Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
7, N
o
. 1
,
Mar
c
h
20
16
,
pp
. 13
4
~
14
3
I
S
SN
: 208
8-8
6
9
4
1
34
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Technical and Econ
omic Evalu
a
ti
on of Hybrid wind/PV/Battery
System
s for Off-
Grid Areas using HOM
ER Sof
t
w
are
A
lir
e
z
a
G
h
e
i
ra
t
m
a
n
d
,
R
e
za
Ef
fa
t
n
eja
d
,
Ma
h
d
i
H
e
da
yat
i
Departm
e
nt o
f
E
l
ec
tric
al
Engin
e
e
r
ing, Ka
raj
Bran
ch, Is
l
a
m
i
c A
zad
Univers
i
t
y
,
Kar
a
j,
Alborz
,
Ir
an
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Oct 10, 2015
R
e
vi
sed Dec 3,
2
0
1
5
Accepte
d Ja
n
2, 2016
Increm
enta
l co
ns
um
ption of
ele
c
tri
cal
energ
y
, r
e
duct
i
on of
fos
s
il fuel
resources and
en
vironmental po
llution
probl
em
s
caus
e
d b
y
them
a
r
e the m
a
in
reasons, which
tend the manager
s
and offi
cials in countries en
er
g
y
sector
to
develop
use of
renewable s
y
s
t
ems. In
the not-too-distant future the use o
f
renewabl
e energ
y
such as wind and solar will be ver
y
im
portant a
nd will p
l
a
y
predominant role in economic indices
of power
s
y
stems. In recent
y
e
ars
,
techno
logical advances in ren
e
wable en
erg
y
and increasin
g price of
petroleum products promote sy
stem ma
nagers
to use low-cost and low-
emission energy
resources in
form
of hy
br
id s
y
stems and widespread
propagation of electricity
gen
e
ration have
been d
e
veloped in remote areas
. In
H
y
brid s
y
s
t
ems two or more
sources
of renewable en
erg
y
is ty
pically
adopted
, which
increases the r
e
liability
of
th
ese s
y
stems. In this paper, th
e
techn
i
cal and
economical
cons
ideration of
a win
d
and solar
h
y
br
id s
y
stem to
supply
electr
i
cal en
erg
y
for
a
number
of remote users (
a
id
and medical
emergency
Shelter in Yazd)
is provided.
In ord
e
r
to investig
ate o
p
tim
izat
ion
and economic
analy
s
is of
the pr
oposed
h
y
brid s
y
stem, the HOMER software
is used. The res
u
lts of Sim
u
latio
n in
HOMER so
ftware show that Solar cells
and wind s
y
s
t
e
m
s
with aver
ag
e gen
e
ra
tion po
wer of 896
kWh/y
r
.
and 34
3
kWh/y
r
., consis
t proportion of
72 and
28 percent of the to
tal generated
energ
y
r
e
spec
tiv
el
y,
which
ar
e d
e
dic
a
ted
to
satisf
y
the
lo
ads.
Keyword:
Hom
e
r so
ftwa
r
e
Hybri
d
system
s
R
e
newa
bl
e e
n
e
r
gy
Sol
a
r
pa
nel
W
i
nd
turb
in
e
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Reza Effat
n
e
j
a
d
,
Depa
rt
m
e
nt
of
El
ect
ri
cal
Engi
neeri
n
g
,
Kara
j B
r
anc
h
,
Islamic Azad
Uni
v
ersity,
Kara
j,
Al
bo
rz,
Ira
n.
Em
a
il: Reza.efatnej
a
d@kiau.ac.
ir - rezae
ffat
n
ej
a
d
@yahoo.com
1.
INTRODUCTION
The i
n
di
scri
m
i
nat
e
use o
f
f
o
ssi
l
fuel
s and
t
h
e rel
ease of
excessi
ve e
nvi
ro
nm
ent
a
l
pol
l
u
t
i
on
have
increase
d
the
global te
m
p
erature.
Acc
o
rding t
o
sta
tistic
s released
b
y
th
e In
tern
ation
a
l En
erg
y
Ag
en
cy
,
cu
rren
tly ann
u
ally sig
n
i
fican
t e
m
issio
n
ab
out 3
0
b
illio
n
tons o
f
carbo
n
d
i
ox
id
e pro
d
u
ces
fro
m
b
u
r
n
i
n
g
fo
ssil
fu
els in th
e
world
,
abo
u
t
4
0
percen
t in
wh
ich
is relate
d t
o
t
h
e p
r
od
uct
i
o
n
of el
ect
ri
ci
t
y
and
heat
.
Acc
o
r
d
i
n
g t
o
est
i
m
a
ti
ons m
a
de by
t
h
e I
n
t
e
rnat
i
o
nal
Ene
r
gy
A
g
e
n
cy
, d
u
e to
lack
of
co
n
t
ro
l of th
is tren
d, th
e amo
u
n
t
of
carbon
d
i
o
x
i
de will d
o
u
b
l
e
th
e curren
t
v
a
lu
e till 2
0
5
0
,
th
at will in
crease th
e earth
te
m
p
eratu
r
e, destro
y
gl
aci
ers a
n
d
ri
se sea’s
l
e
vel
a
n
d
s
o
on
. T
h
i
s
phe
n
o
m
e
non
i
m
peri
l
s
t
h
e h
u
m
an ha
bi
t
a
ncy
o
n
Ea
rt
h
.
T
h
e
r
ef
ore
,
rene
wa
bl
e ene
r
gy
can
be
a c
o
nve
ni
ent
a
n
d e
ffi
ci
ent
way
t
o
ove
rc
om
e t
h
i
s
pr
o
b
l
e
m
.
Acco
r
d
i
n
g t
o
e
n
er
gy
co
nsum
pt
i
on st
at
i
s
t
i
c
s i
n
20
1
1
,
19%
of t
h
e
fi
nal
co
nsum
pt
i
on i
n
t
h
e w
o
rl
d has
been sat
i
s
fi
e
d
by
rene
wabl
e
reso
urces
, i
n
whi
c
h
9.
3%
i
s
m
e
t by
t
r
adi
t
i
onal
bi
om
ass ener
gy
, 3
.
7
%
by
hy
d
r
oel
ect
ri
c
e
n
er
gy
, 4.
1% b
y
m
oder
n
rene
wabl
e
e
n
e
r
gy
sou
r
ces an
d 1.
9% by
wi
nd
,
s
o
l
a
r,
ge
ot
he
rm
al
,
et
c
.
A
ccord
ing
to
av
ailab
l
e and
pu
b
lish
e
d
statistics b
y
d
e
p
u
t
y o
f
Electr
i
city a
n
d
En
erg
y
Min
i
str
y
in
I
r
a
n
in
2
012,
t
h
e l
a
rgest
p
o
rt
i
on o
f
co
nsum
pt
i
on
of ene
r
g
y
carri
ers i
n
2
0
1
2
i
s
rel
a
t
e
d t
o
cru
d
e oi
l
an
d pet
r
ol
eum
prod
uct
s
and nat
u
ral
ga
s
wi
t
h
89
.1
9%
.
Acco
r
d
i
n
g
t
o
t
h
e
sam
e
st
ati
s
t
i
c
s
rene
wabl
e ener
gi
es were pr
o
v
i
d
e
d
o
n
l
y
0.
7%
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
: 1
3
4
–
14
3
13
5
o
f
th
e t
o
tal en
erg
y
d
e
m
a
n
d
in
co
un
try i
n
2
012
.
Th
is i
n
d
i
cat
es th
at
d
e
sp
ite
th
e h
i
g
h
po
ten
tial o
f
wind
and so
lar
in
th
e cou
n
t
ry,
u
n
fo
rtun
ately,
j
u
st sm
al
l p
o
rtio
n of its cap
aci
ty is u
s
ed.
Sol
a
r a
nd
wi
nd e
n
er
gy
are
am
ong re
ne
wabl
e an
d cl
ean ene
r
gi
es,
whi
c
h a
r
e as a free an
d
in
exh
a
ustib
le so
urce and
h
a
v
e
th
e ab
ility
to
co
nv
ert to
o
t
h
e
r fo
rm
s o
f
en
erg
y
. Iran
with
no
rt
h
latitu
d
e
b
e
tween
25
t
o
4
5
deg
r
ees i
s
am
ong
t
h
e ap
p
r
o
p
ri
at
e areas i
n
t
e
r
m
s of su
n
rad
i
at
i
on. T
h
e l
o
west
a
n
n
u
al
a
v
era
g
e
radi
at
i
o
n i
n
Ira
n i
s
abo
u
t
3.
8
bel
o
ng
s t
o
R
a
sht
and t
h
e
hi
g
h
e
st
i
s
5.9 rel
e
v
a
nt
t
o
B
a
m
.
Asi
d
e fr
om
t
h
e sh
ore
of
t
h
e C
a
spi
a
n Se
a i
n
I
r
an t
h
e s
u
nny
day
s
co
nsi
s
t
63 t
o
9
8
%
o
f
y
ear. D
u
e t
o
h
i
gh am
ou
nt
of
sol
a
r
radi
at
i
o
n
i
t
can
b
e
sai
d
th
at m
o
st p
r
ov
in
ces in
Iran
are lo
cated
in th
e
su
itab
l
e rad
i
atio
n
areas.
Furt
herm
ore,
d
u
e t
o
exi
s
t
e
nc
e of wi
ndy
ar
eas t
h
e desi
g
n
and co
nst
r
uct
i
on o
f
wi
ndm
il
l
s
has been
com
m
on i
n
I
r
a
n
f
r
o
m
200
0 B
C
. The
st
u
d
ies
an
d calcu
latio
ns, wh
ich h
a
v
e
p
e
rform
e
d
to
esti
m
a
te th
e p
o
t
en
tial
of
wi
n
d
ene
r
g
y
i
n
Iran
,
ha
v
e
sho
w
n t
h
at
at
l
east
onl
y
i
n
26 area
s of t
h
e co
unt
ry
(i
n
c
l
udi
n
g
m
o
re t
h
an
45
appropriate sites) the am
ount of nom
i
na
l ca
pacity of sites, with an ove
ral
l
efficiency of 33% is around 6500
M
W
. Howeve
r, the capacity of
wind powe
r plants unde
r
op
er
ation
in
co
un
tr
y, at th
e end
of
20
12
w
a
s ab
ou
t
10
6 M
W
[1
-
4
]
.
W
i
n
d
an
d s
o
l
a
r sy
st
em
s
i
n
f
o
rm
of hy
bri
d
sy
st
em
s can ope
rat
e
as i
n
d
e
pen
d
e
n
t
p
o
w
e
r p
r
o
v
i
d
e
r
,
whi
c
h can
su
p
p
l
y
Loa
d
s wi
t
h
out
c
o
n
n
ect
i
n
g
t
o
t
h
e net
w
o
r
k
and i
s
l
a
nd m
ode. T
h
i
s
hy
bri
d
ener
gy
sy
st
em
oft
e
n
leads to m
o
re e
fficient, ec
onomic a
nd en
vi
r
o
nm
ent
a
l
ret
u
rn
t
h
an se
pa
rat
e
wi
n
d
a
nd s
o
l
a
r
sy
st
em
s. Henc
e, us
e
of suc
h
system
s can lead t
o
provi
de electrical ene
r
gy
of isol
ated
and
no
t-
co
nn
ected-
t
o-
grid
lo
ad
s.
In
o
r
de
r t
o
op
tim
i
ze the H
O
M
ER so
ftware
is use
d
.
HOMER software is app
licab
le
to
sim
u
late
t
echni
cal
a
n
d
econ
o
m
i
cal
eval
uat
i
o
n
o
f
hy
bri
d
sy
st
em
s that
i
s
pr
o
duce
d
a
n
d s
p
rea
d
by
t
h
e
U
S
Na
t
i
onal
R
e
newa
bl
e En
ergy
La
bo
rat
o
r
y
(NR
EL)
. H
O
M
ER
soft
wa
re
not
onl
y
ena
b
l
e
s user
s t
o
c
o
m
p
are
m
a
ny
di
ffe
rent
design
options
according t
o
t
h
e technical and econom
ic pr
i
n
ciples,
but also provide
the
possibility of c
h
a
nge
s
and m
a
ny
u
n
ce
rt
ai
nt
i
e
s i
n
i
n
p
u
t
s
. T
o
m
odel
a wi
n
d
an
d s
o
l
a
r hy
bri
d
sy
st
em
consi
s
t
s
o
f
p
hot
ov
ol
t
a
i
c
cel
l
s
and
win
d
t
u
r
b
ines
in the
H
O
M
E
R so
ftwa
re, i
n
fo
rm
ation
of
so
lar and
wind sp
eed shou
ld b
e
en
tered into
th
e
considere
d
are
a
of s
o
ft
ware
. In
t
h
e
H
O
M
E
R
o
p
t
i
m
i
zat
ion
p
r
ocess,
al
l
di
ffe
re
nt
ar
r
a
ngem
e
nt
s o
f
po
we
r
su
pp
lying
,
wh
ich
satisfy t
h
e t
ech
n
i
cal
restrictio
n
s
, s
earc
h
t
h
e s
o
lution s
p
a
ce to
ac
hieve
the m
o
st economical
m
ode for life c
y
cle cost. The
soft
ware allows the use
r
to e
x
am
ine the effect of c
h
anging one
varia
b
le on t
h
e
who
l
e system
. In th
is article,
at firs
t
,
t
h
e cl
i
m
at
e and t
h
e
weat
he
r
of
Ya
zd
has
bee
n
st
udi
e
d
,
t
h
e
n
i
t
has
bee
n
at
t
e
m
p
t
e
d t
o
expl
ai
n t
h
e st
r
u
ct
ure o
f
t
h
e pr
op
ose
d
hy
b
r
i
d
sy
st
em
, whi
c
h i
s
needed t
o
pr
ovi
de el
ect
ri
ci
ty
of a
aid
and
em
erg
e
n
c
y Sh
elter in
Yazd and
t
h
en
th
is
propo
sed
syste
m
will
m
o
d
e
l in
HOMER
software [5
].
2.
WEATHE
R
CO
NDITI
ON
S OF
THE
U
NDE
R-
STU
D
Y
SITE
Y
azd
is lo
cated
in
th
e cen
t
r
a
l
p
a
r
t
of
th
e
I
r
a
n
p
l
ateau
i
n
the v
a
st and
dr
y v
a
lley b
e
tw
een th
e Sh
irkooh
and
K
h
ara
n
a
q
m
ount
ai
ns, f
r
o
m
15 de
gree
s a
nd
5
3
m
i
nut
es t
o
4
0
de
gree
s a
nd
5
4
o
f
east
m
i
nut
es an
d fr
om
46
deg
r
ees
3
1
m
i
nut
es t
o
15
de
grees
3
2
No
rt
h m
i
nut
es. T
h
i
s
ci
t
y
i
s
l
i
m
i
ted f
r
o
m
t
h
e nort
h
t
o
M
a
i
b
o
d
a
n
d
Ar
da
kan a
nd
f
r
om
t
h
e east
t
o
B
a
fq an
d f
r
o
m
W
e
st
t
o
t
h
e
pr
o
v
i
n
ce o
f
Is
f
a
han a
n
d fr
om
t
h
e sout
h t
o
t
h
e Taft
,
A
b
ark
ooh
and Meh
r
iz cities. Th
e av
erag
e
h
e
igh
t
ab
ov
e th
e sea lev
e
l in
Y
azd
is 1
200
m
e
ters. Th
e an
nu
al
avera
g
e ra
diation
of Yaz
d
is about 5.
15
.th
a
t
rep
r
esen
ts a sig
n
i
fican
t
po
ten
tial for so
lar
en
erg
y
in th
e
city o
f
Yazd. Ta
ble 1
shows a
v
e
r
age
am
ount of ra
diation reac
hi
ng the horizontal su
rface
of t
h
e
earth i
n
the ci
ty of
Yazd in
differe
n
t m
onths
of the year.
Table 1.
Mea
n
daily
radiation reache
d
by
the
horizontal surf
ace of the
Eart
h in
Kwh
/m
2
da
y
in the
di
ffe
re
nt
m
ont
hs i
n
Yaz
d
The Average R
a
diation (
Kwh/m
2
day
)
M
onth
2.
78
Januar
y
3.
75
Febr
uar
y
4.
61
March
5.
39
April
6.
53
May
7.
19
June
7.
33
July
7.
17
August
6.
11
Septem
ber
4.
83
October
3.
39
Novem
b
er
2.
69
Dece
m
b
e
r
5.
15
Average
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Tech
ni
cal
an
d Eco
n
o
m
i
c
Ev
al
uat
i
o
n of
Hyb
r
i
d
w
i
n
d
/
PV/Ba
t
t
ery S
y
stems for Off-Grid … (Reza
Effa
tn
ejad
)
13
6
Yazd is am
ong areas of Iran, whe
r
e due to factors such as
low rai
n
fal
l
an
d hi
g
h
eva
p
ora
t
i
on, bei
n
g
away from
the sea,
being
near th
e
dry
an
d v
a
st salt
d
e
sert
and
p
r
etty lo
w
h
u
m
id
ity as well as h
i
gh
t
e
m
p
erat
ure
pu
t
t
h
i
s
pro
v
i
n
ce
am
ong t
h
e d
r
i
e
st
Iran'
s regi
on
s. M
o
re
o
v
er i
n
t
h
i
s
area, an e
x
t
r
em
e fl
uct
u
at
i
on
i
n
te
m
p
erature e
x
ists. Yazd city with an a
v
e
r
a
g
e wi
nd
sp
ee
d
of
2.
5 m
e
t
e
rs per sec
o
nd i
s
bet
w
ee
n ap
p
r
o
p
ri
at
e
l
o
cat
i
ons i
n
I
r
a
n,
whe
r
e ha
s
t
h
e hi
g
h
pot
ent
i
a
l
for i
n
st
al
l
i
ng wi
n
d
t
u
rbi
n
e. T
h
i
s
fa
ct
or ca
used t
o
bui
l
d
wind
ward
to
wers in
th
is city
fro
m
m
a
n
y
ye
ars ago
fo
r
v
e
n
tilatio
n
and
co
o
ling
of air in
ho
m
e
s so
th
at it h
a
s
becom
e
as a sy
m
bol of city of Yaz
d
[6-7].
Tabl
e
2.
Sh
o
w
s m
ean wi
n
d
s
p
eed
i
n
m
/
s i
n
di
ffe
re
nt
m
ont
hs i
n
t
h
e
ci
t
y
o
f
Y
azd
The Average
Wind
Speed (
m/s
)
M
onth
4.
4
Januar
y
5.
1
Febr
uar
y
6.
0
March
6.
6
April
6.
6
May
6.
1
June
6.
4
July
5.
7
August
4.
4
Septem
ber
3.
8
October
3.
3
Novem
b
er
3.
9
Dece
m
b
e
r
5.
2
Average
3.
HYBRID SYSTEMS
Hy
bri
d
re
ne
wa
bl
e ener
gy
sy
st
em
s are becom
i
ng m
o
re per
v
a
s
i
v
e t
h
an
bef
o
r
e
fo
r p
o
we
r ge
nerat
i
o
n i
n
rem
o
t
e
areas o
f
t
h
e
net
w
or
k.
Hy
bri
d
sy
st
em
s us
ual
l
y
use t
w
o
o
r
m
o
re so
urces
o
f
re
new
a
bl
e ene
r
gy
,
w
h
i
c
h
im
proves system
perform
ance and stab
ility in ene
r
gy supply. The im
porta
nt
m
a
tter about
hybri
d
system
s that
ope
rat
e
i
n
depe
nde
nt
l
y
fr
om
the net
w
o
r
k i
s
t
h
at
t
h
e o
p
t
i
m
u
m
si
ze of t
h
em
shoul
d be c
a
l
c
ul
at
ed, i
n
o
r
de
r t
o
ex
ist ab
ility o
f
econ
o
m
ical i
m
p
l
e
m
en
tatio
n
with
m
i
n
i
m
u
m co
st. HOM
E
R's o
p
t
i
m
izat
io
n
so
ft
ware i
s
a to
o
l
t
h
at
i
s
pr
od
uce
d
an
d s
p
rea
d
b
y
t
h
e US
Nat
i
o
nal
R
e
ne
wabl
e
Ener
gy
La
bo
r
a
t
o
ry
(
N
R
EL)
.
In t
h
i
s
pa
per
,
a
sol
a
r-
wi
n
d
hy
b
r
i
d
sy
st
em
has been st
udi
e
d
t
o
su
p
p
l
y
el
ect
ri
c energy
re
qui
r
e
d
by
an ai
d and
em
ergency
resi
dent
i
a
l
place in Yaz
d
and im
ple
m
ented in HOMER
softwa
re.
Fi
gure
1 shows the ge
neral Sc
he
m
a
tic of wind and
so
lar
h
ybrid syste
m
u
s
ed
i
n
this stu
d
y
.
Gene
ral
schem
a
t
i
c
show
n i
n
Fi
gu
re 1 i
s
m
odel
e
d
in f
o
rm
of Fi
gu
re 2 in
HOM
ER S
o
ft
ware
. Th
us,
det
a
i
l
e
d i
n
f
o
r
m
at
i
on of va
ri
ous sy
st
em
co
m
ponent
s suc
h
as l
o
ad and s
o
u
r
ces are p
r
e
s
ent
e
d i
n
t
h
e f
o
l
l
o
w
i
n
g
p
a
r
t
s [8
-9
].
Fi
gu
re 1.
Ge
ne
ral
Sc
hem
a
ti
c of
i
n
depe
n
d
ent
ene
r
gy
g
e
n
e
r
a
tion
syst
e
m
in
th
is study
Fi
gu
re 2.
The
i
m
pl
em
ent
a
t
i
on o
f
t
h
e
ge
nerat
i
on
sy
st
em
i
ndepe
nde
nt
of
t
h
e
ne
t
w
o
r
k
i
n
H
O
M
E
R
soft
ware
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
: 1
3
4
–
14
3
13
7
4.
PARAMETERS AND
CONDITION
S OF THE PROJECT
4.
1. E
l
ectri
c
a
l
L
oad
W
i
t
h
exam
i
n
i
ng ai
d an
d e
m
ergency
S
h
e
l
t
e
rs of t
h
e R
e
d C
r
esce
nt
S
o
ci
et
y
or
gani
z
a
t
i
ons
of t
h
e
Isl
a
m
i
c R
e
pu
b
l
i
c
of
Ira
n
t
h
at
i
s
i
n
o
p
erat
i
o
n
or
u
n
d
er
co
nst
r
uct
i
o
n
no
w
an
d el
ect
ri
cal
ene
r
gy
c
o
ns
u
m
pti
on
capaci
t
y
of a
n
ai
d an
d Em
ergency
M
e
di
ci
ne
Shel
t
e
r ca
n be
cal
cul
a
t
e
d by
usi
n
g A
s
h
r
ae a
nd
HSE
St
an
d
a
rds
.
The electrical
powe
rs a
r
e s
p
end i
n
a
ppli
cations s
u
c
h
as l
i
ght
i
n
g,
ai
r co
n
d
i
t
i
oni
ng
an
d
ot
her
el
ect
ri
cal
equi
pm
ent
,
et
c.
W
e
s
h
oul
d n
o
t
i
ce t
h
at
care
of
pat
i
e
nt
s
on aid shelter
wi
thout elect
rical energy can
be
very
di
ffi
c
u
l
t
an
d
o
f
t
e
n i
m
possi
bl
e, s
o
acc
urat
e
cal
cul
a
t
i
on
of
supplying elec
trical energy
by d
i
f
f
e
r
e
n
t
sour
ces is
im
port
a
nt
.
In t
h
i
s
art
i
c
l
e
we are l
o
o
k
i
n
g f
o
r
sup
p
l
y
i
ng el
e
c
t
r
i
c
po
wer
of
ai
d an
d em
ergency
m
e
di
ci
ne shel
t
e
r
in Yaz
d
provi
nce, t
h
ere
f
ore, the el
ect
ri
cal
ener
gy
c
ons
u
m
pti
on
of
o
n
e
of t
h
e c
ont
ai
ners i
s
m
easur
ed a
n
d
ex
am
in
ed
at differen
t
tim
es. Th
e
profile of d
a
ily lo
ad
c
o
nsum
pt
i
o
n
o
f
st
udi
e
d
s
h
el
t
e
r
o
n
a
s
p
eci
fi
c
day
i
s
di
spl
a
y
e
d
i
n
Fi
gu
re 3.
Fi
gu
re 3.
The
pr
ofi
l
e
of
dai
l
y
l
o
ad
co
ns
um
pt
i
on
o
f
st
u
d
i
e
d
s
h
el
t
e
r
on
a s
p
e
c
i
f
i
c
day
4.
2.
Sol
a
r E
n
e
r
gy
Re
sou
rce
As stated in t
h
e project we
are acting to inve
stigate the supplying el
ectrical power in aid and
em
ergency
or
rel
i
e
f an
d re
sc
ue s
h
el
t
e
r i
n
t
h
e ci
t
y
of Yaz
d
.
B
y
ent
e
ri
n
g
t
h
e dat
a
of am
ount
of a
v
e
r
age
dai
l
y
radiation reac
hed to the
hori
z
ontal s
u
rface
of the ea
rth i
n
HOMER s
o
ftwa
re and acc
ording to t
h
e
height
of t
h
e
st
udi
e
d
si
t
e
t
h
e i
ndex
of t
r
an
s
p
are
n
cy
i
s
i
n
t
r
od
uce
d
. Fi
g
u
r
e
4 sho
w
s t
h
e o
u
t
p
ut
of s
o
l
a
r r
a
di
at
i
on i
n
di
ff
erent
m
ont
hs
i
n
Yaz
d
(
Kwh
/m
2
day
).
4.
3.
Wi
nd E
n
e
r
gy
S
o
urce
In th
is
p
a
p
e
r th
e
d
a
ta co
llectio
n
of the m
o
nth
l
y m
ean
wind
s
p
ee
d has be
en use
d
that
is collected by
m
e
t
e
orol
o
g
i
cal
st
at
i
ons
i
n
Ya
zd.
Fi
g
u
re
5 s
h
ows
t
h
e
out
put
o
f
t
h
e m
ean w
i
nd
spee
d
i
n
di
ffe
rent
m
ont
h
s
i
n
t
h
e
city of
Yazd (
m/s
).
Fi
gu
re 4.
The
a
m
ount
o
f
s
o
l
a
r
ener
gy
i
n
Yaz
d
(
Kwh
/m
2
day
)
Fi
gu
re 5.
The
a
v
era
g
e
wi
n
d
s
p
eed i
n
di
ffe
rent
m
ont
hs
in
Yazd
(
m/s
)
5.
REVIEW THE COMPONE
N
TS OF HYB
R
ID SYSTE
M
In
th
is section
we will ex
am
i
n
e th
e co
m
p
o
n
en
ts o
f
th
e
h
ybrid
system u
s
ed
in
th
is case stu
d
y
and
will
atte
m
p
t to
p
r
o
v
i
d
e
techn
i
cal an
d
economic ch
ar
acter
istics o
f
t
h
e
p
r
op
o
s
ed
m
o
dels. H
ybr
id
syste
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Tech
ni
cal
an
d Eco
n
o
m
i
c
Ev
al
uat
i
o
n of
Hyb
r
i
d
w
i
n
d
/
PV/Ba
t
t
ery S
y
stems for Off-Grid … (Reza
Effa
tn
ejad
)
13
8
com
pone
nt
s u
s
ed i
n
t
h
i
s
ca
se st
udy
are:
1- wi
n
d
t
u
r
b
i
n
es,
2- p
h
o
t
o
vol
t
a
i
c
sy
st
em
s, 3-
bat
t
e
ri
es and
4
-
co
nv
erter.
In
th
e fo
llowing
parts,
the
technical specifications a
n
d propose
d m
odel
an
d
p
r
i
ce o
f
eac
h
of
use
d
u
n
its, hou
rs of
o
p
e
ration
an
d
o
t
h
e
r feat
u
r
es
will b
e
d
e
scri
bed
.
5.
1. Wi
nd
T
u
r
b
i
n
e
W
i
nd
tur
b
i
n
es
ear
n
t
h
eir
input p
o
w
e
r
f
r
o
m
co
nv
er
tin
g
w
i
nd
pow
er
t
o
torq
u
e
t
h
at is cr
eated
b
y
th
e
actio
n
of tu
rb
i
n
e b
l
ades.
W
i
n
d
en
erg
y
h
a
s d
i
rect re
latio
n
s
h
i
p
with
win
d
d
e
nsity an
d
co
llisio
n
sp
eed
wit
h
tu
rb
in
e
b
l
ad
es. It m
ean
s th
at if th
e
wind
d
e
nsity o
r
its sp
eed
b
e
h
i
g
h
, th
e
m
o
re en
erg
y
will b
e
av
ailab
l
e in
th
e
wind,
so turbi
n
es
receive
m
o
re e
n
ergy.
Due
to t
h
e ae
ro
dy
nam
i
c properti
es of
wind t
u
rbines
and
dire
ction
of
th
e turb
i
n
e ag
ain
s
t th
e
wind directio
n
,
use a
coefficient
of the total
wind e
n
erg
y
th
at is sh
own
with
C
p
an
d i
s
called the turbi
n
e pe
rform
a
nce coeffici
e
n
t of turbi
n
e and can show the e
ffi
ciency wind turbi
n
e. Acc
o
rdi
ng t
o
Betz law th
e max
i
m
u
m
ratio
can
b
e
0.593
and
in
practice du
e to
lim
ita
tio
n
s
in th
e con
s
tru
c
tion
,
t
h
is facto
r
is
placed i
n
ra
nge of 0.25-0.5
.
Accordingly the
power of t
h
e
wind th
at i
s
conve
rted
by the turbine
can
be
calcu
lated
from
(1
) [10
]
:
3
1
..
.
.
(
)
2
wi
n
d
w
i
n
d
P
PA
V
C
(1
)
In t
h
e a
b
ove
e
quat
i
o
n,
is air
d
e
nsity, wh
ich
at 1
5
°C
is
3
1.
2
9
0
/
kg
m
,
A
i
s
t
h
e sca
nni
ng
are
a
of
t
h
e
rot
o
r
bl
a
d
es,
wi
nd
V
i
s
w
i
n
d
s
p
e
e
d
,
P
C
is turb
in
e
p
e
rform
a
n
ce ratio
,
λ
is th
e
ratio
o
f
lin
ear
v
e
lo
city of ti
p
of the
blades
to the
wind s
p
ee
d a
n
d is called
the
TS
R
(Tip
Sp
eed
Ratio
) and
its v
a
lu
e
is calcu
l
ated
b
y
(2):
ro
t
wi
n
d
R
V
(2
)
In t
h
e above e
quation,
R
is the bla
d
e
(the
radi
us of circl
e
that enc
o
m
p
asses the
blades),
ω
rot
the
angular vel
o
city of tip
of t
h
e
blades
,
wi
nd
V
is wi
nd s
p
ee
d [
1
1-
12]
.
In
t
h
is p
a
p
e
r, in
order to
supp
ly requ
ired
po
wer a wi
nd
tu
rb
in
e m
o
d
e
l
3
0
0
,
with
a cap
acity o
f
0
.
3
k
W
,
whi
c
h i
s
m
a
nufact
ure
d
i
n
Am
pai
r
C
o
m
p
any
,
i
s
use
d
.
Th
is wi
n
d
tu
rb
in
e is
h
o
rizo
n
t
al ax
is
with
three
blades
,
the propeller of
t
h
ree
-
blade
d
wind turbi
n
e acts a
g
ainst the
wind
a
n
d is place
d a
g
ainst the
wind
flow.
Technical para
meters of t
h
e
wind turbi
n
e
with a capacity
of
0.3 kW
A
m
p
a
ir
-
300
m
o
d
e
l
ar
e sh
own
in
Tab
l
e 3.
Fi
gu
re
6 s
h
ows
t
h
e
po
we
r-s
pe
ed c
h
aract
e
r
i
s
t
i
c
o
f
wi
n
d
t
u
rbi
n
e m
odel
Am
pai
r-3
0
0
.
Tabl
e
3. T
ech
n
i
cal
speci
fi
cat
i
ons
o
f
u
nde
r-
st
udy
wi
n
d
t
u
r
b
i
n
e
(Am
p
ai
r-
30
0)
Upwind,
3 Bladed r
o
tor
,
Self-
r
egulating
Architecture
3 m
/
s
Cut-in Wind Spee
d
None -
continuous
gener
a
tion to 60
m
/
s
Cut-
Out W
i
nd Speed
0.
3 KW
at 12.
6
m
/
s
Rated Power
~ 0.
36 KW
M
a
x
i
mu
m P
o
w
e
r
12 volt DC; 24 vol
t DC
Voltage Options
1200 m
m
Turbine Dia
m
eter
10.
5 kg
W
e
ight
-2
0
˚
C ~ +50
˚
C
Operating Te
m
p
er
ature
20 Year
s
m
i
nim
u
m
Design L
ongevity
In
th
is stud
y assu
m
e
d
n
u
m
b
e
r o
f
wi
n
d
turb
ines is co
n
s
id
ered
to
b
e
b
e
tween
0
to
5
.
Th
e in
itial co
st o
f
installation and setting
up
of t
h
e tu
rbine
with capacity of
0.3
kW is
320$ a
n
d re
placem
ent fee is
300$.
5.
2. PV
S
y
ste
m
A so
lar
p
a
n
e
l i
s
a co
llectio
n
of so
lar cells th
at
are connected in series or
pa
rallel. Each
PV
cell is
a
p-
n
sem
i
con
duct
o
r j
u
nct
i
o
n t
h
at
conve
rt
s sol
a
r radi
at
i
o
n en
ergy
i
n
t
o
el
ect
ri
cal
energy
.
A sam
p
l
e
equi
val
e
nt
circu
it of
PV
c
e
l
l
s
has bee
n
s
h
o
w
n i
n
Fi
g
u
r
e
2, t
h
at
I
ph
rep
r
esen
t th
e
pho
tod
i
od
e cu
rren
t,
R
j
,
R
sh
and
R
s
are
no
n
-
l
i
n
ear i
m
pedance
p-
n
junctio
n
,
in
tri
n
sic p
a
rallel resistan
ce and
in
tern
al series resistan
ce with
in
the cell.
R
s
resistance is
very
sm
all and
R
sh
resistanc
e
is ve
ry
large
,
there
f
o
r
e,
t
o
si
m
p
lify th
e circu
it d
i
agram
,
bo
th
of
them
can be
ne
glected.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
: 1
3
4
–
14
3
13
9
Fi
gu
re 6.
powe
r
-wind s
p
ee
d c
h
aracteristic
of unde
r-
stu
d
y
w
i
nd
t
u
rb
in
e (A
m
p
air
-
3
00)
Fi
gu
re
7.
The
e
qui
val
e
nt
ci
rc
u
i
t
of a
sol
a
r cel
l
Accord
ing
to
th
e equ
i
v
a
len
t
circu
it o
f
PV cell,
PV array
o
u
t
pu
t cu
rren
t is calcu
lated
u
s
ing
(3
) as
fo
llows:
ex
p
1
PV
PV
P
P
h
P
s
a
t
S
q
nk
T
V
IN
I
N
I
N
(3
)
That
I
PV
and
V
PV
are curre
n
t and a
rray
of
PV
vol
t
a
ge,
N
s
a
nd
N
p
are t
h
e
num
ber se
ri
es and
pa
ral
l
e
l
cells in
th
e array,
q
i
s
el
ect
r
o
n c
h
ar
ge
(
1
.
6
*
1
0
-
19
C
o
ul
om
b)
,
K
is th
e B
o
ltz
m
a
n
n
con
s
tan
t
(
1
.
38
*10
-23 J/°K
),
T
is
PV
array te
m
p
erature (
°K
) and
n is ideal factor of
p-
n
j
unct
i
o
n (
b
et
ween
1 an
d 5)
.
Al
so
I
sat
in
d
i
cates to
th
e rev
e
rse satu
ration
cu
rren
t
PV
cell th
at is d
e
p
e
nd
en
t on
th
e
PV
array te
m
p
erature a
nd ca
n
be calc
u
lated
usi
n
g
(4
) as
f
o
l
l
ows:
0
00
3
11
ex
p
n
ga
s
p
at
qE
T
Tn
k
T
T
II
(4
)
Whe
r
e
T
0
is the cell referenc
e te
m
p
erature,
I
0
is cell reverse saturation current at
T
0
and
E
gap
is th
e
ai
r gap
v
o
l
t
a
ge
of sem
i
cond
uc
t
o
r i
n
a
PV
ar
ra
y
.
In (
1
)
I
ph
i
s
chan
ge
d by
cha
ngi
ng t
h
e ra
di
at
i
on am
ount
o
f
S
i
&
array tem
p
erature
of
T
that ca
n
be calculate
d by
(5):
0
,0
ph
S
C
T
i
i
TT
II
S
K
(5
)
I
sc
,
T
0
is the short circ
uit current of the
array at
T
0
and
K
i
is
te
m
p
erature c
o
efficient. Base
d
on
(1)
PV
po
we
r out
put
(
P
PV
) is calcu
lat
e
d
u
s
ing
(6):
ex
p
1
PV
PV
PV
PV
P
P
h
P
V
P
s
a
t
P
V
S
V
PI
V
N
I
V
N
I
N
q
nk
T
V
(6
)
Thi
s
eq
uat
i
o
n sho
w
s t
h
at
t
h
e
am
ount
of
P
PV
i
s
depe
nde
nt
o
n
S
i
a
nd tem
p
erature
of t
h
e
PV
ar
r
a
y [1
3-
14]
.
In
th
is
p
a
p
e
r, t
o
supp
ly requ
ired
power,
from th
e so
lar p
a
n
e
l m
e
n
u
2
0
0
W
Crystal Grap
e so
lar (
GS
-S
-
20
0
) is
use
d
. T
h
e technical s
p
ecifications
of
th
is p
a
n
e
l are
presen
ted
in Tab
l
e 4.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Tech
ni
cal
an
d Eco
n
o
m
i
c
Ev
al
uat
i
o
n of
Hyb
r
i
d
w
i
n
d
/
PV/Ba
t
t
ery S
y
stems for Off-Grid … (Reza
Effa
tn
ejad
)
14
0
Tab
l
e
4
.
Electrical Sp
ecificatio
n
s
of
So
lar Pan
e
l GS-S-2
00
i
n
stan
d
a
rd test
co
nd
itio
ns (STC)
200
W
M
a
xim
u
m
Power
at Standar
d
T
e
st Conditions (
P
ma
x
)
36.
3
V
Voltage at the
Ma
xi
m
u
m
Powe
r Poi
n
t (
V
m
pp
)
5.
51
A
Current
at
the Max
i
m
u
m
Power Point
(
I
m
pp
)
45.
6
V
Open Circuit Volta
ge (
V
oc
)
5.
71
A
Short Circuit Current (
I
s
c
)
15.
7%
M
odule E
fficiency
(%)
-
40 °
C
~ +85 °
C
Operation Temperature (
°
C
)
1000
V
/ 600
V
M
a
x
i
mu
m S
y
s
t
e
m
V
o
l
t
a
g
e
(
V
)
10
A
M
a
xim
u
m
Ser
i
es Fuse Rating (
A
)
-2
% ~ +2
%
Po
wer To
le
ran
c
e
*
(
S
TC):
R
adiation R
a
te 1000 W
/
m
2
,
Temperature
25
˚
C,
Time 1.
5A
M.
I
n
t
h
is stud
y,
7
p
o
w
e
r r
a
ng
e o
f
so
lar
p
a
nels (2
00
, 400
,
60
0,
8
0
0
,
100
0, 12
00
and
1
400
wa
tt
)
ha
ve
been
sel
ect
ed
and e
v
al
uat
e
d.
The c
o
st
o
f
pu
rc
hasi
n
g
an
d sol
a
r pa
nel
s
i
n
st
al
l
a
t
i
on and t
h
e co
st
pe
r
kW
is
1,
60
0
$
a
n
d
t
h
e
cost
of
re
pl
aci
ng
t
h
e
pa
nel
s
i
s
co
nsi
d
e
r
e
d
t
o
be
1,
4
0
0
$
.
5.
3. B
a
t
t
er
y
Lead-aci
d batt
eries are use
d
to store e
x
cess
electri
ci
t
y
generat
e
d by
t
h
e
p
r
o
p
o
sed
hy
b
r
i
d
sy
st
em
, and
adjust the system
voltage and finally
to supply the load requi
red power
in
condition
of lock of
gene
ra
tion of
sol
a
r a
n
d
wi
n
d
sy
st
em
(red
u
c
t
i
on
of
wi
n
d
s
p
eed
o
r
s
o
l
a
r
r
a
di
at
i
on c
o
ndi
t
i
ons
).
Vari
ou
s
m
odel
s
of
bat
t
e
ri
es
are available in the m
a
rket
for
th
is work
. Th
e b
a
ttery, wh
ich
is selected
for th
is stu
d
y
is (200
Ah
, 12
V
)
C
o
m
p
any
Vi
si
on
(
6FM2
00D
). In
th
is st
u
dy, th
e pu
rch
a
se an
d
i
n
stallatio
n
co
st of each
b
a
ttery mo
d
e
l
(
6
F
M200
D
) is
36
0
$
an
d
34
5
$
respect
i
v
el
y
a
nd c
o
st
of
repl
acem
e
nt
of
bat
t
e
ry
i
s
consi
d
er
ed t
o
be 3
6
0
$
. In
t
h
is
study, the
numbers
of
batteries are assum
e
d to be
0, 1
a
n
d 2. Minim
u
m
conside
r
ed lifeti
m
e for each
ba
ttery is
4 years
.
5.4. Converter
Electrical converter use
d
in
hybrid system is
an electr
onic
device that convert the
DC
cu
rre
nt (f
rom
sou
r
ces
suc
h
a
s
bat
t
e
ri
es,
s
o
l
a
r
panel
s
o
r
w
i
nd
tu
rb
in
es, etc.) to th
e altern
ativ
e cu
rren
t
(
AC
)
,
o
r
conv
er
sely.
The c
o
nve
r
sion type
of t
h
e
s
e conve
rters
(
DC-
A
C
or
AC-
D
C
)
i
s
di
f
f
e
rent
, w
h
i
c
h depe
n
d
s on
t
y
pe
o
f
ap
p
lication
in
t
h
e
h
y
b
r
i
d
system
. Th
e co
nv
erter is used in
t
h
is stu
d
y
is a
DC-
A
C
converte
r. T
h
e c
o
nve
rted
AC
cur
r
ent
can
va
ry
based o
n
re
qui
red v
o
l
t
a
ge
and fre
q
u
e
n
cy
t
h
at
i
s
cont
rol
l
e
d by
t
h
e app
r
o
p
ri
at
e t
r
ans
f
orm
e
rs
and ci
rc
ui
t
s
.
DC
to
AC
conve
rt
er Sel
ect
ed f
o
r t
h
i
s
st
u
d
y
i
s
a 100
0
W
In
ve
rter
M
o
del
I
P
S-
120
0
m
a
nufac
t
u
r
e
d
by
KEBO
Elec
trical Com
p
any. In this
study
,
the
num
b
er
of assum
e
d
DC
to
AC
converter has
bee
n
consi
d
ere
d
to
b
e
0
,
1
and
2
.
Th
e in
itial c
o
st o
f
in
stallatio
n
an
d
tri
g
g
e
rin
g
o
f
Each
I
P
S
-
12
00
with a
capacity of 1
kW
is
20
0
$
a
n
d the c
o
st
of
re
placement is 185
$
[
1
5
-
16]
.
6.
SIMULATION IN
HOM
ER
SO
F
T
WA
RE
In
HO
MER
s
o
ftware
, t
h
e
net present
cost
or fi
nal
net c
o
st (
NPC
) is
u
s
ed
in
o
r
d
e
r to calcu
l
ate th
e
syste
m
life cyc
l
e and the c
o
st
s include:
insta
llation, re
place
ment, fuel, etc.
all costs a
n
d revenue is
eval
uated
by
co
nst
a
nt
i
n
t
e
rest
rat
e
o
v
er
a y
ear
peri
od
.
In
t
h
i
s
as
sess
m
e
nt
, i
n
or
der
t
o
af
fect
i
n
fl
a
t
i
on i
n
com
put
at
i
on,
eq
u
a
tion
(7
)
is ad
op
ted
:
1
if
i
f
(7
)
Th
at in (7
),
I
is real in
terest rate,
i
is no
m
i
n
a
l i
n
terest
rate,
F
is in
flation
i
n
terest rate.
Th
e m
a
in
o
u
t
pu
t o
f
econo
m
i
c calcu
latio
n
s
in
th
e software is th
e n
e
t presen
t co
sts
(
NPC
) wh
ich
is
calculated by
(8):
ann
u
al
,
tot
a
l
Pr
oj
e
c
t
,
NP
C
C
C
CR
F
i
R
(8
)
That
i
n
eq
uat
i
o
n
num
ber
(8
),
an
n
u
al
,
t
o
t
a
l
C
Annu
al to
tal co
st,
Pr
o
j
e
c
t
R
Proj
ect lon
g
e
v
ity,
I
real
in
terest rate.
To
calcu
late the return on
i
n
vest
m
e
n
t
in
N
y
ears e
quat
i
o
n
(
9
)
i
s
us
ed:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
: 1
3
4
–
14
3
14
1
1
,
11
N
N
ii
CR
F
i
N
i
(9
)
Whic
h
,
CR
F
i
N
i
s
a ret
u
r
n
fact
or
of i
n
vest
m
e
nt
i
n
N
y
ears. I
n
pe
rf
o
r
m
e
d opt
i
m
i
zati
on i
n
HO
MER
so
ft
ware all
p
o
ssib
l
e cond
itio
n
o
f
sim
u
latio
n
an
d
b
e
st com
b
in
atio
n
with
th
e l
o
west net p
r
esen
t co
sts (
NPC
),
in
trodu
ced
as
o
p
tim
al arran
g
e
m
en
t.
The
be
st
achi
e
ve
d c
o
m
b
i
n
at
i
on m
e
et
all the preset
constraints
by the
o
p
e
rator with
th
e lo
west
n
e
t p
r
esen
t co
st
[17
-
20
]. Th
e
resu
lt o
f
op
ti
mizatio
n
in
HOMER
so
ftwa
re
fo
r
m
e
nt
i
oned
sy
st
em
i
n
t
h
e ci
t
y
of
Yaz
d
has
sh
ow
n i
n
Fi
gu
re
8.
Fi
gu
re
8.
The
r
e
sul
t
o
f
t
h
e
o
p
t
i
m
i
zati
on
per
f
o
r
m
e
d by
t
h
e
HO
MER
software to
th
e To
tal
NPC
7.
R
E
SU
LTS AN
D ANA
LY
SIS OF OPTIM
I
ZA
TION
C
URV
E
Details o
f
th
e
v
a
ri
o
u
s
co
m
p
on
en
ts’ co
sts
o
f
a h
ybrid system
g
a
in
ed
fro
m
op
ti
m
i
zatio
n
resu
lts in
20
-
years lifetim
e
of the
project
has s
h
own in
F
i
g
u
r
e
9
.
A
s
c
a
n
b
e
s
e
e
n
i
n
F
i
g
u
r
e
9
,
m
o
s
t
o
f
t
h
e
p
r
o
j
e
c
t
c
o
s
t
s
i
s
related
to th
e ph
o
t
o
v
o
ltaic syste
m
in
itial co
st, bu
t m
o
st co
st
of
rep
l
acing in
2
0
years is
related
to
b
a
ttery th
at
has a l
a
r
g
e
rol
e
i
n
t
o
t
a
l
cost
of t
h
i
s
p
r
o
j
ect
.
Fi
gu
re
10
sh
o
w
s t
h
e
wi
de
c
u
r
v
e
of c
o
st
di
st
ri
but
i
o
n
base
d o
n
diffe
re
nt pa
rts
of the syst
em
(investm
e
nt, re
placem
ent, ope
ration, fu
el a
nd recycling)
during t
h
e
project.
Fi
gu
re
9.
Net
c
o
st
s
of t
h
e
vari
ous
c
o
m
pone
nt
s o
f
t
h
e
un
de
r-st
udy
hy
bri
d
sy
st
em
i
n
vari
ous
sect
o
r
s
Fig
u
re
10
. C
o
st Distribu
tio
n cu
rv
e
b
y
th
e d
i
fferen
t
section
over t
h
e life of the
project
Fi
gu
re 1
1
s
h
o
w
s
t
h
e
a
v
era
g
e
rat
e
of ge
nerat
i
ng p
o
we
r fo
r di
ffe
re
nt
m
ont
hs of
t
h
e
y
e
a
r
. Acco
r
d
i
n
gl
y
,
t
h
e avera
g
e
po
wer
gene
rat
e
d
by
t
h
e sol
a
r ce
l
l
s
i
s
896 (
kW
h/yr.
), wh
ich
co
n
s
ist 72
%
o
f
th
e to
tal a
m
o
u
n
t
of
gene
rat
e
d e
n
er
gy
i
n
u
nde
r-
st
udy
hy
bri
d
sy
st
em
. W
i
n
d
t
u
rbi
n
e ge
nerat
e
s avera
g
e p
o
w
er o
f
3
43
(
kW
h/yr.
),
whi
c
h
dedi
cat
e
s
2
8
%
of t
o
t
a
l
ener
gy
gene
ra
t
i
on. T
h
e m
a
xi
m
u
m
power
g
e
nerat
e
d by
s
o
l
a
r cel
l
s
i
s
i
n
Jun
e
,
Jul
y
, A
u
gu
st
, a
n
d
Se
pt
em
ber m
ont
hs an
d t
h
e
l
o
west
am
ou
nt
i
s
rel
a
t
e
d t
o
t
h
e
Dece
mber
and
Ja
nua
ry
. Als
o
the
max
i
m
u
m
p
o
w
er
g
e
nerated b
y
wind
turbin
es is in
Apr
i
l
,
May
,
J
une
,
July
, and
th
e lo
west are
related
to
November
and
Octo
ber
.
In Fi
gu
re
12 a
nd
1
3
, t
h
e am
ou
nt
o
f
o
u
t
p
ut
po
wer
o
f
sol
a
r an
d wi
nd sy
st
em
s have be
en sh
o
w
n at
di
ffe
re
nt
t
i
m
e
s of
day
and i
n
t
e
rm
s of capaci
t
y
and ge
nerat
e
d p
o
w
er f
o
r d
i
ffere
nt
m
ont
h
s
of t
h
e y
e
a
r
. S
u
r
p
l
u
s
el
ect
ri
cal
po
we
r,
whi
c
h i
s
gen
e
rat
e
d
by
sol
a
r
an
d wi
nd
sy
st
em
s, saves i
n
t
h
e i
n
t
e
nde
d
St
ora
g
e sy
st
em
, whi
c
h
i
s
bat
t
e
ry
. The
am
ount
of el
ec
t
r
i
cal
po
wer st
ore
d
i
n
t
h
e bat
t
ery
i
s
sho
w
n i
n
Fi
g
u
r
e 1
4
f
o
r
t
h
e t
i
m
e
of da
y
and
i
n
t
e
rm
s of ca
p
aci
t
y
and
ge
ner
a
t
e
d p
o
w
er
f
o
r
t
h
e m
ont
h
of
t
h
e y
ear.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Tech
ni
cal
an
d Eco
n
o
m
i
c
Ev
al
uat
i
o
n of
Hyb
r
i
d
w
i
n
d
/
PV/Ba
t
t
ery S
y
stems for Off-Grid … (Reza
Effa
tn
ejad
)
14
2
Fi
gu
re
1
1
. T
h
e
ave
r
age
am
ount
o
f
p
o
we
r
ge
nerat
i
o
n
of
sy
stem
for
d
i
ffere
nt m
onths
o
f
the
y
ear
Fi
gu
re
1
2
. T
h
e
el
ect
ri
cal
po
w
e
r
out
put
of
t
h
e
sol
a
r
sy
st
em
at
di
ffe
rent
t
i
m
es of t
h
e day
Fi
gu
re
1
3
. T
h
e
el
ect
ri
cal
po
w
e
r
out
put
of
wi
nd
sy
st
em
at
di
ffe
rent
t
i
m
es of t
h
e day
Fi
gu
re
1
4
. t
h
e
am
ount
o
f
po
w
e
r st
o
r
e
d
i
n
t
h
e
bat
t
e
ry
at
di
ffe
re
nt
t
i
m
e
s o
f
t
h
e
day
In
th
is system
,
wh
en
th
e en
erg
y
g
e
n
e
rated
by so
lar an
d
wi
n
d
cells are mo
re th
an
n
e
ed
s
o
f
lo
ad
s, th
is
excess electrical powe
r
can
be stored in
batteries and at
hours that the sol
a
r and wi
nd syste
m
are not capable
to
g
e
n
e
rate electric po
wer, t
h
e b
a
ttery starts
g
e
n
e
ratio
n a
n
d provides
the el
ectrical energy
re
quire
d
for l
o
ad.
8.
CO
NCL
USI
O
N
Usu
a
lly, on
e of th
e b
i
gg
est ch
allen
g
e
s in
rem
o
te
sy
st
em
s
and i
n
de
pen
d
e
n
t
i
s
ol
at
ed net
w
o
r
k
s
i
s
ho
w
to supply the fuel and ac
hieve a sust
ai
na
bl
e
ener
gy
so
u
r
ce
. To
day
,
due t
o
adva
nces in t
h
e field
of re
newable
energy and i
n
c
r
easing
prices
of
oil products, usa
g
e
of
re
n
e
wabl
e e
n
er
gy
has
becom
e
v
e
ry
com
m
on i
n
t
h
e
fo
rm
of hy
bri
d
sy
st
em
s.In hy
bri
d
ener
gy
sy
st
em
s, el
ect
ri
cit
y
i
s
provi
de
d
fr
om
di
fferent
ener
gy
so
urces
, t
h
at
the
res
o
urce
s work with
eac
h othe
r. Hybri
d
system
s
co
m
p
ared to
syste
m
s that us
e on
e sou
r
ce to
pr
odu
ce
electricity, h
a
v
e
h
i
gh
er
reliab
ility. Two
of the
m
o
st u
s
u
a
l so
urces
o
f
en
erg
y
are so
lar and
wi
n
d
en
erg
y
. In
thi
s
pape
r
we ha
ve
at
t
e
m
p
t
e
d t
o
exam
i
n
e how
t
o
use s
o
l
a
r a
nd
wi
n
d
hy
bri
d
sy
st
em
s t
o
sup
p
l
y
el
ect
ri
c powe
r
o
f
a
n
aid
and
m
e
d
i
cal e
m
erg
e
n
c
y
Sh
elter in Yazd
. Op
ti
m
i
zatio
n
an
d sim
u
latio
n
resu
lts in
HOMER Software sho
w
t
h
at
t
h
e avera
g
e po
wer ge
ne
ra
t
e
d by
t
h
e sol
a
r cel
l
s
i
s
896
kWh/yr.
w
h
i
c
h i
s
72% o
f
t
h
e t
o
t
a
l
am
ount
of ener
gy
gene
rat
e
d
by
t
h
e hy
b
r
i
d
sy
st
em
. W
i
n
d
t
u
r
b
i
n
es wi
t
h
a
v
er
age po
we
r out
put
o
f
34
3
kWh
/y
r
. de
di
cat
e
28
% of
to
tal en
erg
y
pro
d
u
c
tion
to itself
.
Th
e r
e
su
lts in
d
i
cate
g
ood po
ten
tial o
f
Yazd
for
w
i
n
d
an
d so
lar
en
ergy an
d
also
illu
strates th
e
pro
p
e
r fun
c
tio
n
i
ng
o
f
th
e propo
sed
appro
a
ch
to pro
v
i
d
e
t
h
e electrical n
e
ed
s
o
f
system
.
REFERE
NC
ES
[1]
Shahinzad
eh, H., Gharehp
e
tian,
G.B., Fa
thi, S
.
H., & N
a
sr-Azadani, S.M. (
2015)
. Optimal Planning of an Off-grid
Ele
c
tri
c
it
y Gene
ration with Ren
e
wable En
er
g
y
Resources using the HOMER Software.
International Journal of
Power Electronics and Dr
ive Sys
t
ems (
I
JPEDS)
, 6(1),
137-147
.
[2]
Fulzele JB, Subroto Dutt. Optimium planning of
h
y
brid r
e
new
a
ble en
erg
y
s
y
stem using HOMER.
Internat
ion
a
l
Journal of Electrical and
Co
mputer
Eng
i
neer
ing
(
I
JECE)
. 2011;
2(1): 68-74.
[3]
Hanaa T. El-M
adan
y
,
Faten H. Fahm
y
,
Ninet
M.A. El-Rahman, Hassen
T. Dorrah, (2012).
Optimizatio
n an
d
Feasibili
t
y
Anal
ysis of Sat
e
ll
ite
Eart
h Station Po
wer S
y
st
em Using Homer.
TELKOMNIKA Indonesian Journal
of
Ele
c
trica
l
Eng
i
n
eering
, 10(2), 35
9-370.
[4]
Shahinzad
eh, H. (2014). Effects of the Presence
of Dist
ributed Generation on Protecti
on and Operation of Smar
t
Grid Im
plem
ented in Iran;
Challenges and Solutions.
TELKOMN
I
KA Indonesian Journal
of Electrical Engineerin
g
,
12(11), 7595-76
02.
[5]
Shahinzad
eh, H., Abadi, M.M.N., Haja
hmadi, M., & Pakn
ejad
, A. (2013). De
sign
and Economic Stud
y
for Use th
e
Photovoltaic S
y
stems for Electricity
Supply
in I
s
fahan Museum
Park.
Internatio
nal Journal of Power Electronics
and Drive S
y
stems (
I
JPEDS)
,
3
(1), 83-94
.
[6]
Shahinzad
eh, H., Fathi, S.H.
, Nasr-Azadani, S.M. (2015). Optimal Sizing
of PV/Wind Hy
br
id S
y
stems to Energ
y
Supply
of Street Lighting b
y
using HOMER
Sof
t
ware (A Case Stud
y
in Yazd
).
The 3rd National Conference on
Climate, Bu
ildin
g and En
ergy
Efficiency
, 13-14
M
a
y
2015.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
1,
Mar
c
h
2
016
: 1
3
4
–
14
3
14
3
[7]
Shahinzad
eh, H., & Ghotb
,
H. (2
012)
. Technical
and Ec
onomic Assessment for usi
ng Ground-Source Heat Pumps
in Com
m
e
rcial
a
nd Institut
i
onal
Buildings.
In
ter
national Journal
of
Electrical an
d Comput
er Eng
i
neering (
I
JEC
E
)
,
2(4), 502-510
.
[8]
Rezzouk
, H., &
Mellit
, A.
(2015
). Feasibi
lit
y
s
t
u
d
y
and se
nsit
ivit
y
anal
y
s
is of
a s
t
and-alone pho
t
ovoltai
c
–di
esel–
batt
er
y h
y
brid
e
n
erg
y
s
y
s
t
em
in
the nor
th of
Alg
e
ria
.
Renewab
l
e and
Sustainable Energy Reviews
, 43, 1134-1150.
[9]
Rohani, G., &
Nour, M. (2014
). Techno-
econo
mical
analy
s
is o
f
stand-alone
h
ybrid ren
e
wable
power s
y
stem fo
r
Ras Musherib in
United
Arab
E
m
irates.
En
ergy
, 64,
828-841
.
[10]
Adaramola, M
.
S., Agelin-Ch
aab
, M.,
& Paul, S.S. (2014). Analy
s
is of h
y
br
id energ
y
s
y
stems for application
in
southern Ghana.
Energy Con
version and Manag
ement
, 88
, 284
-29
5
.
[11]
Kaviani-Aran
i,
A., & Gheir
a
tmand, A.
(2015). S
o
ft Switching B
oost Converter S
o
lution for Incr
ease the Eff
i
ciency
of S
o
lar
Energ
y
S
y
s
t
em
s
.
TELKOMNIKA Indon
esian Journal
of Electrica
l
Eng
i
n
eering
, 13(3), 44
9-457.
[12]
Shaahid, S.M., Al-Hadhrami, L.M.,
& Rahman, M.K. (201
4). Review of
economic assessment of hy
br
id
photovoltaic-d
iesel-batter
y
power s
y
st
ems for res
i
dential
loads fo
r differ
e
nt prov
inces of Saudi A
r
abia.
Renewab
l
e
and
Sustainable Energy Reviews
, 31, 174-181.
[13]
Sigarchian, S.G., Paleta, R.,
Malmquist, A., & Pina, A. (2015)
. F
easibility
stud
y
of using
a biogas engine as back
up
in a decentr
alized h
y
brid (PV/wind/batter
y
)
pow
er gener
a
tion s
y
s
t
em–Case stud
y
Ken
y
a.
Energy
.
[14]
Li, C., Ge, X.,
Zheng, Y., Xu,
C., R
e
n, Y., Song, C.,
& Yang
, C. (2013)
.
Techno-economic f
eas
ibility
stud
y
of
autonomous h
y
b
r
id wind/PV/batter
y
power
s
y
stem for a househo
l
d in Urumqi, Ch
ina.
En
ergy
, 55,
263-272.
[15]
Ataei, A., Big
l
ar
i, M., Ned
aei, M., Assareh, E., C
hoi,
J.K., Yoo
,
C., & Adar
amola, M.S. (2015).
Techno-
econom
ic
feasibility
stud
y of autonomous h
y
br
id
wind
and solar power
s
y
stems for rural areas in Ir
an,
A case stud
y
in
Mohey
d
ar villag
e
.
Environmenta
l Progress
&
Sustainable En
ergy
.
[16]
Tazv
inga, H
., X
i
a, X., & Zh
ang
,
J. (2013). Min
i
mum co
st solution of photovoltaic–d
iesel–b
a
tter
y
h
y
brid power
s
y
ste
m
s for re
mote
c
onsume
r
s.
So
l
a
r E
n
e
r
g
y
, 96
,
292-299.
[17]
Najafi, G., Ghobadian
, B., Ma
mat, R., Yusaf,
T., & Azmi, W.H. (2015).
Solar energ
y
in Iran: Current state and
outlook.
Ren
e
wa
ble and
Sustaina
b
le Ener
gy
Re
vi
ews
, 49
, 931-94
2.
[18]
Ly
d
i
a, M., Kumar, S.S., Selv
ak
umar
, A.I., &
Kumar, G.E.P. (
2014). A co
mpr
e
hensive
review on wind turbin
e
power curv
e modeling
techniqu
es.
Renewab
l
e and
Sustai
nable En
ergy Reviews
, 30
, 452-460.
[19]
Padmanabhan, B.,
Vasileska, D.,
Sc
hroder
,
D.K., & Mamalu
y
,
D. (2008).
Modeling of s
o
lar cells
(Doctoral
dissertation
,
Ar
izona
S
t
ate
Univ
ers
i
t
y
).
[20]
Shin, Y., Koo, W.Y., Kim, T.H., Jung,
S., & Kim, H. (2015). Capacity
desi
gn and operation planning of a h
y
brid
PV–wind–batter
y
–diesel power generation s
y
stem in the case of Deokjeok Island.
App
lied Ther
mal Engineering
,
89, 514-525
.
Evaluation Warning : The document was created with Spire.PDF for Python.