Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol
.
7
,
No
. 2,
J
une
2
0
1
6
,
pp
. 46
0~
47
1
I
S
SN
: 208
8-8
6
9
4
4
60
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Development of Wireless Powe
r Transfer using Capacitive
Meth
od for Mou
s
e Charging Application
S
.
Saa
t
, O.
Z.
G
u
at
, F.
K.
A
b
d
u
l
Ra
h
m
a
n
,
A
.
A
.
Isa
,
A
.
M
.
Da
rso
n
o
Faculty
of Electr
onics
&
Computer
Eng
i
ne
ering,
Universiti
Tekn
i
k
al Ma
la
ysia
Me
laka
, Me
laka
, M
a
la
ysi
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Nov 18, 2015
R
e
vi
sed M
a
r
7,
2
0
1
5
Accepted
Mar 24, 2016
Wireless power transfer (WPT) is a non-contact power transf
er within
a
dis
t
anc
e
. W
ith
the
advant
age o
f
not-con
tac
t
co
ncept
,
W
P
T en
hances
th
e
flexibi
lit
y m
ove
m
e
nt of the devices
. Bas
i
c
a
ll
y,
there are th
ree
t
y
p
e
s
of the
WPT which are inductiv
e power transfer (IPT)
, capacitive pow
er transfer
(CPT) and acou
s
tic power tr
ansfer (A
PT). Among these,
cap
acitive power
trans
f
er (CP
T
) h
a
s
the adv
a
ntag
e
s
of confining e
l
ectr
i
c fi
eld b
e
tw
een coup
led
plates, metal p
e
netration ab
ility
and also
the sim
p
licity
in circuit topologies.
Therefor
e, we f
o
cus on the cap
acitive met
hod in this paper. To
be specific,
this paper aims to develop a wirele
s
s
m
ous
e char
ging s
y
s
t
em
us
ing cap
aci
tiv
e
based method. This met
hod enab
les wireless power transmission from mou
s
e
pad to a wireless mou
s
e.
Hence, no batter
y
requ
ires
to power up the mouse.
In this paper,
a
high efficien
cy
Class-
E converter is described
in details to
convert th
e DC source to AC and the co
mpensatio
n circuit of resonant tank is
also proposed at the transmitter side in
order to improve the eff
i
ciency
. In th
e
end, a proto
t
ype is developed to
prove the develop
e
d method. Th
e
perform
ances
an
al
y
s
is
of the dev
e
loped
proto
t
y
p
e is discussed and the futur
e
recom
m
e
ndation
of th
is t
ec
hniqu
e is
also pr
esented.
Keyword:
W
i
reless powe
r
tra
n
sfe
r
Cap
acitiv
e power transfer
W
i
rel
e
ss m
ous
e cha
r
gi
ng
Lo
w po
wer
ap
pl
i
cat
i
ons
Class-E c
o
nverter
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Mo
hd
Sh
ak
ir
B Md
Saat,
Facu
lty of Electron
ics & C
o
mp
u
t
er En
g
i
n
eerin
g
Un
i
v
ersiti Tekn
ik
al Malaysia Melak
a
H
a
ng
Tu
ah
Jay
a
, 761
00
Du
r
i
an
Tun
g
g
a
l, Melak
a
, Malaysia.
Em
a
il: sh
ak
ir@u
tem
.
ed
u
.
m
y
1.
INTRODUCTION
W
i
reless Powe
r Tra
n
s
f
er als
o
known as
WPT is
a proces
s of trans
f
erri
ng
powe
r between t
w
o
or
m
o
re physically unc
onnecte
d
electric ci
rcui
t
s
or
de
vi
ces
[
1
]
.
T
h
i
s
i
n
n
o
v
at
i
v
e t
e
c
h
n
o
l
ogy
has
creat
e
d
new
p
o
s
sib
ilities to
sup
p
l
y electron
i
c d
e
v
i
ces
with
electrical en
erg
y
b
y
elimin
atin
g
o
f
wires, con
n
ect
o
r
s and
slip-
r
i
ng
s.
Th
e po
t
e
n
tial app
licati
o
n of
W
P
T can
r
a
ng
e
f
r
o
m
a l
o
w
po
wer
o
ffi
ce
or
h
o
m
e
appl
i
a
nc
es t
o
a hi
gh
po
we
r i
n
dust
r
i
a
l
sy
st
em
s [2]
.
Gene
ral
l
y
, i
t
can be di
vi
ded acc
o
r
di
ng
t
o
t
h
e m
e
dium
used f
o
r
po
w
e
r
tr
an
sm
issio
n
,
w
h
ich
ar
e acou
s
tic-
b
ased
WPT, lig
h
t
-b
ased
W
P
T, cap
aci
tiv
e-
b
a
sed
W
P
T an
d
th
e inductiv
ely
co
up
led W
P
T.
Th
e m
o
st well
-kno
wn
tech
n
i
q
u
e
in th
e
WP
T techn
o
l
o
g
y
is ind
u
c
tiv
e cou
p
ling b
e
t
w
een
tran
sm
itte
r
and
receive
r
which is
widely
applied to m
o
st of the
ap
plications
nowa
days [3].
Howe
ver, the m
a
jor
dra
w
ba
c
k
o
f
IPT is
ferromag
n
e
tic in
terferen
ce
wh
ich is th
e fl
u
x
ca
nn
ot
pass t
h
r
o
ug
h t
h
e m
a
gnet
i
s
abl
e
m
a
t
e
rial
[4]
.
Mean
wh
ile, the aco
ustic p
o
wer transfer
is co
m
p
arativ
ely n
e
w,
wh
ich
is op
ti
m
i
zin
g
th
e vib
r
ation
or u
ltrason
ic
pr
o
p
agat
i
o
n w
a
ve rat
h
er t
h
a
n
el
ect
rom
a
gn
et
i
c
fi
el
ds fo
r po
we
r t
r
ansm
issi
on
. Al
t
h
o
u
g
h
l
i
ght
-
b
ase
d
s
y
st
em
s
ab
le to
su
pp
ly
a g
r
eat am
o
unt o
f
po
wer, its d
i
ffraction
l
o
s
s
es ha
ve
di
rect
l
y
i
n
fl
ue
nc
ed t
h
e efficiency
ove
r a
g
r
eat
d
i
stan
ce [5
],
[6
].
A
s
co
m
p
ar
ed
t
o
p
opu
lar
inductiv
e po
w
e
r
tran
sf
er
,
bo
th
of th
e
A
P
T and
CPT h
a
v
e
t
h
e
ad
v
a
n
t
ag
es
o
v
e
r
IPT.
Fo
r APT, t
h
e effi
cien
cy
of t
h
e
po
wer tran
sm
issio
n
is h
i
g
h
er
wh
en
t
h
e
d
i
stan
ce
o
f
th
e transmitte
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
2,
Ju
ne 20
16
:
460
–
4
71
46
1
and
receive
r is
m
u
ch larger.
While ca
pacitive ha
ve the ab
i
lity of
m
e
tal pe
netration and t
h
e potential to
reduce
electro
m
a
g
n
e
tic in
terferen
c
e
(EMI) th
at wil
l
o
v
e
rco
m
e th
e p
r
ob
lem
s
in
IPT
[7
].
Althou
gh
th
e APT
co
u
l
d
o
v
e
rco
m
e th
e
metal b
a
rrier issu
e an
d
t
h
e d
i
stan
ce li
m
ita
ti
o
n
, th
e
d
i
fficu
lties o
f
th
e large aco
ustic i
m
p
e
d
a
n
ce
mis
m
a
t
ch of the tra
n
sm
itter
and recei
ve
r
with the m
e
dium
could lead t
o
a
seve
re lim
i
t
on the e
fficie
n
cy of
p
o
wer tran
sfer. Hen
ce, th
e cap
acitiv
e ap
pro
a
ch
is m
o
re
p
r
eferab
le i
n
th
is wo
rk
.
Currently, in the m
a
rket,
the “Magic Charger” cha
r
ge
r is ava
ilable which utilizes the IPT m
e
thod
t
o
charge up
devi
ces. But us
ually the “Magic Charger” c
o
mes to
g
e
th
er
with
a set o
f
rechargea
b
le battery and
char
ger
st
at
i
o
n
and
b
r
i
n
gs u
p
t
h
e bat
t
e
ry
i
s
s
u
e.
Al
t
h
o
u
gh
by
usi
ng t
h
e re
char
gea
b
l
e
bat
t
e
ry
w
oul
d de
fi
ni
t
e
l
y
redu
ce th
e
b
a
ttery d
i
spo
s
al issu
e,
bu
t it would
b
e
g
r
eat if
t
h
ere is
n
o
b
a
tt
ery b
e
ing
im
p
l
an
ted
i
n
th
e
wireless
m
o
u
s
e and
yet
it still can
b
e
po
wered
u
p
.
There
f
ore,
i
n
t
h
i
s
wo
rk
, a
wi
r
e
l
e
ss com
put
er
m
ouse cha
r
gi
ng
sy
st
em
i
s
pro
p
o
sed
.
Thi
s
sy
st
em
uses
th
e cap
acitiv
e
p
o
wer tran
sfer b
a
sed
app
r
o
a
ch
to
so
lv
e the ab
ov
em
en
tio
n
e
d
issu
e. Th
e p
r
o
p
o
s
ed
capacitiv
e
base
d wi
rel
e
ss
m
ouse c
h
ar
gi
ng sy
st
em
i
s
abl
e
t
o
cha
r
ge t
h
e m
ouse w
h
i
l
e
t
h
e m
ouse i
s
i
n
i
t
s
use.
An
ot
h
e
r
sayin
g
,
th
e m
o
u
s
e is still in
c
h
arg
i
ng
m
o
d
e
ev
en
a
u
s
er
is u
s
ing
it as lo
ng as th
e m
o
u
s
e is in
th
e effectiv
e area
of c
h
a
r
gi
ng
(
m
ouse pa
d).
Ho
we
ver
,
t
h
e
m
ovem
e
nt
of
t
h
e m
ouse al
o
n
g
t
h
e
x-
axi
s
i
s
pre
f
era
b
l
e
i
n
due
t
o
ach
iev
e
fu
lly co
up
led cond
itio
n to
con
t
ribu
t
e
a h
i
g
h
e
r efficien
cy of
p
o
wer tran
sfer.
2.
OVERVIEW
OF THE PR
OPOSED CPT
METHOD
Thi
s
pr
ot
ot
y
p
e
i
s
de
si
g
n
ed
i
n
a
sm
al
l
scal
e l
o
w
p
o
w
er
m
odel
u
p
t
o
5
V
a
n
d
wi
re
l
e
ss p
o
we
r
tran
sm
issio
n
ran
g
e
effectiv
e
is with
in
1
c
m
g
a
p. Th
e i
ssue that always
affects th
e efficiency of the
powe
r
tran
sm
issio
n
in CPT is t
h
e alig
n
m
en
t of th
e
tran
sm
it
ter p
l
ates and t
h
e
rece
iver
plates.
Hence, i
n
t
h
is project
,
bot
h pl
at
es o
n
t
h
e wi
rel
e
ss co
m
put
er
m
ouse and m
ouse pa
d
are t
o
be desi
gne
d i
n
an al
i
g
ned fi
xe
d p
o
si
t
i
on as
sho
w
n i
n
t
h
e F
i
gu
re 1(a
)
w
h
i
l
e
t
h
e Fi
gu
re 1(
b) s
h
o
w
s
th
e
misalig
n
m
en
t
situ
atio
n
of th
e b
o
t
h
p
l
ates [8]. As
can be see
n
,
when t
h
e m
i
sa
lignm
ent situation occ
u
rre
d
,
the
r
e are
unc
oupl
ed areas
be
tween
th
e tran
sm
it
ter an
d
receiver
whic
h will lead t
o
t
h
e conse
que
nce
s
in a
ffecti
ng the e
fficiency
perform
a
n
ce of
the system
. The plate
effect
i
v
e
area i
s
hi
ghl
i
g
ht
ed
o
n
t
h
e
m
ouse
pa
d.
I
n
t
h
i
s
pro
t
otyp
e,
a fu
lly
alig
n
e
d
situ
atio
n is
d
e
sirab
l
e.
Fig
u
re
1
(
a). Fully Alig
n
e
d and
C
o
up
led Situatio
n
Fig
u
re
1
(
b). M
i
salig
n
e
d Situ
atio
n
In a C
P
T sy
st
em
, a hi
gh fr
eq
uency
vol
t
a
ge
i
s
desi
re
d to
drive the electri
c fi
eld
coup
ler so
th
at th
e
altern
atin
g
curren
t can
flow
th
ro
ugh
it to
prov
id
e t
h
e
lo
ad
with
t
h
e requ
ired
po
wer.
There
f
ore, a C
l
ass-E
con
v
e
r
t
e
r i
s
de
si
gne
d as t
h
e h
i
gh f
r
eq
ue
ncy
con
v
e
r
t
e
r at
th
e tran
sm
it
ter t
o
con
v
e
rt DC
so
urce to
AC.
On
the
ot
he
r ha
n
d
, t
h
e pr
obl
em
of
po
we
r l
o
ss
du
ri
n
g
t
h
e c
h
ar
gi
ng
pr
ocess i
s
ove
rc
om
e by
desi
g
n
at
i
n
g ca
paci
t
o
r
com
p
ensation
circuits at the
tr
ansm
itter
and receiver
part.
Fi
gu
re
2.
C
o
n
cept
u
al
Desi
g
n
o
f
W
i
rel
e
ss M
ous
e C
h
a
r
gi
n
g
Prot
ot
y
p
e
[9]
Transm
itter Plate 2
Receiver
Plate 1
Receiver
Plate 2
U
n
cou
p
l
ed
Area
Transm
itter Plate 1
Transm
itter Plate 1
Transm
itter Plate 2
Receiver
P
late
Receiver
P
late
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Developme
nt
of WPT
using C
a
pacitive Met
hod for Mouse
Charging
Appl
ication
(
S
. Sa
at
)
46
2
3.
DESIG
N
DES
CRI
PTIO
N
The basi
c c
o
n
cept
u
al
desi
gn
of t
h
e p
r
ot
ot
y
p
e i
s
sho
w
n i
n
Fi
g
u
re
2. Fr
om
t
h
e fi
gu
re,
fi
rst
,
a D
C
so
urce fro
m
th
e USB po
rt is su
pp
lied
to
th
e p
r
im
ary circ
u
i
t wh
ich
is also k
n
o
w
n
as th
e tran
sm
it
ter. At th
e
t
r
ansm
i
t
t
e
r, t
h
e
r
e i
s
a
hi
gh
f
r
e
que
ncy
c
o
nve
r
t
er (C
l
a
ss
E)
t
h
at
i
s
desi
g
n
e
d
t
o
c
o
nve
rt
t
h
e
DC
so
urce
t
o
a hi
gh
freq
u
e
n
c
y of AC v
o
ltage and
th
en
an
altern
atin
g
electric field
is g
e
n
e
rated
and
p
a
ss throug
h
th
e cap
acitiv
e
coupling plate to the receive
r
part of
the syste
m
which is the seconda
r
y
pick-up (recei
ver plates) attached i
n
t
h
e wi
rel
e
ss c
o
m
put
er m
ouse.
3.
1.
Cl
ass-E
Co
nver
ter
The Class
-
E c
o
nve
r
ter is
fa
miliar im
ple
m
ented
f
o
r t
h
e
hi
g
h
fre
que
nc
y
appl
i
cat
i
o
ns
d
u
e t
o
i
t
s
adva
nt
age
of l
o
w s
w
i
t
c
hi
n
g
l
o
sses wi
t
h
hi
g
h
fre
q
u
ency
o
u
t
p
ut
. B
a
si
cal
l
y
, C
l
ass-E con
v
ert
e
r ca
n be
di
vi
de
d
in
to
t
w
o typ
e
s: Class-E Zero Vo
ltag
e
Swit
ch
ing
(Z
VS)
c
o
n
v
e
r
t
e
r a
n
d t
h
e C
l
ass-
E Ze
ro
C
u
rre
nt
S
w
i
t
c
hi
ng
(ZCS) convert
e
r [9].
Both of these c
o
nve
rte
r
s is classifi
ed
o
f
th
e soft-switch
i
ng
co
nv
erters.
Th
e
b
a
sic circu
it
o
f
th
e Class-E
co
nv
erter is sho
w
n
i
n
th
e Figu
re 3.
Fi
gu
re
3.
C
l
as
s-E C
o
n
v
e
r
t
e
r
C
i
rcui
t
s
To
p
o
l
ogy
[
10]
In
or
der t
o
de
s
i
gn t
h
e
ZVS C
l
ass-E co
n
v
ert
e
r, t
h
e sam
e
assum
p
t
i
ons m
a
de i
n
[1
0]
i
s
ap
pl
i
e
dF
or t
h
e
Class-E converter, the ci
rcuit
only re
qu
ires a po
wer MOSFET as th
e swit
ch
i
n
g
devi
ce.
B
e
si
des, t
h
e l
o
w i
n
p
u
t
at the MOSFE
T gate,
V
g
, is also
an
im
p
o
r
tan
t
criterion
.
As th
e vo
ltag
e
at
d
r
ai
n
,
V
d
is three tim
e
s great
er tha
n
th
e V
g
, t
h
ere
f
o
r
e t
h
e m
i
nim
u
m
i
nput
at
t
h
e
gat
e
, V
g
, sh
o
u
l
d
be l
o
w e
n
ou
gh t
o
ens
u
re t
h
e reso
na
nt
t
a
n
k
wi
l
l
n
o
t
b
e
bu
rn
ed
.
In
th
e m
ean
wh
ile, USB so
urce is u
s
ed
as the in
pu
t sou
r
ce
for th
e Class-E circu
it.
In t
h
e re
sona
nt tank ci
rcuit, t
h
ere a
r
e a
n
inductor
and a
ca
pacitor i
n
se
ries with a ca
paci
tor
whic
h is
lo
cated
i
n
p
a
rallel. Th
e
v
a
lue of th
e
p
a
ssi
v
e
circu
it
ele
m
ents are
deci
ded acc
ording to t
h
e e
quation in the
pre
v
i
o
us res
e
a
r
ch
wo
rk
s [
1
0
]
and [
12]
. B
y
assum
i
ng l
o
ad p
o
we
r an
d
t
h
e vol
t
a
ge s
u
p
p
l
y
, re
qui
re
d l
o
a
d
resistance, R c
a
n
be calc
u
lated as
follows [10]:
8V
π
4
P
(1
)
B
e
si
des,
by
as
sum
i
ng t
h
e o
p
e
rat
i
ng
fre
q
u
e
n
cy
, t
h
e s
h
unt
capaci
t
o
r
,
and L
choke
can
be calculated as
fo
llows [2
2
]
:
C
2.165
2
π
fR
(2
)
L
0
.
4001R
2π
f
(3
)
Fu
rt
h
e
rm
o
r
e,
b
y
assu
m
i
n
g
th
e qu
ality
facto
r
, Q,
th
e series
cap
acitan
ce,
an
d se
r
i
es reso
na
nt
in
du
ctor
,
can
be d
e
term
in
ed
as fo
llo
ws [10
]
:
C
1
2π
f
Q
R
(4
)
L
QR
2π
f
(5
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
2,
Ju
ne 20
16
:
460
–
4
71
46
3
3.
2.
C
a
p
a
ci
ti
v
e
Pl
ate
s
In the second stage of th
e process, the powe
r will be delivered fr
om
the tr
ansm
it
ter plate
to the receive
r
p
l
ate. After desig
n
e
d
Class-E co
nv
erter and
th
e co
m
p
en
satio
n
circu
it, th
e tran
sm
itter
p
l
ate 1
a
nd
transmitter
plate 2 a
r
e c
onnected t
o
t
h
e “
P
in
1” a
n
d “Pi
n
2
”
,
resp
ectively asis sho
w
n
in
th
e
Figu
re 4.
Fig
u
r
e
4
.
Conn
ectio
n of
t
h
e
Tr
ansm
itter Plate 1 a
n
d Trans
m
itter Plate 2
The
position
of the tra
n
sm
itter
plates
a
n
d the
receiver plates. There is
also
a m
e
diu
m
in between t
h
e
bot
h tra
n
sm
itte
r a
n
d receiver
plates.
Figure
5. Position
of the
Tra
n
sm
itter Plates and the Recei
ve
r Plates
In order to ana
l
yze the different e
fficiency of voltage tra
n
sfer, the
coppe
r
plate is cut into 6
pieces,
in
a pair of
two.
There
f
ore, there
are
two
pieces of
20cm
x 7.5cm
co
pper
plate to
form
t
h
e tra
n
sm
itter plates
while two
piec
es of 3cm
x 3cm
coppe
r plate to form
th
e receiver plate and also tw
o pie
ces of 7cm
x 7.5cm
coppe
r
plate to form
another
bigger
a
r
ea of
the receive
r pl
ate. These thr
ee sizes of the
transm
itter plates and
receiver plates
are s
h
own in the Figure
7.
Figure
6. Size
s of the
Capaci
tive Plate
As
discus
sed
earlier, there
is a m
e
diu
m
placed
betwe
e
n
the
tra
n
sm
itter and recei
ver
plates.
There
f
ore,
t
h
er
e are t
w
o m
e
di
um
are used
i
n
t
h
i
s
ex
peri
m
e
nt
w
h
i
c
h a
r
e t
h
e pa
per a
n
d t
h
e m
ouse pa
d.
Th
os
e
medium
s are differe
nt in thei
r thickn
ess. In accordi
ng t
o
that, analysis base
d on the
medium
and for eac
h
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Developme
nt
of WPT
using C
a
pacitive Met
hod for Mouse
Charging
Appl
ication
(
S
. Sa
at
)
46
4
size o
f
th
e
receiv
er
p
l
ates is
carried ou
t.
Equ
a
tio
n (6
) will b
e
u
s
ed
to calcu
l
ate th
e tran
sm
issio
n
effi
cien
cy
betwee
n the
tra
n
sm
itter plates
and recei
ver pl
ate.
Efi
ci
e
n
c
y
Vr
Vt
100%
(6
)
whe
r
e V
r
is
voltage at recei
ver and
v
t
is
v
o
ltag
e
at tran
sm
itt
er.
4.
AN
ALY
S
IS
O
F
CI
R
CUIT
P
E
RFO
R
M
A
N
C
E
In this section, each decision which
has
be
en chose
n
for
this researc
h
is explaine
d in
details. The
resul
t
s
of e
v
e
r
y
ex
peri
m
e
nt
are al
so
p
r
es
ent
e
d i
n
t
a
bl
e
s
an
d f
o
l
l
o
we
d by
gra
p
hs
pl
ot
t
e
d.
B
e
si
d
e
s, t
h
e
expe
ri
m
e
nt
s pe
rf
orm
e
d are al
s
o
acc
or
di
n
g
t
o
desi
re
d c
h
aract
eri
s
t
i
c
as ex
pl
a
i
ned i
n
fol
l
o
wi
ng
su
b
-
sect
i
o
n
s
.
4.
1.
An
al
ysi
s
o
f
Cl
ass
-
E
C
o
n
v
erter
Fi
rst
o
f
al
l
,
bas
e
d
on
t
h
e
desi
r
e
d
out
put
o
f
t
h
e C
l
ass-E c
o
nv
ert
e
r ci
rc
ui
t
,
t
h
e val
u
e
o
f
t
h
e c
o
m
pone
nt
i
n
res
o
nant
ci
r
c
ui
t
i
s
deci
ded
usi
n
g t
h
e E
qua
t
i
on
(1
) t
o
(
5
)
by
usi
n
g t
h
e
va
l
u
es t
h
at
a
r
e
gi
ven
i
n
Tabl
e
1
and
th
erefore
we
hav
e
all th
e v
a
l
u
es wh
ich h
a
v
e
b
een tabu
lated
in
Tab
l
e 2.
Table
1.
Desire
d Pa
ram
e
ters for
the Class
-
E
Con
v
erte
r
Para
m
e
ters
Values
Oper
ating Fr
equency
1M
Hz
Rated Power
165
m
W
Quality F
actor,
Q
10
DC Voltage Supply
5V
Tabl
e
2. C
l
ass
-
E C
o
nve
rt
er
Pa
ram
e
t
e
rs
Para
m
e
ters
Values
RF Choke I
nducto
r
,
L
ch
ok
e
5.
56µH
Shunt Capacitor
,
C
sh
un
t
3.
94nF
Series Capacitor
,
C
se
r
i
e
s
182.
12
pF
Ser
i
es inductance,
L
se
r
i
e
s
139.
09
µH
R
lo
ad
87.
39
Ω
I
n
t
h
is Class-E conv
er
ter, a N
-
ch
an
nel IRF 51
0 is
cho
s
en
du
e t
o
i
t
s lo
w
Static Drai
n
-
to-Sou
rce On
-
Resistance, R(
DS
). PIC
i
s
u
s
e
d
t
o
gene
rat
e
s
qua
re
wave
p
u
l
se and al
s
o
a
dri
v
er ci
rc
ui
t
i
s
use
d
t
o
bo
os
t
t
h
e
squ
a
re wa
ve p
u
l
s
e i
n
or
de
r t
o
achi
e
ve t
h
e m
i
ni
m
u
m
curre
nt
and v
o
l
t
a
ge re
qui
red
by
t
h
e M
O
SFET
.
Ot
h
e
r t
h
an
t
h
at
, ZVS c
o
nd
i
t
i
on i
s
very
i
m
port
a
nce i
n
C
l
ass-E co
nve
r
t
er i
n
o
r
de
r t
o
pr
o
duce a
very
hi
g
h
effi
ci
e
n
c
y
of t
h
e
con
v
e
r
t
e
r.
Par
t
i
c
ul
arl
y
, i
f
t
h
e
com
pone
nt
s i
n
t
h
e
res
ona
nt
ci
rcui
t
are c
h
o
s
en
pr
ope
rl
y
,
t
h
e s
w
i
t
c
h (M
O
SFET
)
will tu
rn
o
n
at
zero vo
ltag
e
.
From
Fi
gure 7
,
t
h
e desi
gne
d C
l
ass-E con
v
e
r
t
e
r ci
rcui
t
i
s
successf
ul
l
y
achi
e
ved t
h
e Z
V
S con
d
i
t
i
on i
n
th
e sim
u
latio
n
.
Wh
en
t
h
e
vo
ltag
e
at th
e V(g)
d
r
o
p
s to zero, th
e vo
ltag
e
at th
e
V(d) is ach
i
ev
ing th
e
v
a
l
u
e
of
1
3
.2V wh
ich
mean
s
th
ere
is a
flow o
f
vo
ltag
e
wh
ile
the
M
O
FSE
T acts as
open-circ
u
ited (“
off” state).
Figu
re 7. ZVS Con
d
ition
for th
e Class-E C
o
nv
erter
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
2,
Ju
ne 20
16
:
460
–
4
71
46
5
For
t
h
e e
x
peri
m
e
nt
al
resul
t
,
wi
t
h
t
h
e
5
V
d
c
su
ppl
y
a
nd t
h
e
1M
Hz s
q
ua
re wa
ve
p
u
l
s
e,
t
h
e o
u
t
p
ut
wave
f
o
rm
of t
h
e
gat
e
a
n
d
d
r
ai
n ac
hi
eve
d
t
h
e Z
V
S
co
n
d
i
t
i
on i
s
as s
h
ow
n i
n
Fi
gu
re
9.
Due
t
o
t
h
e a
b
s
e
nce
o
f
current
probe,
the
c
u
rrent wa
veform
cannot be
m
easure
d
practically
. The
r
ef
ore
,
onl
y
t
h
e v
o
l
t
a
ge at
V
(
g)
an
d
V(d
)
can
b
e
sho
w
n
.
As sh
own
in
Figure 8(a), th
e ZV
S con
d
ition
is su
ccessfu
lly ach
ieved
alth
oug
h
t
h
ere is
som
e
di
st
ort
i
on d
u
ri
ng t
h
e “
on” a
n
d “o
ff”
st
at
e of t
h
e ga
t
e
. B
u
t
,
t
h
i
s
d
i
st
ort
i
on i
s
not
affect
m
u
ch o
n
t
h
e
p
e
rform
a
n
ce on
th
e vo
ltag
e
ob
tain
ed as
co
mp
ared
with
t
h
e
si
m
u
latio
n
result.
Fig
u
re
8
(
a). ZVS
fro
m
th
e Oscillo
sco
p
e
Fig
u
re
8
(
b).
Drain
Vo
ltag
e
versu
s
Ou
tpu
t
Vo
ltag
e
at
Lo
ad
u
s
ing
Oscillo
sco
p
e
Fo
r t
h
e Fi
g
u
re
8
(
b
)
, th
e
p
u
rp
le lin
e is th
e outp
u
t
vo
ltag
e
at
the
load or
the Class-E
c
onv
erter circu
it, V(r). In
Tab
l
e
3
,
th
e valu
e of
o
u
t
p
u
t
vo
ltag
e
is cal
cu
lated
in
its
av
erag
e v
a
lu
e an
d
th
e ou
tpu
t
vo
ltag
e
, V(r),
will
connect to the transm
it
ter pl
ate in transfe
rri
ng the volta
ge to the receive
r plate whic
h
will be discusse
d in the
n
e
x
t
sectio
n.
Also
, all th
e calcu
l
atio
n
i
n
th
e n
e
x
t
p
a
rt
will u
s
e t
h
e av
erage v
a
lu
e of t
h
is
o
u
t
p
u
t
vo
ltag
e
.
Tabl
e 3. A
v
era
g
e Out
put
V
o
l
t
a
ge, V
r
, at the
Transm
itter Plate
Nu
m
b
er
of tim
e
taken for
the Output
Value
1
2
3
4
5
Average Voltage
(
V
)
Output Voltage (
V
)
9.
4
8.
6
9.
3
8.
4
8.
7
8.
88
4.
2.
An
al
ysi
s
o
f
C
a
p
a
ci
ti
ve P
l
ates
a)
Sm
a
ll Plate at Receiver Pa
rt
From
Figure
10, the m
easurem
ent of t
h
e receive
d vol
t
age from
the receive
r plate
s
is taken i
n
di
ffe
re
nt
al
i
g
n
m
ent
from
Posi
t
i
on 1 t
o
Posi
t
i
on 3 at
di
ffe
re
nt
Zone
, res
p
e
c
t
i
v
el
y
.
For
m
e
di
um
part
, paper an
d
m
ouse pa
d are
tested for each
of the
differe
n
t
alignm
en
t. The res
u
lts are ta
bulated in
Tabl
e 4 a
n
d Ta
ble
5.
Figure
10.
Differe
n
t Alignm
ent of t
h
e Recei
ver Plate on t
h
e Differe
n
t Z
o
ne
Po
sition
1
Po
sition
3
Po
sition
2
Zone A
Zone
B
Zone C
Zone D
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Developme
nt
of WPT
using C
a
pacitive Met
hod for Mouse
Charging
Appl
ication
(
S
. Sa
at
)
46
6
Table
4. Recei
ved Voltage at
The Recei
ver
Plate Using
Pa
per as a Me
dium
Z
one A
Z
one B
Z
one C
Z
one D
Average
Ef
f
i
ciency (%)
Position 1
4.
9 V
4.
7 V
4.
5 V
5.
1 V
4.
8 V
54.
05
Position 2
5.
2 V
5.
5 V
5.
3 V
5.
3 V
5.
33 V
60.
02
Position 3
2.
89 V
1.
28 V
1.
21 V
1.
08 V
1.
62 V
18.
24
Table
5. Recei
ved Voltage at
The Recei
ve
r
Plate Using M
ous
e Pa
d as
a
Medium
Z
one A
Z
one B
Z
one C
Z
one D
Average
Ef
f
i
ciency (%)
Position 1
1.
8 V
1.
8 V
2.
1 V
2.
2 V
1.
98 V
22.
23
Position 2
2.
2 V
1.
8 V
2.
3 V
2.
3 V
2.
15 V
24.
21
Position 3
0.
6 V
0.
7 V
0.
7 V
0.
6 V
0.
65 V
7.
32
Furt
herm
ore, t
h
e com
p
ari
s
on
of t
h
e pe
rf
o
r
m
a
nce f
o
r
t
h
e
pa
per a
n
d m
ouse
pad a
s
t
h
e m
e
di
um
of t
h
e
t
r
ansm
i
ssi
on p
o
we
r i
s
de
pi
ct
ed i
n
Fi
g
u
r
e
12
.
Figure
11.
Gra
p
h of t
h
e Recei
ved Voltage i
n
Diffe
re
nt
Position with Different
Medi
um
From
Figure
11,
appare
ntly, t
h
e
voltage
rece
ived at
the
rec
e
iver
plate for
pape
r is
greate
r
tha
n
usi
n
g
m
ouse pad a
s
the m
e
dium
. T
h
e recei
ved voltage at
Position 2 is the
highest am
ong t
h
re
e fixe
d position
on
th
e
p
l
ates.
Th
i
s
h
i
g
h
vo
ltag
e
g
a
in
ed
is du
e t
h
e
fu
lly
alignment of the
re
ceiver
plat
es
on t
h
e tra
n
sm
itter
plate
as well as the
coupled a
r
ea becom
e
gr
eater. Therefore, the
perform
a
nce of
th
e tran
sm
iss
i
o
n
vo
ltag
e
fo
r p
a
p
e
r
i
s
bet
t
e
r t
h
an
u
s
i
ng m
ouse
pa
d as t
h
e m
e
di
u
m
part
. Thi
s
i
s
due t
h
e t
h
i
c
k
n
e
ss of t
h
ese t
w
o m
e
di
u
m
and
gi
ve a
di
rect
i
n
fl
ue
nc
e t
o
t
h
e perf
or
m
a
nce of t
h
e t
r
ansm
i
ssi
on. The sm
all
e
r t
h
e gap w
h
i
c
h i
s
al
so t
h
e short
e
r t
h
e
d
i
stan
ce can h
i
g
h
e
r
up
th
e cap
acitan
ce
o
f
the cap
acitiv
e
p
l
ates.
W
i
t
h
t
h
e strong
cap
acitan
ce, th
e cap
a
citiv
e
plates can c
o
nfine
d
a
stronger electric
field a
n
d the
r
ef
ore
the voltage flow
to receive
r plate will be
m
o
re
effi
ci
ent
.
Ot
her
t
h
an t
h
at
, anot
her ex
pe
ri
m
e
nt of a 45
o
slant alignm
ent of the receive
r pla
t
es on the Posi
tion
2
i
n
di
ffe
rent
Zo
ne i
s
al
s
o
ca
rri
ed
out
.
T
h
e al
i
gnm
ent
o
f
t
h
i
s
expe
ri
m
e
nt
i
s
sho
w
n i
n
Fi
g
u
r
e
1
2
.
From
t
h
e Tabl
e 6 and Ta
bl
e 7, t
h
e ef
fi
ci
enc
y
for t
h
e pa
pe
r
m
e
di
u
m
seem
s t
o
be great
e
r
t
h
an m
ouse
p
a
d
b
u
t
yet th
e efficien
cy for
th
e p
a
p
e
r on
ly u
p
to
5
7
.60
%
. Th
is is co
n
s
ider th
e lo
sses in tran
sm
issio
n
i
s
still
very
high. As
shown i
n
Fi
gure
12, t
h
ere
is
som
e
unc
ouple
d
a
r
ea
for t
h
e
recei
ver plates whe
n
t
h
e plates
is
i
n
the m
i
sal
i
gned
position
which will directly decrease th
e vol
tage
to be recei
ved
at
the recei
ver
pa
rt.
Fig
u
r
e
12
.
45
o
Slant
Alignm
ent of t
h
e Recei
ver Plate
4.
8
[
VALUE]
1.
62
1.
98
2.
15
0.
65
0
2
4
6
Position 1
P
osition 2
P
osition 3
Received
Voltage
Received
Voltage versus Position
Paper
Mouse Pad
U
n
cou
p
l
ed
A
r
ea
Po
sition
1
Zone A
Zone
B
Zone C
Zone D
Po
sition
3
Po
sition
2
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
2,
Ju
ne 20
16
:
460
–
4
71
46
7
Table
6. Recei
ved Voltage at
the 45
0
Sla
n
t Receiver
Plate Using Pa
per a
s
a
Medium
Z
one A
Z
one B
Z
one C
Z
one D
Average
Ef
f
i
ciency (%)
Position 2
5.
05 V
4.
92 V
5.
27 V
5.
35 V
5.
15 V
57.
60
Table
7. Recei
ved Voltage at
the 45
0
Sla
n
t Receiver
Plate Using Mouse Pa
d as
a Medi
um
Z
one A
Z
one B
Z
one C
Z
one D
Average
Ef
f
i
ciency (%)
Position 2
2.
19 V
2.
17 V
2.
33V
2.
05 V
2.
19 V
23.
09
b)
Big Plate at Re
ceiver
Part
Si
m
ilarly, th
is ex
p
e
rim
e
n
t
is carried ou
t as t
h
e sam
e
with
th
e fi
rst exp
e
rimen
t
. Hen
ce t
h
e
d
e
tails are
o
m
i
tted
here
. By cha
ngi
ng t
h
e sm
a
ll receiver
plates with a
bi
gger
receive
r plates (7cm
x 7.5cm
)
, the steps
of
collecting
data
is also t
h
e sa
me. Bu
t, the
position of
the
receiver
plate is only pl
aced in aligne
d
positi
on and
m
o
v
i
n
g
fro
m
Zon
e
A to
Zo
ne C wh
ich
is illu
strated
i
n
Figu
re
1
3
. Th
e valu
e co
llected
is th
en
reco
rd
ed
in
th
e
Tabl
e
8 a
n
d
Ta
bl
e 9
f
o
r
pa
pe
r
and
m
ouse
pad
as t
h
e
m
e
di
u
m
, res
p
ect
i
v
el
y
.
Figure
13.
Ali
gnm
ent of the
R
eceiver Plate
on Di
ffe
rent Z
one
s
Table
8. Recei
ved Voltage at
the Recei
ve
r Pl
ate Using
Pape
r as a
Medi
um
Z
one A
Z
one B
Z
one C
Average
Ef
f
i
ciency (%)
5.
5 V
4.
9 V
6.
4 V
5.
6 V
63.
06
Table
9. Recei
ved Voltage at
the Receive
r Pl
ate Using M
o
use Pa
d as a
Me
dium
Z
one A
Z
one B
Z
one C
Average
Ef
f
i
ciency (%)
3.
4 V
3.
5 V
3.
6 V
3.
5 V
39.
41
As shown in t
h
e Table 8 and
Table 9, t
h
e efficiency
of the
transm
ission for the
paper is greater t
h
an
th
e m
o
u
s
e p
a
d
.
Wh
ile, th
e
v
o
ltag
e
fo
r these th
ree zo
n
e
s is n
o
t
m
u
ch
d
i
fferen
t
si
n
c
e th
e po
sitio
n o
f
the
receiver plates is fully aligne
d to th
e tra
n
sm
itter plates. Be
sides, t
h
e
value
of the
voltage coll
ected is
plotted
in
th
e
gr
aph
f
o
r
m
as sh
own
in Figu
r
e
14
,
Figure
14.
Gra
p
h of t
h
e Recei
ved Voltage
i
n
Diffe
re
nt Zone
with
Differe
n
t
Medium
Oth
e
r th
an
th
e fu
lly alig
n
situ
atio
n, 45
o
o
f
th
e slan
t po
sitio
n
is also
tested
in
th
e m
e
d
i
u
m
o
f
p
a
p
e
r
and m
ouse
pad. the
res
u
lts are rec
o
rded as
i
n
Ta
ble
10 and Table
11,
res
p
ectively.
5.5
[
VALUE]
6.4
3.4
3.5
3.6
0
10
Zone A
Z
one B
Z
one C
Output Voltage
Output
Voltage versus Position
Paper
Mouse Pad
Zone A
Z
one
B
Zone C
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Developme
nt
of WPT
using C
a
pacitive Met
hod for Mouse
Charging
Appl
ication
(
S
. Sa
at
)
46
8
Fig
u
r
e
15
. 45
o
Slant Alignm
ent of t
h
e Recei
ver Plate
Table
10. Rece
ived
Voltage at
The
45
0
Slant Receiver
Plate Usin
g Pa
pe
r as
a Medi
um
Z
one A
Z
one B
Z
one C
Average
Ef
f
i
ciency (%)
3.
6 V
3.
9 V
4.
3 V
3.
93 V
44.
26
Table
11. Rece
ived
Voltage at
The
45
0
Slant
Receiver Plate
Using M
ouse
Pad a
s
a Me
dium
Zone A
Zone B
Zone C
Average
Ef
f
i
ciency (%)
3.
6 V
3.
7 V
3.
7 V
3.
7 V
41.
67
By co
m
p
arin
g th
ese ex
p
e
ri
men
t
s resu
lt, th
e
p
o
s
ition
and
th
e size of t
h
e receiv
e
r p
l
ates p
l
ay an
im
portant
role
in power trans
m
ission which
is related t
o
the efficie
n
cy in
transm
ission.
As t
h
e recei
ver plate
is m
o
v
i
n
g
from
o
n
e
po
sitio
n to
an
o
t
h
e
r positio
n
,
t
h
e
receiv
ed
vo
ltag
e
flu
c
tu
ates. In
t
h
is cond
itio
n
,
the b
e
st
p
o
s
ition
is d
e
t
e
rm
in
ed
wh
ich is alig
n
e
d
po
sitio
n
.
In o
t
h
e
r
words,
b
i
gg
er
th
e p
l
ates, b
i
gg
er th
e effecti
v
e area
whic
h is gi
ving the st
ronger
electric
field confine
d
betwe
e
n the tra
n
sm
it
ter
and recei
ve
r plates.
In
addition t
o
th
at, th
e
un
cou
p
l
ed
are is an
u
n
d
e
sired
co
nd
itio
n too
.
Wh
en
t
h
e
u
n
c
o
u
p
l
ed are ex
i
s
ts du
ring
t
h
e po
wer
tran
sm
issio
n
,
th
e effectiv
e area o
f
th
e receiv
er p
l
at
e will b
e
redu
ced
an
d
th
at will cau
se th
e lo
sses an
d
effi
ci
ency
d
r
o
p
. F
u
rt
herm
ore
,
by
usi
n
g t
h
e
pape
r as m
e
d
i
um
, t
h
e effi
ciency
o
b
t
a
i
n
ed
i
s
hi
ghe
r t
h
a
n
usi
n
g
m
ouse pad as
t
h
e m
e
di
u
m
.
Ob
vi
o
u
sl
y
,
t
h
e
t
h
i
c
kne
ss o
f
t
h
e m
e
di
u
m
(di
s
t
a
nce bet
w
ee
n t
h
e t
r
a
n
sm
i
tter a
n
d
receiver
plate) affects the
pe
rform
a
nce effi
ciency too.
T
h
erefore
,
the thi
c
kne
ss of m
ouse pad s
h
oul
d
be as
t
h
i
n
as
p
o
ssi
bl
e. I
n
ot
he
r
wo
r
d
s,
a t
h
i
n
m
ous
e pa
d i
s
hi
g
h
l
y
recom
m
ended
act
as t
h
e m
e
di
um
for t
h
i
s
pr
o
j
ect
.
4.3. Rec
t
ifier Circuit
After th
e
vo
ltag
e
is tran
sm
it
te
d
,
th
e AC
v
o
ltag
e
is th
en
su
pplied
in
to
th
e full b
r
id
g
e
rectifyin
g
circu
it
to
conv
ert to
DC vo
ltag
e
. Th
e circu
it u
s
ed as shown as
i
n
Fi
gu
re
16
. I
n
t
h
i
s
w
o
r
k
,
t
h
e
wi
rel
e
ss m
ous
e nee
d
s
10m
A, 1.
5V
t
o
be po
were
d up
. Al
t
h
o
u
g
h
t
h
e vol
t
a
ge
ach
i
e
ved
t
h
e req
u
i
red 1.
5V
aft
e
r
bei
n
g rect
i
f
i
e
d,
t
h
e
wireless m
o
u
s
e still u
n
a
b
l
e to
po
wer up
. Th
is is d
u
e
to
t
h
e curren
t
supp
lied
is lo
wer th
an
th
e m
i
n
i
m
u
m
current
re
qui
re
d t
o
power
up the
wirele
ss
m
ouse. Because
of this
ve
ry low
current
supply, there
f
ore, a
L
E
D is
u
s
ed
to test at th
e
o
u
t
p
u
t
term
i
n
al wh
eth
e
r t
h
e po
wer still able to
lig
h
t
up
t
h
e LED.
Fig
u
re
16
. Rectifier Circu
it in th
e Sim
u
latio
n b
e
fore Fabricatin
g
Zone
A
Zone B
Zone C
U
n
cou
p
l
ed
A
r
ea
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 7,
No
.
2,
Ju
ne 20
16
:
460
–
4
71
46
9
Whe
n
t
h
e sm
all receiver plate
is use
d
at t
h
e
receivi
ng part
, the
rectifie
d
si
gnal
c
o
uld not light
up
t
h
e
LED
while the
big
receive
r
plate still able li
ght
up LED.
Although the
light is ve
ry wea
k
, t
h
is shows t
h
at the
big size
receiver plate
ha
ve a
better e
fficiency in recei
ving the tra
n
sm
itter
signal
.
As
well as for t
h
e
different
t
y
pe of
m
e
di
um
bei
ng use
d
,
fo
r t
h
e
pa
per
m
e
di
um
, t
h
e rect
i
f
i
e
d v
o
l
t
a
ge
i
s
abl
e
t
o
l
i
g
ht
up
t
h
e LE
D
w
h
i
l
e
t
h
e
m
ouse pa
d c
o
u
l
d n
o
t
do
s
o
.
Fo
r ex
am
p
l
e, t
h
e Figu
re
1
7
(a) and
Figu
re 17
(b
) ar
e tak
e
n
fro
m
th
e o
s
cillo
sco
p
e
for p
a
per m
e
d
i
u
m
o
f
the sm
al
l receiver
plate and big re
ceiver
plate, respec
tively. Although
the rectified wave
form
is
still in
si
nus
oi
dal
wav
e
fo
rm
but
t
h
e
vol
t
a
ge
i
s
a D
C
vol
t
a
ge
. I
n
t
h
i
s
w
o
r
k
, a
v
o
l
t
age re
gul
at
o
r
i
s
n
o
t
im
pl
em
ent
e
d
fo
r
the receive
r e
n
d. This is beca
use the
si
gnal after rectifie
d is too l
o
w t
o
be
regulated.
If t
h
ere is still a voltage
regu
lato
r t
o
reg
u
l
ate th
e
ripple rectified
vo
ltag
e
, th
e
o
u
t
p
u
t v
o
ltag
e
fro
m
th
e vo
ltag
e
reg
u
l
ator is d
e
fi
n
itely
l
o
w an
d co
ul
d
not
l
i
ght
u
p
t
h
e
LED. Fi
nal
l
y
, t
h
e rect
i
f
i
e
d si
gnal
abl
e
t
o
l
i
g
ht
up LE
D b
u
t
coul
d n
o
t
po
w
e
r u
p
th
e wi
reless mo
u
s
e.
Figure
17(a
). R
eceived
Voltage from
the Sm
a
ll
Receiver Plate
vers
us Rectifie
d
Voltage
(Paper)
Figure 17(b). Out
put Voltage
from
the
Big Receiver
Plate v
e
rsu
s
Rectified
Vo
ltage (Pap
er)
4.
4. Fi
nal
Pr
o
t
ot
ype
Aft
e
r c
o
m
p
l
e
t
i
ng t
h
e a
n
al
y
s
i
s
part
, a fi
nal
pr
ot
ot
y
p
e
was devel
ope
d an
d
i
t
i
s
show
n i
n
Fi
gu
re 1
8
.
Th
e
LED is li
g
h
t
up
su
ccessf
u
lly dur
ing
the po
wer
t
r
ansmissio
n
.
By sup
p
l
ying
5V
DC
to
t
h
e tran
sm
itt
er
p
a
rt,
the Class-E
conve
rter c
o
nve
rts the
DC s
o
urce to
AC s
o
ur
ce. T
h
en, a
n
al
ternating el
ect
r
i
c fi
el
d i
s
ge
ne
rat
e
d
and
passes through the capacit
i
ve couplin
g pl
ate to the receiver pa
rt. By pl
acing the recei
ver plates within the
effective area of c
h
arging, the LED is
able to light up.
When t
h
e receive
r plate is
m
o
ving to the ineffective
area
of c
h
a
r
gi
ng, t
h
e LE
D is
not light
up.
Figure 18.
Final
Prototype
Evaluation Warning : The document was created with Spire.PDF for Python.