Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
5, N
o
. 3
,
Febr
u
a
r
y
201
5,
pp
. 37
4
~
38
2
I
S
SN
: 208
8-8
6
9
4
3
74
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Design and Analysis of Drive Sy
stem with Slip Ring Induction
Mot
o
r f
o
r El
ectri
c
T
r
acti
on in In
dia
C. N
a
g
a
m
a
ni
*,
R.
So
ma
na
tha
m
**
,
U
.
Ch
ai
tan
y
a Kum
a
r
**
*
* Resear
ch Scho
lar, University
C
o
lleg
e
of
Engi
nee
r
i
n
g
,
Osma
n
i
a
Un
i
v
e
r
si
ty
, Hy
de
r
a
b
a
d,
I
n
di
a
** HOD,
Dept.
Of Electrical
&
Electronics Engineering,
Anurag
Colle
ge of Engineering,
H
y
derabad,
India
*** M.Tech Stu
d
ent, Dept. Of
EEE, Anurag Co
llege of
Eng
i
neering, H
y
der
a
bad
,
I
ndia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Oct 31, 2014
Rev
i
sed
Jan 12, 201
5
Accepte
d
Ja
n 24, 2015
The use of Squirrel Cage Motor
for
Traction has revolutionised
the motive
power of a Lo
comotive.
The
Asy
n
chronous
Motor is rugged, has high
starting Torqu
e
, ver
y
smooth Voltag
e
and Speed control as co
mpared to a
DC Series Moto
r. When looking at th
e Traction perspective, a Wound Rotor
Induction Motor
can be
an alter
n
ativ
e
to th
e Squirrel C
a
ge Motor as it has
higher s
t
arting
Torque
at
lower
s
t
arting
curr
ent
and b
e
tt
er e
ffic
i
enc
y
than
a
Squirrel Cage
Motor. The Slip Powe
r Re
c
ove
ry
sc
he
me
a
l
so play
s
a
proact
ive ro
le
a
s
there
can b
e
s
ubs
tantial
s
a
vi
ngs
of energ
y
i
n
cas
e of
a
Wound Rotor In
duction Motor as the Slip Powe
r recovered can
be used to
drive th
e Auxili
ar
y
Loads
of th
e Locom
o
tiv
e a
nd als
o
for powering th
e
trail
i
ng P
a
s
s
e
ng
er Cars
. A d
e
t
a
i
l
ed des
i
gn
and
anal
ys
is
of
a Dr
ive S
y
s
t
em
with Wound Rotor Induction Mo
tor for Elect
r
i
c
Traction is presented in th
is
Res
earch
P
a
per
.
Keyword:
Electric Traction
Slip P
o
we
r Re
cove
ry
Squ
i
rrel Cag
e
In
du
ction
M
o
tor
W
oun
d Ro
t
o
r
In
du
ction
M
o
tor
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
C
.
Na
gam
a
ni
,
Depa
rt
m
e
nt
of
El
ect
ri
cal
Engi
neeri
n
g
,
Osm
a
ni
a Uni
v
ersi
t
y
, Hy
de
ra
bad
,
In
di
a,
Flat No.1,
1
2
-12
-
17
3, Srid
ev
i
Ap
artm
en
ts,
Sitap
h
a
lm
an
d
i
,
Secu
nd
er
ab
ad
50
006
1, I
n
d
i
a.
Em
a
il: cn
ag
aman
i20
25@g
m
ail.co
m
1
.
IN
TR
OD
UC
TI
ON
Th
e in
ven
tion o
f
Gate Tu
rn
-Off Th
y
r
isto
rs revo
lu
tio
n
i
sed
th
e m
o
d
e
rn
Electric Traction.
C
onsi
d
era
b
l
e
adva
ncem
ent
s
have t
a
ken
pl
ac
e from
t
h
e use of Di
o
d
e R
ect
i
f
i
e
rs fo
r seri
e
s
-pa
r
al
l
e
l
cont
r
o
l
o
f
th
e DC Series Mo
to
rs to
th
e u
s
e o
f
si
m
p
le
Pu
lse-Wid
t
h
Mo
du
latio
n
Tech
n
i
q
u
e fo
r th
e con
t
ro
l of
Asyn
ch
ron
o
u
s
Mo
to
rs. Th
e Inv
e
rter
d
r
i
v
en
In
du
ction
Mo
to
r m
a
in
tai
n
a lo
w-slip
o
p
e
ration
ev
en
du
ri
ng
starting
[1].
As
a res
u
lt, the T
h
ree
-
phase
Squirrel Ca
ge
I
ndu
ctio
n Mo
tor
beca
m
e
v
e
r
y
pop
u
l
ar
as th
e Traction
M
o
t
o
r
beca
use
of
i
t
s
pr
o
p
ert
i
es of
r
u
g
g
e
d
n
e
ss,
hi
g
h
st
art
i
ng
t
o
r
q
ue, ea
s
y
M
o
t
o
r C
o
nt
rol
t
h
r
o
u
g
h
M
i
cro-
pr
ocess
o
r
,
re
g
e
nerat
i
o
n u
p
t
o
zer
o spee
ds
,
effi
ci
ency
o
f
ope
rat
i
on a
n
d
bet
t
e
r ad
hesi
on
pr
o
v
i
d
e
d
b
y
i
t
i
n
p
r
ev
en
tin
g
Wheel Slip
s. It is also
ob
serv
ed
th
at a
W
R
IM c
a
n produce m
o
re starting t
o
rque as com
p
are
d
to a
SQIM at lesser startin
g
cu
rrent. Also
t
h
e Brak
ing
cap
ab
ility o
f
WRIM
h
a
s b
een
fo
und
sup
e
ri
o
r
to
SQIM [2
].
W
i
t
h
t
h
e ev
er
in
creasing lo
ad
s t
o
b
e
h
a
u
l
ed
, m
u
ltip
le operatio
n
s
o
f
Loco
m
o
tiv
es h
a
ve b
e
co
m
e
th
e
n
o
rm
o
f
th
e d
a
y. Und
e
r th
ese con
d
ition
s
, t
h
e
p
r
od
u
c
t
i
o
n
un
its m
a
n
u
f
actu
r
i
n
g Lo
com
o
t
i
v
e
s are
wo
rk
ing
ou
t ways and
means to inc
r
e
a
se the Powe
r
of t
h
e
L
o
com
o
tives. In
near
future one m
i
ght
find L
o
c
o
motives
of t
h
e c
a
pacity
o
f
70
00
H
P
hau
lin
g h
e
av
y l
o
ads ov
er
v
a
r
i
o
u
s
gr
ad
ien
t
s i
n
Ind
i
an
Rail
w
a
ys.
W
h
en
it
co
m
e
s to
r
a
tin
g
s
of
Mo
to
r
s
fo
r
th
i
s
k
i
nd
of
u
ltr
a h
i
gh
pow
er
Lo
co
m
o
tiv
es, the Mo
to
r
s
cou
l
d
b
e
r
a
ted
at or
d
e
r
of
900
kW
t
o
1
MW
.
In this
give
n s
cenari
o
, i
f
one
can
harness
the Powe
r
wast
e
d
du
e t
o
‘
S
l
i
p
’
,
t
h
e e
n
e
r
gy
sa
vi
n
g
s ca
n
be
su
bstan
tial. It h
a
s b
e
en
prov
ed
in
th
e case o
f
h
i
g
h
cap
acity
Ro
ller Mills, t
h
at th
e h
i
gh
in
itial co
st o
f
a Sl
ip
ri
ng
Indu
ctio
n
M
o
to
r is ov
erco
m
e
b
y
th
e Slip
Po
wer Recov
e
r
y
Schem
e
im
plem
ent
e
d by
a sim
p
l
e
Kram
er
Dri
v
e
.
The Sl
i
p
P
o
we
r t
h
us
har
n
esse
d ca
n be
p
u
m
p
ed
back t
o
t
h
e
su
ppl
y
b
u
s
ba
rs t
h
ro
u
gh
a st
ep
up
Tra
n
sf
o
r
m
e
r.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Desi
g
n
a
n
d
An
al
ysi
s
of
Dri
ve
Syst
em
w
i
t
h
Sl
i
p
Ri
ng
I
n
d
u
ct
i
o
n
M
o
t
o
r f
o
r E
l
ect
ri
c Tract
i
o
n…
(
C
. N
a
g
a
m
ani
)
37
5
Thi
s
has
resul
t
ed i
n
ene
r
gy
sa
vi
n
g
s o
f
t
h
e o
r
der
of
36
0 k
W
wo
rt
h
$3
0
0
,
0
0
0
pe
r an
num
fo
r a 50
0
0
HP
W
o
u
n
d
Ro
to
r Mo
t
o
r ru
nn
ing at 90
% fu
ll sp
eed in
t
h
e
g
r
i
n
d
i
n
g
M
ills u
s
ed in larg
e Cem
e
n
t
Plan
ts [3
].
Also
,
as the
star
tin
g
Tor
que d
e
v
e
lop
e
d by th
e
W
o
u
nd Ro
tor
Mo
t
o
r
is d
i
rectly pro
portio
n
a
l t
o
‘Slip
”, th
e M
ach
ine
devel
o
p
s
hi
g
h
e
r
st
art
i
ng T
o
r
q
ue as com
p
are
d
t
o
a Sq
ui
r
r
el
C
a
ge M
o
t
o
r a
t
l
o
wer val
u
es
of C
u
rre
nt
. H
e
nce, a
Dri
v
e system
is desi
gne
d a
n
d
analysed
with
Wound
Ro
t
o
r
Mach
in
e as Tractio
n
M
o
to
r i
n
th
is p
a
p
e
r.
2
.
SALIE
N
T FEATURES OF
WRIM
W
i
t
h
th
e ad
v
a
n
cem
en
t in
tec
h
no
log
y
in
co
nstru
c
tion of El
ectrical Machines, large
WRIM are bei
ng
m
a
nufact
ure
d
of
t
h
e
rat
i
n
g
o
f
18
,0
0
0
k
W
w
i
t
h
a
vol
t
a
ge
r
a
nge
o
f
1
3
,
8
0
0
V
by
l
e
a
d
i
n
g
m
a
nufact
u
r
ers
l
i
k
e
ABB. T
h
ese m
achines
are m
a
nufactured
to
work at n
e
ar
un
ity p
o
wer fact
or a
n
d at a
b
out
95% efficienc
y
. The
WR
IM
s ha
ve
hi
gh st
a
r
t
i
n
g
t
o
rq
ue,
hi
g
h
i
n
ert
i
a
and l
o
w st
art
i
n
g c
u
r
r
ent
wi
t
h
a
n
en
hanc
ed fe
at
ure o
f
pr
o
duci
n
g
hi
g
h
t
o
r
que
o
v
e
r
ent
i
r
e s
p
ee
d r
a
nge
. T
h
e m
achi
n
es
com
e
wi
t
h
aut
o
m
a
t
i
c
B
r
us
h l
i
f
t
i
n
g
g
ears i
n
whic
h, t
h
e sli
p
rings m
a
de of
stainl
ess steel
havi
ng a sm
oot
h a
n
d
non-groov
ed s
u
rface. After attaining t
h
e
full
rat
e
d sp
eed
, t
h
e B
r
us
h Li
ft
i
n
g an
d Sl
i
p
R
i
n
g
sh
ort
C
i
rc
u
itin
g
Gear sh
ort circu
its th
e Ro
tor and
th
en
l
i
fts th
e
br
us
hes f
r
om
Sl
i
p
R
i
ngs
. Th
e ot
her
desi
gn
i
s
t
o
have
per
m
anent
co
nt
act
bru
s
hes
w
h
er
ei
n t
h
e Sl
i
p
R
i
ngs a
r
e
m
a
nufact
ure
d
f
r
om
hi
ghl
y
co
r
r
osi
on
resi
st
ant
C
o
p
p
er
-Ti
n
-N
i
c
kel
al
l
o
y
and
hel
i
cal
l
y
groo
ved
.
The
WR
I
M
o
f
u
ltra h
i
g
h
ratin
g
s
also
co
m
e
with
self-ven
t
ilatio
n
w
ith
a
fan
m
o
un
ted
on
th
e m
ach
in
e Sh
aft itself.
Hen
c
e,
adeq
uat
e
co
ol
i
ng i
s
p
r
o
v
i
d
e
d
fo
r safe an
d rel
i
abl
e
ope
rat
i
o
n
[4]
.
The a
b
o
v
e
m
e
nt
i
oned fe
at
ures o
f
W
R
I
M
are
of a
dva
nt
age
f
r
om
t
h
e Loco
m
o
ti
ves poi
nt
of
vi
ew as t
h
e
Tract
i
on M
o
t
o
rs
need t
o
be
ro
bust
t
o
wi
t
h
st
an
d
vi
b
r
at
i
ons
, nee
d
t
o
ha
ve bet
t
e
r co
ol
i
ng f
o
r re
l
i
a
bl
e and
safe
ope
rat
i
o
n, nee
d
t
o
ha
ve hi
gh
st
art
i
ng T
o
r
q
u
e
wi
t
h
lo
w startin
g curren
t
and
n
e
ed
to
sav
e
o
n
th
e
reactiv
e
Power
co
nsu
m
ed
as it n
e
ed
s t
o
h
i
gh
er Po
wer Bills.
The a
d
ded
feat
ure
of Slip-Power Rec
o
very
schem
e
in
a
WRIM wo
u
l
d
resu
lt in
su
bstan
tial sav
i
ng
s i
n
en
erg
y
and
h
e
n
ce redu
ce the co
st of
o
p
e
ratio
n. Th
e
Sl
ip
-Po
w
er Reco
v
e
red
can b
e
u
tilised
to
run
the
Lo
co
m
o
tiv
e Au
x
iliary un
its lik
e th
e Blower Mo
tors,
fo
r
Lig
h
ting
th
e cab
an
d
Mach
i
n
e
u
n
its, ch
argin
g
of
B
a
t
t
e
ry
used f
o
r
rai
s
i
n
g t
h
e
Pant
o
g
r
ap
h et
c
.
The
r
e i
s
al
so
a dem
a
nd f
o
r
Head
-
O
n
-
Ge
n
e
rat
i
on
of
p
o
w
e
r f
o
r
po
we
r t
h
e t
r
ai
l
i
ng Pa
ssen
g
e
r
C
a
rs i
n
E
x
pres
s t
r
ai
ns l
i
k
e R
a
jd
ha
ni
/
S
hat
a
b
d
i
/
D
u
r
ont
os i
n
or
der t
o
bri
n
g
do
w
n
t
h
e de
pe
nde
nc
e o
n
Di
esel
Ge
nerat
o
rs
use
d
i
n
E
n
d-
On
-
G
en
erat
i
o
n
[
5
]
.
3.
SLIP-
P
OW
ER RE
CO
VE
RY
S
C
HEME
The efficiency of a
n
Asy
n
chronous Motor is
consi
d
era
b
ly reduce
d
becaus
e
of
the
prese
n
ce of ‘Slip’.
Th
e Slip
Po
wer g
e
ts wasted
as h
eat in
th
e Ro
tor of th
e
Machine. T
h
is power ca
n be
harnesse
d in the c
a
se of a
WRIM by m
e
a
n
s of either St
atic Kram
er Drive or Sta
tic Sch
e
rb
iu
s
Dri
v
e. Th
e d
i
ff
e
r
enc
e
between t
h
e two is
that a Sc
he
rbi
u
s
Dri
v
e is
a
bi-directional
Dri
v
e
whe
r
ei
n
p
o
we
r fl
o
w
c
a
n be
i
n
ei
t
h
e
r
di
rect
i
o
n. If
sup
e
r
-
syn
c
hr
ono
us sp
eed
is
r
e
qu
ir
ed
,
p
o
w
e
r
can
be in
j
ected
in
to th
e Ro
tor Circu
it fro
m
th
e
Bu
s-Bars. Th
e Power
th
u
s
h
a
rn
essed can
b
e
u
s
ed
t
o
Driv
e Aux
iliary Lo
ad
s
of a Lo
co
m
o
tiv
e in
stead
of
b
e
ing
fed
b
a
ck
to th
e Bus-
Bars throug
h Step
-Up Tran
sfo
r
m
e
r as
th
is co
u
l
d
ad
d to th
e in
itial Co
st.
It
h
a
s
b
e
en
foun
d th
at th
e PW
M
Slip
-
Power Recov
e
ry do
es
no
t create to
rq
u
e
ri
p
p
les in
th
e
R
o
t
o
r of WR
IM
an
d hence
,
t
h
e efficiency of t
h
e
Motor
i
s
n
o
t
com
p
ro
m
i
sed [3]
.
I
n
t
h
i
s
pape
r a
si
m
p
l
e
m
odi
fi
ed
Kram
er Driv
e is
u
s
ed
to
h
a
rn
ess th
e Slip Po
wer fro
m
th
e Ro
t
o
r
of the
W
R
IM
.
4. DES
C
R
I
PT
ION OF PR
O
P
OSED
CI
R
C
U
IT
Th
e
p
r
op
o
s
ed
circu
it with
its
d
e
tailed
circu
it Diagram
i
s
di
scusse
d i
n
t
h
i
s
s
ect
i
on.
Fo
r t
h
e
pu
r
pose
o
f
si
m
p
licit
y th
e Circu
it will b
e
b
r
o
k
e
n
u
p
i
n
to
v
a
riou
s
p
a
rts lik
e Sup
p
l
y syste
m
, Rect
ifier, Inv
e
rter, Aux
iliary
Co
nv
erter etc.
Bo
th
Rectifier
an
d Inv
e
rter used
in th
is
pa
pe
r use Ins
u
l
a
t
e
d
Gat
e
B
i
-p
ol
ar
Tran
si
st
or
(
I
G
B
T)
as
th
e switch
i
ng
d
e
v
i
ce as th
e IGBTs h
a
v
e
b
e
en
foun
d
to
h
a
v
e
b
e
tter th
ermal cap
ab
ilitie
s an
d
also
h
a
ve b
een
foun
d
to
with
stan
d
su
dd
en
sh
ort-circ
u
it con
d
ition
s
as com
p
ared
to
GTOs [6
]. Th
e o
t
h
e
r reason
s for u
s
ing
IGB
T
as s
w
i
t
c
hi
n
g
de
vi
ce ar
e t
h
at
soft
-swi
t
c
hed
I
G
B
T
s h
a
ve l
o
wer t
u
r
n
-o
n a
nd t
u
r
n
-
o
ff l
o
s
s
es, t
h
ey
req
u
i
r
e
l
o
we
r swi
t
c
hi
n
g
p
o
w
er a
nd a
r
e capa
b
l
e
o
f
swi
t
c
hi
n
g
at
h
i
gh s
p
eed
s [
7
]
.
The
pr
o
pose
d
ci
rc
ui
t
di
agr
a
m
i
s
sho
w
n i
n
Fi
gu
r
e
1.
4.
1. Th
e Trac
tion S
uppl
y S
y
stem
The T
r
act
i
on
S
u
p
p
l
y
sy
st
em
consi
s
t
s
of a
n
A
C
Vol
t
a
ge s
o
ur
ce su
ppl
y
i
n
g
2
5
k
V
AC
at
a fr
eque
ncy
o
f
5
0
Hz. Th
is is
to
sim
u
late th
e 25
kV
supp
ly su
pp
lied
from
the Ove
r
-Head Equipm
en
t in th
e
Ind
i
an Railway
Syste
m
. Th
e su
pp
ly is fed
to
a
m
u
lti-wind
ing
Tran
sf
ormer with
a p
r
i
m
ary ratin
g
o
f
2
5
k
V
an
d
seco
nd
ary
r
a
tin
g of
4
500
V
.
Th
e secondar
y
of
th
e Tr
ansf
or
m
e
r
is conn
ected
t
o
Tr
act
io
n
Rectif
ier.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
3
,
Feb
r
uar
y
201
5 :
3
74 –
38
2
37
6
4.2.
Tr
acti
on Rectifier System
Th
e m
a
in
rect
ifier is a p
a
rallel co
n
n
ected
two
4
– Pul
s
e
B
r
i
dge u
n
i
t
s
fo
rm
i
ng one o
f
Tract
i
o
n
Rectifier. Th
ey are two
set
s
o
f
su
ch
Tractio
n
Rectifier syste
m
s in
t
h
is p
r
op
osed
circu
it d
i
agram
,
eac
h
i
ndi
vi
dual
l
y
fe
d fr
om
t
h
e secon
d
a
r
y
of t
h
e
Tract
i
on T
r
an
s
f
o
r
m
e
r. Ei
ght
IGB
T
s are use
d
t
o
form
t
h
e Tract
i
on
Rectifier Un
it. Th
e in
pu
t to
th
e Rectifier is 4
500
V,
50
Hz AC
s
u
p
p
l
y
fed f
r
om
secon
d
a
r
y
of t
h
e
M
a
i
n
Transfo
r
m
e
r. Th
e
o
u
t
p
u
t
of the Rectifier is fed
to th
e
DC Li
n
k
.
4.
3. D
C
L
i
nk
Th
e
o
u
t
p
u
t
o
f
Tractio
n
Rectifier is co
nn
ected
to
th
e
DC Li
n
k
. Th
e DC Li
n
k
con
s
ists of
a Cap
acito
r
B
a
nk of 81
5
μ
F an
d
1
1
.41
m
F
co
nn
ected
i
n
parallel to
filter o
u
t
th
e
Harm
o
n
i
cs in
th
e DC
Vo
ltag
e
. A
Dio
d
e
i
s
con
n
ect
ed i
n
t
h
e DC
Li
n
k
t
o
ensu
re uni
di
re
ct
i
onal
cur
r
ent
.
A B
r
aki
n
g R
h
eost
at
i
s
conne
ct
ed i
n
t
h
e DC
Li
n
k
th
ro
ugh
an
IGBT. Th
is acts as th
e Brak
i
n
g Ch
op
p
e
r. Th
e p
u
rpo
s
e
o
f
th
i
s
Resisto
r
is to
in
tro
d
u
ce
Dyn
a
mic
Brak
ing
.
If Brak
ing
is to
b
e
in
tro
d
u
c
ed
, th
en
th
e Circ
u
it Break
er in
th
e DC Lin
k
on
the Inve
rter side
can be
o
p
e
n
e
d
b
y
an
ex
tern
al co
mman
d
an
d th
e B
r
ak
i
n
g Resistor is i
n
serted
into
th
e circu
it b
y
d
e
li
v
e
ring
Pu
lses
fro
m
th
e Pu
lse Gen
e
rator to th
e IGBT. Th
e
Pu
lse
Gen
e
rato
r is also
con
t
rolled
ex
tern
ally so
th
at B
r
ak
i
n
g
can
be done at anytime. If the Motors
a
r
e to
be accelerated again, the Pu
lses to the IGBT
connected to
the
B
r
aki
n
g R
e
si
st
or a
r
e st
o
ppe
d
and t
h
e C
i
rcu
i
t
B
r
eaker
on
t
h
e Inverter si
de of
DC Link
can be cl
ose
d
. The
out
put
o
f
t
h
e
D
C
Li
nk
i
s
c
o
n
n
ect
ed t
o
t
h
e T
r
act
i
on
In
vert
e
r
.
Fi
gu
re
1.
Pr
o
p
o
se
d C
i
rc
ui
t
Di
agram
of t
h
e T
r
act
i
o
n
D
r
i
v
e
S
y
st
em
usi
ng
W
R
IM
4.
4. T
r
acti
on
I
n
ver
t
er
A con
s
tan
t
V/
f Variab
le Vo
l
t
ag
e Variab
le
Freq
u
e
n
c
y contro
l of Ind
u
c
ti
o
n
M
o
tor will
m
a
tch
th
e
sup
p
l
y
an
d
de
m
a
nd t
o
rq
ue
b
y
el
im
i
n
at
i
ng t
h
e u
s
e o
f
a Fl
y
w
heel
[8].
He
nce a three
-
phas
e Inverte
r
is propose
d
i
n
t
h
i
s
pape
r.T
h
e T
r
act
i
on i
n
vert
er
i
s
a 6
-
P
u
l
s
e B
r
i
d
ge
In
vert
er
ci
rc
ui
t
whi
c
h i
s
ca
pa
bl
e o
f
gene
rat
i
n
g
Si
n
e
wave
s di
spl
ace
d by
a phase
di
ffe
rence
of 1
2
0
˚
. The Pulses are delivere
d
by
m
eans of a PWM
gene
rat
o
r
.
The
out
put
of t
h
e T
r
act
i
on
In
vert
e
r
i
s
fed t
o
t
h
e
Tract
i
on M
o
t
o
rs. T
h
e co
nt
r
o
l
of t
h
e
In
ve
rt
er
i
s
achi
e
ved
by
m
eans
of a
si
m
p
l
e
const
a
nt
V/
f Tec
hni
que
w
h
e
r
e i
n
t
h
e Th
ree-Phase
Voltages
of t
h
e
Inve
rter are m
easure
d
and
com
p
ared with
the refe
re
nc
e
value
o
f
V
o
l
t
a
ge re
q
u
i
r
e
d
a
nd t
h
en
t
h
e req
u
i
r
e
d
fre
que
ncy
of P
u
l
s
es are
g
e
n
e
rated
b
y
th
e PW
M
g
e
n
e
rato
r so
as to
main
tain
a co
n
s
tan
t
torqu
e
ev
en
at lower
sp
eed
.
Th
e syste
m
is
d
e
sign
ed
in
such
a way t
h
at, a Traction
Inv
e
rter
w
ill supp
ly Power t
o
Two
Traction
Mo
to
rs conn
ected
in
p
a
rallel. Th
is
mean
s th
at, for a 6
-
Ax
le Lo
com
o
t
i
v
e
, th
ere
will b
e
th
ree Tractio
n
Inv
e
rters feed
ing
th
e
Mo
to
rs.
Th
is
will en
su
re 10
0% reliab
i
l
ity in
o
p
e
ration of th
e Lo
co
m
o
tiv
e.
4.
5. T
h
e T
r
ac
t
i
on
Mo
t
o
r
Ci
rcui
t
An
Asy
n
c
h
ro
n
ous M
o
t
o
r wi
t
h
Wo
un
d R
o
t
o
r i
s
use
d
as Traction Mot
o
r.
The pr
esen
t circu
it co
nsists
of a set
of si
x
Tract
i
on M
o
t
o
rs o
n
e eac
h f
o
r
an A
x
l
e
. T
h
e
Motors
are c
o
ntrolled from
the Stator side
for the
sim
p
l
i
c
i
t
y
of operat
i
o
n. T
h
e M
o
t
o
rs a
r
e rat
e
d at
90
0k
W,
30
0
0
V,
50
Hz
wi
t
h
2 P
o
l
e
s. T
h
e rat
e
d s
p
eed
i
s
300
0
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Desi
g
n
a
n
d
An
al
ysi
s
of
Dri
ve
Syst
em
w
i
t
h
Sl
i
p
Ri
ng
I
n
d
u
ct
i
o
n
M
o
t
o
r f
o
r E
l
ect
ri
c Tract
i
o
n…
(
C
. N
a
g
a
m
ani
)
37
7
rp
m
.
Th
e Ro
t
o
rs of th
e t
h
ree
Tractio
n
M
o
tors are conn
ect
ed
to
o
n
e
Au
x
iliary Co
nv
erter,
th
u
s
m
a
k
i
n
g
t
w
o
sets
o
f
Aux
iliary Co
nv
erters
fo
r th
e si
x
Traction Mo
tors. Th
e sp
eed is con
tinu
o
u
s
ly m
easu
r
ed
and
g
i
v
e
n
as inp
u
t
to
th
e
Em
b
e
d
d
ed
MATLAB
fun
c
tion
wh
ich calcu
lates th
e Power g
e
n
e
rat
e
d
in
th
e Air-Gap,
th
e
Slip-Power,
the Torque
de
veloped
and the Tractiv
e
E
f
fort devel
ope
d continuously.
Th
e re
quire
d
freque
ncy accordi
ng
t
o
the ne
w
spee
d
require
d
is als
o
calcula
t
e
d i
n
t
h
e Em
bed
d
ed
M
A
TLAB
f
u
n
c
t
i
on.
4.
6.
T
h
e Auxi
l
i
ary C
o
n
v
erte
r
Th
e Aux
iliary Co
nv
erter is b
a
sically Sta
tic Kram
er Dr
iv
e. It
co
n
s
ists of a Th
ree-Ph
ase Rectifier with
Diodes as s
w
itch. T
h
e Invert
er is connecte
d
via a DC
Li
n
k
. T
h
e I
n
vert
er
i
s
an I
G
B
T
ba
sed I
n
vert
er
. H
e
nce
,
th
e Aux
iliary Co
nv
erter is
un
i-d
i
rection
a
l
Co
nv
erter ca
p
a
b
l
e of tran
sferrin
g
Power from
th
e Ro
tor Ci
rcu
it
o
f
th
e Traction
Mo
to
rs to
t
h
e Lo
ad
.
Th
e
Inv
e
rter is fired u
s
ing
a sim
p
le PW
M
Generato
r. Th
e
Au
x
iliary
con
v
e
r
t
e
r i
n
t
h
e p
r
op
ose
d
d
e
si
gn ca
n
dri
v
e a Loa
d
o
f
s
i
x 1
5
k
W
,
4
0
0
V,
50
Hz,
4-
pol
e S
q
ui
rrel
C
a
g
e
I
ndu
ctio
n Mo
t
o
r
s
. Th
ese
k
i
nd
s
o
f
Thr
e
e
-
Phase Squirrel C
a
ge Mac
h
ines
are
norm
ally used as
Blower
Motors
for coo
ling
the Traction
Mo
tors. Th
e circu
it d
i
agra
m
sho
w
n i
n
Fi
gu
r
e
1 i
s
si
m
u
l
a
ted u
s
i
n
g M
A
TLA
B
Si
m
u
lin
k
.
Th
e
si
m
u
latio
n
results are d
i
sc
u
ssed
in th
e
n
e
x
t
sectio
n
in d
e
tail.
5
.
SIMUL
A
TION AND
RESULTS
The ci
rc
ui
t
t
h
at
has bee
n
p
r
o
p
o
sed i
n
t
h
e Fi
gu
re 1
w
a
s sim
u
l
a
t
e
d usi
n
g M
A
T
L
AB
Si
m
u
l
i
nk
so
ft
ware. Th
e
si
m
u
latio
n
was carried
o
u
t
for 10
seco
nd
s
of
Si
m
u
latio
n
Ti
me to
stu
d
y
t
h
e resu
lts in
d
e
tail. Th
e
Tractions Mot
o
rs
we
re accelerated
for a time period of
5
sec
o
nds. They
reache
d
the
steady state speed
i
n
abo
u
t
0.
2 sec
o
nds
. T
h
e C
i
rc
ui
t
B
r
eake
r
on
t
h
e I
n
vert
er
s
i
de of the
DC
Link was
ope
n
ed and the
Braki
n
g
Resisto
r
was i
n
trod
u
c
ed
i
n
to th
e circu
it
b
y
deliv
ering
p
u
l
se
s to t
h
e
IGBT
connected to the Bra
k
ing Resi
stor
at
t
i
m
e
of 5 seco
nds
. Th
e spee
d
of t
h
e T
r
act
i
o
n M
o
t
o
rs re
d
u
ced t
o
zer
o an
d we
nt
i
n
t
o
s
u
per
-
sy
nc
hr
o
n
o
u
s spee
d
regi
on
. A
g
ai
n
at
a t
i
m
e
of 7 secon
d
s
,
the Circuit Breaker
of the DC Link
on
t
h
e I
nve
rt
er s
i
de was cl
ose
d
an
d
th
e pu
lsation
s
to
th
e
IGBT co
nn
ected to the Brak
i
n
g
Res
i
stor
were
cea
sed. This
res
u
l
t
ed in t
h
e T
r
a
c
tion
Motors
accelerating a
g
ain to t
h
e
require
d
s
p
e
e
d.
5.
1. T
h
e T
r
ac
t
i
on
Recti
f
i
er
Outp
ut
The
out
put
wa
vef
o
rm
of t
h
e
Tract
i
o
n
R
ect
i
f
i
e
r i
s
sh
ow
n i
n
Fi
gu
re
2. T
h
e
Wave
f
o
rm
s were o
b
se
rv
e
d
t
o
be ri
p
p
l
e
fr
ee and wi
t
h
fe
wer
harm
oni
c.
The am
pl
it
ud
e of t
h
e o
u
t
p
u
t
Vol
t
a
ge was
50
0
0
V. T
h
e
out
put
Vol
t
a
ge
wa
s a
p
u
l
s
at
i
n
g
DC
wa
vef
o
rm
. T
h
e
wave
f
o
rm
obt
ai
ne
d
has
b
een z
oom
ed f
o
r
bet
t
e
r
vi
ew
i
n
t
h
e
Figure.
Fi
gu
re
2.
Tract
i
on R
ect
i
f
i
e
r
O
u
t
p
ut
V
o
l
t
a
ge
Wave
f
o
rm
5.
2. DC
Link Outp
ut
The Ca
pacitors of
values
815
μ
F an
d
1
1
.42 m
F
were conn
ected in
p
a
rallel to
fo
rm
th
e Cap
acitor
b
a
nk
t
o
filter
ou
t th
e
Harm
o
n
i
cs and
also
work
as a
Vo
ltag
e
Bo
oster.
Th
e
Diod
e
was co
nn
ected
t
o
en
su
re un
i-
di
rect
i
o
nal
Po
wer
fl
o
w
. T
h
e
out
put
V
o
l
t
a
g
e
wave
fo
rm
i
s
sho
w
n i
n
Fi
g
u
re
2. T
h
e V
o
l
t
a
ge wave
f
o
r
m
was
obs
er
ved t
o
be
pu
re st
rai
ght
l
i
ne DC
of t
h
e
am
pl
i
t
ude
of
58
00
V
o
lts. Th
e v
a
r
i
ation
of
am
p
l
itu
d
e
of
DC Link
Voltage
can be
observe
d
in the Graph at t =
5 sec
o
nds
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
3
,
Feb
r
uar
y
201
5 :
3
74 –
38
2
37
8
Fi
gu
re 3.
DC
L
i
nk O
u
t
p
ut
V
o
l
t
age W
a
ve
fo
r
m
5.
3.
T
r
acti
on I
n
ver
t
er and
Mo
t
o
rs
O
u
t
p
u
t
s
The
out
put
of
DC Link is connecte
d
to t
h
e
Traction
Inve
rt
er. T
h
e T
r
action Inverter is
pulsed
by the
Di
scret
e
P
W
M
Gene
rat
o
r
bas
e
d o
n
si
m
p
l
e
const
a
nt
V/
f
p
r
i
n
ci
pl
e [
4
]
.
T
h
e
no
-l
oa
d
vol
t
a
g
e
t
o
rat
e
d
fre
q
u
ency
rat
i
o
i
s
cal
c
u
l
a
t
e
d i
n
t
h
e E
m
bedded M
A
TLAB
fu
nct
i
o
n.
The
f
r
eq
ue
ncy
o
f
o
p
erat
i
o
n
o
f
t
h
e I
n
v
e
rt
er i
s
chan
ge
d t
o
cha
nge
t
h
e s
p
ee
d
of t
h
e T
r
act
i
o
n
M
o
t
o
rs.
The
S
p
eed
o
f
t
h
e
Tra
c
t
i
on M
o
t
o
r
i
s
fed t
o
t
h
e
Em
bedde
d
M
A
TLAB
fu
n
c
t
i
on. T
h
e ne
w
speed
req
u
i
r
e
d
i
s
gi
ve
n as a com
m
a
nd d
u
ri
ng
ru
n-t
i
m
e at
a pre
-
de
fi
ne
d t
i
m
e
i
n
t
h
e Em
bedded
M
A
TLAB
fu
n
c
t
i
on. T
h
e ne
w
freq
u
e
n
cy
of
f
i
ri
ng c
o
r
r
es
po
ndi
ng t
o
t
h
e n
e
w re
qui
r
e
d s
p
eed i
s
calcu
lated
.
The V
o
ltag
e
boost r
e
q
u
i
r
e
d
for th
e n
e
w
fr
equ
e
n
c
y is also
co
m
p
u
t
ed
f
r
om th
e V
/
f
r
a
ti
o
.
Th
ese
i
n
p
u
t
s
are
fe
d t
o
t
h
e
PI C
o
nt
r
o
l
l
e
r t
o
reg
u
l
a
t
e
t
h
e V
o
l
t
a
ge
R
e
gul
at
o
r
bl
oc
k. T
h
e
ne
w F
r
eque
ncy
re
q
u
i
r
ed a
n
d
t
h
e co
rres
p
on
d
i
ng
Vol
t
a
ge re
qui
red i
s
c
o
m
p
are
d
a
n
d
fi
ri
ng
p
u
l
s
es a
r
e
gi
ve
n t
o
t
h
e T
r
act
i
on
I
nve
rt
e
r
. T
h
e
Vol
t
a
ge
l
e
vel
i
s
va
ri
ed s
o
as
t
o
m
a
i
n
t
a
i
n
t
h
e
Tor
q
ue c
onst
a
nt
. T
h
e
Wave
f
o
rm
s of T
h
ree-
Phase
I
nve
rt
er
out
put
Vol
t
a
ge
s are
s
h
o
w
n i
n
Fi
g
u
r
e
4.
Fi
gu
re
4.
Tract
i
on
I
nve
rt
er T
h
ree-P
h
ase
O
u
t
p
ut
V
o
l
t
a
ge
Wa
vef
o
rm
s
The Phase
-
Phase Voltage was 45
0
0
V an
d t
h
e c
u
r
r
e
n
t
was
10
0
Am
p cont
i
n
u
o
u
s.
The B
r
a
k
i
n
g
C
h
o
p
p
er
was
pul
se
d at
t
=
5
seco
nds
wi
t
h
t
h
e o
p
e
n
i
n
g
of th
e Circu
it Break
er. Th
e Inverter
Voltage
s and
Currents
dropped t
o
ze
ro a
n
d the c
u
rren
t circu
l
ated
in the DC Link
thro
ugh
th
e B
r
akin
g
C
h
opp
er.
At t=7
seco
nds
, t
h
e C
i
rcui
t
B
r
ea
ker
was cl
ose
d
a
n
d
t
h
e p
u
l
s
es t
o
t
h
e B
r
a
k
i
n
g C
h
op
pe
r we
re st
o
ppe
d. T
h
i
s
re
s
u
l
t
e
d i
n
Traction Mot
o
rs accelerating
again.
The Traction
Motors ac
hieved stead
y state speed at t=0.2 seconds.
Afte
r reachi
ng the
steady state,
the Traction
Motors
ra
n at
near rate
d s
p
e
e
d
of 3000
rpm
.
The spee
d
obs
erved for t
h
e T
r
action M
o
tors in
co
n
tinuo
us
m
o
d
e
o
f
op
eration
w
a
s 2
900
rpm
w
ith
m
i
n
o
r
o
s
cillatio
n
s
. With
th
e
in
t
r
oductio
n
o
f
t
h
e
Brak
ing
Chopper at t=5 seconds, t
h
e s
p
eed
droppe
d t
o
zero. T
h
e
Motors accelerat
ed agai
n to nea
r
rated s
p
ee
d after the
B
r
aki
n
g C
h
o
p
p
er
was
rem
oved f
r
om
t
h
e ci
rcui
t
at
t
=
7
se
conds
.
The Speed c
u
rve of t
h
e Traction M
o
tors is
sho
w
n i
n
Fi
gu
r
e
5.
0
1
2
3
4
5
6
7
8
9
10
0
10
00
20
00
30
00
40
00
50
00
60
00
70
00
DC
L
i
nk
V
o
l
t
age
of
T
r
ac
t
i
on
C
o
nv
e
r
t
e
r
S
y
s
t
em
T
i
m
e
i
n
s
e
c
ond
s
V
o
lt
a
g
e
in V
o
lt
s
B
r
ak
i
ng M
o
d
e
wi
t
h
i
n
s
e
r
t
i
o
n
of
B
r
ak
i
ng R
h
e
o
s
t
a
t
A
c
c
e
l
e
r
a
t
i
on
of
t
he M
o
t
o
r
s
0
1
2
3
4
5
6
7
8
9
10
-5
-4
-3
-2
-1
0
1
2
3
4
5
x 1
0
4
T
r
ac
t
i
on I
n
v
e
r
t
er
T
h
r
ee-
P
has
e O
u
t
put
V
o
l
t
age
T
i
m
e
i
n
s
e
c
onds
Vo
l
t
a
g
e
i
n
Vo
l
t
s
B
r
ak
i
ng M
ode
O
per
at
i
on f
r
om
5
se
cs t
o
7
s
e
c
s
B
r
ak
i
ng i
n
i
t
i
a
t
ed by
i
n
s
e
r
t
i
on of
B
r
ak
i
ng C
h
o
pper
A
c
c
e
l
e
r
a
t
i
on i
n
i
t
i
a
t
ed by
r
e
m
o
v
i
ng
B
r
ak
i
ng C
hopper
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Desi
g
n
a
n
d
An
al
ysi
s
of
Dri
ve
Syst
em
w
i
t
h
Sl
i
p
Ri
ng
I
n
d
u
ct
i
o
n
M
o
t
o
r f
o
r E
l
ect
ri
c Tract
i
o
n…
(
C
. N
a
g
a
m
ani
)
37
9
Fi
gu
re
5.
S
p
ee
d
of
t
h
e T
r
act
i
o
n
M
o
t
o
rs
5.
4.
T
h
e Auxi
l
i
ary C
o
n
v
erte
r
Ou
tpu
t
The T
h
ree
-
P
h
ase R
o
t
o
r
out
put
V
o
l
t
a
ges
of t
h
e T
r
action
Mo
t
o
rs
were fed to
th
e
Th
ree-Ph
ase
Aux
iliary Rectifier. Th
e Rectifier was a
Dio
d
e
Rectif
ier
and
h
e
n
ce
there was no
b
i
-d
irection
a
l flow of
current. T
h
e T
h
ree
-
Phase Ro
to
r Vo
ltag
e
s of th
e Tractio
n
Mo
to
rs are
shown in Figure 6. The Pha
s
e – Phase
Vo
ltag
e
of
3
0
0
V
was
ob
serv
ed. Th
e Capacito
r Bank
in th
e DC
Link o
f
t
h
e
Aux
iliary Con
v
e
rter o
f
t
h
e
capacity 815
μ
F filtered ou
t t
h
e
h
a
rm
o
n
i
cs an
d also
bo
osted
th
e
DC Link
Vo
ltag
e
to
40
0V.
Th
e Three -
Ph
ase
IGBT Au
x
iliary Inv
e
rter
d
e
v
e
lo
p
e
d
a
Vo
ltage of
4
50V
p
h
-ph
an
d th
is
was
fed to
t
h
e Blower Mo
tors.
Six Squirrel C
a
ge M
o
tors
were c
o
nnecte
d
to t
h
e circ
uit in t
w
o sets
of three M
o
tors
each. T
h
e
B
l
ower
M
o
t
o
r
s
co
ul
d
ac
hi
ev
e t
h
e
rat
e
d
s
p
e
e
d
of
1
5
0
0
r
pm
i
n
a
b
out
4.
5
s
econ
d
s
d
u
r
i
n
g
whi
c
h t
h
e T
r
a
c
t
i
on
Motors
accelerated to 3000rpm
. The
continuous
spee
d observe
d
for the
Blowe
r
M
o
tors was 1490rpm
.
As
expecte
d
from the the
o
retical calcula
tio
n
s
, th
e Slip
Power recov
e
red
from
th
e Traction Mo
tors was ab
le to
dri
v
e the
Blower Mot
o
rs
with the Blower M
o
tors ac
hievi
n
g the
desira
ble rated s
p
eed.
Fi
gu
re
6.
Th
re
e –
Pha
s
e R
o
t
o
r V
o
l
t
a
ges
o
f
t
h
e T
r
act
i
o
n M
o
t
o
rs
The S
p
eed C
u
rve
obse
r
ved f
o
r t
h
e B
l
o
w
er
M
o
t
o
rs w
h
e
n
B
r
aki
n
g C
h
o
ppe
r was i
n
t
r
o
duce
d
i
n
t
h
e
Tract
i
on C
o
nv
ert
e
r sy
st
em
i
s
sho
w
n i
n
Fi
g
u
re
7.
It
wa
s
ob
serv
ed
th
at the Blo
w
er
M
o
t
o
r
s
t
o
ok
long
er
ti
me
duration to rea
c
h the steady s
t
ate speed and
rated s
p
eed
as
com
p
ared to t
h
e tim
e
durat
i
on t
a
ken
w
h
en
t
h
ere
was n
o
B
r
a
k
i
n
g C
h
op
pe
r i
n
t
h
e ci
rc
ui
t
.
The
B
l
ower M
o
t
o
r
s
t
o
o
k
1
5
sec
o
nds t
o
reac
h t
h
e near
rat
e
d s
p
eed o
f
1
490
rp
m
w
ith
Br
ak
ing
C
h
o
pper
.
0
1
2
3
4
5
6
7
8
9
10
-
1
000
0
1
000
2
000
3
000
4
000
5
000
S
p
ee
d - T
i
m
e
c
u
rv
e
of
T
r
a
c
t
i
o
n
M
o
t
o
rs
T
i
m
e
i
n
s
e
c
o
nds
S
p
e
ed i
n
r
p
m
B
r
ak
i
n
g of
M
o
t
o
r
b
y
i
n
s
e
r
t
i
n
g
B
r
ak
i
n
g C
h
o
ppe
r
B
r
ak
i
n
g
P
e
r
i
o
d
f
r
om
5 s
e
c
s
t
o
7 s
e
c
s
A
c
c
e
l
e
r
a
ti
o
n
o
f
T
r
a
c
ti
o
n
M
o
to
r
by
r
e
m
o
v
i
ng
B
r
ak
i
n
g
C
hop
pe
r
0
1
2
3
4
5
6
7
8
9
10
-3
00
-2
00
-1
00
0
10
0
20
0
30
0
T
h
r
e
e-
P
h
as
e R
o
t
o
r
V
o
l
t
ag
es
of
T
r
ac
t
i
o
n
M
o
t
o
r
s
T
i
m
e
i
n
se
co
n
d
s
V
o
l
t
ag
e i
n
V
o
l
t
s
B
r
ak
i
ng
P
e
ri
od
o
f
T
r
a
c
t
i
on
M
o
t
o
r
s
f
r
o
m
5 t
o
7 s
e
c
s
by
i
n
s
e
r
t
i
o
n
of
B
r
ak
i
ng C
h
o
p
p
e
r
A
c
c
e
l
e
r
a
t
i
on
pe
r
i
o
d
of
T
r
ac
t
i
o
n
M
o
t
o
r
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
3
,
Feb
r
uar
y
201
5 :
3
74 –
38
2
38
0
Fi
gu
re
7.
S
p
ee
d
of
t
h
e B
l
o
w
e
r
M
o
t
o
rs
i
n
r
p
m
wi
t
h
B
r
aki
n
g
of
Tract
i
o
n
M
o
t
o
rs
6
.
EQUA
TION
S
AN
D CA
LC
U
L
A
T
ION
S
Th
e Equ
a
tio
n
s
an
d Calcu
l
ation
s
related
to
t
h
e p
r
op
osed
Tractio
n
Driv
e syste
m
s are p
r
esen
ted
i
n
th
is
sect
i
on i
n
bri
e
f
.
6.
1. C
a
l
c
ul
a
t
i
o
n
o
f
T
r
acti
ve E
f
f
o
rt Req
u
i
red
The
vari
ous T
r
active Efforts
requi
red by a
L
o
com
o
tive are:
Tractive E
f
fort for
Accelerati
o
n ( F
a
):
277
.8
(1)
Tractiv
e Effort to
o
v
e
rco
m
e
Grav
itatio
n
a
l Pu
ll (
F
g
):
9.81
.
(2)
Tractive E
f
fort re
quire
d t
o
overcom
e
Train
Resistance for
a Loc
o
m
o
tive ( F
r
):
9
.
8
1
0.65
13
0.01
0
.52
(3)
Tractive E
f
fort re
quire
d t
o
overcom
e
Curve
Resistance (
F
c
):
9.81
(4)
To
tal Tractiv
e
Effo
rt = F
t
=
(5)
6.
2. Ass
u
mp
ti
ons f
o
r Cal
c
ul
ati
o
ns
It is assu
m
e
d
t
h
at th
e Lo
co
mo
tiv
e
starts on
a plane surfac
e withou
t
Gr
a
d
i
e
nt
an
d C
u
rv
at
ure he
nce,
th
e Tractiv
e Effo
rt requ
ired
wo
u
l
d
b
e
on
ly Tractiv
e
Effort for
Ac
celeration. Let
us assum
e
that the
Loc
o
m
o
tive ha
s to accele
r
ate
a trailing
Loa
d
of
1500 tonne
to
120
Km
ph in 400 sec
o
nds.
(a) Calcu
l
atio
n of Tractiv
e Effort:
Acceleration,
α
i
n
Km
phps
wi
l
l
be gi
ven
as,
0
.
3
Weigh
t
of t
h
e
Lo
co
m
o
tiv
e = W
l
=
12
3 ton
n
es
Weigh
t
of
t
h
e Trailin
g
Lo
ad
= W
t
= 150
0 ton
n
e
s
To
tal
W
e
i
g
h
t
=
W
= (
W
l
+
W
t
)
=
16
23
t
o
nnes
E
f
f
e
c
tiv
e w
e
igh
t
of
Lo
co
mo
ti
v
e
an
d Trailing Lo
ad
=
W
e
=
1
785
.3
tonn
es
Tractive E
f
fort re
quire
d
for
Acceleration =
F
a
=
277
.8
1785
.3
0.3
149
(b
) C
a
l
c
ul
at
i
o
n
o
f
P
o
we
r,
T
o
r
que
de
vel
o
pe
d:
Out
put
s
f
r
om
t
h
e Em
bed
d
ed
M
A
TLAB
f
u
n
c
t
i
on,
Tor
q
ue
devel
o
ped
by
o
n
e T
r
a
c
t
i
on M
o
t
o
r
=
13
2
4
0
Nm
Ai
r-
Ga
p P
o
wer
o
f
one
Tract
i
o
n M
o
t
o
r
=
84
0
k
W
Sl
i
p
=
0.
03
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
-400
-200
0
200
400
600
800
1000
1200
1400
S
peed of
B
l
ower
M
o
t
o
rs
T
i
m
e
i
n
s
e
c
onds
S
peed i
n
r
p
m
B
r
ak
i
ng P
e
r
i
od of
T
r
ac
t
i
on M
o
t
o
r
s
f
r
om
5s
ec
s
t
o
7 s
e
c
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Desi
g
n
a
n
d
An
al
ysi
s
of
Dri
ve
Syst
em
w
i
t
h
Sl
i
p
Ri
ng
I
n
d
u
ct
i
o
n
M
o
t
o
r f
o
r E
l
ect
ri
c Tract
i
o
n…
(
C
. N
a
g
a
m
ani
)
38
1
Slip
– Po
wer
of
o
n
e
Traction
Mo
to
r =
0.03
840
= 25
.2
kW
Tract
i
v
e E
f
f
o
rt
de
vel
o
ped
by
one
Tract
i
o
n
M
o
t
o
r
=
30
k
N
R
o
t
o
r
V
o
l
t
a
ge
devel
ope
d at
t
h
e R
o
t
o
r
of
Trac
t
i
on M
o
t
o
r
=
3
0
0
V
Ou
t
p
u
t
Vo
ltage
of Aux
iliary
Co
nv
erter
= 450
V
Power cons
umed by
each
Blower Motor =
15
kW
If t
h
e L
o
com
o
tive works
for
15
hour
s a
d
a
y an
d m
a
in
tain
s t
h
e r
a
ted
sp
eed
f
o
r
atleast 10
ho
ur
s
d
u
r
i
ng
ru
n
n
i
n
g, t
h
e Sl
i
p
-P
ow
er e
n
e
r
g
y
reco
vere
d
wi
l
l
be
S
p
=
10
1
5
150
p
e
r
Tractio
n Mo
t
o
r.
For
a
pe
ri
o
d
of
3
0
0
day
s
of
r
u
n
n
i
n
g
o
f
L
o
c
o
m
o
t
i
v
e i
n
a
C
a
l
e
nda
r y
ear
, t
h
e t
o
t
a
l
Sl
i
p
-
P
owe
r
e
n
e
r
gy
recov
e
red
will b
e
S
ptotal
=
6
150
300
270000
.
One
U
n
i
t
of e
n
ergy
i
s
sol
d
at
an ave
r
a
g
e o
f
R
s
. 8 i
n
In
di
a
and
he
nce t
h
e
am
ount
of m
oney
save
d by
Sl
i
p
-P
o
w
er R
e
cove
ry
Sc
hem
e
w
oul
d
be =
8
27000
0
.
2160000
/
per
an
nu
m
p
e
r
Lo
co
m
o
tiv
e.
For
a
Fl
eet
o
f
20
0
0
El
ect
ri
c Loc
o
m
o
t
i
v
es, t
h
e
am
ount
o
f
m
oney
sa
ved
w
o
ul
d
be
=
2000
270000
.
54
,00
,
00,
000/
pe
r a
n
n
u
m
Tab
l
e
1
.
Tractio
n and
Bl
o
w
er
Mo
to
rs Param
e
ters:
S. No
Para
m
e
ter
Traction Motors
Blower Motors
1.
Rated Voltage
3000 V
400 V
2.
Rated Power
900 kW
15 kW
3.
Oper
ating Fr
equency
50 Hz
50 Hz
4.
E
fficiency
95 %
95 %
5.
Power
factor
0.
85 lag
0.
85 lag
6.
No.
Of poles
2 poles
4 poles
7. CO
N
C
L
U
S
I
ON
Fro
m
th
e Si
mu
latio
n
stud
ies carried
o
u
t
with
MATLAB
for th
e abov
e
p
r
op
o
s
ed
circuit, it can
b
e
concl
ude
d t
h
at
t
h
e
use
of a
Wo
u
n
d
R
o
t
o
r
In
d
u
ct
i
o
n
M
o
t
o
r
w
oul
d
resul
t
i
n
en
orm
ous
am
ount
o
f
sa
vi
ngs
i
n
en
erg
y
. As t
h
e Slip
-Po
w
er reco
v
e
red
fro
m
t
h
e Traction
Mo
tors will b
e
ab
le to
d
r
i
v
e the Blo
w
er Mo
t
o
rs, th
e
u
s
e
o
f
p
o
wer
d
r
awn
fro
m
th
e Ov
er-Head
25
kV su
pp
ly
throug
h
Aux
iliary win
d
i
n
g
of
Main
Tran
sfo
r
mer for
dri
v
i
n
g t
h
e B
l
owe
r
M
o
t
o
rs
can be re
d
u
ce
d res
u
l
t
i
ng i
n
red
u
ct
i
on
of
cost
of b
u
y
i
ng P
o
wer f
r
o
m
t
h
e
Distribu
tio
n
C
o
m
p
an
ies. Tho
ugh
th
e in
itial co
st o
f
t
h
e
W
oun
d
R
o
tor In
du
ction
Mo
tor and
th
e
req
u
i
red
enha
nce
d
ci
rc
u
i
t
r
y
m
a
y
be hi
g
h
, i
t
can
be
rec
ove
re
d i
n
few
y
ears t
i
m
e
duri
ng t
h
e l
i
f
e
of a
Loc
o
m
o
t
i
v
e, whi
c
h
i
s
about
4
0
y
ears. Thi
s
sc
he
m
e
can be furt
her st
u
d
i
e
d a
n
d im
pl
em
ent
e
d as t
h
e fut
u
re t
echn
o
l
o
gy
fo
r El
ect
ri
c
Tractio
n System
s in
Ind
i
a,
wh
ere t
h
e Railways are
ai
min
g
at co
st
cu
ttin
g in
itiati
v
e
s t
o
en
h
a
n
c
e th
e
p
r
o
f
itab
ility o
f
runn
ing
th
e who
l
e n
e
t
w
ork
.
REFERE
NC
ES
[1]
Matthew P Magill, Phill
ip
T
Krein.
Exam
inat
ion of Desi
gn
Strategi
es for I
nverter-Driv
e
n I
nduction M
achi
n
es.
Power and
Ener
gy Conference Illinois (
PECI)
2012 IEEE
. 2012;
1-6.
[2]
H P
a
rtab.
M
oder
n
El
ectr
i
c
Tr
act
i
on.
Pub
lisher: D
hanpat Ra
i and
Sons
, India. 201
2.
[3]
Paul Bl
aiklo
c
k,
W
illiam
Horvath
.
Saving
En
erg
y
.
TMEIC GE, US
A – Mo
tor Techn
o
logy
. 2009.
[4]
ABB Motors, Generators. Bro
c
h
u
re on Slip R
i
ng
Mo
tors for h
eav
y
-
duty
and
cr
itical Applications.
2011.
[5]
J Upa
d
hy
ay
a,
S
N
Ma
he
ndra.
E
l
e
c
t
ri
c
T
r
ac
t
i
o
n.
Allied Publisher
s
India
. 2000. ISBN:
10:8177640
054.
[6]
Hansruedi Zeller. High Power
Components from
the State of the Art
to Futur
e
Trends.
Powe
r Conv
e
rsion
(
P
CIM
1998)
. 1998; 1-1
0
.
[7]
J Arrillaga, YH Liu, NR W
a
tson and NJ Murray.
Self-Commutati
ng Converters for High Power
Applica
tions
. John
Wiley
& Sons, Ltd.
2009 ISBN:
978-0-470-74682-0
[8]
SS Chirmurkar, MV Palandurkar
,
SG Tarnekar
. Tor
que Control of
Induction motor
using V/f Method.
International
Journal of Ad
va
nces in
Eng
i
neer
ing Sciences.
20
11;
1(1).
[9]
Tob
y
J Nicholso
n.
DC and AC T
r
action Motors
.
IET Professional Development
C
ourse in Tr
action S
y
stems. 200
8;
34-44.
[10]
Rupesh Kumar.
Course on Th
ree Phas
e T
echno
lo
g
y
in
TRS Applications.
I
R
IEEN
, Nasik, India
. 20
10.
[11]
C Bharatiraja, S
Raghu, Prak
ash Rao,
KRS Palanisami. Comparativ
e Analy
s
is
o
f
Different PWM Techniqu
es to
reduce Common mode Voltage in Neutr
a
l Point Clampe
d I
nverter for Var
i
able Speed In
duction Driv
es
.
International Jo
urnal of
Power
Elec
tronics and
Drive
System (
I
JPEDS)
. 3(1): 20
13: 105~116.
[12]
R Rajendr
an, N
Devarajan. A C
o
mpara
tive Perf
ormance Analy
s
is of Torque
Co
ntrol Schemes f
o
r Induction Mo
tor
Drives.
International Journal of
Power El
ectronics and Drive
Sys
t
em (
I
JPEDS)
. 2
012; 2(2): 177~1
91.
[13]
MATLAB Simu
link 2014
a
Math
Works Inc. USA
. 2014.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l.
5
,
No
.
3
,
Feb
r
uar
y
201
5 :
3
74 –
38
2
38
2
BIOGRAP
HI
ES OF
AUTH
ORS
Ms.
C. Nagamani
obtain
e
d her
B.Te
ch in
El
ectr
i
ca
l and
El
ectro
nics
Engin
eer
ing
in
the
y
e
a
r
2
0
06
from JNTU, Hy
derabad Ind
i
a
and M.E degr
ee f
r
om
University
College of Engineering Osmania
University
, H
y
d
e
rabad
,
India. She has been to
p
p
er of h
e
r Batch
in both B
.
Tech
and ME degr
ees
.
S
h
e is
currentl
y
purs
u
ing Do
ctora
t
e in
Ele
c
t
r
ica
l
Engin
eerin
g from
Univers
i
t
y
Col
l
eg
e of
Engineering, OU, H
y
der
a
bad
.
Her resear
ch intere
st is in Power Electronics an
d Designing Drive
S
y
st
e
m
s for El
ect
ri
c T
r
ac
ti
on
Dr.
R.
Somanatham
obtained
his BE, ME and PhD degr
ees
from
Univers
i
t
y
Col
l
eg
e of
Engineering, Osmania University
,
H
y
der
a
bad
.
He worked as
Vi
ce-P
r
inc
i
pal a
t
Univers
i
t
y
Co
lle
ge
of Engineering,
Osmania University
, H
y
der
a
bad
,
India. He has
30
y
ears
te
achin
g and Res
earch
experi
enc
e
. He
is
currentl
y
h
eading th
e Dep
t
.
Of EEE in
Anurag Colleg
e
of Engineerin
g,
H
y
der
a
bad
,
Indi
a. His
res
e
arch
a
r
eas
a
r
e P
o
wer
E
l
ec
tronics
,
Drive
s
and M
a
chines
.
Mr.
U.
Chaitan
y
a Kumar
com
p
let
e
d his B.Te
c
h
in Ele
c
tri
cal
and Electronics Engineer
ing from
Anurag College
of Engineering,
H
y
der
a
bad
,
Indi
a. He is curren
t
ly
pursuing M.Tech degr
ee from
the same Co
lleg
e
. He has b
een
the
topper of
his
batch
in B
.
Tech degr
ee. His
area of
inter
e
st
includ
e P
o
wer
E
l
ec
tronics
,
Contr
o
l S
y
s
t
em
s
,
El
ec
tric
al Driv
es
and
El
ectr
i
c
a
l M
a
ch
ines
.
Evaluation Warning : The document was created with Spire.PDF for Python.