Internati
o
nal
Journal of P
o
wer Elect
roni
cs an
d
Drive
S
y
ste
m
(I
JPE
D
S)
V
o
l.
6, N
o
. 1
,
Mar
c
h
20
15
,
pp
. 10
~17
I
S
SN
: 208
8-8
6
9
4
10
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPEDS
Enhancement of Power Qualit
y by an Application FACTS
Devices
P
r
a
s
ha
nt
K
u
ma
r
Departem
ent
of
Electri
cal
Eng
i
n
eering
,
Ashokrao Mane Gr
oup
o
f
Institu
tes, Shiv
aji
Universit
y
,
Maharshtra, Indi
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Aug 12, 2014
Rev
i
sed
No
v
18
, 20
14
Accepte
d Dec 5, 2014
The
p
a
per nar
r
ates
wides
p
rea
d
us
e of electric
a
l energ
y
b
y
m
odern
civilization has necessitate
d pro
ducing bulk electrical en
erg
y
economically
and effi
cien
tl
y.
The F
l
exib
le A
C
Trans
m
is
s
i
on s
y
s
t
em
(F
ACTS
) is
a new
techno
log
y
b
a
sed on power electron
i
cs, which offers an op
portunity
to
enhanc
e con
t
rol
l
abil
it
y,
s
t
ab
ili
t
y
,
and
power
trans
f
er
cap
abil
it
y of AC
tra
n
smission sy
ste
m
s.
He
re
SVC
ha
s be
e
n
develo
ped with the combination of
TCSC and TC
R. The p
a
per
contains
sim
u
lation m
odels of
Th
yristor
controll
ed Series
Capacitor (TCS
C) and Th
y
r
istor
controlled Re
ac
tor (TCR)-
based Static VAR Compensator (SVC
) which are the series and shunt
Fle
x
ible AC Transmission Sy
stems (F
ACTS) de
vices. The fact
devices ar
e
designed b
y
con
s
idering th
e lin
e losses and their stability
.
The
design and
simulations of TCSC and TCR-based SV
C show
s the
e
ffec
tive
n
ess of re
sult
using the MATLAB/Sim
u
link.
The design
ed s
y
stem
will tr
y to
reduce
th
e
voltag
e
drops an
d electr
ical losses in th
e networ
k without th
e p
o
ssibilit
y
o
f
transien
t especially
in cas
e of long
transmission sy
stem.
Student feedback
indicates th
at th
is packag
e is user-fri
endly
and
considerab
ly
effective
for
s
t
udents
and res
earch
ers
to s
t
udy theor
y
of con
t
rolled re
acto
r
co
m
p
ens
a
tors
,
s
e
ries
c
a
pa
citor
com
p
ens
a
tor,
a
nd th
e r
e
activ
e
power contro
l and voltag
e
regulation
Keyword:
Facts Controller
Matlab
/
Si
m
u
li
n
k
Thyristor C
ont
rolled Reactor
Th
yristor C
o
n
t
ro
lled Series
Cap
acito
r
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Pras
hant
K
u
m
a
r,
Depa
rtem
ent of Elect
ri
cal
E
n
gi
nee
r
i
n
g,
Ashok
rao
Mane Group
o
f
In
s
titu
tes, Sh
iv
aj
i
Un
i
v
ersity,
Ko
l
h
apur, Sh
i
v
aj
i
Un
iv
ersity, Mah
a
rsh
t
ra,
Ind
i
a.
Em
a
il: p
r
ash
a
nt2
6
8
5
@g
m
a
i
l
.co
m
1.
INTRODUCTION
Since from
th
e last decade we f
acing problem
s
to
m
eet the de
m
a
nd of energy as because of
in
du
strial
g
r
owth
of a n
a
tion
requ
ires in
creased
con
s
u
m
pt
i
o
n
of
ene
r
g
y
,
pa
rt
i
c
ul
ar
ly
electrical energy. T
h
is
h
a
s led
to
i
n
crease th
e g
e
n
e
ratio
n
and
tran
smissio
n
facility to
m
eet
th
e in
creasi
n
g
d
e
man
d
. Fo
r
g
e
n
e
ratio
n
,
tran
sm
issio
n
,
distrib
u
tion
and u
tilizatio
n
o
f
electrical en
erg
y
, 3
p
h
a
se
AC syste
m
s are
u
s
ed
un
iv
ersally. It is
bene
ficial to use AC system
because
of its features like
re
duction
of el
ectrical losses, increasing tra
n
s
m
ission
efficien
cy and
cap
acity, b
e
tter vo
ltag
e
regu
latio
n
,
red
u
c
tio
n
in
cond
u
c
ti
n
g
material, flex
ibilit
y fo
r gro
w
t
h
an
d
p
o
s
sib
ility o
f
i
n
terco
n
n
ection. FACTS C
o
n
t
ro
ller is d
e
fi
n
e
d
as a power electron
i
c-based
syste
m
an
d
th
e o
t
h
e
r
st
at
i
c
equi
pm
ent
t
h
at
pr
o
v
i
d
e co
nt
r
o
l
o
f
one
o
r
m
o
re
AC
t
r
a
n
sm
i
ssion
sy
st
em
param
e
t
e
rs. Thi
s
pa
per
descri
bes basic
types of FAC
T
S controllers
. Use of
HV
AC
is econom
ical
till breake
v
e
n
poi
nt havi
ng
distance
aroun
d
8
00k
m o
n
l
y, after this p
o
i
n
t
HVAC b
eco
m
e
m
u
ch
co
stlier.
The co
ro
na effects ten
d
to
b
e
h
i
gh
ly
si
gni
fi
ca
nt
f
o
r
HV
AC
a
n
d t
h
e
desi
gn
of
AC
con
d
u
ct
o
r
s
bas
e
d
o
n
t
h
e
c
o
r
o
na l
i
m
it
at
i
ons
gi
ves
a c
r
o
ss-s
ect
i
on
m
u
ch larger t
h
an t
h
at with
respect
to ec
onom
ical powe
r
trans
f
er lim
its. Also it nee
d
s hea
v
y s
u
pportive
stru
ctures that lead
to
erectio
n
d
i
fficu
lties. Stab
ility o
f
AC n
e
two
r
k
s
is
v
e
ry low
d
u
e
t
o
th
e lin
e i
n
ductiv
e
reactance.
Vol
t
age c
ontrol is
diffic
ult
for l
o
ng line
due
t
o
se
ries i
n
duct
ance a
n
d ca
pa
citance and re
qui
res
m
o
re co
m
p
lex
circu
its. Hen
c
e th
e reliab
ility
issu
e n
e
ed
s to
b
e
add
r
essed
seriou
sly. To
com
p
en
sate d
r
awb
a
ck
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
En
ha
nce
m
ent
of
P
o
w
e
r
Qu
al
i
t
y
by a
n
Ap
pl
i
c
at
i
o
n
FAC
T
S
Devi
ces (
P
ra
sh
ant
K
u
mar)
11
o
f
HVAC m
e
n
tio
n
abo
v
e
we
requ
ire HVDC transm
issio
n
syste
m
. Th
e
reliab
ility o
f
HVDC is
qu
ite goo
d.
A
DC line
can ca
rry as
m
u
ch
power with two c
o
nductors as
an
AC lin
e with th
ree co
ndu
cto
r
s of t
h
e same lin
e.
In
HVDC t
h
ere are less
power losse
s, a
b
se
nce
of
ski
n
effect, less c
o
rona effect as c
o
m
p
ared t
o
AC.
No
co
m
p
en
satio
n
is req
u
i
red
,
n
o
li
m
its fo
r
power tran
sfer an
d co
n
t
ro
l
o
f
v
o
ltag
e
is easi
e
r.It
is
n
o
t
po
ssib
le and
econom
i
cal to
replace
already exists AC transm
ission sy
ste
m
by HVDC
up to c
e
rtain
brea
ke
ven level
of
po
we
r as wel
l
as di
st
ance.
Th
e con
v
e
r
t
e
r re
qui
red at
bot
h
t
h
e en
d o
f
t
h
e
l
i
n
e have
p
r
o
v
e
d t
o
be rel
i
a
b
l
e but
they are m
u
ch m
o
re expe
nsi
v
e tha
n
t
h
e c
o
nve
ntional
equipm
ents. HVDC conve
r
ters
need c
o
m
p
lex cooling
sy
st
em
s. M
a
i
n
tenance
of i
n
sul
a
t
i
on i
s
m
o
re i
n
H
VDC
. T
h
e
DC
sy
st
em
cannot
be em
pl
oy
ed f
o
r a di
st
ri
b
u
t
i
o
n
,
su
b tran
sm
issi
o
n
and
t
h
e
b
a
ck
bon
e tran
sm
is
sio
n
.
Vo
ltag
e
tran
sfo
r
m
a
tio
n
is no
t easier i
n
case
o
f
DC;
hen
ce it
h
a
s to b
e
acco
m
p
lish
e
d
on
th
e AC si
d
e
o
f
syste
m
. So
it is
not
m
u
ch
su
itab
l
e fo
r transmissio
n
in
terconn
ection
s
.
Power
syste
m
en
g
i
n
eers are
cu
rren
tly faci
n
g
ch
alle
ng
es t
o
in
crease th
e
power t
r
an
sfer cap
a
b
ilities o
f
ex
istin
g
tran
smissio
n
system
. Th
is is wh
ere th
e Flex
ibl
e
AC Tra
n
sm
ission
System
s
(FACT
S
) tec
h
nology
co
m
e
s in
to
effect. W
ith
relativ
ely lo
w in
v
e
st
m
e
n
t
, co
m
p
ared
to
n
e
w transmissio
n
o
r
g
e
n
e
ration
facilities, th
e
FACTS technology allows the indust
r
ies to better utili
ze the existing transm
ission and
gene
ration res
e
rves
,
while e
n
hanci
n
g the
power system
perform
ance. More
ove
r, th
e curren
t tren
d
o
f
deregu
lated electricity
m
a
rket also
fa
vo
rs t
h
e
FAC
T
S c
ontr
o
llers
in m
a
ny
wa
y
s
. FACTS contro
llers i
n
t
h
e
d
e
regu
lated
el
ectricity
mark
et allow t
h
e system
to
be u
s
ed in
m
o
re flex
i
b
le
way
with
i
n
crease i
n
v
a
ri
o
u
s stab
ility
m
a
rg
in
s. FACTS
cont
rol
l
e
rs are
pro
d
u
ct
s of
FAC
T
S t
ech
n
o
l
o
gy
;
a gro
u
p
of
powe
r electronics controllers expect
ed to
rev
o
l
u
t
i
o
ni
ze t
h
e p
o
we
r t
r
ans
m
i
ssi
on and
di
st
ri
but
i
o
n sy
ste
m
in
many ways. The FAC
T
S cont
rollers
clearly
en
h
a
n
ce power syste
m
p
e
rfo
r
man
ce, i
m
p
r
ove q
u
a
lity o
f
sup
p
l
y and
also
p
r
ov
id
e an
o
p
t
i
m
al u
til
izatio
n
o
f
th
e
ex
istin
g resou
r
ces. Th
yristor Co
n
t
ro
lled Series Co
m
p
en
sato
r
(TCSC) is a k
e
y
FAC
T
S con
t
ro
ller
an
d is
wid
e
ly reco
gn
i
zed
as an
effectiv
e an
d
econ
omical
mean
s to
enh
a
n
ce power system
s
t
ab
ility. In
th
is p
a
p
e
r an
ove
r
v
i
e
w t
o
t
h
e gene
ral
t
y
pes of F
A
C
T
S c
ont
rol
l
e
rs i
s
gi
ven al
on
g wi
t
h
t
h
e si
m
u
l
a
t
i
on
of TC
SC
F
A
C
T
S
co
n
t
ro
ller u
s
i
n
g
SIMULINK. An
alysis o
f
th
e
sim
u
lated
TCSC show
s sim
i
lar
fu
n
c
tion
s
as a ph
ysical on
e.
2.
THEORY OF THYRISTOR-CON
TROLLED AND THYRISTOR-
SWITCHED REACTOR
(TCR
AN
D TS
R
)
An elem
entary single phase
T
h
yristor-c
ont
ro
lled reactor
(T
CR) is s
h
own i
n
Fi
gure
1.
Figure
1. Basic Thyrist
o
r-cont
rolle
d react
or
(TCR) firi
ng Delay Angl
e Control and
opera
ting
wave
form
It consists of a
fixe
d react
or
of inducta
nce L, and
a bi
directional t
h
yristors
valve
or a
swit
ch s
w
. T
h
e
current in the reactor can
be cont
rolled from
m
a
xim
u
m
to zero by the m
e
thod of firi
ng
delay angle
control.
That is, closure of the thyrist
o
rs
valv
e is de
layed with res
p
ect to the pea
k
of the a
pplie
d voltage in each half
cycle an
d thu
s
th
e
d
u
ratio
n
o
f
th
e cu
rren
t con
d
u
c
tion
i
n
te
rvals is con
t
ro
lled
.
Th
is m
e
th
o
d
s of cu
rren
t con
t
ro
l
is illu
strated
sep
a
rately fo
r the po
sitiv
e an
d
n
e
g
a
tiv
e half
cycles in
Figu
re 1
,
wh
ere th
e ap
p
lied vo
ltag
e
v
an
d
the rect
or
curre
nt i
L
(
α
), at zero delay angle a
n
d at a
r
bitra
r
y
α
delay angle, are shown.
The c
u
rre
n
t in
the react
or can
be
e
x
presse
d
with, v (t) =
V c
o
s
ω
t as
fo
llow:
i
L
s
i
n
s
i
n
(
1
)
Whe
r
e
V is the am
plitude
of the applied ac
voltage, L
is t
h
e inductance
of t
h
e th
yr
isto
r-
con
t
ro
lled
reacto
r,
and
ω
is t
h
e
an
gu
lar
frequ
e
n
c
y of th
e app
lied
v
o
lta
ge
.
T
he TC
R
ca
n
co
nt
rol
t
h
e fundam
ental current
co
n
tinuo
usly f
r
o
m
zer
o
(v
alve op
en)
t
o
t
h
e
m
a
xi
m
u
m
(val
ve
cl
ose
d
).
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
IJPE
DS
V
o
l
.
6, N
o
. 1,
M
a
rc
h 20
1
5
:
1
0
– 17
12
SVC
C
o
nfi
g
u
r
at
i
ons:
Pr
o
v
i
d
i
ng
react
i
v
e s
h
unt
c
o
m
p
en
satio
n
with
shun
t-conn
ected ca
pacitors a
nd
reactors is a
well-established
technique t
o
get a better
vol
t
a
ge
profile in
a powe
r syste
m
[2]. The
bas
i
c for
m
of
reactive power c
o
m
p
ensation
require
d
, t
o
com
p
ensate
reactive power load
s
,
i
s
t
h
e f
i
xed s
h
unt
ca
p
aci
t
o
rs
bei
n
g wel
l
di
s
t
ri
but
e
d
acr
oss
t
h
e net
w
o
r
k
and l
o
cat
ed
pr
efera
b
l
y
cl
ose
d
t
o
t
h
e l
o
a
d
s
.
Thi
s
wo
ul
d
ens
u
r
e
r
eason
ab
le vo
l
t
ag
e pr
of
ile du
r
i
n
g
st
eady
s
t
at
e con
d
i
t
i
on.
H
o
we
ver
,
t
h
i
s
m
a
y
not
be
ade
quat
e
t
o
ens
u
re
stability unde
r overloa
d
or
continge
ncy c
o
nditions. S
hunt capacitors
ar
e ine
x
pensi
v
e but lack
dynam
i
c
cap
ab
ilities, th
u
s
so
m
e
fo
rm
o
f
d
y
n
a
m
i
cal
ly
co
n
t
ro
lled
reactiv
e p
o
wer com
p
en
satio
n
b
e
co
m
e
s essen
tia
l. The
pha
se angl
e be
t
w
een t
h
e en
d vol
t
a
ge
s, det
e
r
m
i
n
ed by
t
h
e real
co
m
pone
nt
of t
h
e l
i
n
e cur
r
ent
,
i
s
not
af
f
ect
ed
by the shunt com
p
ensation. Si
milarly,
adding a reactor inste
a
d of a ca
pac
itor i
n
shunt will re
duce the
vol
t
age
.
Instea
d of m
e
c
h
anical s
w
itching
(using
circuit breake
r
s)
of
these de
vices,
we can
u
s
e th
y
r
isto
r
v
a
lv
es, th
ereby
in
creasing
t
h
e
co
n
t
ro
l cap
a
b
ility rad
i
cally. Th
is ap
pr
o
a
ch
is called
static VA R co
m
p
en
satio
n
(SVC).
Fi
gu
re
2.
B
a
si
c co
nfi
g
u
r
at
i
o
n
st
at
i
c
var c
o
m
p
ensat
o
r
SVC
ca
n
be
of
one
o
f
t
h
e f
o
l
l
o
wi
n
g
t
y
pes:
1.
Thyrist
o
r c
o
ntrolled Reactor (TCR)
2.
TC
R
pl
us Fi
xed
C
a
paci
t
o
r
(FC
)
3
.
Th
yrist
o
r switch
e
d
Cap
acito
r
(TSC)
4. TSC
pl
us
T
C
R
Figure
2 is a
one-line
diagra
m of a typical static
VAR sy
s
t
em
for the t
r
a
n
sm
i
ssi
on ap
pl
i
cat
i
on. TSC
pl
us TC
R
i
s
very
po
pul
a
r
an
d m
o
st
effect
i
v
e. Fi
g 3 gi
v
e
s th
e g
e
n
e
ral id
ea o
f
realizatio
n o
f
SVC using TSC
p
l
u
s
TCR sch
e
me. Th
e id
ea is to
sen
s
e th
e vo
ltag
e
of th
e lin
e and
k
e
ep
it
stab
le b
y
in
trod
u
c
i
n
g
cap
acitan
ce or
inductance
in t
h
e circ
uit.
Th
e Fi
g
u
re 3
p
r
esen
ts an
equ
i
v
a
len
t
circu
it o
f
th
e TCR. Th
e TCR co
n
s
ists o
f
two
th
y
r
isto
r in
an
ti-
p
a
rallel, a reacto
r.
Also
in
t
h
e th
ree phase
applications, t
h
e basic TCR
ele
m
ents are connected i
n
de
lta. A
SM
IB
sy
st
em
wi
t
h
a TC
R
ba
sed S
V
C
as s
h
ow
n i
n
Fi
g
u
r
e
4
.
Th
e shu
n
t
co
n
t
ro
ller is i
n
jects cu
rren
t i
n
to
the
l
i
n
e at
poi
nt
of
com
m
on coup
l
i
ng (PC
C
)
. Th
e
m
a
i
n
funct
i
o
n o
f
TC
R
i
s
t
o
curre
nt
co
nt
r
o
l
l
e
d by
cont
r
o
l
l
i
n
g
t
h
e fi
ri
ng a
n
gl
es of
t
h
y
r
i
s
t
o
r.
So
ob
vi
ousl
y
po
we
r can
be
cont
rol
l
e
d
.
Si
n
ce co
nt
rol
ca
n
be ac
hi
eve
d
i
n
ever
y
cycle o
f
th
e v
o
ltag
e
wav
e
form b
y
(co
n
t
ro
llin
g
th
e co
ndu
ctio
n
ti
m
e
o
f
th
yristo
rs), th
e con
t
ro
l is v
e
ry fast an
d
accurate.
Fi
gu
re
3.
B
a
si
c st
ruct
ure
o
f
T
C
R
Fi
gu
re
4.
SM
I
B
sy
st
em
wi
t
h
a TC
R
base
d
S
V
C
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
En
ha
nce
m
ent
of
P
o
w
e
r
Qu
al
i
t
y
by a
n
Ap
pl
i
c
at
i
o
n
FAC
T
S
Devi
ces (
P
ra
sh
ant
K
u
mar)
13
3.
THEORY OF THYRISTOR
CONTROL
LED
SERIES
C
A
P
AC
ITOR (
T
CSC)
The basi
c co
n
cept
u
al
TC
SC
m
odul
e com
p
ri
ses a seri
es capaci
t
o
r
,
C
,
i
n
pa
ral
l
e
l
wi
t
h
a t
h
y
r
i
s
t
o
r-
cont
rolled reac
tor, LS, as shown in
Figure 5(a).
A TCSC i
s
a series-c
ontrolled capacitive
reactance that can
pr
o
v
i
d
e c
ont
i
n
uo
us c
ont
rol
o
f
p
o
we
r
on t
h
e ac l
i
n
e ove
r
a wi
de ra
n
g
e
.
Fr
om
t
h
e syst
em
vi
ewp
o
i
n
t
,
t
h
e
pri
n
ciple of v
a
riable-se
r
ies com
p
ensation
is
sim
p
ly
to increase
the
f
u
ndam
e
ntal-fre
q
u
ency
v
o
ltage
acr
oss
fi
x
e
d
cap
acitor (
F
C)
in
a ser
i
es-
co
m
p
en
sat
e
d
lin
e th
r
ough
app
r
o
p
r
i
ate v
a
r
i
ation
o
f
the
fi
ri
ng a
ngl
e [
4
]
.
Thi
s
enha
nce
d
volta
ge c
h
anges the
effective
va
l
u
e
of the
series-c
apacitive react
ance.
Sim
p
l
e
u
nde
rst
a
ndi
ng
of
TC
S
C
fu
nct
i
o
ni
n
g
can be o
b
t
a
i
n
e
d
by
a
n
al
y
s
i
n
g
t
h
e beha
vi
o
u
r
of
a vari
a
b
l
e
in
du
ctor co
nn
ected
in
p
a
rallel with
an
FC, as sho
w
n
i
n
Fi
gure
5
(
b
)
.
(a)
(b
)
Fi
gu
re
5.
TC
S
C
M
o
d
u
l
e
(a)
B
a
si
c
m
odul
e
and
(
b
)
A
Va
ri
abl
e
i
n
duct
o
r
c
o
n
n
ect
ed
i
n
sh
unt
wi
t
h
FC
The e
q
ui
val
e
nt
im
pedanc
e, Ze
q,
o
f
t
h
i
s
LC
c
o
m
b
i
n
at
i
on i
s
exp
r
esse
d as:
)
(
)
1
(
jwL
wc
j
Z
eq
(
2
)
The i
m
pedance
o
f
t
h
e
FC
al
o
n
e
, h
o
w
eve
r
,
i
s
gi
ve
n
by
–
j
(1
/
C).
If
C
−
(1
/
L) >
0
o
r
,
i
n
ot
her
wo
rd
s,
L >
(1 /
C), t
h
e
react
ance
of t
h
e
FC
is less
tha
n
that
of
the parallel-connecte
d
va
riable reactor a
nd t
h
at this
com
b
ination
provide
s
a vari
a
b
le-ca
p
acitive reacta
n
ce are
bot
h im
plied. More
ove
r, t
h
is inductor inc
r
e
a
ses the
e
qui
valent capacitive reactan
ce of the
LC
com
b
ination
above
that
of
the FC. If
C
−
(1
/
L)
=
0, a
re
so
na
nce
de
vel
o
ps t
h
at
res
u
l
t
s
i
n
an
i
n
fi
n
ite cap
acitiv
e
i
m
pedance a
n
obvi
ously
unaccepta
ble
c
o
ndition. If, howeve
r,
C
−
(1 /
L) <
0
,
t
h
e LC co
m
b
in
atio
n
provides i
n
duc
t
ance a
bove the value
of the
fi
x
e
d
indu
cto
r
. Th
is situ
ation co
rresp
ond
s t
o
th
e i
n
du
ctiv
e m
o
d
e
of the TCSC
ope
ration. In the va
riable-ca
p
acitance m
ode of the TCSC, as the
inductive reactance
of the
varia
b
le induc
tor is inc
r
ease
d
, t
h
e equi
valent-ca
p
ac
itive reactance
is gradually
decre
a
sed. The
m
i
ni
m
u
m
equi
valent-ca
p
acitive reactance is obtaine
d for extrem
el
y large inducti
ve reacta
n
ce or when t
h
e va
riable
inductor is ope
n
-circ
u
ited,
in
whic
h the
val
u
e is equal to the reactan
ce of the
FC
itself. The beha
vi
our of
t
h
e
TCSC is sim
i
l
a
r to th
at
of the p
a
rallel LC co
m
b
in
atio
n
.
T
h
e
differe
n
ce i
s
that t
h
e LC
-c
om
bination a
n
alysis is
base
d on t
h
e
p
r
esence
of p
u
r
e si
nus
oi
dal
v
o
l
t
a
ge and cu
rre
nt
in the circuit, wherea
s
in the TCSC, beca
use of
the voltage and curre
nt in t
h
e FC and thyristor-c
on
trolled react
or (T
CR) are
not s
i
nus
oidal
beca
use of
th
yristo
r switch
i
ng
.
The se
ri
es c
o
m
p
ensat
i
on
pr
ovi
ded
by
t
h
e
TC
SC
can
b
e
ad
just
e
d
ra
pi
dl
y
t
o
e
n
s
u
r
e
speci
fi
ed
m
a
gni
t
ude
s o
f
po
wer
fl
ow alo
n
g
design
ated tran
sm
issio
n
lin
es. Th
is cond
itio
n
is ev
i
d
en
t fro
m
th
e T
C
SC’s
efficien
cy, th
at
is, ab
ility to
ch
ang
e
its
po
wer
fl
ow as a
function
of its
capacitive-reactance setting:
sin
)
(
2
1
12
XC
XL
V
V
P
(3)
Whe
r
e:
P
1
2
=
th
e pow
er
fl
ow
f
r
om
b
u
s
1 t
o
b
u
s
2
V
1
,
V
2
= th
e vo
ltag
e
m
a
g
n
itud
e
s
o
f
bu
ses 1
an
d 2,
r
e
sp
ecti
v
ely
XL =
the line
-
i
n
ductive
reacta
n
ce
XC = t
h
e c
o
ntrolled TCSC
re
actance c
o
m
b
ined with
fi
xed-series- ca
pacit
o
r reactance
d = t
h
e
di
ffe
re
nce i
n
t
h
e
v
o
l
t
a
ge a
ngl
es
o
f
bu
ses 1
an
d
2
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
IJPE
DS
V
o
l
.
6, N
o
. 1,
M
a
rc
h 20
1
5
:
1
0
– 17
14
This cha
n
ge in transm
itted power is
furt
her
accom
p
lished
with m
i
nimal in
fl
uence
o
n
t
h
e vol
t
a
ge
of
in
terconn
ecting
b
u
s
es, as it introd
u
ces vo
ltage in
q
u
a
d
r
at
ure
.
I
n
c
ont
rast
, t
h
e SVC
i
m
pro
v
e
s p
o
we
r t
r
a
n
s
f
er by
su
bstan
tially
m
o
d
i
fyin
g
th
e in
terconn
ecting
bu
s
v
o
ltag
e
, wh
ich
m
a
y
c
h
ang
e
th
e
po
wer in
to
an
y con
n
ected
passive
loa
d
s.
The
free
dom
to locate a
TCSC
alm
o
st any
w
he
re in a line is a signi
fi
ca
nt adva
ntage.
Power-
fl
ow con
t
ro
l do
es no
t n
ecessitate
t
h
e hi
gh-
spee
d o
p
erat
i
o
n o
f
p
o
w
er
-
fl
o
w
co
nt
r
o
l
de
vi
ces. He
nce di
s
c
ret
e
cont
rol
t
h
r
o
ug
h a
TSSC
m
a
y
al
so
be a
d
e
q
u
a
t
e
i
n
cert
a
i
n
s
i
t
u
at
i
ons.
H
o
w
e
ver
,
t
h
e
TC
S
C
can
not
re
ver
s
e t
h
e
po
we
r
fl
ow
in a
line, unli
k
e HVDC
c
ont
rol
l
ers
and phase shifters
.
Fi
gu
re
5.
TC
S
C
co
nt
rol
l
e
r
m
odel
4.
R
E
SU
LTS AN
D ANA
LY
SIS
4.
1.
Simulati
on Model of
Shu
nt Connected
T
C
R
on 1-p
h
as
e
Line
In fi
rst case study, a single-phase
syste
m
with TCR is consi
d
ere
d
.T
he single-phase trans
m
ission line
is si
m
u
lated
usin
g
M
A
TLAB/Si
m
u
lin
k
.
In th
e sim
u
latio
n
stud
y, it is assu
m
e
d
th
at the cu
rren
t sou
r
ce p
e
ak
a
m
p
litu
d
e
= 50
A, It is conn
ected
to
cap
acitiv
e lo
ad th
roug
h
Pi tran
sm
issio
n
lin
e, and
t
h
e TCR con
t
roller is
sh
un
t conn
ected
to
th
e tran
smissio
n
lin
e.
An
alysis an
d c
o
m
p
ari
s
on a
r
e
do
ne
based
o
n
t
h
e re
sul
t
s
o
b
t
a
i
n
ed
fr
om
t
h
e l
i
n
e
po
we
r of t
h
e
si
ngl
e-
p
h
ase l
i
n
e em
pl
oy
i
ng t
h
e shu
n
t
co
nt
r
o
l
l
e
r, i
n
t
e
rm
s of out
p
u
t
po
we
r
wave
f
o
rm
s, ou
t
put
c
u
r
r
ent
wa
vef
o
rm
, o
u
t
p
ut
vol
t
a
ge wa
ve
f
o
rm
s. The
Des
i
gn
of
TC
R
i
s
as sh
ow
n i
n
Fi
gu
re
6.
Th
e
PW
M techn
i
qu
e is
u
s
ed
t
o
co
n
t
ro
l t
h
e
firing
p
u
l
ses to
gates o
f
bo
th thyristo
rs.
Fi
gu
re 6.
Desi
gn
M
o
del
of T
C
R
4.
2.
Simulati
on Model of
Series Co
nnected
T
C
SC on 1-phase
Line
In sec
o
nd ca
se study, a
single-phase s
y
ste
m
with
TCSC is considere
d
. T
h
e
single-phase
tran
sm
issio
n
li
n
e
is si
m
u
late
d
u
s
ing
MATLAB/Sim
u
lin
k
.
In
th
e sim
u
l
a
tio
n
stud
y, it is assu
m
e
d
t
h
at the
cu
rren
t so
urce
p
eak
am
p
litu
de = 5
0
A,
It is co
nn
ected
t
o
in
du
ctiv
e lo
ad
t
h
rou
g
h
Pi transmissio
n
lin
e,
an
d
t
h
e
TCSC controller is se
ries c
o
nnected
t
o
t
h
e transm
ission line. Analysis an
d
c
o
m
p
ari
s
on
are do
ne base
d
o
n
t
h
e
resul
t
s
obt
ai
ne
d f
r
om
t
h
e l
i
n
e po
we
r o
f
t
h
e si
ngl
e
-
p
h
ase
l
i
n
e em
pl
oy
i
ng t
h
e se
ri
es c
ont
rol
l
e
r,
i
n
t
e
rm
s of
out
put
p
o
w
e
r
wave
f
o
rm
s, o
u
t
put
c
u
r
r
e
n
t
w
a
vef
o
rm
, o
u
t
p
ut
v
o
l
t
a
ge
wa
v
e
fo
rm
s. The
D
e
si
gn
o
f
TC
S
C
i
s
as
sh
own
in Fi
g
u
re 7
.
Th
e PWM
tech
n
i
qu
e is u
s
ed
to con
t
ro
l the firing
pu
lses
to
g
a
tes of
b
o
t
h
th
y
r
isto
rs.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
En
ha
nce
m
ent
of
P
o
w
e
r
Qu
al
i
t
y
by a
n
Ap
pl
i
c
at
i
o
n
FAC
T
S
Devi
ces (
P
ra
sh
ant
K
u
mar)
15
Fi
gu
re 7.
Desi
gn
M
o
del
of T
C
SC
4.
3.
Simulati
on Re
sults of
Sh
unt Connected
T
C
R
In
sing
le ph
ase tran
sm
issio
n
lin
e, In
pu
t po
wer g
e
ts 100
KW
b
y
sim
u
lat
i
n
g
m
o
d
e
l o
f
TCR as sh
own
in
Figu
re
8
.
Th
en
po
wer d
e
creases in
tran
smissio
n
lin
e du
e to
presen
t lin
e p
a
ram
e
ters. Bu
t u
s
ing
TC
R sh
un
t
cont
roller, the
powe
r trans
f
er capacity
of l
i
ne i
n
crease
s
and at
t
h
e l
o
ad
si
de po
we
r get
s
50
K
W
as s
h
ow
n i
n
Fi
gu
re 9.
Al
so
by
usi
n
g sh
unt
cont
r
o
l
l
e
r v
o
l
t
a
ge co
nt
rol
i
s
pos
si
bl
e. The a
n
al
y
s
i
s
sho
w
s t
h
at
i
f
com
p
ensat
i
o
n
is p
r
ov
id
ed
thro
ugh
TCR contro
ller then th
e
syste
m
attain
s stab
ility at a faster rate.
Figure
8.
Input
Power in RMS
Figure
9.
Loa
d
Power in RMS
4.
4.
Simulati
on Re
sults of
Series Connected
T
C
SC
In
si
n
g
l
e
p
h
ase
t
r
ansm
i
ssi
on l
i
n
e,
In
p
u
t
p
o
w
e
r
get
s
4M
W by
sim
u
l
a
t
i
ng m
odel
o
f
TC
SC
a
s
sh
ow
n i
n
Fig
u
re 10
. Th
en
po
wer d
e
creases in
tran
sm
i
ssio
n
lin
e
d
u
e
to
p
r
esen
t lin
e p
a
ram
e
ters. But u
s
in
g
TCSC
series
cont
roller, the
powe
r tra
n
s
f
er capacity of li
ne i
n
creases
a
n
d
at
t
h
e
l
o
a
d
si
de
po
we
r
get
s
3
.
9M
W as
s
h
ow
n i
n
Fig
u
re 11
. The an
alysis sh
ows th
at if co
mp
ensatio
n
is pro
v
i
d
e
d
thro
ugh
TCSC con
t
ro
ller th
en
th
e
syste
m
attain
s stab
ility
at a faster rate.
Fig
u
r
e
10
.
I
npu
t Po
w
e
r
i
n
R
M
S
Figu
re
1
1
. L
o
a
d
P
o
wer i
n
RM
S
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-86
94
IJPE
DS
V
o
l
.
6, N
o
. 1,
M
a
rc
h 20
1
5
:
1
0
– 17
16
4.
5.
PID
C
o
ntr
o
lle
r is Desi
gned
f
o
r T
CR
an
d T
C
S
C
Th
e
PID con
t
ro
ller is a v
e
ry
si
m
p
le co
n
t
ro
ll
er,
bu
t th
e m
a
j
o
r drawb
a
ck
is th
at th
ere is no
an
alytical
way
of fi
n
d
i
n
g t
h
e opt
i
m
al
set
of param
e
ters K
P
, K
I
, a
n
d K
D
. Th
e con
v
e
n
tion
a
l Prop
ortion
a
l In
tegratio
n
Deri
vative (PID) st
ruct
ure
re
m
a
ins the controllers
of ch
oi
ce in m
a
ny indust
r
ial applications
because
of its
stru
ctural simp
licity, reliab
ility an
d
th
e fav
ourab
le
ratio
betw
een
p
e
rfo
r
m
a
n
ce and co
st. Beyond th
ese
b
e
n
e
fits, th
is co
n
t
ro
ller also
o
f
fers sim
p
lified
d
y
n
a
m
i
c
mo
d
e
lling
,
lower u
s
er sk
ill req
u
irem
en
t, an
d
min
i
m
a
l
devel
opm
ent
e
f
f
o
rt
.
The
de
si
gn
o
f
P
I
D c
ont
rol
l
e
r i
s
sam
e
for
TC
R
an
d
T
C
SC
.
5.
CO
NCL
USI
O
N
Thi
s
pa
pe
r p
r
e
s
ent
s
t
h
e TC
R
and TC
SC
co
n
t
rol
l
e
r de
vel
o
p
e
d by
usi
n
g t
h
e M
A
TLAB
/
Si
m
u
li
nk. T
h
e
devel
ope
d
so
ft
ware
pac
k
a
g
e
con
s
i
s
t
s
o
f
t
w
o
m
a
i
n
ap
pl
i
cat
ion
m
e
nus w
h
i
c
h are
t
h
e
TC
S
C
m
e
nu a
n
d
t
h
e TC
R
-
base
d S
V
C
m
e
nu
. T
h
ese m
e
nus i
n
cl
u
d
e se
v
e
nt
een
si
m
u
l
a
ti
on m
odel
s
a
b
out
di
f
f
ere
n
t
a
ppl
i
cat
i
o
ns
of
TC
SC
and
TC
R
-
base
d S
V
C
.
T
h
e e
f
fect
s
of
t
h
e
TC
SC
an
d
TC
R
-
b
a
sed
SVC
o
n
l
o
ad
vol
t
a
ge
h
a
ve
bee
n
st
udi
e
d
i
n
t
h
e
single-phase a
nd t
h
ree
-
phase
syste
m
with
static load
t
y
pes. B
e
si
des, a
si
ngl
e-m
achi
n
e
i
n
fi
ni
t
e
-
bus s
y
st
em
wi
t
h
st
at
i
c
l
o
a
d
t
y
pe
ha
s
be
en st
udi
e
d
.
T
h
e st
udi
e
d
power system
s a
r
e two and t
h
ree
bus
with
a long
t
r
ansm
i
ssi
on l
i
n
e m
odel
.
I
n
t
h
i
s
pa
per
,
we
have
dem
onst
r
at
ed fe
w ap
pl
i
cat
i
ons
of t
h
e
FAC
T
S c
o
nt
r
o
l
l
e
r such
as a single-phase syste
m
with TCSC
for the static
l
o
ad, a
nd a
SM
IB
sy
st
em
wi
t
h
TC
R
-
base
d S
V
C
fo
r t
h
e
st
at
i
c
l
o
ad. Th
e sim
u
l
a
t
i
on r
e
sul
t
s
sh
ow t
h
at
si
gni
fi
cant
i
m
provem
e
nt
on v
o
l
t
a
ge re
g
u
l
at
i
on an
d rea
c
t
i
v
e
po
we
r com
p
ensat
i
o
n i
s
obt
ai
ned by
u
s
i
n
g t
h
e TSC
an
d t
h
e TC
R
-
b
a
sed SVC
.
A s
u
r
v
ey
w
h
i
c
h
has si
x
state
m
ents regardi
ng facts c
o
ntroller was prepare
d
.
Acco
rdin
g
to
th
e survey,
m
a
j
o
rity o
f
th
e stu
d
e
n
t
s tho
ugh
t
that the MATL
AB s
o
ftwa
re
package
is
user-f
r
i
end
l
y, easy t
o
u
n
d
e
rstand
a
n
d
seve
ral
sy
st
em
param
e
t
e
rs coul
d
be cha
n
ged ea
sily. This pac
k
age is c
onsi
d
erably effec
tive for stud
en
ts an
d
instru
ct
o
r
s to
stu
d
y
th
eo
ry of
co
n
t
ro
lled
co
mp
ensato
rs, th
e
reactiv
e power co
n
t
ro
l an
d
vo
ltag
e
regu
latio
n. Fu
ture wo
rk
will con
c
en
trate on
d
e
sign
ing
lab
o
rato
ry pro
t
o
t
yp
es of th
e TCSC an
d
th
e TCR-b
a
sed
SVC d
e
v
i
ces to
p
r
ov
id
e th
e abilit
y to
expe
ri
m
e
nt
al
ly ve
ri
fy
t
h
e M
A
TLAB
s
o
ft
war
e
pac
k
age
.
REFERE
NC
ES
[1]
NG Hingorani,
L G
y
ug
y
i
, Understanding FACTS,
IEEE Press
,
New York, 1999
.
[2]
Abo
y
tes F,
Arro
yo G
,
Vil
l
a G.
Applica
tion of
Static
V AR Co
mpensators in Longitudinal Power S
y
stems,
IEEE
Trans on PAS
, 1
983; 102: 3460-
3466.
[3]
R Arulmozhiy
al, K Baskaran
, I
m
plementation
of a Fuzzy
PI
Controller
for Speed Contro
l of
Induction Motors
Using FPGA,
Journal
of Power Electronics,
201
0; 10: 65-71.
[4]
LAS Pilotto, AR Carvalho, A Bianco
, W
F
Lo
ng, FL Alvarado, CL
DeMarco,
A Edris,
The Impact of Differ
e
nt
TCSC Control
Methodologies on th
e Subsynchronous Resona
nce Problem
, P
r
oceed
ings
of EP
RI Conference
on
FACTS, Washington, DC, 1996.
[5]
N Chris
tl, P
Lu
elzb
erger
,
M
P
e
reira
,
K S
a
dek
,
P
E
Kraus
e
, AH M
onto
y
a, DR
Torgers
on, BA
Vos
s
l
er,
Advan
c
ed
Series Compens
a
tion with
Varia
b
le Impedan
ce
,
P
r
oceedings
of
EP
RI Conferen
c
e
on F
A
CTS
,
19
90.
[6]
RM
M
a
thur, RK Varm
a, Th
y
r
i
s
tor-Bas
ed F
A
CTS
Controllers
for Elec
tric
al Tr
ans
m
is
s
i
on
S
y
s
t
em
s
,
IEEE Press
,
USA, 2002
[7]
M He
day
a
ti,
Technical specification and requirement
s of static VAr compensatio
n (
S
VC
)
protection consist of TCR,
TSC and combi
n
ed TCR/TSC
, P
r
oceedings
of t
h
e 39th Interna
t
ional Univers
i
ti
es
P
o
wer Engineering Confer
en
ce,
Bristol, UK, 200
4; 1: 261–264.
[8]
CIGRE Working Group 14.18
,
Th
y
r
istor-Con
trolled Series Compensation,
Technical Brochure
, Par
i
s, 1996.
[9]
A Ghosh, G Ledwich,
Modellin
g and control of thyristor controlled series com
p
ensators
, IEE P
r
oc. G
e
nera
tio
n
Transmission an
d Distribution, 1
995; 142(3): 297
-304.
[10]
D Zhang
, et al.
,
Common
Mode
Circulating Curr
ent Control of
Interl
eaved Thr
ee-
P
h
as
e Two-Leve
l Voltage-S
ourc
e
Converters wi
th
Discontinuous Space-Ve
ctor
Modulation
,
2009
I
EEE
Energy Co
nversion Congress and Expositio
n,
2009;
1(6):
3906
-3912.
[11]
A Gelen, T Yalcinoz, Th
e b
e
haviour of
TSR-based SVC and TCR-based SVC inst
alled in
an
infinite bus s
y
stem,
Pr
oceed
ings
of the IEEE 25
th
C
onvention Electr
ical and Elect
ro
nics Engineers in Israel
, Eilat, I
s
rael, 2008; 120
–
124.
[12]
Z Yinhai
, et a
l
.
, A Novel SVPWM Modulation Scheme,
Applied Pow
e
r Electronics
Conferen
ce and Exposition,
2009. APEC
200
9. Twenty-Fourth Annual IEEE
, 2009;
128-131.
[13]
BK Johnson,
Simulation of TSC
and TSSC
, P
r
oceed
ings
of the
IEEE P
o
wer
En
gineer
ing S
o
cie
t
y W
i
nt
er M
e
e
tin
g,
Columbus, USA, 2001; 637–63.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PED
S
I
S
SN
:
208
8-8
6
9
4
En
ha
nce
m
ent
of
P
o
w
e
r
Qu
al
i
t
y
by a
n
Ap
p
lication FACT
S
Devices (Prashant K
u
mar)
17
BIBLIOGRAPHY OF
AUT
HOR
Prof. Prashant Kumar born in
Dhanbad, Jhark
h
and on 2
n
d
Fe
b 1985. Compl
e
ted M-Tech in
Power Sy
stem from SRM
Universi
ty
Kattankulathur, Ch
ennai
a
nd Tamiln
adu, India in 2013
.
Ma
j
o
r Fi
el
d of
St
udi
e
s
a
r
e
Opti
mi
z
a
t
i
o
n Te
c
h
ni
que
s a
n
d Powe
r Sy
st
e
m
Sta
b
i
lity
.
Publi
s
he
d
Several Pap
e
rs in Interna
tion
a
l/
Nationa
l Journa
ls as well as i
n
Internat
iona
l and Nationa
l
Conferenc
e
s
P
r
o
ceed
ings
(S
pring
e
r,
El
es
evier
and
IEE
E
Xplor
e
).
Currentl
y
worki
ng as an Assistant Professor in Ashokrao Mane Group of institut
i
on, Facu
lt
y
o
f
Engg., Kolhapu
r
, India and res
earch in
ter
e
s
t
a
r
eas
are P
o
wer Qualit
y, Volt
a
g
e S
t
abili
t
y
in
Ele
c
tri
cal
P
o
wer
S
y
s
t
em
and R
e
n
e
wable
En
erg
y
S
y
s
t
em
.
Evaluation Warning : The document was created with Spire.PDF for Python.