Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol.
6, No. 4, Decem
ber
2015, pp. 876~
887
I
S
SN
: 208
8-8
6
9
4
8
76
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Towards More Reliable Renewa
ble Power Systems - Thermal
Perform
a
nce E
v
aluati
on of DC/DC B
oos
t Convert
e
rs
Switching Devices
C. B
a
tunlu,
A.
Alb
a
rb
ar
Engineering
and
Mater
i
als
Research Cen
t
re,
School of
Engin
eering
,
Man
c
hes
t
er Me
tropolitan
University
, Man
c
hester
, UK
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Sep 1, 2015
Rev
i
sed
No
v
20
, 20
15
Accepted Nov 30, 2015
Power electron
i
c converters (PECs) are one of t
h
e most i
m
portant elements
within renewab
l
e power generation s
y
stem
s. T
h
e reli
abil
it
y of
switching
elem
ents of PEC
s
is still be
low e
xpect
a
tions and
i
s
a m
a
jor contr
i
b
u
tor to th
e
downtime of ren
e
wable power g
e
nerati
on s
y
stem
s. Convention
a
l
techno
log
y
based elem
en
ts such as Silicon Insula
ted Gat
e
Bipolar Tr
ansist
ors (IGBTs)
operate as switching components in PE
Cs. Recent topological improvements
have l
e
d to n
e
w devic
e
s ca
lled
Silic
on Carb
ide
(SiC) MOSFET
s
which, a
r
e
also being us
ed
as switching
elements fo
r PECs. This pap
e
r pres
ents detailed
investiga
tions in
to the perform
a
n
ce of
those switching dev
i
ces
with a focus
on t
h
e
i
r rel
i
a
b
i
lity
a
nd t
h
e
r
mal
cha
r
a
c
t
e
ri
sti
c
s.
Na
me
ly
,
t
r
e
n
c
h
gat
e
NPT
,
FS
IGBT topologies and SiC MOSFET are f
i
rstl
y
m
odelled using
3-D m
u
lti-
ph
y
s
ics fin
i
t
e
el
em
ent m
odelling
to gain
cle
a
r un
derstanding of
t
h
eir th
erm
a
l
behaviour
. Subsequently
,
modelling outcomes are verified b
y
u
s
ing those
devices as switching elements in
operation
a
l boost conv
erters.
Th
e
purposel
y
-
d
e
ve
l
oped test
setu
ps are ut
ilised
to cr
iti
ca
ll
y assess the
performances o
f
those switching de
vices under differ
e
nt loading an
d
environmental conditions. In
general, SiC device wa
s found to e
xhibit about
20 °C less in its operating temperatur
e a
nd ther
efore expe
ct
ed t
o
offer m
o
re
reli
able
switch
i
n
g
el
em
ent.
Keyword:
B
oost
C
o
nve
rt
er
d
S
PACE RTI
Th
erm
a
l
Mo
d
e
lling
IGBT
SiC MOSFE
T
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Alh
u
ssein
Al
b
a
rba
r
,
Sch
ool
o
f
E
ngi
neeri
n
g
,
Man
c
h
e
ster M
e
trop
o
litan
Un
iv
ersity,
M
a
nchest
e
r
, M
1
5G
D,
U
K
.
Em
a
il: a.alb
a
rbar@mm
u
.ac.uk
1.
INTRODUCTION
Ins
u
l
a
t
e
d
gat
e
bi
p
o
l
a
r t
r
a
n
si
st
ors
(I
GB
Ts) a
r
e one
of t
h
e m
o
st
com
m
onl
y
use
d
swi
t
c
hi
ng
el
em
ent
s
of
po
we
r el
ect
ron
i
c conve
rt
ers (
P
EC
s) i
n
va
ri
o
u
s ap
pl
i
cat
i
ons
such as m
o
t
o
r dri
v
es [
1
]
,
t
r
a
c
t
i
on [
2
]
,
UPS
[3]
,
hybrid [4] and re
newa
ble powe
r system
s
[5]. T
h
anks
to recent de
velopm
ents, ope
rating
voltage
of thi
s
silico
n
,
Si,
stru
ctured
d
e
v
i
ce is u
p
t
o
6
.
5
kV with sw
itch
i
n
g
frequ
ency ran
g
e
1-100
kHz [6
]. As it is well
d
e
fi
n
e
d
i
n
literatu
re
[7
],
d
u
ring
op
eratio
n, switch
i
ng
an
d
co
ndu
ctio
n lo
sses with
in
t
h
ese d
e
v
i
ces are the
m
a
jor
co
n
t
ribu
to
r
of th
e te
m
p
eratu
r
e
flu
c
tu
ations. Th
erm
a
l str
e
ss o
c
cu
rs
d
u
e to
th
ese lo
sses wh
ich
lead
ing
to
deg
r
a
d
at
i
on a
n
d eve
n
t
u
al
fai
l
ures
. Esp
eci
al
l
y
, IGB
T
c
h
i
p
t
h
i
c
k
n
ess re
d
u
c
t
i
on p
r
oce
ss f
o
r im
pro
v
i
n
g dy
nam
i
c
electrical properties cause
d
higher therm
a
l resistances
.
To
over
co
me
t
h
e
s
e
ch
a
lle
ng
es
,
th
e r
e
c
e
n
t
tren
d
is
movi
ng
t
o
ward
s d
i
fferen
t
tech
no
log
i
es su
ch
as tran
si
sto
r
s b
u
ilt fro
m
Silico
n
Carb
ide (SiC) and
Galiu
m
Ni
t
r
i
d
e (
G
aN
)
[8]
,
[9]
.
P
h
y
s
i
cal
m
a
t
e
ri
al
speci
fi
cat
i
on di
f
f
e
r
ences am
ong t
h
ese t
ech
nol
og
i
e
s and t
h
ei
r s
u
peri
or
properties ca
n
be see
n
i
n
Ta
ble 1. Rece
nt st
udies
ar
e ta
king
place for fa
bricati
on of high perform
a
nce
SiC
MOSFET
whi
c
h
reduces
power losses
es
pecially at high
carri
e
r
fre
que
nci
e
s
[
1
0]
. An
al
y
t
i
cal
form
ulat
i
on o
f
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Towards
M
o
re
Reliable
Rene
wable P
o
wer
Systems-T
h
er
m
a
l Perfor
mance
Evaluation
of
....
(
C
. B
a
tunlu)
87
7
in
j
ection
cap
a
bilit
y o
f
SiC
d
e
v
i
ce h
a
s b
e
en
p
r
op
o
s
ed
b
y
Lee and
Hu
an
g
[1
1
]
.
Deg
r
ad
atio
n
ch
aracterist
i
cs an
d
f
eatu
r
es of
SiC d
e
v
i
ces
h
a
ve b
een
p
r
esented
in
[1
2
]-[13
]
.
I
t
h
a
s
b
e
en
inv
e
stig
ated th
at SiC str
u
ctu
r
ed
tran
sistors
can
b
e
o
p
e
rated
at h
i
gh
er
switc
h
i
n
g
and
tem
p
eratu
r
e cap
acities [1
4
]-[15
].
Table
1: Physical characte
r
istic diffe
re
n
ces a
m
ong sem
i
conduct
o
r t
echnol
ogies
[14]-[16]
Properties Si
GaAs
GaN
4H-SiC
6H-SiC
Unit
Crystal Stru
cture
Diam
ond Z
i
ncblende
Hexa
gonal Hexagonal
Hexagonal
-
Bandgap (
E
G
)
1.
10
1.
43
3.
5
3.
26
3
eV
Electron Mobility
(
μ
n
)
1400
8500
1250
900
380
cm
2
/V
s
Hole Mobility
(
μ
p
)
600
400
200
100
80
cm
2
/V
s
Dielectr
i
c Consta
nt (
ε
S
)
11.
8
12.
8
9.
5
10.
1
9.
66
-
Sa
tura
tio
n
Dri
ft
Velo
city
(
v
s
)
1x10
7
2 x10
7
2.
7
x10
7
2.
7x10
7
2 x10
7
cm
/
s
Break
d
ow
n Field
(
E
B
)
0.
3x10
6
0.
4
x10
6
3
x10
6
3
x10
6
3
x10
6
V
/
cm
Ther
m
a
l
Conduc
t
i
vity (
k
)
1.
5 0.
5
1.
3
4.
9
4.
9
W
/
c
m
°
C
Melting Point
1420
1283
2500
2830
2830
°
C
Co
nv
en
tio
n
a
l
IGBTs can
b
e
o
p
e
rated at h
i
g
h
e
r cu
rren
t den
s
ities with lo
wer
frequ
en
cy wh
ile t
h
e
M
O
SFET
s
ha
ve bet
t
e
r ef
fi
ci
ency
at
hi
gher
ope
rat
i
n
g
freq
u
e
n
ci
es ove
r 1
0
0
k
H
z
.
In c
ontrast, recently
d
e
v
e
l
o
p
e
d
SiC
MOSFETs
h
a
v
e
m
u
ch
s
m
al
ler ch
ann
e
l mo
b
ility co
m
p
ared
to
conv
en
ti
o
n
a
l on
es
[17
]
-[
18]
whic
h re
flects increase i
n
tot
a
l cost. On the
othe
r ha
nd
, the th
erm
a
l co
n
d
u
c
tiv
ity o
f
SiC
is
m
u
ch
h
i
g
h
e
r than
th
at for silico
n
[18
]
, so
d
i
ssip
a
ted
h
eat can
easily b
e
rem
o
v
e
d
fro
m
th
e d
e
vice. Reg
a
rd
less p
r
o
m
isin
g
m
a
t
e
rial
p
r
op
erties of SiC, Si d
e
v
i
ces can
still b
e
m
o
re reliab
l
e and
eco
no
m
i
call
y
e
fficien
t b
a
sed
o
n
the curren
t
ratin
g
and
swi
t
c
hi
n
g
fre
que
ncy
of a
speci
fi
c a
ppl
i
c
at
i
on
[1
9]
. T
o
p
o
l
o
gi
cal
p
h
y
s
i
cal
di
ffe
re
nces
am
ong
Si
I
G
B
T
an
d
SiC Planar and Tre
n
ch
Gate
MOSFETs ca
n be see
n
in
Table 2.
In a
n
effo
rt to
overcom
e
downsides of
co
nv
en
tio
n
a
l
plan
ar
g
a
te
I
G
BT tech
no
log
i
es, su
ch
as n
e
g
a
tiv
e tem
p
er
atu
r
e co
ef
f
i
cient o
f
Pu
n
c
h
-
Thr
ough
(PT
)
an
d i
n
cre
a
sed co
n
duct
i
o
n l
o
sses
,
d
u
e t
o
t
h
e t
h
i
c
ke
r s
ubst
r
at
e of
No
n-P
u
nc
h Th
ro
ug
h (
N
PT
) de
vi
ce
s
,
t
r
enc
h
gat
e
t
echn
o
l
o
gy
has be
en de
vel
o
ped [
20]
,
[
2
1
]
.
R
e
d
u
ced di
am
et
er of t
h
e gat
e
pr
ov
i
d
es enha
ncem
ent
of
charge i
n
je
ction,
reduce
d t
a
il curr
en
t
at
tu
rn
o
f
f, as
well as red
u
c
ed cond
u
c
tion
an
d switch
i
ng
lo
sses
[2
2]
,[
2
3
]
.
Si
n
ce t
h
e vol
t
a
g
e
dr
op
ove
r t
h
e chan
nel
i
s
i
nve
rsl
y
pr
o
p
o
r
t
i
onal
t
o
t
h
e
chan
nel
wi
dt
h an
d
p
r
op
ortio
n
a
l t
o
th
e leng
t
h
o
f
th
e ch
ann
e
l, l
o
wer cond
u
c
tion
losses
were
ach
iv
ed
b
y
sho
r
ten
i
ng
th
e ch
ann
e
l
[2
4]
. F
o
r
i
n
st
a
n
ce, t
r
enc
h
ga
t
e
devi
ces c
a
n
pr
o
v
i
d
e a
r
ou
nd
3
0
%
p
o
we
r di
ssi
pat
i
o
n d
e
duct
i
o
n
f
o
r
6
0
0
V
IGBTs, typ
i
cally o
p
timized
at 2
0
kHz switch
i
ng
fr
eq
u
e
ncy, in
D
C
-
t
o-A
C
inv
e
rter ap
p
lication
s
[
2
5]
,[
26]
.
Furt
her i
m
pro
v
em
ent
s
were achi
e
ve
d by
a fi
el
d st
op
(FS
)
regi
o
n
w
h
i
c
h
i
s
adde
d t
o
t
h
i
n
-
w
afe
r
NP
T devi
ce
.
This layer stops the electric
field an
d
allows
h
i
gh
breakd
own
vo
ltag
e
th
ro
ugh
th
inn
e
r wafer. It resu
lts in
faster switch
i
ng
cap
a
b
ilities,
h
i
gh
er curren
t
d
e
nsity, as
wel
l
as lower
saturatio
n co
llector to em
i
tter v
o
ltag
e
an
d
4
0
% redu
ctio
n
in
th
e cond
u
c
tion
lo
sses. Mu
lti tren
ch
NPT an
d
FS based
IGBTs can
b
e
seen
in
Fig
u
re 1.
In literatu
re, electro
t
h
erm
a
l p
h
y
sics-b
ased mo
d
e
l
fo
r t
h
e FS was
d
e
v
e
lop
e
d
b
y
Kang
et al
. [25
]
.
Tab
l
e
2
.
Si IGBT and
SiC M
O
SFET technolo
g
i
es
Materi
al
Silicon
SiC
SiC
Physical
Structure
T
echnology
I
G
BT
M
O
SFE
T
Gate
Trench
Planar
Trench
Pract
i
cal
st
udi
es pr
op
ose
d
b
y
Forsy
t
h et
al
. [2
6]
t
o
para
m
e
t
e
ri
se a phy
si
cal
IGB
T
m
odel
,
f
o
r t
h
ree
gene
rat
i
o
ns of
IGB
T
, usi
n
g d
o
u
b
l
e
-
p
ul
se
s
w
i
t
c
hi
ng
t
e
st
,
at
t
e
m
p
erat
ures
e
x
t
e
n
d
i
n
g d
o
w
n
t
o
5
0
°
K
..
Ef
fe
ct
of
diffe
re
nt pa
rasi
tic circuit characteristics of
NPT and FS t
o
p
o
l
o
gi
es ha
ve al
so
been
p
r
ese
n
t
e
d by
B
a
kra
n
et
al
.
[27
]
. M
o
re IGBT cells are u
s
ed
with
t
h
inn
e
r silicon
for even
l
o
wer
o
n
-st
a
te vo
ltag
e
and
im
p
r
ov
ed switch
i
n
g
characte
r
istics. Higher s
w
itching s
p
ee
d leadi
ng t
o
lo
wer s
w
i
t
c
hi
ng l
o
sses
but
ca
uses EM
I w
h
i
l
s
t
keepi
n
g t
h
e
tu
rn
on
l
o
sses lo
w du
e t
o
g
r
adu
a
l chang
e
in vo
lta
g
e
with
resp
ect to
cu
rren
t
[2
8
]
.
Th
erm
a
l
p
r
ofile
im
pro
v
em
ent
and
m
oni
t
o
ri
n
g
i
s
one
esse
nt
i
a
l
reas
on
o
f
t
ech
nol
ogi
cal
i
m
provem
e
nt
s. C
o
m
p
ari
s
on
of
j
u
nct
i
o
n
te
m
p
eratu
r
e evalu
a
tio
n
s
in IGBT m
o
du
les [2
9
]
,[30
]
as
well as t
h
e measu
r
em
en
t and
m
o
d
e
llin
g of
p
o
wer
S
i
C Drift
L
a
y
e
r
S
i
C Drift
L
a
y
e
r
SiC
Sub
SiC
Sub
Si
D
r
if
t
L
a
y
e
r
Trench
Trench
Gat
e
Gat
e
Gat
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6
,
No
.
4
,
D
ecem
b
er
2
015
:
87
6 – 887
87
8
electronic
de
vices at cryogenic te
m
p
erature
s
ha
ve be
en
s
t
udi
ed
i
n
[3
1]
.
C
h
aract
eri
zat
i
on
o
f
hi
gh
-
vol
t
a
ge
IGB
T
m
odul
e
degra
d
at
i
o
ns
un
de
r P
W
M
p
o
we
r cy
cl
i
ng t
e
st
at hi
gh a
m
bi
ent
t
e
m
p
erat
ure has al
so
been
assessed i
n
[
3
2]
. Yet
,
n
o
ri
go
r
ous i
n
vest
i
g
at
i
on
has
bee
n
carrie
d
out to assess the effects of design a
nd
con
s
t
r
uct
i
o
n t
e
chni
que
s
on
t
h
erm
a
l
behavi
o
u
r
u
n
d
er
di
f
f
er
ent
o
p
e
r
at
i
n
g
a
n
d
en
vi
r
o
nm
ent
a
l
con
d
i
t
i
ons
.
Figu
re 1.
(a
)
T
r
enc
h
NPT
(
b
)
FS within Tre
n
ch IGBT
In
th
is
wo
rk
,
th
erm
a
l ch
aracteristics o
f
tren
ch
gat
e
I
G
B
T
s and
rece
nt
l
y
devel
o
pe
d Si
C
base
d
MOSFET
were co
m
p
ared
und
er
d
i
fferen
t
op
erating
an
d
en
v
i
ron
m
en
tal c
o
nd
itio
ns. In
Sectio
n
2, exp
e
ri
m
e
n
t
al
set
up a
nd
real
t
i
m
e
t
e
m
p
erat
ure
m
oni
t
o
ri
ng
p
r
o
g
re
ss o
f
DC/
D
C Boo
s
t conv
erters, in
teg
r
atio
n
with
i
n
dSPACE
syste
m
are de
m
onstrated. Electro therm
a
l
m
odel of sa
m
p
l
e
Si
IGB
T
and Si
C
M
O
SFE
T devi
ces are
descri
be
d
in
Si
m
u
lin
k
and
3D FE an
aly
s
is in
Sectio
n
3. Th
e resu
l
t
s
ar
e prese
n
t
e
d i
n
Sect
i
on
4, w
h
e
r
e t
h
erm
a
l
behavi
o
u
r
com
p
ari
s
on
of
st
at
ed t
echn
o
l
ogi
es i
s
sh
o
w
n
wi
t
h
i
n
di
f
f
ere
n
t
en
vi
r
o
n
m
ent
a
l
condi
t
i
ons
. C
o
ncl
u
si
ons a
r
e
depi
ct
ed
i
n
fi
n
a
l
sect
i
on.
2.
BOOST CONVERTER
DE
SIGN
A
N
D
T
H
ER
MAL
A
NAL
YSI
S
DC-DC conve
rters are
widel
y
used in a
num
ber of
applications, s
u
c
h
as
power
factor
correction
[3
3]
, fuel
cel
l
[34]
ap
pl
i
cat
i
o
n
s
,
m
a
xim
u
m
p
o
we
r p
o
i
n
t
t
r
a
c
ki
n
g
of s
o
l
a
r
and
wi
n
d
ener
gy
sy
st
em
s [35
]
,[
36]
.
Fi
gu
re 2
s
h
ows
schem
a
t
i
c
of DC
/
D
C
bo
ost
con
v
e
r
t
e
r.
Fig
u
re
2
.
Boo
s
t Co
nv
erter
with
SiC M
O
SFET
Tw
o t
r
e
n
ch
ga
t
e
Si
NPT a
n
d FS
I
G
B
T
s a
nd a
Si
C
base
d M
O
SFET
se
m
i
cond
uct
o
r d
e
vi
ces wa
s
selected. The c
h
aracteristics
of select
ed com
p
one
n
ts are s
h
own in Ta
ble 3.
Three boost conve
r
ters were
built
by
usi
n
g t
h
ese
devi
ces
al
o
n
g
wi
t
h
i
d
e
n
t
i
cal
bl
oc
ki
n
g
a
n
d
st
ori
n
g
el
em
ent
s
f
o
r t
h
erm
a
l
com
p
ari
s
on
pu
r
p
ose.
E
m
i
tte
r Ga
te
E
m
i
tte
r Ga
te
C
o
llect
o
r
C
o
llect
o
r
(a)
(b)
Load,R
C
out
C
in
Po
w
e
r Diode
, D
Iron Core Indcutor, L
V
in
V
out
SiC
M
O
SFET
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Towards
M
o
re
Reliable
Rene
wable P
o
wer
Systems-T
h
er
m
a
l Perfor
mance
Evaluation
of
....
(
C
. B
a
tunlu)
87
9
Tabl
e
3.
Si
I
G
B
T
s an
d
Si
C
M
O
SFET
s
p
ec
i
f
i
cat
i
ons
IGBT (1
)
IGBT (2
)
MOSF
ET
Un
it
NPT-Si
-T
rench FS-Si-
T
rench
SiC-Planar
-
Cost: 1.
00
Cost: 1.
19
Cost: 11.
52
£
V
CE
s
: 600
V
CE
s
: 600
V
DSs
: 1200
V
I
C
(
T
=
25C
)
: 25
I
C
(
T
=
25C
)
: 20
I
D
(
T=
2
5
C
)
:
24
A
I
C
(
T
=
10
0C
)
: 15
I
C
(
T
=
10
0C
)
: 10
I
D
(
T
=
1
00C
)
: 10
A
C
ies
:1950
C
ies
: 551
C
iis
: 667
pF
C
oes
: 70
C
oes
: 40
C
os
s
: 27
pF
C
res
: 42
C
res
: 17
C
rs
s
: 5
pF
Q
g
: 88
Q
g
: 62
Q
g
: 36
nC
t
d
(
on
)
(
T=
2
5
C
)
: 65
t
d
(
on
)
(
T=
2
5
C
)
: 12
t
d
(
on
)
(
T=
2
5
C
)
:19 ns
t
r
: 28
t
r
: 8
t
r
: 19
ns
t
d
(
of
f
)
: 170
t
d
(
of
f
)
: 215
t
d
(
of
f
)
: 47
ns
t
f
: 140
t
f
:38
t
f
: 29
ns
E
on
(
T
=
25C
)
: 0.
55
E
on
(
T
=
25C
)
: 0.
16
E
on
(
T
=
25C
)
: 0.
05
7
m
J
E
off
(
T=
2
5
C
)
: 0.
35
E
off
(
T=
2
5
C
)
: 0.
27
E
off
(
T=
2
5
C
)
: 0.
02
m
J
P
lo
ss
(
T
=
25C
)
: 11
7
P
lo
ss
(
T
=
25C
)
: 11
0
P
lo
ss
(
T
=
25C
)
: 1
08
W
W
i
de ra
nge of load power cy
cling as well as diffe
rent am
bient te
m
p
erature and s
w
itching fre
quency
charact
e
r
i
s
t
i
c
s have
been a
p
p
l
i
e
d for i
n
vest
i
g
at
i
ng t
h
e
r
m
a
l beha
vi
o
u
r a
n
d
effi
ci
ency
of t
h
ese de
vi
ces and t
o
veri
fy
t
h
e
p
r
o
pos
ed
Fi
ni
t
e
E
l
em
ent
M
odel
l
i
n
g
(F
EM
) a
p
pr
oac
h
base
d
on
real
p
o
w
er
l
o
ss
dat
a
p
r
o
cesse
d
through
dSPACE Real Tim
e
Interf
ace
(RTI). T
h
e e
x
perimental test rig is
shown in Fi
gure 3(a).
Fi
gu
re
3.
(a
) E
xpe
ri
m
e
nt
al
set-u
p
,
(
b
)
B
o
ost
con
v
e
r
t
e
rs i
n
t
e
m
p
erat
ur
e c
o
nt
r
o
l
l
e
d c
h
am
ber (
T
C
C
)
Converte
r Para
m
e
ter specifications are list
e
d in Ta
bl
e 4. A
n
iron
-
c
o
r
e typ
e
in
du
ctor
w
a
s used
t
o
decrease
sat
u
ra
t
i
on
of c
u
rre
nt
fl
o
w
.
A
fast
r
ecove
ry
di
o
d
e
was
use
d
f
o
r
S
i
and
Si
C
base
d
bo
ost
c
o
n
v
e
r
t
e
r t
o
li
mit
th
e co
m
p
arison
criteria o
n
l
y for switch
i
ng
d
e
v
i
ces. Swi
t
c
hi
n
g
f
r
eq
uenci
e
s
bet
w
e
e
n 5 t
o
1
5
0
k
H
z wa
s
applied i
n
sepa
rate test conditions
whe
r
e
dut
y cycle was
always set as 50 %. Boost converters we
re
placed
i
n
h
eatin
g un
it as
sh
own
in Fi
g
u
re 3(
b)
.
Table 4.
B
o
ost Converte
r para
meter
specifica
tions
Ele
m
en
t
V
in
I
G
BT
s
M
O
SFE
T
Diode
S.
Freq.
Duty
I
nductor
,
L
C
in
,
C
ou
t
Values
5-
70 V
600/1
5
A
1200/
15A
300/2
0
A
5-
150 kHz
50%
1
m
H
82
μ
F/450V
The gate si
gnal
s
for each
IGB
T
s and MOSFET were
ge
nerated using
dSPACE real tim
e
syste
m
with
DS5
101
d
i
g
ital to
an
alogu
e
co
nv
erter
card. Due t
o
the c
r
i
tical gate requ
ir
em
en
ts, H
C
PL 45
03
o
p
t
co
up
ler
w
a
s
u
s
ed
to isolate lo
w
po
w
e
r sw
itch
i
n
g
signal an
d TD
351
IG
BT/MO
S
FET dr
iv
er
w
a
s ad
op
ted fo
r su
pp
lyin
g
efficien
t g
a
te sig
n
a
l po
wer.
Hall-effect b
a
sed
ACS7
12
lin
ear cu
rren
t sen
s
o
r
s
were used
to
m
o
n
ito
r co
llecto
r
current, I
c
, an
d to
in
ser
t
power
lo
ss m
o
d
e
l in
RTI
thr
ough
DS200
4A
DC as w
e
ll as th
e co
llector
to e
m
it
ter
vol
t
a
ge
, V
ce
. T
o
t
a
l
ener
gy
l
o
s
s
es are de
fi
ne
d
as fu
nct
i
on
of
I
ce
, V
ce
a
n
d de
vi
ce t
e
m
p
erat
u
r
e i
n
l
o
ok
up t
a
bl
es.
To
pro
d
u
ce real ti
me p
o
w
er loss p
r
ofile, switch
i
ng
lo
sse
s a
r
e t
r
i
gge
red i
n
n
a
no
seco
n
d
s d
u
r
i
n
g cu
rre
nt
/
v
o
l
t
a
ge
switch
i
ng
pro
c
ess an
d
are m
u
ltip
lied
b
y
th
e switch
i
ng
frequ
e
n
c
y. Si
n
ce po
wer lo
ss
o
ccurred
on
d
e
v
i
ce u
nder
test is highly depend on the operation tem
p
e
r
ature
,
analytical loss calculations
s
h
ow significant inaccuracies
[37
]
. By u
s
ing
real ti
m
e
lo
ss p
r
o
f
ile, accu
r
acy o
f
th
e electro
th
erm
a
l
m
o
d
e
l was i
m
p
r
oved
in
th
is pap
e
r. Heat
gene
rat
i
o
n of f
r
eew
heel
i
n
g di
ode
s
i
s
negl
i
g
i
b
l
e
[
3
8]
t
h
ere
f
ore
,
t
h
ey
were
not
c
o
nsi
d
e
r
ed
i
n
t
h
i
s
st
udy
.
(a)
(b)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6
,
No
.
4
,
D
ecem
b
er
2
015
:
87
6 – 887
88
0
Fi
gu
re
4.
F
o
st
er t
h
e
r
m
a
l
net
w
o
r
k
To
tal p
o
wer l
o
sses were integ
r
ated
as inp
u
t
fo
r th
ermal
m
o
d
e
l b
l
o
c
k
.
In
th
is b
l
ock
,
th
erm
a
l
resistance,
R
th
and ca
pacitanc
e,
C
th,
for each individual of
Fo
ster e
qui
valent therm
a
l network, see Figure 4,
were ext
r
acted by curve fitting using
least squa
re m
e
thod. Im
pl
em
entation of real tim
e
therm
a
l
m
onitoring in
DSP
A
C
E
i
s
sh
ow
n i
n
Fi
gu
re
5.
The
eq
ui
val
e
nce
of
F
o
st
er
t
h
erm
a
l
net
w
o
r
k i
s
defi
ned
i
n
eqn
.
1 as:
)
(
1/
1/Cth
)
(
1
s
P
s
s
T
n
N
k
n
n
m
(1)
whe
r
e
P
is the in
itial h
eat so
urce.
Tem
p
eratu
r
e,
T
,
of ea
ch layer
was
represe
n
ted for heating s
o
urc
e
. By
ap
p
l
ying
F
o
r
w
ard R
ect
angul
a
r
Eul
e
r’s
rul
e
, t
h
erm
a
l
equat
i
on i
n
z-do
m
a
in
is:
1
1
1
1
z
C
R
T
z
C
P
T
th
th
th
i
(2)
Fi
gu
re
5.
R
eal
Tim
e
I
m
pl
em
ent
a
t
i
on
o
f
El
ec
t
r
o t
h
erm
a
l
M
odel
i
n
dS
PAC
E
3.
FINITE ELE
MENT
MODELLING
Fi
ni
t
e
el
em
ent
m
odel
of t
h
e bot
h Si
IGB
T
and Si
C
M
O
S
F
ET ha
ve bee
n
com
p
l
e
t
e
d in a com
p
act
therm
a
l
m
odelling a
p
proac
h
. Howe
ver
for increasi
ng t
h
e accuracy, re
corde
d
power
loss
data by RTI
of
electro
th
erm
a
l ex
p
e
rim
e
n
t
d
e
fin
e
d
ab
ov
e
was
d
i
rectly
ap
p
lied to
t
h
e silico
n
d
i
e ch
ip o
f
th
e
IGBTs in
FE
anal
y
s
i
s
. Heat
di
st
ri
b
u
t
i
o
n
t
h
r
o
u
g
h
eac
h m
a
teri
al
was
ge
ner
a
t
e
d u
s
i
n
g E
q
n
.
3:
t
T
k
c
k
q
z
T
y
T
x
T
.
2
2
2
2
2
2
(
3
)
whe
r
e
T
is t
h
e
te
m
p
erature
,
k
is th
e th
erm
a
l co
ndu
ctiv
ity,
c
is specific
hea
t
capacity,
ρ
is th
e d
e
n
s
ity and
q
is
th
e r
a
te
o
f
gener
a
tio
n of
en
erg
y
p
e
r
un
it vo
lu
m
e
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Towards
M
o
re
Reliable
Rene
wable P
o
wer
Systems-T
h
er
m
a
l Perfor
mance
Evaluation
of
....
(
C
. B
a
tunlu)
88
1
Figu
re
6.
(a
) T
O
-
2
2
0
(left)
an
d T
O
-
2
47
(
r
ig
h
t
) Pac
k
ages
,
(b
)
Vi
e
w
of
FE
m
odel
for
T
O
-
2
4
7
As s
h
o
w
n i
n
Fi
gu
re
6(a
)
, T
O
2
20
pac
k
a
g
e co
nst
r
uct
e
d
fo
r
I
G
B
T
s i
s
di
ffe
r
e
nt
t
h
a
n
t
h
e T
O
2
4
7
f
o
r
Si
C
M
O
SFET
i
n
t
e
rm
s of di
m
e
nsi
ons
. C
h
i
p
si
ze
of
M
O
S
F
ET i
s
alm
o
st
t
w
o t
i
m
e
s great
er c
o
m
p
ared t
o
bot
h FS
and
N
P
T IGB
T
s
w
h
e
r
e
F
S
o
n
e’s
i
s
hal
f
of
NPT
’
s.
M
e
s
h
vi
ew o
f
m
odel
can be
see
n
i
n
Fi
gu
re 6(
b
)
.
T
h
e
t
o
t
a
l
num
ber of tetrahedral elem
e
n
ts was
57082. Mesh re
fi
ne
ment was com
p
le
ted by the scale factor
of two
especially for
the s
o
lder layers.
Tem
p
erature de
pende
d
m
a
t
e
ri
al
pr
o
poe
r
t
i
e
s, are
pres
e
n
t
e
d i
n
Ta
bl
e
5, a
r
e
d
e
fi
n
e
d
as
d
yna
m
i
c arg
u
m
en
t
s
w
h
ere fo
r coo
lin
g
b
oun
dary co
n
d
ition
,
the n
a
tu
ral convectio
n
,
h
, in
m
o
d
e
l
was assi
gned a
s
5
W/m
2
K
.
Table
5. Material Properties
Laye
r
Phy
s
ical Pr
oper
ties at 25 °
C
p (
k
g/m
3
) k(
W
/
m
K
)
c(
J
/
(
k
gK)
T0220 Silicon Chi
p
2330
153
703
T
0247 SiC Chip
3216
490
690
Copper
8850
398
380
Gold 1930
0
318
129
PL
CC 900
0.
2
1700
Steel Allo
y
7850
54
477
M
i
ca 2883
0.
71
500
Alu
m
iniu
m
3010
180
741
Grease
-
2
-
4.
RESULT AND DIS
C
USSI
ONS
4.
1.
Thermal me
as
urement and
RTI m
o
del
ve
rification
Th
erm
a
l
m
o
d
e
l was b
u
ilt u
pon
op
erating
switch
i
n
g
elem
en
ts in
co
n
tinu
ous co
ndu
ctio
n
m
o
d
e
with
a
con
s
t
a
nt
gat
e
vol
t
a
ge
. De
vi
ce t
e
m
p
erat
ures
had bee
n
m
o
ni
t
o
re
d by
t
h
e
r
m
a
l im
agi
ng and rec
o
rde
d
i
n
5
seco
nds
i
n
t
e
r
v
al
s. B
a
sed
o
n
obt
ai
ne
d t
r
ansi
ent
t
e
m
p
erat
ur
e pr
o
f
i
l
e
, t
h
er
m
a
l
im
pedance fo
r eac
h c
o
m
ponent
have
bee
n
i
n
t
e
r
pol
at
ed
as i
n
e
q
n
.
2 a
n
d
s
h
o
w
n i
n
Ta
bl
e 6
.
Tabl
e
6. T
h
e
r
m
a
l
im
pedance
cha
r
act
eri
s
t
i
c
s
Ther
m
a
l
Capacitan
ces
Therm
a
l Resistanc
e
s
D
e
vi
c
e
LU
T
C
th
,1
C
th
,2
C
th
,3
R
th
,1
R
th
,2
R
th
,3
FS 0.
22
0.
02
0.
0013
0.
2911
0.
409
0.
5008
NPT 0.
28
0.
018
0.
0014
0.
2911
0.
4
0.
5019
SiC
M
O
SFE
T
0.
51
0.
050
0.
002
0.
153
0.
14
0.
4003
Device FE
FS 0.
2
0.
0118
0.
0016
0.
28
0.
481
0.
509
NPT 0.
21
0.
022
0.
0016
0.
27
0.
401
0.
505
SiC M
O
SFE
T
0.
53
0.
06
0.
0023
0.
149
0.
16
0.
412
SiC MOSFET
has double therm
a
l capacita
nce and
hal
f
o
f
resi
st
ance o
f
bot
h FS a
nd
NPT I
G
B
T
s
wh
ich
lead
i
n
g
to
lower th
erm
a
l flu
c
tu
ation
s
an
d am
p
lit
u
d
e
. Figu
r
e
7(
a) sho
w
s th
er
m
a
l i
m
ag
es of
co
nver
t
er
s
at
25°C
am
bi
ent
t
e
m
p
erat
ure
whe
n
i
n
put
vol
t
a
ge of
bo
ost
c
o
n
v
e
r
t
e
r i
s
5V
,
swi
t
c
hi
n
g
fre
q
u
ency
i
s
2
0
k
H
z and
current passe
s each device
is 0.5A.
(b)
(a)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6
,
No
.
4
,
D
ecem
b
er
2
015
:
87
6 – 887
88
2
Fig
u
re
7
.
a) B
o
o
s
t Conv
erters
in
h
eating
un
it,
(b)
NPT
IGBT
and
(c)
SiC MOSFE
T T
h
erm
a
l FE m
odels
FE
m
odel
sol
u
t
i
ons o
f
defi
ne
d de
vi
ces can be seen i
n
Fi
g
u
re 7
(
b) f
o
r
N
P
T IGB
T
a
nd
Fi
gu
re 7
(
c) f
o
r
M
O
SFET
.
Go
od
ag
reem
ent
has
bee
n
obt
ai
ned
i
n
t
e
rm
s of
steady state te
m
p
erature a
nd
total heat
distribution
ove
r each
device. It is distributed
through collector in both
results
. The NPT
IGBT has the highes
t
te
m
p
eratu
r
e
p
r
o
f
ile wh
ile th
e SiC
MOSFE
T was subjected to 50% of
th
e NPT
’
s as
45.3°C and 28.1°C
,
respect
i
v
el
y
.
A
f
t
e
r i
m
pl
em
enti
ng el
ect
r
o
-t
he
rm
al
m
odel
wit
h
t
h
e ad
di
t
i
on
of t
h
erm
a
l
m
o
del
s
desc
ri
be
d
abo
v
e
t
h
e devi
ce t
e
m
p
erat
ures
were
m
oni
t
o
red i
n
d
SPAC
E
C
o
nt
r
o
l
Desk
, base
d
on t
h
e
pr
ocess
e
d de
vi
ce cur
r
e
n
t
and
voltage
s. T
h
e a
ssociated total
powe
r loss
data for each
de
vice have
bee
n
store
d
during
thi
s
test and a
ppli
e
d to
each
related topol
ogical c
h
ip
in FE
m
odels describe
d in Sec
tion
2.
Fi
gu
re 8.
Tra
n
s
i
ent tem
p
erature com
p
ar
ison
for (a
) Si
NPT
IGBT
(b) SiC
MOSFET
FE
m
odels
Ap
pr
o
x
i
m
at
el
y 2°C
di
ffe
ren
ce was
m
easured
f
o
r
NPT
IGBT wh
ere t
h
is is less than
1
°
C
for
MO
S
F
E
T.
Tr
an
s
i
e
n
t te
m
p
e
r
atu
r
e
res
u
lts for both de
vice a
r
e shown in Fi
g
u
re
8
(a
) a
n
d
(
b
)
.
It
can
be
cl
early
seen that the SiC MOSFET has heat hi
gher
heat capacity since
it reaches the final te
m
p
erature at around 800
s wh
ilst th
is mu
ch shorter for NPT. Th
e accu
r
acy
o
f
t
h
e
p
r
o
p
o
s
ed
FE m
o
d
e
l app
r
o
a
ch
can
still b
e
v
a
lid
ated
base
d
on transient analysis.
4.
2.
Ambient temperature
and s
w
itching
freque
ncy
ef
fect
te
sts w
i
th
ou
t he
at
sink
Tw
o set
s
of ex
peri
m
e
nt
al
t
e
sts were pe
rf
or
m
e
d. Fi
rst
t
h
e devi
ces we
re o
p
erat
e
d
wi
t
h
ou
t
heat
si
nks
and
,
cu
rre
nt
pa
sses t
h
r
o
u
g
h
I
G
B
T
s an
d Si
C
M
O
SFET
was
set
as 0.5
A
by
vari
abl
e
re
si
st
ors
.
C
o
nve
rt
er
s were
ope
rated in te
m
p
erature c
ont
rolled cham
ber (TCC) sim
u
lta
neously for a
s
e
t of s
w
itching fre
quencies be
tween
10-150
kHz a
n
d the am
bient te
m
p
erature wa
s cha
nge
d in
st
eps of
5°C from 25 to
50
°C. Tem
p
erature of eac
h
swi
t
c
hi
n
g
de
vi
ce was m
oni
t
o
re
d by
FL
IR
T44
0
t
h
e
r
m
a
l
cam
e
ra wi
t
h
fram
e
rat
e
60Hz a
n
d a t
h
erm
a
l
resol
u
tion
of 76,800 pi
xels
and recorde
d
for each fre
que
ncy
at differe
n
t ambient tem
p
eratures
.
(a)
(b)
(a)
(b)
(c)
NPT I
G
BT
SiC MOSFET
NPT I
G
BT
SiC MOSFET
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Towards
M
o
re
Reliable
Rene
wable P
o
wer
Systems-T
h
er
m
a
l Perfor
mance
Evaluation
of
....
(
C
. B
a
tunlu)
88
3
Fi
gu
re 9.
Th
ermal ca
m
e
r
a
v
i
ew
(a)
N
P
T IGBT,
(b
) FS IG
BT, (c
) M
O
SFET at 30°C
ambient tem
p
erature
Fi
gu
re
9 s
h
ow
s t
h
e
bo
ost
PE
C
s
at
3
5
°C
am
bi
ent
t
e
m
p
erat
ure
w
h
e
n
t
h
e
s
w
i
t
c
hi
n
g
fre
qu
ency
o
f
b
oost
conve
r
ters wa
s 50
kHz
.
FS IGBT tem
p
erature was
ap
prox
im
ate
l
y 5
°
C less th
an
NPT’s wh
ile the SiC
MOSFET sh
owed b
e
tter th
ermal p
e
rfo
r
m
a
nce com
p
are to
bot
h Si
IGBT
devices
with tem
p
erature of
33.5 °C
.
Figure 10.
Ambient tem
p
erature
effect on
devi
ce tem
p
erature
at (a
)
20 kHz,
(b)
5
0
kHz
,
(c
) 15
0 k
H
z
For
both Si IGBTs, effect of
am
bi
ent
t
e
m
p
erat
ure was
obse
r
ve
d as l
o
we
r at
35
-
4
0
°
C
regi
o
n
s a
s
sh
own
in
Figure 10
. Beyon
d
th
is p
o
i
n
t
, temp
erat
u
r
e tr
end
sh
ows
h
i
gh
er slo
p
e
u
n
til 5
5
°C a
m
b
i
en
t. MOSFET
te
m
p
erature s
h
owe
d
m
o
re linear inclin
e with res
p
ect to am
bient
te
m
p
erat
ure and can
be comm
ented as les
s
depe
n
d
ent
t
o
t
h
i
s
pa
ram
e
t
e
r especi
al
l
y
at
hi
ghe
r s
w
i
t
c
hi
n
g
fre
q
u
enci
es
.
M
o
re
ove
r, t
e
m
p
erat
ure
bet
w
e
e
n
bot
h
IGBTs i
n
creas
e as the freque
ncy inc
l
i
n
es
du
e t
o
t
h
e hi
ghe
r
swi
t
c
hi
n
g
l
o
s
s
e
s of
NPT
de
vi
ce cause
d by
l
o
n
g
e
r
tail cu
rren
t
.
Figu
re 1
1
. (a)
Sw
itch
i
ng
Fr
equ
e
n
c
y
v
s
.
d
e
v
i
ce te
m
p
er
atur
e, (b
) NPT
I
G
B
T
at 103
°C an
d (
c
) at 78
.2
°C
Th
e ef
f
ect
of
sw
itch
i
ng
f
r
e
qu
en
cy is fu
r
t
her
an
alysed
as show
n in
Figu
r
e
11
(a)
at
30
°C
am
b
i
en
t
te
m
p
erature
.
The conduction losses su
peri
or at freque
ncies
lower tha
n
15 kHz for each
device and he
nce the
t
e
m
p
erat
ure
ri
s
e
can
be
det
ect
ed
up t
o
i
.
e.
1
0
3
°C
fo
r
NPT
a
s
sh
ow
n i
n
Fi
g
u
re
1
1
(
b
)
.
Sam
e
de
vi
ce has
hi
ghe
st
t
e
m
p
erat
ure
of
78
.2
°C
w
h
e
n
ope
rat
e
d at
15
0 k
H
z at
am
bi
ent te
m
p
erature of
40 °C as
seen
in Fig
u
re 11
(c)
.
M
O
SFET i
s
m
o
re prefe
r
ab
l
e
at
hi
gher f
r
eq
ue
nci
e
s as hi
g
h
as 1
50
k
H
z. C
o
m
p
are
d
t
o
bot
h IGB
T
s i
t
s
m
a
xim
u
m
junc
t
i
on t
e
m
p
erat
u
r
e i
s
o
n
l
y
i
n
cre
a
sed
2°C
wh
il
e th
is was
11
°C for FS
and
13
°C for NPT
IGBTs
whe
n
t
h
e
fre
qucny inc
r
eased from
20 to
150
kHz
.
(a)
(b)
(c)
(a)
(b)
(c)
(a)
(b)
(c)
m:
1
.
2
m:
0
.
4
m
=
s
l
ope
m
:
0.61
m
:
0.84
m:
1
.
2
m:
0
.
6
m
:
0.21
m
:
0.43
m
:
0.82
m
:
0.84
m
:
0.41
m
:
0.83
m
:
0.83
m
:
0.91
m
:
0.72
m:
0
.
8
m
:
0.65
m:
1
.
2
m:
0
.
3
m:
0
.
3
m
:
1.62
m
:
0.51
m:
1
m
:
0.63
m
:
0.81
m
:
0.26
m:
2
.
1
m
:
1.41
m:
1
.
6
m:
1
.
6
m
:
0.41
m:
0
.
3
m
:
1.22
m:
1
.
4
m:
1
.
2
m
:
0.31
m:
0
.
3
m:
1
.
6
m
:
0.52
m:
1
m
:
0.65
m
:
0.75
m
:
0.25
m:
2
m
:
1.42
m
:
1.65
m:
1
.
7
m
:
0.25
m:
0
.
3
m:
1
.
1
m
:
1.35
NPT I
G
BT
F
S
IGB
T
SiC MOSFET
NPT I
G
BT
NPT I
G
BT
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6
,
No
.
4
,
D
ecem
b
er
2
015
:
87
6 – 887
88
4
4.
3.
Power efficiency
and cu
rrent effect operation wi
th attac
h
ed he
at sinks
Furt
her t
e
st
s
h
a
ve bee
n
em
pl
oy
ed wi
t
h
hi
ghe
r c
u
r
r
ent
r
a
t
i
ngs
whe
n
h
eat
si
nks a
r
e
at
t
ached t
o
l
devi
ces
. The
a
m
bi
ent
t
e
m
p
er
at
ure
was ke
pt
con
s
t
a
nt
at
2
5
°
C
an
d swi
t
c
hi
ng
fre
q
u
ency
of c
o
nve
rt
ers
was 2
0
kHz
.
B
oost
c
o
n
v
e
r
t
e
rs
we
r
e
t
e
st
ed
wi
t
h
equal
l
o
a
d
s,
s
i
m
u
l
t
a
neousl
y
.
The
r
ef
o
r
e s
w
i
t
c
hi
ng
de
vi
ce
s we
re
sub
j
ect
e
d
sl
i
ght
l
y
di
ffere
nt
cur
r
ent
rat
i
n
gs
based o
ff
efficiency of individual c
onverter com
p
ared to the
anal
y
s
i
s
i
n
Sec
t
i
on
4.
2.
Figure 12.
Th
er
m
a
l ca
mer
a
v
i
ew
(
a
)
N
P
T IGBT,
(b
) FS IG
BT, (c
) M
O
SFET at 25°C
ambient tem
p
erature
Steady state te
m
p
erature di
stributio
ns a
r
e
sh
ow
n i
n
Fi
gu
re
12
sh
o
w
s at
2
A
l
o
a
d
cur
r
ent
.
The
te
m
p
erature
diffe
rence am
ong each
de
vice is approxim
ately as high as
15°C where t
h
e NPT has
highest
te
mp
e
r
a
t
u
r
e of
8
0
°
C
an
d th
e SiC MO
S
F
E
T
is
operate
d
at
41.5°C
.
T
h
e
highest
curre
n
t rati
ng of eac
h de
vice is
1
5
A an
d du
e
to
labo
rat
o
ry l
i
m
i
tatio
n
th
e lo
ad cu
rren
t
was inc
r
eased
up to
5A.
It
was found t
h
at therm
a
l
perform
a
nce of SiC device decreases as the
curre
nt ra
tin
g in
clin
es. Th
e SiC MOSFET is su
p
e
ri
o
r
Si IGBT
devi
ces at
hi
g
h
er
fre
q
u
enci
e
s
. H
o
we
ve
r, Si
IGB
T
s
sh
o
w
s
m
o
re co
nsi
s
t
e
nt
t
h
erm
a
l
pro
f
i
l
e
at
hi
ghe
r c
u
r
r
ent
ratings
es
pecially above
2A a
s
seen
in
Fig
u
r
e
1
3
(a
).
This
ra
nge
can
c
h
an
g
e
f
o
r
dif
f
ere
n
t
po
we
r rati
ng
d
e
vices
.
In
t
h
i
s
st
u
d
y
,
fo
r acc
urat
e
c
o
m
p
ari
s
on
, c
u
rre
nt
ca
paci
t
y
and
t
o
t
a
l
po
w
e
r l
o
ss
of
eac
h
de
vi
ce ha
ve
bee
n
selected as same. FE
m
odel results for FS IGBT and
MOSFET can als
o
be seen in
Fi
g
u
r
e 1
3
(
b
) a
nd
(c
) w
h
en
heat sinks
are
attached at
the
bac
k
of
bot
h
devices
vi
a
a t
h
erm
a
l grease
layer, during
high curre
nt
operation.
Processe
d total
powe
r loss
da
ta by RTI
dire
ctly applie
d t
o
chips in
FEM
.
Good accura
cy was als
o
obtained
especi
al
l
y
fo
r T0-
2
47
pa
cka
g
ed
M
O
SFE
T wi
t
h
onl
y
1.
5
°C differe
n
ce c
o
m
p
are to e
xperim
e
ntal result shown
in
Figur
e 1
2
(
c
).
Figu
re 1
3
. (a)
Device tem
p
erature
vs c
u
rre
nt (b) FS IGBT
and (c
) SiC M
O
SFE
T T
h
erm
a
l FE m
odels
For FS IGBT,
te
m
p
erature
di
ffe
rence
is approxim
ate
l
y 3.5
°C com
p
ared to e
xpe
rim
e
ntal case due
t
o
d
i
fferen
ce in
pack
ag
e typ
e
TO-2
20
and
geometrical assu
mp
tio
ns on
h
eat
sin
k
m
o
d
e
llin
g. As
stated
befo
re
fo
r
est
i
m
a
ti
ng t
o
t
a
l
po
wer l
o
sses
and t
r
ansi
e
n
t
t
e
m
p
erat
ure
,
swi
t
c
hi
n
g
t
r
a
n
si
ent
of e
ach
devi
ce
(o
n-
o
f
f
st
at
e
vol
t
a
ge/
c
ur
re
nt
) was
p
r
oce
sse
d t
h
ro
u
gh
dS
P
A
C
E
C
o
nt
r
o
l
Desk
i
n
t
o
el
ec
t
r
o t
h
e
r
m
a
l
m
o
del
s
usi
n
g
Si
m
u
l
i
n
k
are s
h
o
w
n i
n
F
i
gu
re
14
.
(a)
(b)
(c)
(a)
(b)
(c)
NPT I
G
BT
F
S
IGB
T
SiC MOSFET
F
S
IGB
T
SiC MOSFET
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Towards
M
o
re
Reliable
Rene
wable P
o
wer
Systems-T
h
er
m
a
l Perfor
mance
Evaluation
of
....
(
C
. B
a
tunlu)
88
5
Figure 14.
Swi
t
ching
tra
n
sien
t of
(a
) SiC M
O
SFE
T,
(
b
)
FS
IGB
T
(c
)
NPT
IGB
T
As it is seen
, SiC d
e
v
i
ce
h
a
s
v
e
ry little tail cu
rren
t;
h
e
n
ce l
o
wer switch
i
ng
o
f
f l
o
sses com
p
ared
to
t
h
e
bot
h Si
IGB
T
s
.
Thi
s
al
so p
r
o
v
e
s t
h
e bet
t
e
r t
h
erm
a
l perf
orm
a
nce o
f
M
O
SF
ET at
hi
ghe
r s
w
i
t
c
hi
n
g
fr
eq
u
e
nci
e
s.
On t
h
e
ot
her
han
d
,
NPT I
G
B
T
has t
h
e hi
ghe
st
swi
t
c
hi
n
g
t
r
ansi
e
n
t
t
i
m
e
am
ong al
l
devi
ces w
h
ere t
h
e F
S
tech
no
log
y
p
e
rfo
r
m
a
n
ce still co
m
p
atib
le with
SiC MOSFET in term
s
o
f
th
erm
a
l p
e
rfo
r
m
a
n
ce at h
i
gh
er
cu
rren
t rating
s
. It was also
esti
m
a
ted
th
at c
o
ndu
ctio
n
l
o
ss
es of
NPT
’
s increases as the
te
m
p
erature inclines
d
u
e
t
o
p
o
s
itiv
e te
m
p
eratu
r
e co
efficien
t. IGBT co
sts, ev
al
u
a
ted
i
n
th
is
pap
e
r, are
on
e ten
t
h
t
h
e cost o
f
SiC
M
O
SFET
.
A
s
i
ndi
cat
ed
pre
v
i
ousl
y
,
pr
o
duct
i
on c
o
st
of t
h
e
Si
C
devi
ce i
s
m
o
re expe
nsi
v
e. B
i
gge
r di
e s
i
ze of
MO
S
F
E
T co
mp
a
r
ed
to
I
G
BTs
,
w
h
ich
is
t
h
r
ee t
i
m
e
s bi
g
g
e
r
t
h
a
n
NP
Ts’
,
i
s
al
so
o
n
e r
e
a
s
on
f
o
r e
xpe
ns
i
v
e
d
e
v
i
ce co
st. Dep
e
nd
ing
on
t
h
e prio
rities of th
e d
e
sign
, al
th
ou
gh
IGBT
co
m
p
an
ies o
ffer “h
igh
e
r
Vce
/lo
we
r
switching e
n
ergy de
vice”
for high
fre
quenc
y
applica
tions, and
vice ve
rs
a for a
low
fre
que
ncy a
pplica
tions
,
MOSFET is st
ill effectiv
e at
th
e freq
u
e
n
c
i
e
s ab
ov
e 150
k
H
z in
term
s o
f
th
erm
a
l p
e
rform
an
ce. Bel
o
w th
is
fre
que
ncy
,
b
o
t
h
I
G
B
T
s
,
e
v
al
uat
e
d i
n
t
h
i
s
s
t
udy
, ca
n
be
v
i
abl
e
com
p
et
i
t
or
o
f
Si
C
M
O
SFET es
peci
al
l
y
at
hi
g
h
er
cu
rre
nt
l
i
m
i
t
s
of a
n
i
n
d
i
vi
dual
de
vi
ce
wi
t
h
t
h
e h
e
l
p
of th
eir lower con
d
u
c
tion
loss ch
aracteristics.
Figure 15.
Output
powe
r e
ffic
i
ency of Bo
ost
Converte
r am
ong each de
vice
Effi
ci
ency
of
b
oost
c
o
n
v
e
r
t
e
r
i
s
sho
w
n i
n
Fi
gu
re 1
5
whe
n
t
h
e am
bi
ent
t
e
m
p
erat
ure was
kept
c
onst
a
nt
at
30°C
a
nd t
h
e swi
t
c
hi
n
g
f
r
e
que
ncy
was
2
0
k
H
z.
Un
de
r al
l
l
o
adi
ng cas
es, Si
C
M
O
SF
ET base
d co
n
v
ert
e
r
was m
o
re effic
i
ent than the
ones w
ith
IGB
T
s. Com
p
ared t
o
the
NPT IGBT
, it attained 10% better effi
ciency
w
h
er
e it is appr
ox
im
ate
l
y 2
%
h
i
gh
er
once
c
o
m
p
ared with the
FS de
vice.
E
fficie
n
cy of
the FS
IGBT i
s
ve
ry
clo
s
e to
th
e
MOSFET p
e
rfo
r
m
a
n
ce, howev
er it sligh
tly
decrea
ses when the
output
powe
r is greater tha
n
3.
5 W.
5.
CO
NCL
USI
O
N
A real
t
i
m
e
elect
ro t
h
erm
a
l
m
oni
t
o
ri
ng st
u
d
y
was p
r
ese
n
t
e
d f
o
r Si
C
M
O
SFE
T an
d Si
based I
G
B
T
devi
ces
wi
t
h
i
n
DC
/
D
C
b
o
o
s
t
con
v
e
r
t
e
r.
Fi
ni
t
e
el
em
ent
m
odel
of t
h
es
e sem
i
conduct
o
r
com
p
o
n
ent
s
we
re
devel
ope
d a
s
a f
unct
i
o
n
of
po
we
r l
o
ss
rea
l
-t
im
e
m
easurem
ent
s
. The
s
t
udy
dem
onst
r
at
es g
o
o
d
a
g
re
em
ent
bet
w
ee
n m
odel
out
com
e
s and o
b
t
a
i
n
ed e
x
p
e
ri
m
e
nt
al resul
t
s
unde
r di
f
f
er
ent
envi
ro
nm
ent
a
l
and o
p
era
t
i
ona
l
co
nd
itio
ns su
ch
as a
m
b
i
en
t te
m
p
eratu
r
e and
switch
i
n
g
freq
u
e
n
c
y. SiC d
e
v
i
ce was fou
n
d
m
o
re th
ermall
y
st
abl
e
part
i
c
ul
a
r
l
y
at
freque
nci
e
s hi
g
h
er t
h
a
n
10
0 k
H
z an
d h
a
s app
r
o
x
i
m
at
el
y
20°C
l
e
ss op
erat
i
ng t
e
m
p
erat
ur
e
(a)
(b)
(c)
F
S
IGB
T
SiC MOSFET
NPT I
G
BT
Evaluation Warning : The document was created with Spire.PDF for Python.