Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
Vol
.
4
,
No
. 2,
J
une
2
0
1
4
,
pp
. 27
4~
28
0
I
S
SN
: 208
8-8
6
9
4
2
74
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Modelin
g of
W
i
n
d
Energy on Is
ol
at
ed
Ar
ea
Hache
m
i Glaoui
*
,
H
a
rrouz
Abdelk
ader
**
,
Ismail Mess
aoudi
**
, Hamid
Saab
**
* Department of
Science
and tech
nolog
y
,
Un
iv
ersity o
f
Bech
ar,
BP 417 Route de Kenadza 08000
Béchar
Alger
i
a
** Departmen
t
o
f
H
y
dro
carbon
and Renewa
bl
e En
e
r
gy
,
Ad
ra
r
Un
iversit
y
,
Alg
e
ria
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Oct 20, 2013
Rev
i
sed
Ap
r 2, 20
14
Accepted Apr 15, 2014
In this pap
e
r,
a
m
odel of the
wind turbine
(
W
T) with perm
anent m
a
gn
et
genera
tor (P
M
S
G) and its
as
s
o
ci
ated
control
l
ers
i
s
pres
ented.
The
incre
a
s
e
of
wind power pen
e
tration
in power s
y
stem
s has m
eant that conv
en
tional power
plants
are gr
adu
a
ll
y b
e
ing
repl
ac
ed b
y
wind
farm
s
.
In fa
ct
, tod
a
y
wind farm
s
are requi
red to
act
ivel
y pa
rti
c
ip
ate in power s
y
s
t
em
operation i
n
the s
a
m
e
way
as conven
t
ional power plants. In
fact, power sy
stem operators hav
e
revised th
e grid
connection r
e
quirement
s for win
d
turbines
and
wind farms
and now demand that these installations be
able t
o
carr
y
ou
t m
o
re or less the
same control tas
k
s as convention
a
l power
plants.
For dy
namic power sy
stem
sim
u
lations, the
PMSG
wind turbine
model includes an aerod
ynamic rotor
model, a
lumped mass representation of
th
e driv
e train s
y
stem an
d generator
m
odel. In
this
paper
we pro
pose a m
odel
with an
im
ple
m
entation
in
MATLAB / Si
m
u
link, each of
the sy
st
em
com
ponents off-gr
i
d sm
all wind
turbines.
Keyword:
W
i
n
d
gene
rat
o
r
sy
st
em
s
Perm
anent
m
a
gnet
sy
nc
hr
on
ou
s
gene
rato
r (PM
S
G)
W
i
nd
turb
in
e
(WT) m
o
d
e
lin
g
MATLAB
-
Si
m
u
link
envi
ro
nm
ent
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Hachem
i Glaoui,
Depa
rt
m
e
nt
of
Sci
e
nce a
n
d
t
e
chn
o
l
o
gy
,
Uni
v
ersity
of Bechar,
BP 41
7 Rou
t
e
d
e
K
e
n
a
d
za, 08
000
Béch
ar
,
A
l
g
e
r
i
a
Em
a
il: mek
k
a
60
@g
m
a
il.co
m
1.
INTRODUCTION
The wi
n
d
p
o
w
e
r ge
nerat
i
o
n
has be
en
de
ve
l
ope
d ve
ry
q
u
i
c
kl
y
i
n
t
h
e pa
st
few y
ears
[
1
]
.
W
i
t
h
t
h
e
gr
owi
n
g penet
r
at
i
on of
wi
n
d
ener
gy
gen
e
rat
i
on i
n
t
o
po
wer
gri
d
s
,
t
h
e im
pact
of wi
n
d
t
u
r
b
i
n
e (
W
T
)
on
po
we
r
syste
m
o
p
e
rati
o
n
s
an
d stab
ility co
n
t
ro
l is
of i
n
creasi
n
g con
c
ern.
WT sy
st
em
no
rm
all
y
consi
s
t
s
of wi
nd t
u
r
b
i
n
e, gene
rat
o
r an
d g
r
i
d
i
n
t
e
r
f
ace
con
v
ert
e
rs, a
m
ong whi
c
h
t
h
e ge
nerat
o
r
i
s
an
very
i
m
po
rt
ant
c
o
m
ponent
i
n
t
h
e
W
T
sy
st
em
. Du
ri
n
g
t
h
e
de
vel
opm
ent
of
t
h
e
WT
t
echni
q
u
es
, sy
nch
r
on
o
u
s ge
n
e
rat
o
r
,
i
n
duct
i
o
n ge
nerat
o
r
a
n
d d
o
u
b
l
y
fe
d i
n
duct
i
o
n
gene
ra
t
o
r we
re em
pl
oy
ed t
o
conve
r
t wind
powe
r to electrical powe
r
.
W
i
n
d
t
u
rbi
n
es
usual
l
y
r
o
t
a
t
e
at
a speed
of
15
–
20
rev/
m
i
n, a
n
d
G
e
n
e
r
a
tor
s
shou
ld ro
tate at the sp
eed of
1
000
–15
00
r
e
v
/
mi
n
.
H
e
n
ce, a
g
e
ar
box
sh
ou
l
d
be conn
ected
b
e
tw
een
a wi
n
d
t
u
r
b
i
n
e
an
d a
gene
rat
o
r
.
T
h
e gea
r
bo
x ca
uses
un
pl
e
a
sant noise, i
n
creases the
los
s
of the
WT s
y
ste
m
,
and al
s
o
req
u
i
r
es reg
u
l
a
r m
a
int
e
na
nce. I
n
o
r
der t
o
ove
rc
om
e t
h
ese pr
obl
e
m
s,
t
h
e WT wi
t
h
perm
anent
m
a
gnet
sy
nch
r
o
n
o
u
s
g
e
nerat
o
r (PM
S
G),
w
h
e
r
e
t
h
e
gear
b
o
x
was
el
im
i
n
at
ed,
was
devel
ope
d [
2
]
.
The va
riable-s
peed
wind tu
rbine is now the
one that is
m
o
st fre
quently installed.
Over recent
years,
it h
a
s
b
eco
m
e
th
e m
o
st p
opu
lar typ
e
o
f
wi
nd
turb
in
e. Th
is in
terest in v
a
riab
le-sp
e
ed
wi
n
d
turb
i
n
es is
d
u
e
to
the
wide
ra
ng
e o
f
a
d
vanta
g
e
s
O
ffe
red
,
s
u
c
h
as
re
d
u
ced
mechanical stress, incr
ease
d
powe
r
ca
pture, W
i
nd
ener
gy
i
n
Al
geri
a i
s
onl
y
u
s
ed fo
r pum
pi
ng wat
e
r;
t
h
e
fi
rst
experi
e
n
ce of pum
pi
ng wat
e
r wi
t
h
wi
n
d
tu
rb
in
e in
A
frica w
a
s co
nducted
in
1
9
5
7
in
A
d
r
a
r
"K
sar
Sid
i
A
i
ssa" f
o
r
ir
r
i
g
a
ti
o
n
o
f
50
h
ectar
es [
3
].
The
wi
n
d
res
o
u
r
ce i
n
Al
ge
ri
a va
ri
es g
r
ea
t
l
y
from
one
l
o
cat
i
on t
o
a
n
ot
he
r. T
h
i
s
i
s
m
a
i
n
l
y
due t
o
a very
di
ve
rse t
o
p
o
g
r
a
phy
an
d cl
im
at
e. The A
d
ra
r
regi
o
n
, i
n
Sout
h Al
ge
ri
a, prese
n
t
s
an e
x
cel
l
e
nt
wi
nd ener
gy
pot
e
n
t
i
a
l
as sho
w
n by
t
h
e fi
gu
re bel
o
w.
The an
n
u
al
m
ean po
wer
d
e
nsi
t
y
i
s
very
int
e
rest
i
n
g rec
o
vera
bl
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Mo
del
i
n
g
of
W
i
nd Ener
gy o
n
Isol
at
ed Area
(
H
ac
he
mi
Gl
ao
ui
)
27
5
b
y
th
e
wind
.
Wh
ich
allows supp
ly
ing
electrical energy to rem
o
te
areas
(Fora
g
e
s
,
Kess
our),
whe
r
e
con
n
ect
i
o
n t
o
t
h
e g
r
i
d
i
s
n
o
t
pos
si
bl
e
or
eco
nom
i
cal
l
y
expensi
v
e
.
Fig
u
r
e
1
.
Topog
r
a
ph
ical m
a
p
o
f
A
l
g
e
r
i
a
Table 1. Avera
g
e W
i
nd
Spee
d
[14]
In this
pa
pe
r
we
will be
interested m
o
re
specifica
lly to the m
odeling
of t
h
e m
a
jor
com
pone
nts
of a
sm
a
ll win
d
tu
rb
in
e ad
ap
ted to reg
i
on
s su
ch
as Ad
rar Sah
a
ra.
2.
1. M
o
del
of
PMG
S
Basically, PMSG is a Perm
anent Ma
g
n
et
S
y
nch
r
o
n
ous
Ge
nerat
o
r;
t
h
e e
q
ui
val
e
nt
ci
rc
ui
t
i
s
sho
w
n i
n
Fi
gu
re 2.
Al
i
g
ni
n
g
t
h
e di
rect
i
on o
f
t
h
e d ax
i
s
of t
h
e d
−
q r
e
fere
nce, t
h
e
m
odel
of t
h
e PM
GS i
s
gi
ven
by
[4]
,
[5]
:
Fi
gu
re
2.
P
A
R
K
m
odel
f
o
r
P
M
SG
f
d
d
q
q
q
s
q
q
q
d
d
d
s
d
I
L
dt
I
d
L
I
R
u
I
L
dt
I
d
L
I
R
u
.
.
.
.
(1)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 4
,
No
. 2
,
Jun
e
2
014
:
27
4
–
28
0
27
6
Whe
r
e
d
u
and
q
u
are the direct (d) and
quadrature (q
) ax
is stator vo
ltag
e
,
respectiv
ely,
d
I
and
q
I
are the
d a
nd
q axis stat
or c
u
rre
nt, res
p
ectively,
s
R
is the resi
stance of the st
ator;
d
L
is th
e in
du
ctan
ce
of the stator.
is the
ge
nerator
electrical spee
d.
The Po
wer
eq
u
a
t
i
ons
a
r
e gi
ve
n by
:
]
[
2
3
)
q
d
I
d
φ
q
I
(
d
t
d
)
d
t
q
d
q
I
d
t
d
d
d
I
(
)
q
I
d
I
(
s
R
(t)
P
(2)
The el
ect
r
o
m
a
gnet
i
c
t
o
r
que
h
a
s t
h
e e
x
pressi
on:
)]
.
.
)
(
[
q
f
q
d
I
I
I
Ld
Lq
P
k
Te
(3)
Whe
r
e
k
t
a
ke t
h
e val
u
es 1
or
1.
5, de
pe
n
d
i
n
g o
n
k
n
o
w
t
h
e t
r
a
n
sf
orm
a
t
i
on i
s
per
f
o
r
m
e
d par
k
(I
n t
h
i
s
case,
k
=1.
5
)
.
T
h
e i
n
st
ant
a
ne
ou
s
po
w
e
r
of t
h
e m
achine is
[6]:
q
q
d
d
I
u
I
u
t
P
)
(
(4)
2.
2. M
o
del
of
Co
nver
ters
Th
e rectifier
m
o
st
frequ
en
tly u
s
ed
is a d
i
o
d
e
b
r
id
ge pe
rfect. This is an electronic device that is
placed
betwee
n the alternat
or and the
batte
ry to turn the three AC
volt
a
ge
s at the output of the alternat
or
v
o
ltag
e
. Th
e bridg
e
con
s
ists
o
f
si
x
d
i
o
d
e
s,
as sho
w
n
in
Fig
u
re
3
.
In
reality, th
e v
o
ltage at th
e ou
tpu
t
o
f
t
h
e
b
r
i
d
g
e
pr
esen
t
s
un
du
latio
ns
w
ith
a
f
r
e
q
u
e
ncy 6
ti
m
e
s th
at
of the alternator, so often
we add a c
o
nde
n
ser in
or
der
t
o
sm
oot
h t
h
e
t
e
nsi
o
n
at
i
t
s
o
u
t
p
ut
.
Fi
gu
re
3.
M
a
g
n
et
ge
ne
rat
o
r c
h
ar
ge
d t
o
t
h
e
DC
b
u
s
The m
ean voltage
Vcc
t
o
t
h
e
out
put
o
f
t
h
ree
-
p
h
ase
b
r
i
d
ge r
ect
i
f
i
e
r i
s
gi
ve
n
by
[
2
]
:
L
CC
V
V
2
3
(5)
Or
V
L
eff
ectiv
e vo
ltag
e
b
e
tw
een
two
lin
es
o
f
th
e sy
n
c
hr
onou
s
g
e
n
e
r
a
tor
,
fo
r a star conn
ectio
n
o
f
th
e line
n
e
u
t
ral vo
ltag
e
, th
e
relatio
nship
b
e
t
w
een th
e
v
o
ltag
e
to
t
h
e t
e
rm
in
als o
f
th
e g
e
n
e
rat
o
r and
th
e
V
DC
vo
ltage of
th
e b
a
ttery is giv
e
n
as fo
llows:
CC
DC
V
V
6
3
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Mo
del
i
n
g
of
W
i
nd Ener
gy o
n
Isol
at
ed Area
(
H
ac
he
mi
Gl
ao
ui
)
27
7
3.
DYNAMIQUE MODEL OF WT
WITH
PMGS SYST
EM
3.
1. Wind Modeling
Fi
gu
re 4.
W
i
nd
Tu
rbi
n
e
c
h
ai
n
of
co
n
v
ersi
on
ener
gy
The PMSG as
sociate with a
wind
t
u
rbi
n
e i
s
sho
w
i
n
Fi
g
u
re 3. The P
M
GS
a
nd w
h
i
c
h
di
sc
har
g
es
di
rect
l
y
t
h
r
o
ug
h a t
h
ree
-
p
h
ase
di
o
d
e
b
r
i
d
ge,
on
t
h
e
DC
bu
s an
d
th
e D
C
bus
and
t
h
e electrochem
ical battery.
W
i
nd
turb
in
e i
s
a m
ach
in
e that b
y
d
e
fin
ition
,
t
r
an
sfo
r
m
s
wind
en
erg
y
i
n
to
m
ech
an
ical en
erg
y
.
To
b
e
g
i
n
,
it is n
e
cessary to
qu
antify th
e en
erg
y
so
urce av
aila
b
l
e, th
at is to
say; th
e
energy associated with the
win
d
.
A
d
i
fferen
t
app
r
o
a
ch
u
s
ed
in th
e literature
to
gen
e
rate a
syn
t
h
e
tic series of
wind
i
n
o
u
r case, th
e
wi
n
d
s
p
ee
d i
s
m
odel
e
d by
a
s
u
m
of se
veral
harm
oni
cs
[3]
:
)
)
.
sin(
1
(
)
(
0
k
k
k
wind
T
w
A
V
t
V
(6)
Whe
r
e:
V
0
: is a v
a
l
u
e
of wi
nd
v
e
lo
city
A
k
:
i
s
am
pl
it
ud
e o
f
harm
oni
c
W
k
:
i
s
fre
q
u
enc
y
of
ha
rm
oni
c
To
produce
energy, a
wind turbi
n
e re
quires
a wi
n
d
s
p
e
e
d
o
f
mi
n
i
mu
m o
f
(
6
.
3
4
m /
s
)
.
T
h
i
s
i
s
verifie
d
fr
om
all y
ear in the
re
gio
n
of
A
d
ra
r.
3.2. The Turbine Modeling
The i
n
st
ant
a
ne
ous
p
o
w
er
o
f
t
h
e
wi
n
d
i
s
gi
ve
n
by
t
h
e
f
o
l
l
o
w
i
ng e
q
uat
i
o
n [
7
]
,
[1
1]
-
[
1
2
]
:
3
.
.
2
1
V
C
A
P
p
m
(7)
Whe
r
e
is th
e air d
e
n
s
ity wh
ich
is app
r
o
x
i
m
a
te
ly 1
.
2kg
/m
3
,
A
is th
e swep
t area b
y
th
e b
l
ad
es. Th
e
p
o
wer
coefficient
p
C
is a fu
n
c
tion
o
f
th
e tip
sp
eed ratio,
wh
ich is th
e ratio
of th
e lin
ear sp
eed at th
e
tip
of
b
l
ad
es
t
o
t
h
e spee
d of
wi
n
d
,
e
x
pres
se
d
as:
V
R
.
(8
)
R
is th
e
rad
i
u
s
,
is th
e m
ech
an
ical an
gu
lar v
e
l
o
city, resp
ectiv
ely, o
f
th
e
wind
tu
rb
in
e
ro
t
o
r. Ex
pressi
o
n
of
p
C
as a
function
of
e
m
p
l
o
y
ed
in [8
]-
[10
]
ar
e:
0.2121
λ
0
.0856
λ
0
.2539
(9)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 4
,
No
. 2
,
Jun
e
2
014
:
27
4
–
28
0
27
8
Figure
5. The
c
h
aracteristic
us
ed
for the
test
C
λ
The Figure 5, represents t
h
e characteristi
cs powe
r coe
f
ficient as a function
of
,
t
h
e
ma
x
i
mu
m p
o
w
er
coefficient (
=0.15
)
is attain
ed fo
r
ma
x
= 0.7
8
[1
4]
.
Th
e t
u
rb
in
e
u
s
ed
in th
e con
t
ex
t of
ou
r
wo
rd
, is a
wind turbi
n
e “Sa
v
oni
us”
vertical axis
is
show i
n
Fi
gu
re 6.
Fig
u
r
e
6
.
Turb
in
e typ
e
“Savoniu
s
”
w
f
T
T
dt
dw
J
m
em
e
.
(1
0)
Whe
r
e
i
s
t
h
e rot
a
t
i
on m
o
m
e
nt
of i
n
ert
i
a
of t
h
e rot
o
r a
nd t
h
e gene
rat
o
r
kg
.
m
2,
i
s
t
h
e angul
ar vel
o
ci
t
y
o
f
th
e ro
tor in
red
/
s,
is th
e
m
ech
an
ical to
rq
ue ap
p
l
ied
to
th
e alte
rn
at
o
r
sh
aft in Nm
,
em
T
is th
e
el
ect
rom
a
gnet
i
c
t
o
r
q
ue
devel
ope
d
by
t
h
e
ge
nerat
o
r i
n
Nm
and
m
f
u
s
t
h
e
v
i
sco
u
s frictio
n co
efficien
t in Nm
.
Fi
gu
re
7.
To
r
q
ue
of
wi
nd
t
u
r
b
i
n
e
4.
SIMULATION RESULTS
The re
sul
t
s
o
f
sim
u
l
a
t
i
on o
n
t
h
e m
a
t
l
a
b-sim
u
l
i
nk
En
vi
r
o
n
m
ent
of al
l
ass
o
ci
at
ed
bl
oc
k
di
ag
ram
s
. As
sho
w
n i
n
Fi
g
u
re (
8
-
1
1)
. Of
t
h
e wi
nd t
o
r
que
, t
h
e wi
n
d
po
wer an
d t
h
e el
ect
rom
a
gnet
i
c
t
o
rque P
M
SG i
s
regi
st
ere
d
,
an
d
has
fol
l
o
ws
t
h
e
va
ri
at
i
on
of
re
fere
nce
wi
n
d
s
p
eed
.
J
w
e
T
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
Mo
del
i
n
g
of
W
i
nd Ener
gy o
n
Isol
at
ed Area
(
H
ac
he
mi
Gl
ao
ui
)
27
9
Fi
gu
re 8.
W
i
nd
p
r
o
f
i
l
Fi
gu
re 9.
The
wi
n
d
t
o
r
que
Fi
gu
re
1
0
. T
h
e
wi
n
d
p
o
we
r
Fi
gu
re
1
1
. T
h
e
el
ect
rom
a
gnet
i
c
t
o
r
que
PM
S
G
5.
CO
NCL
USI
O
N
Thi
s
art
i
c
l
e
h
a
s desc
ri
be
d t
h
e m
odel
i
ng
of
PM
SG a
n
d m
odel
i
ng
of eac
h m
a
jo
r sy
st
em
com
pone
nt
s:
wi
n
d
,
t
u
rbi
n
e
and
perm
anen
t
m
a
gnet
sy
nc
hr
o
n
o
u
s
ge
ne
r
a
t
o
r.
The si
m
u
l
a
t
i
ons descri
bed i
n
t
h
i
s
pape
r dem
onst
r
at
e t
h
at
t
h
e wi
n
d
t
o
r
q
ue,
t
h
e wi
n
d
p
o
w
er an
d t
h
e
electrom
a
gnetic torque PMSG
i
s
re
gi
st
ered
,
an
d has fol
l
o
w
s
t
h
e vari
at
i
o
n of
re
fere
nce wi
nd
sp
eed
.
Pum
p
i
ng wat
e
r from
borehol
es fo
r w
i
nd po
we
r and rem
o
t
e
areas i
nhabi
t
e
d
or rem
o
t
e
ag
ricu
ltu
ral
areas can
b
e
t
h
e b
a
sis of exp
e
ri
m
e
n
t
al st
u
d
i
es to
valid
ate th
e m
o
d
e
l.
Th
is op
tion
will
allo
w
water m
a
nagers do not ha
ve the energy source as a
const
r
aint [13] especially
in a region whe
r
e the
o
n
l
y w
a
ter
r
e
so
ur
ce
is gr
ound
w
a
ter
.
REFERE
NC
ES
[1]
PB Eriksen, T
Ackermann, H
Abildgaard
,
P Smith, W Wi
nter, JM Rodriguez Garcia. S
y
stem operation with h
i
gh
wind penetration
,
IE
EE
Power
E
n
ergy Mag
. 200
5; 3(6): 65–74.
[2]
AJG Westlake,
JR Bumby
,
E S
pooner. Dampin
g the power-a
ng
le oscillations of
a p
e
rmanent-m
a
gnet s
y
n
c
hrono
us
genera
tor with
p
a
rti
c
ular
ref
e
ren
ce
to wind
turbi
n
e app
lic
ation
.
I
EE Proc.-
Ele
c
tr.
Power Appl.
19
96; 143(3): 269
–
280.
[3]
Messaoudi Iamail Mémoire de
Mast
e. Modélisation d'
un
e petite
éolienne hors réseau basé
sur génératr
ice s
y
nchr
one
à a
i
m
a
nts
perm
a
n
ents
. Univ
ers
i
t
é
of Be
char
l
e
.
20
13.
[4]
Harrouz,
A ben Atialah,
O Har
r
ouz. Modeling
of Small Wind
Energ
y
b
a
sed of
PMSG in South of Algeria. 2nd
International S
y
mposium on
En
vironment Frien
d
ly En
ergies an
d Applic
ations (
EFEA)
Northumbria University.
2012.
[5]
F
W
u
, XP
Zhan
g, P
J
u. S
m
all s
i
g
n
al s
t
abil
it
y
anal
ys
is
and
con
t
rol
of the
wind turb
i
n
e with
the
dir
e
c
t
-drive
perm
ane
n
t
m
a
gnet gen
e
ra
to
r int
e
grat
ed
to
th
e grid
.
Elec
tric
Powe
r
Sy
ste
m
s Re
se
arc
h
.
2009; 79:
1661–1667.
[6]
Guettaf
A, B
e
tk
a A,
Bennis O.
M
e
diterranean J.
Me
asur. Control.
2011; 7(01): 19
0–196.
[7]
Calder
aro V,
Ce
cat
i C,
P
i
c
c
olo
A.
Gr
een Ener
g
y
T
echn
.
,
2010,
vol. 10
, pp
. 337–
366.
0
1
2
3
4
5
6
7
8
9
10
6
7
8
9
10
11
12
13
14
T
i
m
e
[Se
c
]
W
i
nd S
peed
[
m
/
s
]
0
2
4
6
8
10
0
5
10
15
20
25
30
T
i
m
e
[S
ec
]
T
h
e
w
i
n
d
to
rq
u
e
[N
.m
]
0
1
2
3
4
5
6
7
8
9
10
0
50
10
0
15
0
20
0
25
0
30
0
35
0
40
0
Ti
m
e
[
S
e
c
]
The w
i
nd pow
er
[
W
]
0
2
4
6
8
10
0
5
10
15
20
25
30
Ti
m
e
[
S
ec
]
T
h
e
el
ec
t
r
om
agne
t
i
c
t
o
rque
[
N
.
m
]
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
I
J
PED
S
Vo
l. 4
,
No
. 2
,
Jun
e
2
014
:
27
4
–
28
0
28
0
[8]
Sey
oum D, Grantham C.
IEEE Trans. Ind. Electr
on. Control Instrum.,
2003
: 846–8
52.
[9]
M Adam
.
Etude com
p
arative de chaine de conversion
d'
ener
gie dediees a u
n
e eolienne de petite puissance.
Toulouse.
2005
; 46-48.
[10]
Senjy
u
T, Shimabukur
o T, Uezato K.
Position
control o
f
perm
anent magne
t synchronous motors without position
and speed senso
r
s
. P
r
oceedings
of the In
tern
atio
nal IE
EE
/IAS
Conferenc
e
on In
dus
trial Autom
a
tion and
Control
:
Emerging
.
1995.
[11]
Idjdaren
e K,
Re
kioua D,
Rek
i
ou
a T
.
Energy Con
vers. Manag
.,
20
08; 49: 2609–26
17.
[12]
Rekioua D, R
e
kioua T, R
e
kioua
T.
In
t.
J
.
,
Em
er
g
.
E
l
e
c
t.
,
Power
S
y
s
t
.,
2005; 4: 1–
23.
[13]
H Omar. La Gestion des resso
urces en eau en Gironde
(Fra
nce) Schema d'Amenagement et de gestion des
eaux Sag
e
Napp
es prof
on
des.
9
éme
Colloque I
n
ternational
«L'
e
au
et
les
enjeux
d
e
I'
Avenir
», Adrar.
2006.
[14]
S Diaf, M Belhamel, M Haddadi, A Louche.
Assessment of wind energ
y
re
sou
r
ce in southern
Algeria.
Re
vue
des
Energies Renou
velables.
2007
; 1
0
(3): 321-333
BIOGRAP
HI
ES OF
AUTH
ORS
Hach
emi G
l
aou
i*-
was born in
1977 in Bechar-
A
lgeria, he’s
received th
e electr
i
cal eng
i
neering
diploma from B
echar University,-Algeria in 2001,
and the Magister degree from the University
Bechar Alg
e
ri
a
in 2008. And th
e Ph.D. degr
ee
from
the Electr
i
cal
Engineering
Institute of the
University
Bech
ar in 2012
ently
,
h
e
is an
assistant professor at B
ech
ar University
. He is
current
l
y
profes
s
o
r of elec
tri
cal
engine
ering
at
Univers
i
t
y
of
Bechar
, Alger
i
a
,
P
r
ofes
s
o
r of
ele
c
tri
cal
eng
i
ne
ering
at
Univers
i
t
y
of B
ech
ar,
Al
geria
.
E
-
ma
i
l
:
me
kka
60@gma
i
l
.
c
o
m
Harrou
z
Ab
d
e
l
k
ad
er**
obtained Engineer in electro
techn
i
que 2
001 from university
of bechar
,
alger
i
a,
aft
e
r tha
t
, M
a
gis
t
er ‘Aut
om
atique’ : Adv
a
nced d
y
n
a
m
i
cs
com
m
a
nd s
y
s
t
e
m
s
from
Bechar
University
on 2012, Algeria. H
e
worked as insp
ector of mesurement in the Of
fice National of
Measurements from 2003 to2012
. Presen
tly
he is
working as assist
ant professor o
n
Departement
of H
y
dro
carbon
and R
e
newable En
erg
y
, Adrar Univ
e
r
sity
, Alge
ria.
His
a
r
ea
s of inte
re
st a
r
e
me
te
ring S
y
s
t
ems,
Powe
r Sy
ste
m
s,
and Auto
mation. He is
member of Lab
o
rator
y
of
Ener
g
y
Environment an
d S
y
stem Infor
m
ation (LEESI).
He has publis
hed 5 papers in International
Journals and
presented sev
e
ral p
a
pers in
national and
intern
at
iona
l conf
eren
ces
.
Evaluation Warning : The document was created with Spire.PDF for Python.