
(C
H
4
) f
o
r Ph
as
e
A u
nde
r
M
i
=
0.62 with 25
ohm
load
0.
06
0.
07
0.
08
0.
0
9
0.
1
0.
1
1
0.
12
0.
13
0.
14
0
50
10
0
15
0
Ti
me
V
o
lta
g
e
/V
0.
12
0.
1
2
2
0.
124
0.
126
0.
12
8
0.
13
0.
132
0.
134
0
.
136
0.
138
0.
14
92.
2
92.
4
92.
6
92.
8
93
93.
2
93.
4
93.
6
93.
8
Ti
m
e
V
o
lta
g
e
/V
0.
13
0.
131
0.
132
0.
133
0.
134
0.
135
0.
136
0.
137
0.
13
8
0.
1
3
9
0.
1
4
0
2
4
6
8
10
12
14
Time
C
u
rre
n
t
/
A
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN:
2
088
-86
94
IJPE
DS
V
o
l. 6, N
o
. 1,
M
a
rc
h 20
1
5
:
4
5
– 55
52
Figu
re 1
1
. P
W
M
signals
f
o
r
S
1
(C
H
1
),
S
2
(C
H2
), S3
(C
H
3
) an
d S4
(
C
H4
)
Figu
re 1
2
. P
W
M
signals
f
o
r
S
5
(C
H
1
),
S
6
(C
H2
), S7
(C
H
3
) an
d S8
(
C
H4
)
Figu
re 1
3
. P
W
M
signals
f
o
r
S
9
(C
H
3
) an
d S
1
0
(C
H4
)
In
or
de
r to m
easure t
h
e T
H
D
,
the in
verter
o
u
tput c
u
r
r
e
n
t wa
vef
o
rm
du
rin
g
one
f
u
n
d
am
ental perio
d
is
recorded
using a digital storage os
cilloscope TPS2024B. Figure
14 show
s t
h
e T
HD
for output current
of
pha
se A
fo
r
M
i
= 0.
6
2
wit
h
2
5
ohm
resistive load
. B
a
sed
on t
h
e E
N
6
1
0
0
0
-
3
-2
standa
r
d
u
n
d
er
class D
specification, t
h
e m
a
xi
m
u
m
perm
issible current of 3
rd
harm
onic
is 2.3 A
[25].
T
h
e
data i
n
the
oscilloscope
are
subseque
ntly analyzed
using
a pe
rsonal c
o
m
puter to
determ
ine
the current for the
3
rd
or
der
ha
rm
onic, w
h
ic
h
is fo
un
d t
o
b
e
50m
A.
Hen
ce, this p
r
ove
d that the
res
u
lt fo
r this
re
search
co
m
p
lies with
EN6
1
0
00-
3-2
standa
rd
.
Figu
re 1
4
.
T
H
D out
put
c
u
rre
nt
o
f
p
h
ase A u
nde
r
M
i
=
0.62, with
25
ohm
resistive load
Figure 15 shows the
V
DC
LI
N
K
= 162V under
M
i
= 0.62 with 25 ohm
resistive load co
m
p
ared to 150V
achieved in th
e sim
u
lation, as shown in Figure 7.
There
is a good agre
em
ent b
e
t
w
e
e
n
th
e
s
i
mu
l
a
t
e
d
an
d
expe
rim
e
ntal results as
t
h
e
er
ror
between the two is
7%.
The
m
easured capacitor voltage
an
d in
duct
o
r cu
rre
nt u
nde
r
M
i
= 0.62 wit
h
25 ohm
resistive load is
sho
w
n in Fig
u
r
e
16. C
o
m
p
are
d
to the results
obtaine
d
from
si
m
u
lation, the error in the capacitor
voltage and
the in
duct
o
r
cu
rre
nt is
8%
.
As
sh
ow
n
in
Fig
u
r
e
8(
b)
, the
indu
ctor
cu
rr
en
t r
i
p
p
l
e ob
ta
ine
d
f
r
om
the ex
pe
rim
e
nt
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
S
SN:
208
8-8
6
9
4
Experime
ntal
S
t
udy
of
SBPW
M
for
Z-
S
ourc
e
I
n
verter Five
Ph
ase (
M
.
S
.
B
aka
r
)
53
is 9.2A,
which is nearly sim
i
lar to
that obt
a
ined
from
the si
m
u
lation.
T
h
is is one feat
ure
of
SBPW
M that
pr
o
duces
hi
gh
DC
lin
k
voltag
e
.
Figure 15.
V
DCl
i
nk
un
de
r
M
i
=
0.62 with 25
ohm
resistiveload
(a)
(b
)
Figu
re
1
6
. E
x
p
e
rim
e
ntal results fo
r Z
-
s
o
u
r
ce
netw
or
k:
(a
) i
n
duct
o
r
cu
rre
nt
(C
H
2
),
a
n
d
(
b
)
capacito
r
volt
a
ge
(C
H
3
) f
o
r Ph
as
e
A u
nde
r
M
i
=
0.62
with
25 ohm
load
8.
CO
NCL
USI
O
N
AN
D F
U
T
U
RE W
O
R
K
In
this pape
r,
the per
f
o
r
m
a
nce of
SB
P
W
M
wa
s investigated a
n
d analysed, a
f
ter
whic
h t
h
e
expe
rim
e
ntal results we
re com
p
ared with t
h
at obtain
e
d
f
r
o
m
sim
u
lation.
The
bo
ostin
g
and
b
u
cki
ng m
ode
o
f
ZSI
five
p
h
ase
was
f
o
un
d t
o
ope
rate as
p
r
e
d
icted w
h
e
n
the
m
odulation
in
dex
M
i
is li
m
i
t
e
d t
o
the range of
0.6
to 1.
0.
Als
o
, T
HD
of
the
out
p
u
t cu
rre
nt com
p
lied with
the r
e
qui
rem
e
nts of
EN
61
0
0
0
-
3
-
2
standa
rd
. It is
hig
h
ly
recom
m
ended
that this work
be furt
her studied by investigating the relia
bilit
y of ZSIfive phase
under c
l
ose-
loop cont
rol.
ACKNOWLE
DGE
M
ENTS.
This
wo
r
k
was
fina
nce
d
by
E
xpl
orat
ory
R
e
s
earch
G
r
a
n
t Sc
hem
e
(ER
G
S
)
un
de
r M
i
nistry
o
f
Hig
h
er
Edu
catio
n Malaysia (
M
OHE),
vo
te nu
m
b
er RDU13
060
7.
The author thanks
Univ
e
r
sity Mala
ya’s Power
Ener
gy
Dedica
ted A
d
vance
d
C
e
ntre (
U
M
P
E
DAC
) f
o
r
plac
e
m
ent throughout t
h
e researc
h
tenure
. T
h
e
authors
thank all those
involved.
REFERE
NC
ES
[1]
E Levi
, R Bojoi
,
F Profum
o, HA Toli
y
a
t
,
S William
s
on.
Multip
hase induct
i
on
m
o
tor drives - a technolog
y
st
at
us
review,
El
e
c
t
r
.
Powe
r A
ppl.
IE
T
,
2007; 1(4): 489–
516.
[2]
PC Loh, DM Vilathg
a
muwa, Y
Sen Lai, GT Ch
ua.
Pulse-Width
Modulation
of
Z -Source Inver
t
ers,
IEEE Trans.
Power E
l
ec
tron
,
2005; 20(6): 134
6–1355.
[3]
FZ Peng.
Z-Sour
ce Inv
e
rter,
IEEE Trans. Ind. Ap
pl.
, 2003; 39(2):
504–510.
[4]
VR Rajan, CSA Sekhar, RH
Kum
a
r, M Sasikum
a
r, Com
p
arati
v
e Evalu
a
tion o
f
Generali
zed Multic
ell Im
pedan
c
e
S
ource Inve
rter
f
o
r Drives
,
Int. J.
Power Elec
tron. Drive
Syst.
, 201
4; 4(1): 61–68.
[5]
A Kouzou, H Abu-rub. Multiph
a
se Z-source inv
e
rter using m
a
xi
m
u
m constant boost control,
Archives of Control
Scien
ces
, 2013;
23(1): 107–126.
[6]
F Gao, PC Loh
,
F Blaab
jerg
, R
Teodorescu
.
Mo
dulation S
c
hemes of Multi-phas
e Three-Level Z-
Source Inverters
,
2007 IEEE Power Electron. Spec. Conf
., 2007; 1
905–1911.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN:
2
088
-86
94
IJPE
DS
V
o
l. 6, N
o
. 1,
M
a
rc
h 20
1
5
:
4
5
– 55
54
[7]
AR Ba
ra
ti,
M
Mosle
h
i,
DA K
h
a
buri.
Z-Source Five Leg Inverter
, 4
t
h Powe
r Ele
c
tron
ics,
Drive S
y
st
em
s &
Techno
logies Co
nference (PEDS
T
C2013), 2013
;
2(1): 205–211.
[8]
PA. Dahono, S Member, EG Supriatn
a. Outpu
t
Current
-Ripple
Analy
s
is of Fiv
e
-Phase PWM In
verters,
IEEE Trans.
Ind. App
l
.
, 2009
; 45(6): 2022–20
29.
[9]
MJ Drazen Duji
c,
EL Slobod
an, N Vukosavic.
A General
PW
M
Method for a
(2n + 1)
-L
eg I
nverter
Suppl
y
i
n
g
n
Three-P
h
as
e
M
a
chines
,
IEEE Tr
ans. Ind.
El
ec
troncis
, 2009
; 56(1
0
): 4107–4118.
[10]
S Thangaprak
ash, A Krishnan. Comparative
ev
aluation of
modified pulse wid
t
h modul
ation schemes of Z-source
inverter for
var
i
ous appl
ications
and demands,
I
n
t.
J. Eng
.
S
c
i. Technol.
, 2010; 2(
1): 2005–2008.
[11]
Z Miao, Y Kun,
L Fang Lin.
Top
o
log
y
analy
s
is
o
f
a switched-ind
u
ctor Z-source inverter
,
Industrial Electronics a
n
d
Applica
tions (
I
CIEA)
, 2010; 364
–369.
[12]
Y Tang, S Xie,
C Zhang, Z Xu.
Improved Z-Source Inver
t
er W
i
t
h
Reduced Z-S
o
urce Cap
aci
tor
Voltage S
t
res
s
a
nd
Soft-Start C
a
pab
ilit
y,
I
EEE
T
r
ans. Power
El
ectro
n.
, 2009; 24(2)
:
2005–2008.
[13]
X Ding, C Zhang, Z Qian.
X-s
our
ce inver
t
e
r
:
A gener
i
c Z
-
s
our
ce
inver
t
e
r
s
t
r
u
ctur
e
, 2013 IEEE Energ
y
Conv
ersio
n
Congress and
Ex
position, 2013; 5
341–5348.
[14]
LJ Sumedha Rajakarun
a
. Stead
y-Stat
e Analy
s
is
and Designing I
m
pedance
Network of Z-Source Inverters,
IEEE
Trans. Ind. Electroncis
, 2010; 57
(7): 2483–2491.
[15]
O Ell
a
bban
,
S
M
e
m
b
er, J
Van
M
i
erlo,
and
P
.
L
a
ta
ire.
Voltage M
ode and Current Mode Con
t
rol for a 30 kW
Hig
h
-
Performance Z-
Source Inverter
,
Electrical Power
&
Energ
y
Conf
erence, 2009; Vm.
[16]
V Tran-Quang,
C Tae-Won, HG
Kim,
EC Nho. Minimization o
f
Voltage St
r
e
ss Across Switching Devices in
Th
e
Z
S
I
by
C
a
pa
ci
t
o
r
Vo
l
t
a
ge
C
o
nt
r
o
l
,
J.
Pow
e
r El
ec
t
r
on
, 2009; 9
(
3):
335–342.
[17]
B Nay
a
k, SS Dash, S Kumar. Proposed
Method f
o
r Shoot-Throug
h in Three Phase ZSI and Comparison of Differen
t
Control Techn
i
q
u
es
,
Int.
J. Pow
e
r Electron. Drive Syst.
, 2014; 5(
1): 32–40,.
[18]
M She
n
,
W Jin,
A Jose
ph,
FZ Pe
ng,
LM Tolbe
r
t,
DJ Ada
m
s.
Maximum constant boost contr
o
l of the Z-source
inver
t
e
r
, Industry
Applic
at
ions Conferenc
e
, 39t
h IAS
Annual
Meet
ing. Confer
en
ce Record of th
e
2004 IEEE, 200
4;
1: 147.
[19]
S Thangaprak
ash, A Krishnan.I
m
plem
entation
and Critical
Inv
e
stigation on
Modulation Sch
e
m
e
s of Three Phas
e
Impedance Source Inv
e
rter,
Ir
an.
J.
E
l
ec
tr
.
El
ectr
on. Eng
.
, 2010;
6(2), 84–92
.
[20]
S Miaosen, P Fa
ng Zheng. Oper
ation Modes and
Characteristi
cs of the Z-Source
Inverter
With S
m
all Inductan
ce
or
Low Power Factor,
Ind
.
Electron
. IEEE Trans.
, 2
008 55(1) 89–96
.
[21]
DSPD.
Sy
ste
m
s,
eZdsp TM F283
35 Technical
, 20
07.
[22]
M Mansor, NA
Rahim, Three-Phase
PW
M-Switched Autotransf
orm
e
r Voltage
-S
ag Com
p
ens
a
tor Bas
e
d on P
h
as
e
Angle Anal
ys
is
,
J. Power Ele
c
tro
n
.
, 2011; 11(6)
:
897–903.
[23]
M Abdullah, A
Abu Talib
, N M
ohd Suradi,
A
Mokhtar, N Jamaluddin
,
M Zain
uddin.
K-Chart: Research Planning
and Monitoring
Tool For Engineering and
Technology Ap
plications
, FEII
C Seminar on Engineer
ing and
Techno
log
y
, 200
6.
[24]
H Dani
yal. Inv
e
stigation of Dig
i
tal Curr
ent Cont
rol Base
d on Z
e
ro Average Curr
ent Error Con
c
e
p
t, Th
e Univers
i
t
y
of Western Australia, 2010.
[25]
E
PSMA.
(E
PS
MA).
Harmonic Current Emissions Guidelin
es
to the standard
EN 61000-3-2
Revision
Date
: 2
010-
11-08,
2010
.
BIOGRAP
HI
ES
OF AUTH
ORS
M
o
hd.
Shafie
Bakar
was bor
n in Johor, Mala
y
s
i
a
, in 1972.
His received hi
s Bachelor of
Engineering
in
Electron
ics fro
m Oxford Br
ookes
University
in
1996
and Master
in
Electri
cal
Engin
eering from
Universiti
Tekno
l
ogi
Malay
s
i
a
i
n
2003. Curren
t
l
y
he is doing
PhD with Faculty of El
ectr
i
c
a
l
& Ele
c
troni
cs Engi
neer
ing, Uni
v
ersiti Mal
a
y
s
ia
Pahang. He is
current
l
y
a le
ctu
r
er at S
u
s
t
ainab
l
e Energ
y
&P
ower
Ele
c
troni
cs
(S
uP
ER), F
acult
y
of Elec
tric
al &
Ele
c
troni
cs Eng
i
neer
ing, Univ
e
r
siti Mal
a
ysia
Pahang. His r
e
search
inte
rests
includ
e power
converters, batter
y
mana
gement
s
y
stems and renewable en
erg
y
s
y
stems. Mr Mo
hd Shafie is a
member of IET,
IEM and Bo
ard
of Engin
eer
, Malay
s
ia
Nasr
udin A
bd.
Rahim
(M’89-SM’08) was born in Johor
, Malay
s
ia, in
1960
. He
receiv
ed
his
B.Sc.
(Hons.) and his
M.Sc. degrees fro
m
the Univers
i
t
y
of S
t
rathcl
yde
,
Glas
gow,
U.K., and his
Ph.D. degree in 1995
from
He
riot-Watt University
, Ed
inbur
gh, U.K. He i
s
current
l
y
a
P
r
of
es
s
o
r w
ith th
e
D
e
partm
e
nt of
Ele
c
tri
cal
Eng
i
n
eering
,
U
n
iv
ers
i
t
y
of M
a
la
ya
,
Kuala Lumpur,
Malay
s
ia
and th
e Director of th
e
UM Power Energ
y
Dedicated Ad
vanced C
e
ntr
e
.
Dr. Rah
i
m
is
a
Fellow
of
the
Institu
ti
on
of Eng
i
neer
ing
and
Technolo
g
y
, U.K. and
a
Charter
e
d Engin
eer. He is
als
o
Chairm
an of
the Working Gro
up WG-8, covering reluctance
m
o
tors, of the I
EEE Motor Subcom
m
ittee under IEEE Powe
r Engineering Societ
y
/
El
ectr
i
c
M
achiner
y Co
m
m
ittee. His
r
e
s
earch
inter
e
s
t
s
include powe
r
ele
c
troni
cs
, r
eal-
tim
e contro
l
s
y
s
t
em
s
,
and
e
l
e
c
tri
cal
driv
es
Evaluation Warning : The document was created with Spire.PDF for Python.