Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
5, N
o
. 4
,
A
p
r
il
201
5, p
p
.
46
4
~
46
9
I
S
SN
: 208
8-8
6
9
4
4
64
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Fuzzy B
a
s
e
d An
alysi
s
of Invert
er Fed Mi
cro Grid i
n
Islanding
Operation-Experimental Analysis
Yu
var
aj
a
T
e
e
k
ar
am
an
*, G
o
pi
n
a
th
Mani
**
* Depart
em
ent o
f
El
ectr
i
c
a
l
and
Ele
c
troni
cs
Eng
i
neering
,
M
AHE
R Univers
i
t
y
,
In
dia
** Depart
em
ent
of El
ectr
i
cal
and
El
ectron
i
cs
Eng
i
n
eer
ing, Dr.NGP Institute of
Technolog
y
,
Indi
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Nov 5, 2014
Rev
i
sed
Jan 27, 201
5
Accepte
d
Fe
b 8, 2015
Islan
ding op
eration in essence
connotes isol
atin
g part of a power s
y
stem not
unlike distribu
ted generation. Th
is thes
is puts for
w
ard fuzzy
logic controller
for inverter f
e
d
micro-grid in
isla
nding oper
a
tio
n
s which
is assessed using
hardware
im
ple
m
entation
.
It’s
a
s
s
i
s
t
ed b
y
powe
r
el
ectron
i
cs
wh
ich im
par
t
s
the con
t
rol
and
flexibi
lit
y
essent
ial for
the
m
i
cr
o grid con
cept
.
A correc
t
l
y
des
i
gned con
t
ro
ller gu
aran
tees
that
the m
i
cro
grid can
m
eet
i
t
s
utili
t
y
’s
demands. Th
e
efficacy
and robu
stness is
deliber
a
ted
in
the design of fu
zzy
s
y
stem. Th
e testing is perfor
m
ed
b
y
emplo
y
ing h
a
rdware
components
namely
A
T
MEGA-328microcontroller
,
TLP250 opto-coupler and a MOSFET
circu
it. Th
e tes
t
results dem
onstr
ate ver
y
go
od consistency and sho
w
noteworth
y
implications of the contro
l of micro grid using inverters an
d
fuzzy
contro
llers
.
Keyword:
In
verte
r
Island
ing
o
p
e
ratio
n
Micr
o
g
r
i
d
Vol
t
a
ge
C
o
nt
r
o
l
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Yuva
raja
Tee
k
aram
an,
Depa
rtem
ent of Electrical a
n
d
El
ect
ro
ni
cs E
n
gi
nee
r
i
n
g,
Research Sc
holar, Meena
k
s
h
i
Aca
d
em
y of Highe
r E
ducati
o
n & Researc
h
,
C
h
en
nai
C
i
t
y
, I
ndi
a C
o
unt
ry
.
Em
a
il: yu
v
a
rajastr@g
m
ai
l.co
m
1.
INTRODUCTION
At the
pre
s
ent
tim
e
,
m
i
cro grid ca
n
be
regarde
d
as
a c
o
ntrolled cell
of
a powe
r syste
m
. Exa
m
ple
gratia, the cell may well be c
ont
rolled as a s
i
ngle dis
p
atch
able load, which can react
in little tim
e
to provide
t
h
e dem
a
nds
o
f
t
h
e t
r
a
n
sm
i
s
si
on sy
st
em
. On
t
h
e cust
om
er si
de m
i
cro g
r
i
d
s
can be c
o
nst
r
u
c
t
e
d t
o
m
eet
uni
q
u
e
needs. They
boost
the l
o
cal
reliability
, lessen
feede
r
l
o
ss, support local
voltage
s,
deliver supe
rior e
f
ficacy
through castoff waste
heat,
voltage
sag correction
an
d
prov
id
i
n
g
un
in
t
e
rru
p
tib
le
po
wer supp
ly fu
n
c
tio
n
s
.
These day
s
di
s
t
ri
but
e
d
ge
nera
t
i
on i
s
fet
c
hi
n
g
m
o
re reco
gni
t
i
on i
n
a de-
r
e
g
ul
at
ed en
vi
r
o
n
m
ent
.
Inc
o
r
p
o
r
at
i
on
of
di
st
ri
b
u
t
e
d
gene
rat
i
o
n an
d
assim
i
l
a
t
i
on o
f
co
nt
rol
l
e
rs
h
a
s l
ead t
o
con
v
ent
i
o
nal
p
o
w
e
r net
w
or
k t
o
f
unct
i
o
n
as
an
activ
e power n
e
twork
s
. Und
e
r
th
is d
i
sru
p
tion
t
h
e
power n
e
twork
sp
lits
in
to
p
a
rt g
e
n
e
rators
an
d
lo
ad
s.
Th
e l
o
ad d
e
m
a
n
d
can
b
e
tallied
with th
e
su
pp
ly power
of an
island
. In case
o
f
co
m
m
ercial an
d ind
u
s
t
r
ial
sensitive loa
d
s the necessity of superi
or
power
quality and reliability is
great
.
A m
i
cro grid ca
n
be a
DC grid
sy
st
em
, an AC
sy
st
em
or eve
n
a hi
g
h
f
r
eq
u
e
ncy
AC
gri
d
sy
st
em
. A M
i
cro
gri
d
sy
st
em
i
s
or
gani
se
d a
s
an
i
s
l
a
nd. T
h
e
ke
y
conce
r
n t
o
b
e
del
i
b
erat
e
d
f
o
r
di
st
ri
b
u
t
e
d
gene
rat
i
o
n i
s
t
h
e t
ech
ni
cal
pr
obl
em
associ
at
ed wi
t
h
cont
rol
of a c
o
nsi
d
e
r
abl
e
nu
m
b
er of
m
i
cro sources
. The
basic problem
with an
i
n
tricate co
n
t
ro
l system is th
at
a failu
re of t
h
e
co
n
t
ro
l m
o
du
le or a softwa
re
erro
r will bring th
e en
tire syst
e
m
d
o
wn.
In
th
is th
esis, a fu
zzy con
t
ro
ller was realised with
i
nve
rt
er f
e
d m
i
cro g
r
i
d
f
o
r i
s
l
a
n
d
i
n
g o
p
e
rat
i
on a
n
d
eval
uat
e
d agai
nst
co
nve
nt
i
o
n
a
l
cont
r
o
l
l
e
r.
The pe
rf
o
r
m
a
nce results of Fuzzy cont
ro
ller are ob
tain
ed u
s
ing
Mat lab
/
Si
m
u
li
n
k
as well as hardware im
p
l
e
m
en
tatio
n
.
Th
i
s
m
a
n
u
s
cri
p
t em
p
l
o
y
s a
referen
ce fram
e
, wh
ich
is
i
n
st
ant
a
ne
o
u
sl
y
sy
nch
r
o
n
i
z
e
d
t
o
t
h
e m
i
cro g
r
i
d
b
u
s
vol
t
a
ge
, t
o
de
vel
o
p a
dy
nam
i
c
m
odel
of
an
i
s
l
a
n
d
e
d
m
i
cro
gri
d
.
Here
i
n
t
h
e Sect
i
o
n
II
of t
h
e m
a
nusc
r
i
p
t
e
xhi
bi
t
s
the syste
m
’s elementary
struct
ure while
Sect
ion III
pr
o
poses a s
u
per
v
i
s
o
r
y
co
nt
rol
arr
a
n
g
em
ent
t
o
cont
r
o
l the voltage and fre
quency
of the
m
i
cro grid and
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Fuzzy
Ba
sed
A
nal
ysi
s
of
Inve
rt
er Fed
Mi
cro
Gri
d
i
n
Isl
a
n
d
i
ng…
(
Y
uva
r
aj
a Teek
ar
a
m
a
n
)
46
5
prese
n
t
s
si
m
u
l
a
t
i
on r
e
sul
t
s
o
f
an
i
s
l
a
n
d
ed
m
i
cro g
r
i
d
bas
e
d
on i
n
st
ant
a
neo
u
s
sy
nc
hr
o
n
i
zat
i
on.
Sect
i
o
n
I
V
concl
ude
s wi
t
h
t
h
e resul
t
s
of
har
d
ware
i
m
pl
em
ent
a
t
i
on.
2
.
POWE
R NETWORK
IN
ISLANDED MODE
Fi
gu
re
1.
C
o
nv
ert
e
r
base
d P
o
wer
Net
w
o
r
k
i
n
i
s
l
a
n
d
e
d
m
o
d
e
The
Figure
1 infe
rs t
h
e a
rra
ngem
ent of
a
ba
sic micr
o
gri
d
. The
system
com
p
rises of a c
o
llector
bus,
a converter, a bus ca
pacitor
C and a
load.
The load is de
note
d
as a para
l
l
e
l
co
m
b
i
n
at
ion
of resi
st
anc
e
R
and
inductance L
and the loa
d
is pres
um
ed to be in an im
balanced cond
itio
n
.
W
i
t
h
all t
h
ese assu
m
p
tio
n
s
, a
fund
am
en
tal freq
u
e
n
c
y m
o
d
e
l o
f
th
e co
nv
erter is j
u
stif
ie
d, whe
r
e the conve
rter is
m
o
delled as an average
current source
.
Fi
gu
re
2.
I
nve
r
t
er fe
d M
i
cr
og
r
i
d
Fi
gu
re
3.
I
nve
r
t
er cu
rre
nt
Th
e Figure 2, d
i
sp
lays th
e con
v
e
rter fed
Mi
crog
ri
d
.
It co
mp
rises
o
f
a
d
c
so
urce, LCL
filter and
RLC
l
o
ad
whi
c
h i
s
devel
ope
d a
n
d
scrut
i
n
i
z
e
d
i
n
M
A
TLAB
/
Si
m
u
li
nk. T
h
e
d
c
so
urce
vol
t
a
ge i
s
4
0
0
V
.
Fi
gu
re
3
sh
ows th
e
grid
v
o
ltag
e
acro
s
s
th
e island
m
o
de.
Fi
gu
re 4.
G
r
i
d
Vol
t
a
ge
Figure
5. Active and Reactive
powe
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 4
,
Ap
r
il 2
015
:
46
4
–
46
9
46
6
Su
bseq
ue
nt
l
y
t
h
e sy
nch
r
o
n
i
z
a
t
i
on, i
n
vert
er
c
u
r
r
ent
ri
ses t
o
80
A.
At
t
h
e t
i
m
e
0.8
sec
t
h
e
D
G
se
nses
t
h
e i
s
l
a
ndi
n
g
c
o
n
d
i
t
i
on a
n
d t
h
e co
nt
r
o
l
m
ode cha
n
ges. F
r
om
0.8 sec on
war
d
s t
h
e c
u
r
r
e
nt
i
s
red
u
ces
whi
c
h
indicates the
disconnection from
grid. Th
is is exhibited in
Figure
4. Fi
gu
re 5 illustrates the active a
nd
reactive
p
o
wer after wh
ich
it is
d
e
tach
es
DG fro
m
th
e
g
r
id.
At
0.2 sec t
h
e
DG is c
o
nnecte
d
to
grid a
nd after
syn
c
hron
ization
th
e to
tal activ
e power
d
e
liv
ered
b
y
t
h
e
DG
bec
o
m
e
s
20
k
W
.
At
0.
8
sec t
h
e D
G
se
nses t
h
e
islan
d
i
ng
con
d
i
tio
n
an
d go
es to
island
ing
m
o
d
e
so
t
h
at th
e activ
e po
w
e
r
sup
p
lied is r
e
du
ced
to 10kW
.
Fi
gu
re
6(a
)
,
(
b
)
Fuzzy
m
e
m
b
ershi
p
fu
nct
i
o
n
fo
r i
n
p
u
t
an
d
o
u
t
p
ut
3
.
PROPOSE
D
FUZZ
Y-PI CONTROLLER
B
y
present
i
ng
t
h
e f
u
zzy
t
ech
nol
ogy
, t
h
e v
o
l
t
a
ge and
fre
q
u
ency
ca
n be
m
a
ni
pul
at
ed
w
i
t
h
a si
ngl
e
cont
rol
l
e
r.
T
h
e
err
o
r si
gnal
s
f
r
om
vol
t
a
ge
a
n
d t
h
e
f
r
e
que
nc
y
bl
oc
k i
s
fe
d t
o
t
h
e
f
u
zzy
c
o
nt
r
o
l
l
e
r t
o
o
b
t
a
i
n
g
a
i
n
erro
r. Th
e Fu
zzy
m
e
m
b
ersh
ip fu
n
c
tion
for i
n
p
u
t
and
o
u
t
p
u
t
is illu
strated
in th
e Fi
g
u
re
6
.
Fi
gu
re 7.
F
U
Z
Z
Y-
PI base
d
c
ont
rol
l
e
r
Fi
gu
re
8.
C
o
m
p
ari
n
g
F
u
zzy
a
n
d
PI
o
u
t
put
fo
r
vol
t
a
ge
co
nt
r
o
l
‘R
L
’
l
o
a
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Fuzzy
Ba
sed
A
nal
ysi
s
of
Inve
rt
er Fed
Mi
cro
Gri
d
i
n
Isl
a
n
d
i
ng…
(
Y
uva
r
aj
a Teek
ar
a
m
a
n
)
46
7
From
t
h
e Fi
g
u
r
e 8
w
h
i
c
h
dem
onst
r
at
es t
h
at
f
o
r t
h
e
no
rm
al
R
-
L l
o
a
d
, t
h
e
vol
t
a
ge
st
ep
re
spo
n
se
has
a
rise ti
m
e
o
f
1
1
m
s
fo
r a PI Con
t
ro
ller. Bu
t for th
e sam
e
lo
ad
, th
e vo
ltag
e
st
ep
respo
n
s
e
h
a
s a rise ti
m
e
re
d
u
c
ed
to
8 m
s
an
d
is
well d
a
m
p
ed
with
10
%
ov
ersho
o
t
i
n
fu
zzy con
t
ro
ller.
Fi
gu
re
9.
C
o
m
p
ari
n
g
F
u
zzy
a
n
d
PI
o
u
t
put
fo
r F
r
eq
ue
ncy
co
nt
r
o
l
‘R
L
’
l
o
a
d
From
t
h
e Fi
gur
e 9, fo
r a no
rm
al
R
-
L load, the freque
n
cy step res
p
onse
has
a ri
se t
i
m
e
of 14 m
s
and a
settlin
g
ti
m
e
o
f
28
m
s
in
PI Co
n
t
ro
ller. B
u
t for th
e sam
e
lo
ad
, the vo
ltag
e
step
respo
n
s
e h
a
s a rise ti
m
e
redu
ced
to
8
ms an
d
is well da
m
p
ed
with
neg
lig
ib
le ov
ersho
o
t
in
fu
zzy con
t
ro
ller. Bu
t for th
e sam
e
lo
ad
, th
e
freq
u
e
n
c
y step
respon
se
h
a
s
ri
sen
and
settles
d
o
wn
immed
i
ately at th
e po
int in
fu
zzy co
n
t
ro
ller.
4
.
IMPLEME
N
TATION O
FF H
A
R
D
W
A
RE-
SECTIO
N I
V
A si
ngl
e p
h
ase
i
nvert
er i
s
en
g
i
neere
d
fo
r t
h
i
s
desi
gn
. The k
e
y
cont
rol
com
p
o
n
e
n
t
of t
h
e
M
i
crog
ri
d i
s
t
h
e i
nve
rt
er so
a si
ngl
e phas
e
i
nvert
er i
s
r
eal
i
s
ed. A
n
o
p
en l
o
o
p
si
ngl
e phase i
n
vert
er bl
oc
k di
ag
r
a
m
i
s
illu
strated
in Fi
g
u
re
10
.
Fi
gu
re
1
0
.
P
W
M
vol
t
a
ge s
o
u
r
ce si
n
g
l
e
p
h
ase
i
nve
rt
er
5.
ISOL
ATI
O
N
A
N
D
G
A
TE DRI
VE
R
CIR
C
U
IT
The
opt
o-c
o
up
l
e
r TLP
25
0 i
s
em
pl
oy
ed t
o
i
m
part
i
s
ol
at
i
on am
i
d
t
h
e co
nt
r
o
l
ci
rcui
t
a
nd
p
o
we
r ci
rc
ui
t
.
Any atypical state in the power circ
u
it
m
a
y lead
to
ad
v
e
rsely d
i
stu
r
b
th
e con
t
ro
l circu
it th
roug
h
th
e switch
g
a
te term
in
als. So with th
e assistan
ce
o
f
opto
-
co
up
le
rs th
e ph
ysical con
n
ectio
n
b
e
tween th
e co
n
t
ro
l and
th
e
po
we
r ci
rc
ui
t
i
s
sepa
rat
e
d a
n
d t
h
e si
gnal
i
s
gi
ve
n
opt
i
cal
l
y
from
one
si
d
e
t
o
t
h
e
ot
he
r.
Thi
s
o
p
t
o
-c
ou
pl
er i
s
e
m
p
l
o
y
ed
to
d
r
iv
e th
e MOSFET sin
ce th
e micro
c
o
n
t
ro
ller
will g
e
t th
e p
u
l
se o
n
l
y up
to
3v
,
b
u
t
fo
r
d
r
i
v
i
n
g
t
h
e
MOSFET we req
u
i
re at least
1
0
v
pu
lse. Th
is is
real
i
s
ed
by
appl
i
cat
i
o
n of TLP2
5
0
o
p
t
o
-c
ou
pl
er
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 5
,
No
. 4
,
Ap
r
il 2
015
:
46
4
–
46
9
46
8
Experimental Arrange
m
ent of
the
Pr
ojec
t
Fi
gu
re
1
1
. E
x
p
e
ri
m
e
nt
al
prep
arat
i
o
n
Fi
gu
re
12. E
xperim
e
ntal preparation with
A
T
MEGA-
328
Th
e ex
p
e
rim
e
n
t
al p
r
ep
aration
o
f
the sing
le ph
ase inv
e
rter is illu
strated
in
th
e Figu
re 11
& Figu
re
12
with
m
i
cro
c
on
tro
ller
ATMEGA-3
28
, op
t
o
-
c
ou
p
l
er
TLP250
& MO
SFET cir
c
u
it.
6. DIS
C
USSI
ON
The pe
rf
orm
a
nce of t
h
e p
r
o
p
o
se
d cont
rol
st
rat
e
gi
es was e
v
al
uat
e
d
by
co
m
put
er sim
u
l
a
t
i
on usi
n
g
M
A
TLAB
-
Si
m
u
li
nk a
nd
ha
rd
ware
i
m
pl
em
ent
a
t
i
on. T
h
e re
s
u
lt fo
r P
I
co
ntroller a
n
d
fuzzy
c
o
ntroll
er we
re
eval
uat
e
d. It
ca
n be ob
ser
v
ed
t
h
at
:
For
a p
u
re re
si
st
i
v
e
l
o
ad of
3.
98
Ω
, t
h
e
vol
t
a
ge st
e
p
r
e
sp
onse
has a
ri
se t
i
m
e
of 25 m
s
i
n
PI
Co
n
t
ro
ller. B
u
t fo
r t
h
e sam
e
l
o
ad, th
e vo
ltage step
resp
on
se h
a
s a rise ti
me o
f
on
ly 13
ms in
fu
zzy co
n
t
ro
ller
an
d settles down at tho
s
e
po
in
ts immed
i
atel
y sh
own
i
n
Fi
gu
re 8.
Fig
u
re 9. Shows th
at fo
r th
e n
o
rm
al
R-L lo
ad
, th
e
v
o
ltage
step response
has a rice tim
e
of 11 m
s
in
PI Con
t
ro
ller. Bu
t fo
r th
e same lo
ad
, th
e v
o
ltag
e
step
resp
on
se h
a
s a rise ti
me red
u
ced to
8
m
s
an
d
i
s
well
dam
p
ed with 10%
overs
h
oot i
n
fuzzy c
o
ntrol
l
er.
Fi
gu
re
14
. S
h
o
w
s t
h
e
res
p
o
n
s
e
of
a p
u
r
e resi
st
i
v
e l
o
ad
o
f
3.
98
Ω
, t
h
e
f
r
eq
uency
st
e
p
re
s
p
o
n
se
has a
rise ti
m
e
o
f
25
m
s
in
PI C
o
n
t
ro
ller. Bu
t for th
e sam
e
lo
ad
, t
h
e freq
u
e
n
c
y step
respo
n
s
e ri
ses and
settles d
o
wn
immediately at the
poi
nt in fuzzy cont
roller.
Fo
r th
e
no
rm
al
R-L lo
ad
, th
e
freq
u
e
n
c
y step resp
on
se
h
a
s a rice tim
e o
f
14
m
s
an
d
a settlin
g
tim
e o
f
2
8
m
s
in
PI C
o
n
t
ro
ller. B
u
t for th
e
sam
e
lo
ad
, th
e
vo
ltag
e
st
ep
respon
se
h
a
s a rise tim
e red
u
c
ed
t
o
8
m
s
an
d is
well d
a
m
p
ed
with
n
e
g
lig
ib
le
ov
ersho
o
t
i
n
fu
zzy co
n
t
ro
ller.
Bu
t fo
r t
h
e same lo
ad
, t
h
e freq
u
e
n
c
y step
respo
n
s
e
rises an
d settles do
wn
imm
e
d
i
ately at th
e p
o
in
t in
fu
zzy con
t
ro
ller as shown in
Figu
re 14
.
Fo
r Fu
zzy-PI
co
n
t
ro
ller th
e
startin
g
tim
e
o
f
step
in
pu
t is 0
,
with
u
n
it step
in
pu
t. Fo
r
RL lo
ad
th
e
closed loop voltage response
settled at 0.027s
ec and
for
fre
que
ncy res
p
ons
e settled at 0.038 sec, which is
sh
own
in Fi
g
u
re 13
an
d Figure 14
.
Fi
gu
re
1
3
.
P
W
M
pul
se
f
r
om
opt
o-c
o
upl
er
Fi
gu
re
1
4
.
Si
n
g
l
e
p
h
ase
i
n
ver
t
er o
u
t
p
ut
f
o
r
R
Loa
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Fuzzy
Ba
sed
A
nal
ysi
s
of
Inve
rt
er Fed
Mi
cro
Gri
d
i
n
Isl
a
n
d
i
ng…
(
Y
uva
r
aj
a Teek
ar
a
m
a
n
)
46
9
7. CO
N
C
L
U
S
I
ON
It
can be co
ncl
ude
d t
h
at
di
st
ri
but
e
d
ge
nerat
i
on
uni
t
s
can b
e
run i
n
i
s
l
a
n
d
e
d
m
ode by
con
n
ect
i
ng i
t
t
o
the grid
via power electronics
co
nv
erters.
Fuzzy
m
o
d
e
l o
f
an
island
ed
Mic
r
ogri
d is articulated in a refe
rence
fram
e
th
at is pro
m
p
tly syn
c
hron
ized to
t
h
e
co
llecto
r
bu
s
vo
ltag
e
.
Sim
u
la
tio
n
an
d im
p
l
e
m
en
tatio
n
o
u
t
co
m
e
estab
lish
leg
itimacy o
f
th
e mo
d
e
l an
d
robu
stn
e
ss of th
e
sug
g
e
sted
con
t
rol sch
e
m
e
to
chan
g
e
system
lo
ad
ing
and power
fact
or. Sim
u
lation
results a
n
d
hardwa
re im
ple
m
entation e
n
dorse that this m
e
thod is e
fficaci
ous
in
vol
t
a
ge
an
d
fr
e
que
ncy
m
a
ni
pu
l
a
t
i
on wi
t
h
c
h
a
ngi
ng
net
w
o
r
k
st
ri
ct
ures.
REFERE
NC
ES
[1]
Andreotti
, A De
l P
i
zzo
, R Ri
zzo
, P
Tri
c
oli
.
An
efficient
archit
ect
u
re of a P
V
pla
n
t for anci
llary
service suppl
yin
g
,
SPEEDAM 201
0 Intern
. S
y
mpo
s
ium on Power Electronics,
Elec
tri
cal
Drives,
Autom
a
tion
and
Motion, Pisa
(It
a
l
y)
,
678-682, June 2
010.
[2]
Batars
eh
, Z
.
Qian, O. Abde
l-
Rahm
an,
An I
n
tegrated Four
-Port DC/DC Converter for
Renewab
l
e En
ergy
Applica
tions
, IEEE
Trans. Power Electron
.
, 5 (
7
),
1877 – 1887
, 20
10.
[3]
Chiang,
T.
T.
Ma,
Y.
H.
Cheng,
J.M. Chang, W.N Chiang,
Design
and implementation of a hybrid regenerative pow
er
system combinin
g grid-tie and unint
erruptible p
o
wer supply functions
, IET Ren
e
wable Power Generation, 4 (1)
,
85-
89, 2009
.
Evaluation Warning : The document was created with Spire.PDF for Python.