Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol.
6, No. 4, Decem
ber
2015, pp. 703~
711
I
S
SN
: 208
8-8
6
9
4
7
03
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Devel
o
p
m
ent an
d Simulation of S
t
and Al
one Phot
ovolt
a
i
c
Model Using Matlab/Simulink
Himans
hu
Sh
arm
a
,
Nitai P
a
l,
Yadu
vir Si
ngh
,
Pr
adip
K
u
mar
Sadhu
Department o
f
Electrical Engin
e
ering, Ind
i
an
Sch
ool of Min
e
s (un
d
er MHRD, Gov
t
. of
India)
Dhanbad, Jharkh
and – 826004
,
In
dia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Ja
n 31, 2015
Rev
i
sed
Au
g
16
, 20
15
Accepted
Sep 10, 2015
This paper
presents the
implementation
of a g
e
n
e
ralized
photovo
ltaic model
us
ing M
a
tlab
/
S
i
m
u
link s
o
ftware
pack
age
,
which
can b
e
r
e
pres
en
tativ
e of
P
V
cell, module for
eas
y
use on
simulati
on platfor
m
. The proposed model is
designed with a user-friendly
icon a
nd a dialog
box like Simulink block
librar
i
es which
m
a
kes the general
i
zed PV m
odel easil
y
si
m
u
lated and
analy
z
ed in
conjunction with po
wer electr
on
ics. Taking the effect
of
sunligh
t
irradi
ance
and c
e
ll tem
p
era
t
ure into
consid
eration, th
e output
current and
power char
act
er
is
tics
of P
V
m
odel ar
e simulated and optimized
using the
proposed model. The proposed model en
ables the d
y
n
a
mics of PV po
wer
s
y
s
t
em
to
be
eas
i
l
y
s
i
m
u
lat
e
d,
ana
l
yzed
and
optim
i
zed.
Keyword:
Ar
ray
Matlab
/
Si
m
u
li
n
k
Mo
du
le
Pho
t
ov
o
ltaic
Pho
t
ov
o
ltaic
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Hi
m
a
nshu Sha
r
m
a
,
Juni
or
R
e
searc
h
Fel
l
o
w,
Department of
Electr
i
cal Engin
eer
ing,
Indian Schoo
l of
Mines (und
er M
H
RD, Govt. of
I
ndia),
Dhanbad, Jharkh
and – 826004
,
In
dia.
Em
a
il: h
i
m
a
n
s
h
u26
sharm
a
@g
m
a
i
l
.co
m
1.
INTRODUCTION
W
i
t
h
i
n
creasi
n
g co
ncer
ns ab
out
f
o
ssi
l
fuel
defi
ci
t
,
sky
r
o
c
ket
i
ng
oi
l
pri
ces, gl
o
b
al
wa
rm
i
ng and
dam
a
ge t
o
envi
ro
nm
ent
and e
c
osy
s
t
e
m
,
t
h
e
pr
om
i
s
i
ng i
n
cen
tiv
es to
d
e
v
e
l
o
p
altern
ativ
e
en
erg
y
reso
urces with
hi
g
h
ef
fi
ci
ency
and l
o
w em
i
ssi
on a
r
e o
f
gre
a
t
im
port
a
nce
[1]
.
Am
ong t
h
e rene
wa
bl
e ener
gy
res
o
urce
s, t
h
e
en
erg
y
thr
ough
th
e pho
tov
o
ltaic (
P
V
)
can b
e
con
s
id
er
ed
th
e m
o
st essen
tial and
p
r
er
equ
i
site su
st
ain
a
b
l
e
resource b
ecause o
f
th
e
u
b
i
qu
ity, ab
und
an
ce an
d
su
stain
a
b
ility o
f
so
lar
rad
i
an
t en
erg
y
. Reg
a
rd
less of th
e
interm
ittency of sunlight, sola
r ene
r
gy
is wi
dely available and c
o
m
p
letely
free
of c
o
st. R
ecently, photovoltaic
array system
is lik
ely reco
gn
i
zed
and
wid
e
ly u
tilized
to
th
e
forefron
t in
electric p
o
wer app
licatio
n
s
[1
].
It can
gene
rat
e
di
rect
cur
r
ent
el
ect
ri
ci
t
y
wi
t
hout
e
n
vi
r
onm
ent
a
l
im
pact
and co
n
t
am
i
n
at
i
on w
h
en i
s
ex
p
o
sed t
o
sol
a
r
radi
at
i
o
n. B
e
i
n
g a sem
i
condu
ct
or de
vi
ce, t
h
e PV sy
st
em
i
s
st
at
i
c
, qui
t
e
, and
free
of m
o
v
i
ng
part
s, a
nd
t
h
es
e
mak
e
it h
a
v
e
li
ttle o
p
e
rati
o
n
an
d m
a
in
ten
a
n
c
e co
sts [2
],[3
]. Ev
en
t
h
o
ugh
t
h
e PV system
is po
sed to its
h
i
gh
capi
t
a
l
fabri
cat
i
on c
o
st
an
d l
o
w co
n
v
ersi
on e
ffi
ci
ency
, t
h
e s
k
y
r
ocket
i
n
g
oi
l
pri
ces m
a
ke sol
a
r ene
r
gy
nat
u
ral
l
y
v
i
ab
le en
erg
y
su
pp
ly with po
t
e
n
tially lo
n
g
-term
b
e
n
e
fits.
PV m
odul
e re
p
r
esent
s
t
h
e
fu
n
d
am
ent
a
l
powe
r
co
nve
rsi
o
n
u
n
i
t
of a P
V
ge
nerat
o
r sy
st
em
. The o
u
t
p
ut
ch
aracteristics o
f
PV m
o
du
le
d
e
p
e
nd
s
o
n
t
h
e so
lar i
n
so
la
tion
,
t
h
e cell te
mp
erat
u
r
e and
ou
tpu
t
vo
ltag
e
of PV
m
odule. Since
PV
m
odule
has nonlinea
r characte
r
istics,
it is necessary to
m
odel it for the desi
gn and
sim
u
l
a
t
i
on of
m
a
xim
u
m
pow
er poi
nt
t
r
acki
ng (M
PPT
) PV
sy
st
em
appl
i
cat
i
ons [
4
]
-
[
6
]
.
The m
a
t
h
em
at
ical
PV
m
odels used i
n
com
puter si
m
u
la
tion ha
ve
been
bu
ilt for over t
h
e pa
st four
decade
s
. Alm
o
st all
well-
devel
ope
d P
V
m
odel
s
desc
r
i
be t
h
e o
u
t
p
ut
charact
eri
s
tics
m
a
in
ly affected
b
y
th
e so
lar in
so
latio
n, cell
t
e
m
p
erat
ure
,
and l
o
a
d
v
o
l
t
a
ge. H
o
weve
r,
t
h
e equi
val
e
nt
ci
rcui
t
m
odel
s
are im
pl
em
ent
e
d o
n
si
m
u
lat
i
o
n
platform
s of powe
r electroni
cs, suc
h
as
SPICE. Recently,
a num
ber
of
powerful c
o
m
ponent-based electronics
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6
,
No
.
4
,
D
ecem
b
er
2
015
:
70
3 – 711
70
4
sim
u
l
a
t
i
on so
f
t
ware
pac
k
age
ha
ve
becom
e
p
o
p
u
l
a
r i
n
t
h
e desi
g
n
a
n
d
devel
opm
ent
o
f
p
o
w
er
el
ect
roni
c
s
appl
i
cat
i
o
ns.
Ho
we
ver
,
t
h
e
Sim
P
owe
r
Sy
st
em
t
ool
i
n
M
a
t
l
a
b/
Sim
u
l
i
nk packa
g
e
of
fers
wi
n
d
t
u
r
b
i
n
e
m
odel
s
but
no
PV m
odel
t
o
i
n
t
e
grat
e
wi
t
h
cu
rr
ent
e
l
ect
roni
cs
sim
u
latio
n
techn
o
l
og
y. Th
u
s
, it is d
i
fficu
lt to
simu
late
and a
n
al
y
ze i
n
t
h
e gene
ri
c m
odel
i
n
g
of P
V
po
wer sy
st
em
[7]
.
T
h
i
s
m
o
t
i
vat
e
s m
e
t
o
devel
o
p a ge
nera
l
i
zed
st
and
-
al
o
n
e m
odel
f
o
r
P
V
cel
l
,
m
odul
e u
s
i
n
g
M
a
t
l
a
b/
Sim
u
l
i
nk
.
The m
a
i
n
cont
ri
b
u
t
i
on o
f
t
h
i
s
paper i
s
t
h
e i
m
pl
em
ent
a
t
i
on of a gene
ral
i
zed st
and
-
al
o
n
e
PV m
odel
i
n
t
h
e fo
rm
of m
a
ske
d
bl
oc
k,
whi
c
h has a
u
s
er-
fri
e
ndl
y
i
c
on a
n
d di
al
o
g
i
n
t
h
e sam
e
way
of M
a
t
l
a
b/
Sim
u
l
i
nk
bl
oc
k l
i
b
ra
ri
es
or
ot
he
r c
o
m
p
o
n
e
n
t
-
based
el
ect
roni
cs si
m
u
l
a
t
i
on so
ft
ware
pac
k
age
s
, suc
h
as C
a
s
poc
. T
h
e
rem
a
i
nder of
t
h
i
s
pape
r i
s
or
ga
ni
zed as f
o
l
l
o
w
s
. F
o
r easy p
r
esen
tatio
n, th
e trad
iti
o
n
a
l PV m
o
d
e
ls are
add
r
esse
d i
n
S
ect
i
on I
I
.
A
n
d
t
h
e
no
nl
i
n
eari
t
y
of
PV
cu
rre
nt
vers
us
v
o
l
t
a
ge
(I
-V
) a
nd
p
o
w
e
r ve
rs
us
vol
t
a
ge (
P
-
V) characterist
i
cs are shown as well. Section III dem
o
n
s
trates th
e i
m
p
l
e
m
en
tatio
n
and
si
m
u
latio
n
resu
lts for
t
h
e p
r
op
ose
d
m
odel
usi
n
g M
a
t
l
a
b/
Sim
u
l
i
nk
soft
ware
pac
k
a
g
e.
2.
THE PROPOSED
DESIGNED OF
PH
OTOVOLT
A
IC
MO
DELS
So
lar cell is basically a p
-
n j
u
n
c
tion
fabricated
in
a thi
n
wa
fer
o
r
lay
e
r of
sem
i
co
nd
ucto
r. T
h
e
el
ect
rom
a
gnet
i
c
radi
at
i
o
n o
f
sol
a
r e
n
er
gy
can be
di
rec
tly co
nv
erted
electricity th
ro
ug
h p
h
o
t
ovo
ltaic effect.
B
e
i
ng e
x
p
o
se
d
t
o
t
h
e s
unl
i
g
h
t
, ph
ot
o
n
s
wi
t
h
ene
r
gy
g
r
eat
er t
h
a
n
t
h
e
ba
nd
-
g
ap e
n
er
gy
of t
h
e sem
i
cond
uct
o
r
are abs
o
r
b
e
d
and c
r
eat
e so
m
e
el
ect
ron-
h
o
l
e
pai
r
s
pr
o
p
o
rt
i
o
nal
t
o
t
h
e
i
n
ci
dent
i
r
r
a
d
i
at
i
on [8]
.
Un
der t
h
e
in
flu
e
n
ce
o
f
t
h
e in
tern
al electric
fields of the p-n
junct
i
on, t
h
ese ca
rriers are s
w
e
p
t apart a
nd
cre
a
te a
ph
ot
oc
u
rre
nt
whi
c
h i
s
di
rect
l
y
pr
op
ort
i
o
nal
t
o
s
o
l
a
r
i
n
s
o
l
a
t
i
on.
PV
sy
st
em
nat
u
ral
l
y
exhi
bi
t
s
a
n
onl
i
n
ear
I
-
V
an
d
P-V ch
aracteristics
wh
ich
v
a
ry with
t
h
e
rad
i
an
t in
ten
s
i
t
y an
d
cell temp
erat
u
r
e
[9
].
A
gene
ral
m
a
them
ati
cal
descri
pt
i
o
n o
f
I-
V
and
P-
V output
characteristic
s
for a
PV cell has
been
studie
d
for
ove
r
the past four decade
s
. Suc
h
an
e
qui
va
lent
circuit base
d
m
odel is
m
a
inly used for the
MPPT
al
go
ri
t
h
m
s
[10
]
,[1
1
]
.
T
h
e e
q
ui
val
e
nt
ci
rcui
t
of
ge
neral
m
odel
w
h
i
c
h c
o
nsi
s
t
o
f
a
p
hot
o c
u
r
r
ent
a
di
ode
, a
p
a
r
a
lle
l r
e
s
i
s
t
or
ex
pr
e
s
s
i
ng
a le
a
k
a
g
e cu
rr
en
t a
n
d
a s
e
r
i
es
r
e
s
i
s
t
or
d
e
s
c
r
i
b
i
ng
an
in
te
rn
a
l
r
e
s
i
s
t
an
c
e
to
th
e
current
flow, is shown i
n
Fi
gure
1.
Fi
gu
re
1.
Si
n
g
l
e
di
o
d
e e
q
ui
val
e
nt
ci
rc
ui
t
o
f
s
o
l
a
r cel
l
The
voltage- c
u
rrent c
h
a
r
acteristics equa
tio
n of a so
lar cell is g
i
v
e
n
as
()
[e
xp(
)
1
]
SP
V
S
P
V
PV
P
H
S
cS
H
qV
R
I
V
R
I
II
I
AkT
R
(1)
whe
r
e,
I
PH
i
s
a l
i
ght
-ge
n
e
r
at
ed cu
rre
nt
or
ph
ot
oc
u
rre
nt
,
I
S
is th
e cell
satu
ration
of dark
cu
rren
t,
q
(= 1.
6
×10
−
19
C) is a
n
electron c
h
arge,
k
(= 1.
3
8
×10
−
23
J/K) is
a Bo
ltz
m
a
n
n
co
nstan
t
,
T
C
i
s
th
e cell’s wo
rk
ing
te
m
p
erature
,
A
is an ideal
factor,
R
SH
is
a shunt resista
n
ce a
n
d
R
S
is
a se
ries resistance [12],[13]. T
h
e
ph
ot
oc
u
rre
nt
m
a
i
n
l
y
depe
n
d
s
on
t
h
e
sol
a
r
i
n
s
o
l
a
t
i
on a
n
d cel
l
’
s w
o
r
k
i
n
g
t
e
m
p
erat
ure,
whi
c
h i
s
desc
ri
be
d
as
Re
[(
)
]
PH
S
C
I
C
f
II
K
T
T
(
2
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Developme
nt and
Si
mul
a
tion of
St
and Alone Phot
ov
oltaic
Model Usi
n
g .... (Himans
h
u Shar
ma)
70
5
whe
r
e,
Isc is t
h
e cell’s s
h
ort
-
circuit c
u
rrent at a 25
o
C
an
d
1k
W/
m
2
, K
I
is th
e cell’s
sh
ort-circu
it cu
rrent
te
m
p
erature c
o
efficient, T
Re
f
i
s
th
e so
lar in
solatio
n
in
kW
/m
2
. On th
e
o
t
h
e
r h
a
nd
, t
h
e cell’s satu
ration
curren
t
varies
with t
h
e
cell te
m
p
erature, which is
des
c
ribe
d as
(3
)
Whe
r
e I
RS
is th
e cell’s rev
e
rse satu
ration
cu
rren
t at a
re
fe
rence tem
p
erature a
nd a s
o
lar radiation, E
G
is
th
e
b
a
nd-
g
a
p
en
erg
y
of
th
e sem
i
c
o
ndu
ctor
used
in
th
e cell.
Th
e id
eal fact
o
r
A
is d
e
p
e
nd
en
t on
PV tech
no
log
y
.
An
ev
en
m
o
re ex
act
m
a
th
e
m
a
tica
l
d
e
scrip
tion
of a so
lar cell, wh
ich
is called
th
e do
ub
le expo
n
e
n
tial
m
o
d
e
l as in
Fig
u
re 2, is d
e
riv
e
d
fro
m
th
e p
h
y
sical b
e
h
a
v
i
or of so
lar cell co
n
s
tru
c
ted fro
m
p
o
l
ycrystallin
e silico
n
.
Th
is
m
odel is compos
ed of a
light
-ge
n
erate
d
current
s
ource
, two
diodes, a se
ries re
sistance a
n
d a
parallel
resi
st
ance.
H
o
weve
r, t
h
ere a
r
e s
o
m
e
lim
itat
i
ons t
o
de
ve
l
op e
x
pressi
on
s fo
r t
h
e V
-
I
t
o
cu
rve
pa
ra
m
e
t
e
rs
su
bj
ect th
e i
m
p
licit an
d
n
o
n
lin
ear n
a
t
u
re
o
f
th
e
m
o
d
e
l. Th
erefo
r
e, th
is
m
o
d
e
l is rarely u
s
ed
in
th
e sub
s
eq
u
e
n
t
literatu
res an
d
is no
t tak
e
n
in
t
o
co
nsid
erati
o
n fo
r t
h
e
g
e
n
e
ral
i
zed
PV m
o
d
e
l.
Fi
gu
re
2.
D
o
ub
l
e
di
o
d
e e
qui
va
l
e
nt
ci
rcui
t
of
s
o
l
a
r cel
l
Fi
gu
re
3.
Si
n
g
l
e
di
o
d
e e
q
ui
val
e
nt
ci
rc
ui
t
wi
t
h
R
SH
=
∞
o
f
so
l
a
r
cell
The shunt resistance
R
SH
is
in
v
e
rsely related
with
shu
n
t
leakag
e cu
rren
t to
t
h
e g
r
ou
nd
. In
gen
e
ral, t
h
e
PV efficiency is incen
tiv
e to
v
a
riation
in
R
SH
and
th
e shunt-
l
eak
ag
e
r
e
sistan
ce can
b
e
assu
m
e
d
to
ap
pro
ach
in
fin
ity witho
u
t leak
ag
e curren
t
to
groun
d.
On
t
h
e o
t
h
e
r
han
d
, a sm
al
l v
a
riatio
n
in
R
S
will sig
n
i
fican
tly affect
t
h
e PV o
u
t
p
ut
po
we
r. The a
p
pr
o
p
ri
at
e
m
ode
l
of PV sol
a
r cell with
su
itab
l
e co
m
p
lex
ity
i
s
sh
own
in
Figu
re 3.
Equ
a
tio
n (1
) can
b
e
rewritten as
()
[e
xp(
)
1
]
s
PV
PH
S
c
qV
RI
II
I
AkT
(4)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6
,
No
.
4
,
D
ecem
b
er
2
015
:
70
3 – 711
70
6
Fi
gu
re
4.
Si
n
g
l
e
di
o
d
e e
q
ui
val
e
nt
ci
rc
ui
t
wi
t
h
R
SH
=
∞
an
d R
S
=0
of t
h
e so
lar cell
For a
n
ideal PV cell, there is no seri
es l
o
ss
and
no l
eaka
g
e
t
o
gro
u
n
d
,
i
.
e.
,
R
S
= 0 and
R
SH
=
∞
. The
abo
v
e e
q
ui
val
e
nt
ci
rcui
t
of
P
V
s
o
l
a
r cel
l
ca
n
be si
m
p
l
i
f
i
e
d as s
h
ow
n i
n
Fi
gu
re
4.
The
Eq
uat
i
o
n
(
1
) c
a
n
be
rewritten
to
b
e
[e
xp(
)
1
]
PV
P
H
S
c
qV
II
I
Ak
T
(
5
)
The Fi
g
1 t
o
F
i
g 4 ex
pl
ai
ns
wi
t
h
an
d wi
t
h
out
seri
es l
o
s
s
and l
eaka
g
e l
o
ss eq
ui
val
e
nt
ci
rcui
t
base
d
m
odel
of t
h
e PV cel
l
.
Such
an eq
ui
val
e
nt
ci
rcui
t
based
m
odel
i
s
m
a
i
n
l
y
used t
o
fi
nd
t
h
e
m
a
xim
u
m
pow
er
poi
nt
i
n
t
h
e e
x
peri
m
e
nt
.
3.
R
E
SEARC
H
M
ETHOD
FOR
BU
ILDI
NG OF SOLA
R PV MOD
E
L
Stan
d-
alon
e
p
h
o
t
ov
o
ltaic po
wer
sy
stem
s
are electricity generating
pho
tovo
ltaic syste
m
s
th
at are no
t
connected to the
electrical
grid. T
h
is
t
y
pe
of
P
V
sy
st
em
m
a
y
excl
usi
v
e
l
y
use
s
o
l
a
r
pa
nel
s
or
use
t
h
e
m
i
n
con
j
unct
i
o
n
wi
t
h
ot
her
el
ect
ri
ci
t
y
sup
p
l
y
i
ng
devi
ces
, s
u
ch
a
s
di
esel
gene
ra
t
o
rs a
n
d
wi
n
d
t
u
r
b
i
n
es
[
1
4]
.
The M
a
t
l
a
b/
Si
m
u
li
nk m
odel
of st
a
n
dal
o
ne
PV m
o
d
u
l
e
i
l
l
ust
r
at
es a
n
d
ve
ri
fi
es t
h
e
n
onl
i
n
ear
v
o
l
t
a
ge-
cur
r
ent
a
n
d p
o
w
er
-v
ol
t
a
ge
o
u
t
put
ch
aract
eri
s
t
i
c
s of a
n
ar
bi
t
r
ary
m
odul
e u
s
i
ng a
o
n
e-
di
o
d
e eq
ui
v
a
l
e
nt
c
i
rcui
t
.
Model inputs a
r
e the irra
diance in
tensity and am
bient te
mperat
ure.
Sim
u
lin
k
is a si
m
u
l
a
tio
n
prog
ram
,
wh
ich
pr
o
v
i
d
es a gra
phi
cal
i
n
t
e
r
p
h
a
se for
bui
l
d
i
ng m
odel
s
as bl
ock
di
agr
a
m
s
[15]
. It
of
fers t
h
e ad
va
n
t
age o
f
b
u
ild
i
n
g h
i
erarch
ical m
o
d
e
ls,
n
a
m
e
l
y
to
h
a
v
e
th
e
p
o
ssib
ility to
v
i
ew th
e syste
m
at d
i
fferent lev
e
ls.
Figure
5. Basic m
odel solar
P
V
system
A m
odel
of PV m
odul
e as sho
w
n Fi
g
u
r
e 5 wi
t
h
m
ode
rat
e
com
p
l
e
xi
t
y
whi
c
h i
n
cl
u
d
es t
h
e
te
m
p
erature i
n
depe
ndence
of the pho
to
cu
rren
t
source, t
h
e satu
ration
cu
rrent
of the
diode a
n
d a s
e
ries
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Developme
nt and
Si
mul
a
tion of
St
and Alone Phot
ov
oltaic
Model Usi
n
g .... (Himans
h
u Shar
ma)
70
7
resi
st
ance i
s
consi
d
ere
d
ba
se
d o
n
t
h
e Sh
oc
kl
ey
di
ode e
q
u
a
t
i
on. It
i
s
im
port
a
nt
t
o
bui
l
d
a general
i
zed
m
odel
sui
t
a
bl
e f
o
r al
l
of t
h
e P
V
cel
l
,
m
odul
e an
d a
r
r
a
y
,
w
h
i
c
h i
s
us
ed t
o
desi
gn
an
d a
n
al
y
ze a m
a
xi
m
u
m
powe
r
poi
nt
tracker. Bing illu
m
i
nated with radia
tion of sunlight, P
V
cell conve
rts
pa
rt of the
phot
ovoltaic potential
d
i
rectly in
to
el
ectricity with
bo
th
I-V and
P-V
o
u
t
p
u
t
ch
aracteristics [16
]
.
Fi
gu
re
6.
C
u
rre
nt
t
h
ro
u
g
h
t
h
e l
o
ad
,
I
PV
A
g
e
n
e
ralized
PV m
o
d
e
l is
bu
ilt u
s
ing
Matlab
/
Sim
u
lin
k
to illu
strate and
v
e
rify t
h
e
n
o
n
l
in
ear
I-V an
d
P-V
out
p
u
t
ch
aract
eri
s
t
i
c
s of
PV m
odul
e. T
h
e p
r
o
p
o
sed m
odel
i
s
im
pl
em
ent
e
d an
d s
h
o
w
n i
n
Fi
gu
re 6
,
7,
8
and
9 res
p
ect
i
v
el
y
.
The Fi
g
u
r
e 6 i
s
dra
w
n
wi
t
h
t
h
e hel
p
of t
h
e E
quat
i
o
n (1
). T
h
e di
s
p
l
a
y
i
n
t
h
e Fi
gu
re 6
sho
w
s
t
h
e
val
u
e o
f
t
h
e
di
ffe
re
nt
pa
rt
s
of
t
h
e
Eq
uat
i
o
n
3
.
T
h
e val
u
es
of
I
S
an
d I
PH
a
n
d
goi
ng
i
n
t
o
t
h
e
f
u
n
c
t
i
on
Fcn
3
t
o
gi
ve t
h
e
val
u
e
o
f
I
PV
. T
h
e
I
PV
i
s
al
s
o
usi
n
g a
s
a
fe
edbac
k
as s
h
o
w
i
n
g t
h
e
E
quat
i
on
(
3
).
T
w
o
c
onst
a
nt
bl
oc
ks
a
r
e usi
n
g
i
n
t
h
e
ci
rcui
t
sho
w
i
n
g
i
n
t
h
e Fi
gu
re 6 w
h
i
c
h
are q (= 1.
6
×
1
0
−
19
C) and
N
S
Ak
T.
Fi
gu
re
7.
I
n
p
u
t
cu
rre
nt
,
I
PH
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6
,
No
.
4
,
D
ecem
b
er
2
015
:
70
3 – 711
70
8
Fi
gu
re
8.
C
e
l
l
’
s re
verse
sat
u
r
a
t
i
on c
u
r
r
ent
,
I
RS
Figu
re
9.
Cell saturatio
n
of
d
a
rk
cu
rre
nt,
Is
The
Fi
g
u
re
7
,
8 a
n
d
9 s
h
ow
t
h
e i
n
t
e
rnal
ci
rc
ui
t
o
f
t
h
e s
u
bs
y
s
t
e
m
s
i
n
t
h
e
Fi
gu
re
6.
I
n
o
r
der
t
o
m
a
ke
the gene
ralized m
odel easier to use and understa
n
d, the
imag
e file o
f
PV ico
n
as a mask
ing
icon
h
a
s b
een
use
d
.
4.
RESULTS
A
N
D
DI
SC
US
S
I
ON
For a PV cell with a
n
ideal I-V c
h
ar
acteristic, its o
p
e
n
-
ci
rcu
it vo
ltag
e
and
s
h
ort circuit
current a
r
e
given a
s
V
oc
= 17
.5
V an
d I
sc
= 7.
2A
, re
spect
i
v
el
y
.
B
o
t
h
I–
V an
d P–
V
out
p
u
t
charact
eri
s
t
i
c
s of ge
ne
ral
i
zed PV m
odul
e
are s
h
own in Figs
10 and
11 respectivel
y
.
T
h
e n
onl
i
n
e
a
r
nat
u
re
o
f
P
V
cel
l
i
s
ap
pare
nt
as
s
h
o
w
n i
n
t
h
e
fi
g
u
res
,
i
.
e. t
h
e o
u
t
p
ut
cur
r
ent
a
nd
po
wer
of P
V
cel
l
depe
n
d
o
n
th
e cell’s ter
m
in
al
o
p
e
ratin
g
vo
ltag
e
and
tem
p
e
r
atu
r
e,
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Developme
nt and
Si
mul
a
tion of
St
and Alone Phot
ov
oltaic
Model Usi
n
g .... (Himans
h
u Shar
ma)
70
9
an
d
so
lar in
so
latio
n
as
well. It is b
een
ob
serv
ed
t
h
at
with
i
n
crease of work
ing
tem
p
erature, the
short
-
circui
t
cu
rren
t
o
f
th
e
PV cell in
cr
ea
ses, whe
r
eas t
h
e m
a
xim
u
m
powe
r
out
put
de
creases.
As m
u
ch as the i
n
crease in
th
e o
u
t
p
u
t
cu
rren
t
is
m
u
ch
less th
an
th
e d
e
crease in
th
e volt
a
ge, the net power
decreases
at high tem
p
eratures.
On t
h
e ot
her
h
a
nd
, wi
t
h
i
n
cre
a
se of sol
a
r i
n
s
o
l
a
t
i
on, t
h
e s
h
ort
-
ci
rcui
t
cur
r
e
nt
of t
h
e P
V
m
odul
e i
n
creas
es and
the m
a
xim
u
m
powe
r output i
n
crease
s
as
we
ll. The re
ason
i
s
th
e
o
p
e
n
-
ci
rcu
it vo
ltag
e
is
dep
e
nd
en
t on
the so
lar
irrad
i
an
ce, yet
th
e sh
ort-circu
it curren
t
is
d
i
rectly
p
r
op
ortio
n
a
l to
t
h
e rad
i
an
t in
ten
s
ity. Bo
th
I-V an
d P-V
out
put
c
h
ara
c
t
e
ri
st
i
c
s of
PV
m
odul
e at
vari
ous
i
n
s
o
l
a
t
i
on
and
t
e
m
p
erat
ur
e are car
ri
ed
o
u
t
.
It
al
s
o
see t
h
at
t
h
e
increase of worki
ng tem
p
erature
,
the
sho
r
t-circu
it cu
rren
t of th
e PV m
odule increases, whereas the m
a
xim
u
m
powe
r output decrease
s
. T
h
e
increase in
t
h
e short-circ
uit curr
ent is m
u
ch less tha
n
the
decrease i
n
the ope
n-
ci
rcui
t
v
o
l
t
a
ge
and t
h
e ef
fect
m
a
kes
m
a
xim
u
m
power
dec
r
easi
n
g by
a
b
o
u
t
0.
4
5
%/
o
C at high tem
p
eratures
.
Furt
herm
ore, i
t
i
s
al
so been
obse
r
ved t
h
at
wi
t
h
i
n
crea
se
of s
o
l
a
r i
n
s
o
l
a
t
i
on, t
h
e s
h
o
r
t
-
cu
rre
nt
an
d t
h
e
m
a
xim
u
m
power
out
put
of
t
h
e PV m
odu
l
e
i
n
creases [
1
6]
. The
reas
on
i
s
t
h
at
t
h
e op
en-ci
r
c
u
i
t
v
o
l
t
a
ge i
s
lo
g
a
rith
m
i
ca
lly
d
e
p
e
nd
en
t on
th
e so
lar irrad
i
an
ce, thou
gh
th
e short-circu
it cu
rren
t
is d
i
rectly p
r
o
portion
a
l to
th
e rad
i
an
t i
n
ten
s
ity.
Fi
gu
re 1
0
. I – V out
put
c
h
a
r
a
c
t
e
ri
st
i
c
s
acros
s
t
h
e
l
o
ad
Fi
gu
re 1
1
. P – V out
put
c
h
a
r
a
c
t
e
ri
st
i
c
s
acros
s
t
h
e
l
o
ad
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
6
,
No
.
4
,
D
ecem
b
er
2
015
:
70
3 – 711
71
0
5.
CO
NCL
USI
O
N
A g
e
n
e
ralized PV m
o
d
e
l wh
ich
is
represen
tativ
e of
th
e
all PV cell, mo
du
le, and
array h
a
s b
e
en
devel
ope
d wi
t
h
M
a
t
l
a
b/
Sim
u
l
i
nk an
d bee
n
veri
fi
e
d
wi
t
h
a
PV cel
l
and a com
m
e
rci
a
l
m
o
d
u
l
e
. The
pr
o
pos
ed
m
o
d
e
l tak
e
s su
n
ligh
t
irrad
i
an
ce an
d cell te
m
p
eratu
r
e
as in
pu
t
p
a
ram
e
ters and
ou
tputs th
e I-V and
P-V
ch
aracteristics u
n
d
e
r v
a
ri
o
u
s co
nd
itio
ns. This
m
o
d
e
l h
a
s also
b
e
en
d
e
sign
ed
in
th
e form o
f
Si
m
u
lin
k b
l
o
c
k
l
i
b
rari
es.
The
m
a
sked i
c
on
m
a
kes t
h
e
bl
o
c
k m
odel
m
o
re use
r
-
fri
e
ndl
y
an
d a
di
al
o
g
bo
x l
e
t
s
t
h
e u
s
ers easi
l
y
con
f
i
g
ure t
h
e
PV m
odel
.
S
u
ch a ge
ne
ral
i
zed P
V
m
odel
i
s
easy
t
o
be
used
f
o
r t
h
e
im
pl
em
ent
a
t
i
on
o
n
M
a
t
l
a
b/
Sim
u
l
i
nk m
odel
i
ng a
nd si
m
u
l
a
t
i
on pl
at
fo
rm
. Especi
al
l
y
, i
n
t
h
e cont
e
x
t
of t
h
e S
i
m
P
ower
Sy
st
em
t
ool
,
t
h
ere i
s
n
o
w
a
gene
ral
i
zed P
V
m
odel
whi
c
h can
be
use
d
fo
r t
h
e m
odel
and a
n
al
y
s
i
s
i
n
t
h
e fi
el
d
of s
o
l
a
r PV
powe
r c
o
nversion system
.
ACKNOWLE
DGE
M
ENTS
A
u
t
h
or
s ar
e t
h
ankf
u
l
t
o
the In
d
i
an
Schoo
l of
Mi
n
e
s,
D
h
anb
a
d and UN
IV
ERSI
TY
G
R
AN
TS
C
O
M
M
I
SS
IO
N, B
a
ha
du
rs
ha
h Za
far
M
a
r
g
,
Ne
w
Del
h
i
,
I
ndi
a
f
o
r
g
r
a
n
t
i
n
g
fi
nanci
a
l
s
u
p
p
o
rt
u
nde
r
M
a
j
o
r
Research
Pro
j
ect en
titled
“Dev
elop
m
e
n
t
o
f
Hyb
r
i
d
Off-
gri
d
Power Supp
ly Syste
m
fo
r
Re
m
o
te Areas
[UGC
Pr
oj
ect: F.
N
o
. 4
2
15
2
/
2
013(
SR)
,
w
.
e.f
.
01
/04
/
20
13
]” an
d
also
gr
atefu
l
to
th
e Under
Secr
etar
y an
d
Jo
in
t
Secretary of
UGC, India fo
r t
h
eir active
co-ope
ration.
REFERE
NC
ES
[1]
O. Wasy
n
czuk
,
“Dy
n
amic behavior of
a class of photovoltaic
power s
y
stems”,
IEEE T
r
ansac
tions on Power
Apparatus and S
y
stems,
vol/issue: PAS-102(9),
p
p
. 3031-3037
, 1
983.
[2]
Zvonimir Glasnovic, Jure Marg
eta, “A model for optimal sizing o
f
photovo
ltaic irr
i
gation water pu
mping sy
stems”,
Solar Energy,
vo
l/issue: 81
(7)
,
pp
. 904-916
, 2007
.
[3]
JCH. Phang, DSH. Chan, JR. Philips, “Accu
rate
anal
y
t
i
cal
m
e
thod for the extraction o
f
solar cell m
odel
parameters
”,
El
e
c
tronics Le
tters,
vol/issue:
20(10)
, pp
. 406-408
, 1
984.
[4]
M
.
Veerach
ar
y,
T. S
e
nj
yu, K. Ue
zato
,
“
V
oltage-b
as
ed
maximum
power point tracking
control of PV sy
stem”,
IEEE
Transactions on
Aerospace
and
Electronic
Systems,
vol/issue: 38
(1), pp
. 262-270
, 2002.
[5]
J. Sur
y
a Kumar
i
, Ch. Saibabu
,
“Maximu
m
Power Poin
t Tr
ack
ing Algorithms for Gr
id-Connected Photovoltaic
Energ
y
Conv
ersion S
y
stem”,
International Journ
a
l of
Power
Electroni
cs and Drive Systems
(
I
JPEDS, ISSN: 2088-
8694, a
SCOPUS indexed
Journ
a
l)
,
vol/issue: 3(
4), pp
. 424-43
, 2
013.
[6]
CC. Hua, CM. Shen, “Study
of maximum p
o
wer tracki
ng
techniqu
es and control of dc-d
c converters for
photovolta
ic po
wer s
y
stem
”, Pr
oceed
ings of 29th annual I
EEE
Power Elect
roni
cs Special
ists Conferenc
e
, vol
.
1,
pp. 86-93
, 1998
.
[7]
Kodanda Ram
RBPUSB, Venu Gopala Ra
o M
a
nnam, “Operation and Contro
l
of Grid Connected H
y
b
r
id AC/DC
Microgrid using
various RES”,
International Jo
urnal of Power
Electroni
cs an
d Drive Systems
(
I
JPEDS, ISSN:
2088-8694, a
SC
OPUS indexed
Journal)
,
vol/issue: 5(2)
, pp
. 195-
202, 2014
.
[8]
JA. Gow, CD.
Manning, “Development of
a p
hotovoltaic ar
ray
model for us
e
in power-ele
ctr
onics sim
u
lation
s
t
udies
”,
IE
EE P
r
oceedings
- El
ec
tr
ic Power
App
l
i
c
ations
,
vol/issue: 146(2)
, pp
. 19
3-199, 1999
.
[9]
Himanshu Sharma, Nitai Pal,
Pradip Kumar
Sadhu, “M
odeling and Simulation of
O
ff-grid
Power
Generation
S
y
stem using
Photovoltaic”,
TELKOMNIKA Ind
onesian Journal of El
ectrical Engineering
(
I
SSN: 2302-4046, e-
ISSN: 2087-278
X)
, vol/issue: 13
(3), 2015
.
[10]
Shagar, BM.,
Vinod, S.,
Lak
s
hmi, S
.,
“Design of DC-DC
converter for
h
ybrid wind solar
energ
y
s
y
stem”,
Computing, Electronics and
Electr
ical Technolo
g
ies (ICCEET), 2012 Intern
atio
nal Conf
erence, pp. 429
– 435
,
2012.
[11]
Jey
a
Selvan
Renius, K. Vinoth
Ku
mar, Arnold Fredderics
, R
a
ja Guru
, Sree Lakshmi Nair, “Modelling an
d
Simulation of
Variable Frequ
e
ncy
S
y
nchron
ous DC-DC B
u
ck Converter”,
Internationa
l
Journal of Po
wer
Electronics and Drive
S
y
ste
m
s
(
I
JPEDS, ISSN:
2088-8694, a
SC
OPUS
indexed Journal)
, vol/issu
e: 5(2), pp. 237-
243, 2014
.
[12]
Seul-Ki Kim,
Eung-Sang Kim,
Jong-Bo Ahn,
“Modeling and
Control
of a Grid-connected
Wind/PV
H
y
brid
Generation S
y
stem”, Transmission a
nd Distribution Conferen
ce
and Exhi
bition,
2005/2006 IEEE PES,
pp. 1202
–
1207, 2006
.
[13]
O. Was
y
nczuk,
“Modeling a
nd
d
y
namic perfor
m
ance of a lin
e commuta
ted ph
otovoltaic
inverter s
y
stem”,
IE
EE
Transactions on
Energy Con
version,
vol/issue: 4(
3), pp
. 337-343
,
1989.
[14]
Om
id Palizban
,
MA. Rez
aei
, S
aad Mekh
ilef
,
“
A
ctive
and R
e
a
c
tiv
e Power Co
ntrol for
a H
y
b
r
id S
y
st
em
wit
h
Photovoltaic Panel, Wind
Turb
ine, Fu
el Cells, Electroly
z
er
and Super
Capacitor
in Off-grid Mode”, I
E
EE
International Co
nference on
Con
t
rol S
y
s
t
em,
Computing and
En
gineer
ing, pp. 40
4–408, 2011
.
[15]
Qi Zhiy
uan
,
Liu Yongxin,
Liu
Haiji
ang,
Hao
Zhengqing
, “
P
ower
Contro
l
f
o
r
Off-grid Wind Power S
y
stem
Basedon Fuzzy
PID
Controller
”
, Power
and En
erg
y
Eng
i
neering
Conference (A
PPEEC), Asia-Pacif
i
c,
pp. 1–4,
2010.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Developme
nt and
Si
mul
a
tion of
St
and Alone Phot
ov
oltaic
Model Usi
n
g .... (Himans
h
u Shar
ma)
71
1
[16]
H
a
m
a
di, A
.
,
R
a
hm
ani, S
.
,
A
ddo
weesh, K.,
Al-H
addad, K.
, “A
modeling and
control of
DFIG wind and PV so
lar
energ
y
source g
e
neration f
eed
”,
Industrial Electronics So
ciety
,
IECON 2013 -
39th Annual Co
nference of
the
IEEE
,
pp
. 7778
– 7783, 2013.
BIOGRAP
HI
ES OF
AUTH
ORS
Himanshu Shar
ma completed his
B.Tech. Degr
e
e
in Elect
ric
a
l and Electronics Engineer
ing
from NIEC,
G
G
SIP
University,
New Delhi and Ma
s
t
ers
Degree
in Ele
c
tri
c
a
l
an
d Elec
troni
c
Engineering fro
m University
of
Greenwich
, Lon
don, UK in 2007 and 2010 resp
ectively
.
H
e
is presently
purs
u
ing Ph.D. Programme at the D
e
partment of
Electrical
Engineering,
Indian
School of Mines, Dhanbad – 826004,
India. His
research intere
s
t
s include H
y
br
idisation of
Solar and
Wind
energ
y
produ
ctio
n, Smart-Grids,
Micro-Grids.
Nitai Pal received his B.Tech
. and M.Tech
. degrees in Electr
i
cal Engineering from
Universit
y
o
f
Calcu
tta
, W
e
st Bengal
,
India
.
He received his
Ph.D. (Engineer
ing) from
Jadavpur Univer
sity
, West Beng
al, Ind
i
a. He ha
s
total
exper
i
ence of 15
y
e
ars in teaching
.
He
is
curren
t
l
y
wor
k
ing as
an
As
s
o
cia
t
e P
r
ofes
s
o
r i
n
the Dep
a
rtm
e
n
t
of E
l
e
c
tri
cal
E
ngineer
ing,
Indian School o
f
Mines, Dhanb
a
d, Jharkh
and,
I
ndia. He has several
pub
licatio
ns in repued
Journals, International & Nation
al confer
en
ces. Also, he has pu
blished one book and two
book chapter. H
e
has published
four paten
t
s in th
e journal of Patent, Governmen
t
of India.
He is the Investigator of Govt funded proj
ect.
Man
y
students
are pursuing doctoral stud
y
under him. Power electron
i
cs ap
plication
,
appl
ication of high fr
equenc
y
conv
erters, ener
g
y
effic
i
ent d
e
vi
ce
s
,
energ
y
effi
c
i
ent dr
ives
,
lig
hting and
com
m
unication s
y
s
t
em
s
for
underground mines etc.
Yaduvir Singh r
eceived h
i
s B.E. degr
ees, Electr
ical Eng
i
neering
from NIT, Kur
ukshetra,
Har
y
ana, India in 2001. He re
ceived his M. Tech. from UPTU,
Lucknow, Uttar
Pradesh in
2008. He has total exp
e
ri
ence
of 13 y
ears in
teach
ing. He i
s
currentl
y
wor
k
ing as an
As
s
o
ciate P
r
ofe
s
s
o
r in the Departm
e
nt of El
ectrical & Electro
nics Engineerin
g, Krishna
Institute of Engi
neering
& T
ech
nolog
y
,
Ghazia
b
a
d (Uttar Pr
ades
h) India. He has
published
two books. He has filled
two pat
e
nts which ar
e unde
r process. He is presentl
y
pur
suing Part
Time Ph.D. Pro
g
ramme at the
Department of
Electrical E
ngin
eering
,
Indian
School of
Mines, Dhanbad
– 826004, India.
His resear
ch in
terests in
clude
Distributed Gen
e
ration an
d
power s
y
s
t
em
s
.
Pradip Kumar Sadhu receiv
e
d h
i
s Bachelor, Post
-Graduate and
Ph.D.(Engin
eer
in
g) degrees
in 1997, 1999 and 2002 respectively
in
Electr
i
ca
l Engg
. from Jadavpur Univers
i
ty
, Wes
t
Bengal, India. Currently
, h
e
is working as a
P
r
ofes
s
o
r in Electr
i
c
a
l
Engin
eering Department
of Indian
School of Mines, Dhan
bad, Ind
i
a.
He h
a
s total
experien
ce of
22
y
e
ars in teaching
and industr
y
.
He has four Patents
and two p
a
te
n
t
s are und
er pro
c
ess. He has sever
a
l journ
a
l
and confer
ence
publications in
nation
a
l and
inte
rnational
lev
e
l. Also, he has p
ublished on
e
book and one book chapter
.
He is principal invest
igator of few Govt. funded projects. He has
guided a larg
e n
o
. of Doctoral C
a
ndidates and M.
Tec
h
stude
nts.
His c
u
rre
nt areas of interest
are power
electr
onics applicatio
ns, application o
f
high frequ
ency
converter, ener
g
y
efficien
t
devic
e
s, energ
y
effici
ent driv
es, com
put
er aided power system
anal
ysis
,
condition
monitoring,
lighting and
communication
s
y
stems f
o
r underground
coal mines.
Evaluation Warning : The document was created with Spire.PDF for Python.