I
nte
rna
t
io
na
l J
o
urna
l o
f
P
o
w
er
E
lect
ro
nics
a
nd
Driv
e
Sy
s
t
e
m
(
I
J
P
E
DS
)
Vo
l.
7
,
No
.
3
,
Sep
tem
b
er
2
0
1
6
,
p
p
.
734
~
742
I
SS
N:
2
0
8
8
-
8
6
9
4
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
p
ed
s
.
v
7
.
i3
.
p
p
7
3
4
-
742
734
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JP
E
DS
M
ulti
-
O
bje
ctive
O
pti
m
i
z
a
tion Sch
e
m
e
f
o
r
PID
-
Co
nt
ro
lled DC
M
o
tor
G
u
na
w
a
n De
wa
nto
ro
De
p
a
rtem
e
n
t
o
f
El
e
c
tro
n
ics
a
n
d
Co
m
p
u
ter E
n
g
in
e
e
rin
g
,
S
a
ty
a
W
a
c
a
n
a
Ch
risti
a
n
Un
iv
e
rsit
y
,
Ce
n
tral
Ja
v
a
,
In
d
o
n
e
sia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
No
v
1
2
,
2
0
1
5
R
ev
i
s
ed
Mar
16
,
2
0
1
6
A
cc
ep
ted
A
p
r
17
,
2
0
1
6
DC
M
o
to
r
is
th
e
m
o
st
b
a
sic
e
lec
tro
-
m
e
c
h
a
n
ica
l
e
q
u
ip
m
e
n
t
a
n
d
we
ll
-
k
n
o
w
n
f
o
r
it
s
m
e
rit
a
n
d
sim
p
li
c
it
y
.
T
h
e
p
e
rf
o
r
m
a
n
c
e
o
f
DC
m
o
to
r
is
a
ss
e
ss
e
d
b
a
se
d
o
n
se
v
e
ra
l
q
u
a
li
ti
e
s
th
a
t
a
re
m
o
st
-
li
k
e
l
y
c
o
n
trad
icto
ry
e
a
c
h
o
th
e
r,
i.
e
.
se
tt
li
n
g
ti
m
e
a
n
d
o
v
e
rsh
o
o
t
p
e
rc
e
n
tag
e
.
M
o
st
o
f
c
o
n
tro
ll
e
r’s
o
p
t
im
iza
ti
o
n
p
r
o
b
lem
s
a
re
m
u
lt
i
-
o
b
jec
ti
v
e
in
n
a
t
u
re
sin
c
e
th
e
y
n
o
rm
a
ll
y
h
a
v
e
se
v
e
ra
l
c
o
n
f
li
c
ti
n
g
o
b
jec
ti
v
e
s
th
a
t
m
u
st
b
e
m
e
t
si
m
u
lt
a
n
e
o
u
sly
.
In
th
is
st
u
d
y
,
th
e
g
re
y
re
latio
n
a
l
a
n
a
ly
sis
(
G
R
A
)
w
a
s
c
o
m
b
in
e
d
with
T
a
g
u
c
h
i
m
e
th
o
d
to
se
a
rc
h
th
e
o
p
ti
m
u
m
P
ID
p
a
ra
m
e
ter
f
o
r
m
u
lt
i
-
o
b
jec
ti
v
e
p
ro
b
lem
.
F
irst,
a
L
9
(3
3
)
o
rth
o
g
o
n
a
l
a
rra
y
w
a
s
u
se
d
to
p
lan
o
u
t
th
e
p
r
o
c
e
ss
in
g
p
a
ra
m
e
ters
th
a
t
w
o
u
ld
a
ff
e
c
t
th
e
DC
m
o
to
r’s
sp
e
e
d
.
T
h
e
n
G
R
A
wa
s
a
p
p
li
e
d
to
o
v
e
rc
o
m
e
th
e
d
ra
w
b
a
c
k
o
f
sin
g
le
q
u
a
li
ty
c
h
a
ra
c
teristics
in
th
e
T
a
g
u
c
h
i
m
e
th
o
d
,
a
n
d
th
e
n
t
h
e
o
p
ti
m
iz
e
d
P
ID
p
a
ra
m
e
ter
c
o
m
b
in
a
ti
o
n
w
a
s
o
b
tain
e
d
f
o
r
m
u
lt
ip
le
q
u
a
li
ty
c
h
a
ra
c
ter
isti
c
s
f
ro
m
th
e
re
sp
o
n
se
tab
le
a
n
d
th
e
re
sp
o
n
se
g
ra
p
h
f
ro
m
G
R
A
.
S
ig
n
a
l
-
to
-
n
o
ise
ra
ti
o
(S
/
N
ra
ti
o
)
c
a
lcu
latio
n
a
n
d
a
n
a
l
y
sis
o
f
v
a
rian
c
e
(
AN
OV
A
)
w
o
u
ld
b
e
p
e
rf
o
r
m
e
d
to
f
in
d
o
u
t
th
e
si
g
n
if
ica
n
t
f
a
c
to
rs
.
L
a
stl
y
,
th
e
re
li
a
b
il
it
y
a
n
d
re
p
ro
d
u
c
i
b
il
it
y
o
f
th
e
e
x
p
e
rim
e
n
t
w
a
s
v
e
ri
f
ied
b
y
c
o
n
f
ir
m
in
g
a
c
o
n
f
id
e
n
c
e
in
terv
a
l
(CI)
o
f
9
5
%
.
K
ey
w
o
r
d
:
DC
m
o
to
r
Gr
e
y
r
elatio
n
al
a
n
al
y
s
is
Mu
lti
-
o
b
j
ec
tiv
e
o
p
ti
m
izatio
n
P
I
D
co
n
tr
o
ller
T
ag
u
ch
i
m
et
h
o
d
Co
p
y
rig
h
t
©
201
6
In
s
t
it
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Gu
n
a
w
an
De
w
an
to
r
o
,
Dep
ar
te
m
en
t o
f
E
lectr
o
n
ics a
n
d
C
o
m
p
u
ter
E
n
g
i
n
ee
r
in
g
,
Sat
y
a
W
ac
an
a
C
h
r
i
s
tia
n
Un
iv
er
s
it
y
,
J
l.
Dip
o
n
eg
o
r
o
5
2
-
6
0
,
Salatig
a
,
C
en
tr
al
J
av
a
5
0
7
1
1
,
I
n
d
o
n
esi
a.
E
m
ail:
g
u
n
a
w
a
n
.
d
e
w
an
to
r
o
@
s
taf
f
.
u
k
s
w
.
ed
u
1.
I
NT
RO
D
UCT
I
O
N
P
I
D
s
p
ee
d
co
n
tr
o
ller
f
o
r
s
ep
ar
atel
y
ex
c
ited
DC
m
o
to
r
h
a
s
b
ee
n
e
x
a
m
in
ed
o
n
th
e
b
a
s
i
s
o
f
o
u
tp
u
t
r
esp
o
n
s
e,
i.e
.
m
in
i
m
u
m
s
ett
li
n
g
ti
m
e,
a
n
d
m
i
n
i
m
u
m
o
v
er
s
h
o
o
t
f
o
r
s
p
ee
d
d
em
a
n
d
ap
p
licatio
n
o
f
DC
m
o
to
r
[
1
]
-
[
3
]
.
Sin
ce
th
e
c
h
ar
ac
ter
is
tic
r
esp
o
n
s
e
s
ar
e
o
f
te
n
co
n
tr
ad
icto
r
y
ea
ch
o
t
h
er
,
th
e
n
P
I
D
tu
n
i
n
g
i
s
o
f
m
u
lti
-
o
b
j
ec
tiv
e
o
p
tim
izat
io
n
p
r
o
b
lem
.
So
m
e
m
et
h
o
d
s
h
a
v
e
b
ee
n
ap
p
lied
to
p
er
f
o
r
m
P
I
D
m
u
lti
-
o
b
j
ec
tiv
e
p
r
o
b
lem
,
s
u
c
h
a
s
:
Gen
etic
A
l
g
o
r
ith
m
[
4
]
-
[
7
]
,
An
t
C
o
lo
n
y
O
p
ti
m
izatio
n
[
8
]
,
P
ar
ticle
S
w
ar
m
Op
ti
m
iza
tio
n
[
9
]
,
etc.
T
ag
u
ch
i
m
e
th
o
d
is
an
ef
f
ec
ti
v
e
w
a
y
to
o
p
ti
m
ize
m
u
lt
i
-
p
ar
a
m
eter
co
m
b
in
at
io
n
b
ec
a
u
s
e
it
s
ig
n
i
f
ica
n
tl
y
r
ed
u
ce
s
th
e
n
u
m
b
er
o
f
e
x
p
er
im
e
n
t
s
.
Ho
w
ev
er
,
T
ag
u
c
h
i
m
et
h
o
d
is
ap
p
r
o
p
r
iate
f
o
r
s
in
g
le
-
o
b
j
ec
tiv
e
o
p
tim
izati
o
n
p
r
o
b
le
m
s
.
T
h
u
s
,
s
o
m
e
m
o
d
i
f
icatio
n
s
h
av
e
b
ee
n
d
o
n
e
to
o
v
er
co
m
e
s
u
ch
p
r
o
b
le
m
s
[
1
0
]
-
[
1
1
]
.
T
h
e
o
b
j
ec
tiv
e
o
f
th
is
s
tu
d
y
is
t
o
co
m
b
in
e
g
r
e
y
r
elatio
n
al
an
al
y
s
i
s
(
GR
A
)
w
it
h
th
e
T
ag
u
ch
i
m
et
h
o
d
to
o
p
tim
ize
P
I
D
p
ar
am
eter
co
m
b
in
atio
n
.
F
ir
s
t,
a
L
9
(3
3
)
o
r
th
o
g
o
n
al
ar
r
a
y
w
a
s
u
s
ed
to
p
lan
o
u
t
t
h
e
p
r
o
ce
s
s
i
n
g
p
ar
am
eter
s
th
at
w
o
u
ld
af
f
ec
t
th
e
s
ettl
in
g
ti
m
e
an
d
o
v
er
s
h
o
o
t
p
er
ce
n
tag
e.
T
h
en
,
th
e
G
R
A
w
as
ap
p
lied
to
o
v
er
co
m
e
th
e
d
r
a
w
b
ac
k
o
f
s
i
n
g
le
q
u
alit
y
ch
ar
ac
ter
is
tics
i
n
th
e
T
ag
u
c
h
i
m
et
h
o
d
,
an
d
th
e
n
th
e
o
p
ti
m
ized
P
I
D
p
ar
am
ete
r
co
m
b
in
a
tio
n
w
as
o
b
tain
ed
f
o
r
m
u
ltip
le
q
u
a
lit
y
ch
ar
ac
ter
is
t
ics
f
r
o
m
t
h
e
r
es
p
o
n
s
e
tab
le
a
n
d
t
h
e
r
esp
o
n
s
e
g
r
ap
h
f
r
o
m
G
R
A
.
Si
g
n
al
-
to
-
n
o
i
s
e
r
atio
(
S/N
r
atio
)
ca
lcu
latio
n
a
n
d
an
al
y
s
is
o
f
v
ar
ian
ce
(
A
NO
V
A
)
w
o
u
ld
b
e
p
er
f
o
r
m
ed
to
f
i
n
d
o
u
t
th
e
s
i
g
n
i
f
ican
t
f
ac
to
r
s
.
Fr
o
m
t
h
e
A
NO
V
A
an
al
y
s
is
,
th
e
f
ac
to
r
th
at
m
o
r
e
s
ig
n
i
f
ica
n
tl
y
a
f
f
ec
ted
th
e
s
ettl
in
g
ti
m
e
ar
e
K
P
an
d
K
D
,
m
ea
n
w
h
ile
th
e
f
ac
to
r
th
at
m
o
r
e
s
ig
n
i
f
ica
n
tl
y
af
f
ec
ted
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
Mu
lti
-
o
b
jective
Op
timiz
a
tio
n
S
ch
eme
fo
r
P
I
D
-
C
o
n
tr
o
lled
D
C
Mo
to
r
(
Gu
n
a
w
a
n
Dewa
n
to
r
o
)
735
th
e
o
v
er
s
h
o
o
t
p
er
ce
n
tag
e
ar
e
K
P
a
n
d
K
I
.
Fi
n
all
y
,
t
h
e
r
elia
b
ilit
y
an
d
r
ep
r
o
d
u
cib
ilit
y
o
f
t
h
e
ex
p
er
i
m
e
n
t
w
a
s
v
er
if
ied
b
y
co
n
f
ir
m
i
n
g
a
co
n
f
i
d
en
ce
in
ter
v
al
(
C
I
)
o
f
9
5
%.
2.
DC
M
O
T
O
R
M
O
DE
L
I
NG
T
h
e
p
lan
t
to
b
e
co
n
tr
o
lled
in
th
is
s
tu
d
y
is
t
h
e
s
ep
ar
atel
y
-
ex
c
ited
DC
m
o
to
r
[
12
]
.
T
h
e
m
o
to
r
v
elo
cit
y
r
elies
o
n
v
o
lta
g
e
ac
r
o
s
s
t
h
e
ar
m
at
u
r
e
w
h
ile
t
h
e
f
ield
cu
r
r
en
t
is
s
et
co
n
s
tan
t
.
T
h
e
m
o
d
eli
n
g
DC
s
er
v
o
m
o
to
r
i
s
ca
r
r
ied
to
m
i
m
ic
t
h
e
ac
tu
al
DC
m
o
to
r
.
T
h
e
eq
u
i
v
alen
t
s
ch
e
m
a
tic
cir
c
u
it
o
f
t
h
e
DC
m
o
to
r
is
s
h
o
w
n
in
Fig
u
r
e
1
.
T
a
b
le
1
g
iv
es th
e
p
ar
a
m
eter
an
d
v
a
l
u
e
s
f
o
r
m
o
to
r
s
i
m
u
latio
n
u
s
ed
i
n
th
i
s
s
t
u
d
y
[
13
]
.
Fig
u
r
e
1
.
E
q
u
iv
ale
n
t Sc
h
e
m
a
ti
c
C
ir
cu
it
o
f
th
e
D
C
Mo
to
r
T
ab
le
1
.
DC
Mo
to
r
P
ar
am
eter
s
an
d
Valu
e
s
P
a
r
a
me
t
e
r
N
o
me
n
c
l
a
t
u
r
e
V
a
l
u
e
M
o
me
n
t
o
f
I
n
e
r
t
i
a
J
m
0
.
0
2
2
k
g
.
m
2
F
r
i
c
t
i
o
n
c
o
e
f
f
i
c
i
e
n
t
B
m
0
.
0
0
0
5
N
.
ms
B
a
c
k
EM
F
c
o
n
s
t
a
n
t
K
b
1
.
2
V
/
r
a
d
s
-
1
T
o
r
q
u
e
c
o
n
st
a
n
t
K
a
0
.
0
1
5
N
m
/
A
El
e
c
t
r
i
c
r
e
si
st
a
n
c
e
R
a
2
.
4
5
El
e
c
t
r
i
c
i
n
d
u
c
t
a
n
c
e
L
a
0
.
0
3
5
H
I
n
p
u
t
v
o
l
t
a
g
e
v
a
B
a
c
k
EM
F
v
o
l
t
a
g
e
v
b
A
r
mat
u
r
e
C
u
r
r
e
n
t
i
a
F
i
e
l
d
C
u
r
r
e
n
t
i
f
D
e
v
e
l
o
p
e
d
T
o
r
q
u
e
T
m
A
n
g
l
e
o
f
mo
t
o
r
sh
a
f
t
θ
m
L
o
a
d
T
o
r
q
u
e
T
L
B
ec
au
s
e
th
e
r
o
tatio
n
al
s
p
ee
d
,
,
is
p
r
o
p
o
r
tio
n
al
to
th
e
b
ac
k
E
MF,
v
b
,
w
e
h
a
v
e:
)
(
)
(
t
K
dt
d
K
t
v
b
b
b
(
1
)
T
h
e
elec
tr
ical
eq
u
atio
n
o
n
th
e
m
es
h
y
ield
s
:
)
(
)
(
)
(
t
v
dt
di
L
t
i
R
t
v
b
a
a
a
a
a
(
2
)
Me
an
w
h
ile,
th
e
elec
tr
o
-
m
ec
h
a
n
ical
eq
u
atio
n
d
er
iv
ed
f
r
o
m
N
e
w
to
n
’
s
la
w
is
:
a
a
m
m
L
m
i
K
dt
d
B
dt
d
J
T
T
2
2
(
3
)
B
y
u
s
i
n
g
L
ap
lace
tr
a
n
s
f
o
r
m
ati
o
n
to
(
1
)
,
(
2
)
,
an
d
(
3
)
,
th
e
eq
u
atio
n
s
ca
n
b
e
r
ea
r
r
an
g
ed
as:
)
(
)
(
s
K
s
V
b
b
(
4
)
)
(
)
(
)
(
)
(
s
V
s
sI
L
s
i
R
s
V
b
a
a
a
a
a
(
5
)
θ
m
,
J
m
,
B
m
+
+
_
_
v
a
v
b
i
f
i
a
R
a
L
a
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8
694
IJ
PEDS
Vo
l.
7
,
No
.
3
,
Sep
tem
b
er
2
0
1
6
:
734
-
742
736
)
(
)
(
)
(
)
(
)
(
2
s
I
K
s
s
B
s
s
J
s
T
s
T
a
a
m
m
L
m
(
6
)
Hen
ce
,
t
h
e
b
lo
ck
d
ia
g
r
a
m
o
f
DC
m
o
to
r
r
elatin
g
t
h
e
m
o
to
r
s
p
ee
d
,
,
to
in
p
u
t
v
o
lta
g
e,
v
a
,
i
s
d
escr
ib
ed
in
Fi
g
u
r
e
2:
Fig
u
r
e
2
.
B
lo
ck
Diag
r
a
m
o
f
t
h
e
DC
Mo
to
r
in
s
-
d
o
m
ain
3.
RE
S
E
ARCH
M
E
T
H
O
DS
3
.
1
.
T
he
T
a
g
uch
i M
et
ho
d
T
h
e
T
ag
u
ch
i
m
et
h
o
d
is
an
ef
f
ec
tiv
e
tec
h
n
iq
u
e
i
n
s
i
n
g
le
-
o
b
j
ec
tiv
e
o
p
tim
izatio
n
p
r
o
b
le
m
[
1
4
]
.
T
h
e
ch
ar
ac
ter
is
tic
o
f
th
e
T
ag
u
ch
i
m
et
h
o
d
is
to
u
tili
ze
an
o
r
th
o
g
o
n
al
ar
r
a
y
to
p
lan
o
u
t
th
e
ex
p
er
i
m
e
n
t
an
d
to
u
s
e
t
h
e
s
ig
n
al
-
to
-
n
o
is
e
r
atio
(
SN
r
atio
)
to
an
aly
ze
t
h
e
d
ata
o
b
tain
ed
f
r
o
m
t
h
e
ex
p
er
i
m
e
n
t.
T
h
e
o
r
th
o
g
o
n
al
ar
r
ay
is
u
s
ed
to
r
ed
u
ce
th
e
n
u
m
b
er
o
f
d
esi
g
n
e
x
p
er
i
m
e
n
ts
r
eq
u
ir
ed
in
a
n
y
d
esi
g
n
p
r
o
ce
s
s
.
I
n
t
h
is
s
t
u
d
y
,
t
h
er
e
ar
e
th
r
ee
f
ac
to
r
s
ea
ch
at
th
r
ee
lev
els,
s
o
t
h
e
T
ag
u
c
h
i
m
eth
o
d
n
ee
d
s
o
n
l
y
n
i
n
e
ex
p
er
i
m
en
t
s
(
L
9
)
w
h
ile
t
h
e
f
u
ll
f
ac
to
r
ial
d
esig
n
m
et
h
o
d
n
ee
d
s
3
3
=
27
ex
p
er
im
en
t
s
.
Sin
ce
t
h
e
s
ett
lin
g
ti
m
e
an
d
o
v
er
s
h
o
o
t
p
er
ce
n
tag
e
h
a
v
e
a
d
ir
ec
t
ef
f
ec
t
o
n
t
h
e
p
er
f
o
r
m
an
ce
w
i
t
h
r
esp
ec
t
o
f
DC
m
o
to
r
’
s
s
p
ee
d
,
th
er
ef
o
r
e
th
is
s
tu
d
y
p
r
i
m
ar
i
l
y
lo
o
k
s
in
to
t
h
e
r
elatio
n
s
h
ip
b
et
w
ee
n
th
e
P
I
D
p
ar
am
eter
s
an
d
q
u
alit
y
c
h
ar
ac
ter
is
tics
,
u
s
in
g
th
e
T
ag
u
c
h
i
m
eth
o
d
an
d
GR
A
to
f
in
d
th
e
o
p
tim
u
m
P
I
D
p
ar
am
eter
co
m
b
in
at
io
n
f
o
r
D
C
m
o
to
r
’
s
s
p
ee
d
,
w
it
h
t
h
e
g
o
al
o
f
m
a
k
i
n
g
th
e
s
ett
lin
g
ti
m
e
a
n
d
o
v
er
s
h
o
o
t
p
er
ce
n
tag
e
as
clo
s
e
to
th
e
id
ea
l
as
p
o
s
s
ib
le.
First,
th
e
q
u
alit
y
ch
ar
ac
ter
is
tics
ar
e
s
et
f
o
r
th
e
DC
m
o
to
r
’
s
s
p
ee
d
,
an
d
th
e
n
t
h
e
co
n
tr
o
l
f
ac
to
r
s
a
n
d
th
e
ir
lev
el
s
ar
e
p
lan
n
ed
o
u
t.
Af
ter
c
h
o
o
s
in
g
a
s
u
itab
le
o
r
th
o
g
o
n
al
ar
r
a
y
,
t
h
e
ex
p
er
i
m
e
n
ts
ac
co
r
d
in
g
to
th
e
o
r
th
o
g
o
n
al
ar
r
a
y
ar
e
co
n
d
u
c
ted
.
Nex
t,
ANOV
A
i
s
p
er
f
o
r
m
e
d
,
at
th
e
s
a
m
e
t
i
m
e
p
er
f
o
r
m
in
g
r
elatio
n
a
l
an
al
y
s
i
s
o
n
d
o
u
b
le
q
u
alit
y
c
h
ar
ac
te
r
is
tics
u
s
i
n
g
GR
A,
an
d
t
h
en
th
e
o
p
ti
m
u
m
P
I
D
p
ar
am
eter
co
m
b
in
at
io
n
ca
n
b
e
o
b
tain
ed
th
r
o
u
g
h
m
a
in
e
f
f
e
ct
an
al
y
s
i
s
.
Fi
n
all
y
,
a
v
er
if
ic
atio
n
ex
p
er
i
m
en
t
i
s
ca
r
r
ied
o
u
t,
an
d
th
e
r
eliab
ilit
y
an
d
r
ep
r
o
d
u
cib
ilit
y
o
f
th
e
e
x
p
er
i
m
en
t a
r
e
v
er
if
ied
w
it
h
a
9
5
% C
I
.
3
.
1
.
1
.
O
rt
ho
g
o
na
l A
rr
a
y
I
n
estab
li
s
h
in
g
a
n
o
r
th
o
g
o
n
a
l
ar
r
ay
,
th
r
ee
f
ac
to
r
s
A
,
B
,
a
n
d
C
ar
e
co
n
s
id
er
ed
.
A
i
s
t
h
e
p
r
o
p
o
r
tio
n
al
g
ain
,
B
is
t
h
e
i
n
teg
r
al
g
ai
n
,
an
d
C
is
th
e
d
er
iv
a
tiv
e
g
ai
n
.
T
o
d
eter
m
in
e
t
h
e
f
ac
to
r
lev
els,
a
n
in
itial
g
u
ess
m
u
s
t
b
e
estab
lis
h
ed
f
r
o
m
th
e
tr
ad
itio
n
al
Z
ie
g
l
er
-
N
ich
o
ls
m
e
th
o
d
u
s
i
n
g
Ma
tlab
'
s
SISO
d
e
s
ig
n
to
o
l
.
T
h
e
Z
ieg
ler
-
Nich
o
ls
m
et
h
o
d
g
i
v
es
th
e
v
al
u
es
o
f
K
p
,
K
i
,
a
n
d
K
d
of
1
.
5
8
6
5
,
1
.
0
0
1
8
,
an
d
0
.
6
2
8
1
1
,
r
esp
ec
tiv
el
y
.
T
h
en
,
t
h
e
th
r
ee
lev
el
s
o
f
t
h
r
ee
co
n
tr
o
l f
a
cto
r
s
w
er
e
id
en
ti
f
ied
as p
r
ese
n
ted
in
T
ab
le
2
.
T
ab
le
2
.
P
I
D
P
ar
am
eter
s
w
i
th
T
h
eir
R
an
g
e
s
an
d
Val
u
es a
t T
h
r
ee
L
e
v
els
F
a
c
t
o
r
s
P
I
D
p
a
r
a
me
t
e
r
s
R
a
n
g
e
L
e
v
e
l
1
L
e
v
e
l
2
L
e
v
e
l
3
A
K
P
1
-
2
1
1
.
5
2
B
K
I
0
.
8
-
1
.
2
0
.
8
1
1
.
2
C
K
D
0
.
2
-
1
0
.
2
0
.
6
1
3
.
1
.
2
.
Sig
na
l
-
to
-
No
is
e
Ra
t
io
T
ag
u
ch
i
e
x
p
er
i
m
e
n
t
d
esi
g
n
e
m
p
lo
y
s
q
u
ali
t
y
lo
s
s
as
a
b
ase
to
p
lan
a
s
tati
s
tical
m
ea
s
u
r
e
m
en
t
f
o
r
th
e
ev
alu
a
tio
n
o
f
p
er
f
o
r
m
a
n
ce
,
ca
lled
th
e
SN
r
atio
.
I
n
th
is
s
t
u
d
y
,
th
e
p
er
f
o
r
m
a
n
ce
in
d
ex
e
s
o
f
P
I
D
o
p
tim
izatio
n
ar
e
th
e
s
e
ttli
n
g
ti
m
e
a
n
d
o
v
e
r
s
h
o
o
t
p
er
ce
n
tag
e.
T
h
e
ai
m
o
f
th
e
o
p
ti
m
izat
io
n
i
s
to
m
a
k
e
t
h
e
p
er
f
o
r
m
a
n
ce
in
d
ex
e
s
as
clo
s
e
as
to
th
eir
t
ar
g
et
v
al
u
es
.
So
,
t
h
e
q
u
al
it
y
ch
ar
ac
ter
is
tic
s
ar
e
ch
o
s
en
to
b
e
th
e
s
m
aller
-
t
h
e
-
b
etter
,
an
d
th
e
SN r
atio
is
:
+
_
+
+
V
a
(
s
)
V
b
(
s
)
(
s
)
T
L
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
Mu
lti
-
o
b
jective
Op
timiz
a
tio
n
S
ch
eme
fo
r
P
I
D
-
C
o
n
tr
o
lled
D
C
Mo
to
r
(
Gu
n
a
w
a
n
Dewa
n
to
r
o
)
737
M
S
D
SN
l
og
10
(
7
)
an
d
th
e
m
ea
n
s
q
u
ar
ed
d
ev
iatio
n
is
:
n
i
i
y
n
M
S
D
1
2
1
(
8
)
w
h
er
e
y
i
is
t
h
e
v
al
u
e
o
f
t
h
e
q
u
alit
y
m
ea
s
u
r
e
m
e
n
t a
n
d
n
is
th
e
to
tal
n
u
m
b
er
o
f
m
ea
s
u
r
e
m
e
n
t
s
.
3
.
1
.
3
.
M
a
in E
f
f
ec
t
Ana
ly
s
is
Af
ter
p
r
o
ce
ed
in
g
w
it
h
th
e
e
x
p
er
i
m
en
t
p
lan
ac
co
r
d
in
g
to
t
h
e
L
9
o
r
th
o
g
o
n
al
ar
r
a
y
,
t
h
e
d
ata
p
r
o
d
u
ce
d
b
y
v
ar
io
u
s
p
r
o
ce
s
s
i
n
g
p
ar
a
m
e
ter
co
m
b
i
n
atio
n
s
ca
n
b
e
o
b
tain
ed
to
o
b
tain
th
e
r
esp
o
n
s
e
tab
le
an
d
th
e
r
esp
o
n
s
e
g
r
ap
h
.
T
h
e
d
ata
o
b
tain
ed
f
r
o
m
th
e
ex
p
er
i
m
en
t
s
ar
e
u
s
ed
to
ca
lcu
late
t
h
e
m
a
in
e
f
f
ec
t v
al
u
es
F
as f
o
llo
w
s
:
m
j
i
i
y
m
F
1
1
(
9
)
3
2
1
3
2
1
,
,
m
i
n
,
,
m
a
x
F
F
F
F
F
F
F
(
1
0
)
w
h
er
e
F
i
is
t
h
e
m
ea
n
SN
r
atio
o
f
th
e
i
-
t
h
le
v
el
o
f
f
ac
to
r
F;
m
is
t
h
e
n
u
m
b
er
o
f
lev
el
i
;
Δ
F
is
th
e
v
al
u
e
o
f
t
h
e
m
ai
n
ef
f
ec
ts
o
f
f
ac
to
r
F
an
d
y
i
is
th
e
SN
r
atio
p
r
o
d
u
ce
d
o
n
ea
ch
i
lev
el
r
o
w
Ne
x
t,
th
e
s
e
d
ata
ar
e
s
o
r
ted
in
to
a
r
esp
o
n
s
e
tab
le,
an
d
th
e
e
f
f
ec
t
o
f
ea
ch
f
ac
to
r
is
an
al
y
ze
d
.
I
f
t
h
e
m
ai
n
e
f
f
ec
t
v
al
u
e
o
f
a
f
ac
t
o
r
Δ
F
is
lar
g
e,
th
e
n
th
at
g
iv
e
n
f
ac
to
r
’
s
e
f
f
ec
t o
n
t
h
e
s
y
s
te
m
i
s
m
u
c
h
g
r
ea
ter
t
h
an
th
at
o
f
t
h
e
o
th
er
f
ac
to
r
s
.
3
.
2
.
G
re
y
Rela
t
io
na
l A
na
ly
s
is
[
1
5
]
An
ap
p
r
o
p
r
iate
m
at
h
e
m
atica
l
m
o
d
el
m
u
s
t
b
e
estab
li
s
h
ed
t
o
d
escr
ib
e
th
e
r
elatio
n
s
h
ip
b
et
w
ee
n
t
h
e
t
w
o
o
b
j
ec
tiv
es
an
d
th
eir
tar
g
et
v
alu
e
s
.
T
h
e
f
ir
s
t
s
tep
is
to
an
al
y
ze
th
e
d
if
f
er
e
n
ce
in
ea
ch
o
b
j
ec
tiv
es
ca
u
s
ed
b
y
ea
ch
p
r
o
ce
s
s
in
g
p
ar
a
m
et
er
,
an
d
f
in
d
th
eir
r
elatio
n
s
h
ip
s
w
it
h
th
eir
tar
g
et
v
alu
e
s
.
T
h
e
GR
A
m
et
h
o
d
u
s
ed
in
t
h
i
s
s
tu
d
y
i
s
b
ased
o
n
t
h
e
Gr
e
y
T
h
eo
r
y
to
f
i
n
d
t
h
e
r
elatio
n
s
h
ip
b
et
w
ee
n
ac
t
u
al
v
al
u
es
an
d
th
eir
tar
g
et
v
al
u
es
th
r
o
u
g
h
o
u
t
all
tr
ial
s
in
t
h
e
o
r
th
o
g
o
n
al
ar
r
a
y
.
T
h
e
G
R
A
o
f
t
h
e
s
e
ttli
n
g
ti
m
e
an
d
o
v
er
s
h
o
o
t
p
er
ce
n
tag
e
is
d
ef
in
ed
as
f
o
llo
w
s
:
T
h
e
tar
g
et
v
alu
e
o
f
s
ettl
in
g
ti
m
e
an
d
o
v
er
s
h
o
o
t p
er
ce
n
tag
e:
R
ef
er
e
n
ce
s
eq
u
e
n
ce
X
0
=(
x
0
(
1
)
,
x
0
(
2
)
)
T
h
e
s
ettlin
g
ti
m
es
a
n
d
o
v
er
s
h
o
o
ts
p
er
ce
n
ta
g
es
o
b
tain
ed
f
r
o
m
th
e
v
ar
io
u
s
ex
p
er
i
m
e
n
ts
i
n
t
h
e
o
r
th
o
g
o
n
al
ar
r
a
y
:
X
i
=(
x
i
(
1
)
,
x
i
(
2
)
)
,
i
=1
,
2
,
.
.
.
,
9
T
h
e
r
elatio
n
b
et
w
ee
n
t
h
e
tar
g
e
t v
alu
e
a
n
d
th
e
o
b
s
er
v
ed
ex
p
er
i
m
e
n
t v
al
u
e
i
s
th
e
co
r
r
elatio
n
co
ef
f
icie
n
t
k
k
k
k
x
k
x
m
k
m
i
m
k
m
i
,
0
9
1
,
0
,
0
9
1
0
m
a
x
m
a
x
m
a
x
m
a
x
,
(
1
1
)
k
=1
,
2
,
i
=1
,
2
,
.
.
.
,
9
w
h
er
e
(
x
0
(
k
),
x
i
(
k
)
)
d
escr
ib
e
s
th
e
d
eg
r
ee
o
f
co
r
r
elatio
n
o
f
X
0
a
n
d
X
i
at
p
o
in
t
k
,
a
n
d
r
ep
r
esen
ts
th
e
lo
ca
l
ch
ar
ac
ter
is
tic
co
n
d
itio
n
o
f
t
h
e
r
elatio
n
b
et
w
ee
n
X
0
an
d
X
i
.
I
t
is
s
aid
th
at
th
e
av
er
ag
e
o
f
(
x
0
(
k
),
x
i
(
k
)
)
is
th
e
r
elatio
n
al
g
r
ad
e
o
f
X
i
r
elativ
e
t
o
X
0
,
w
h
ic
h
is
f
o
r
m
u
lated
as:
n
k
i
i
k
x
k
x
n
X
X
1
0
0
,
1
,
(
1
2
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8
694
IJ
PEDS
Vo
l.
7
,
No
.
3
,
Sep
tem
b
er
2
0
1
6
:
734
-
742
738
4.
RE
SU
L
T
S AN
D
AN
AL
Y
SI
S
4
.
1
.
P
I
D
O
pti
m
iza
t
io
n
T
h
e
co
n
tr
o
l f
ac
to
r
an
d
t
h
eir
le
v
els
w
er
e
ass
i
g
n
ed
in
to
t
h
e
L
9
o
r
th
o
g
o
n
al
ar
r
a
y
to
p
r
o
v
id
e
th
e
p
lan
an
d
p
r
o
ce
d
u
r
e
f
o
r
h
a
n
d
lin
g
th
e
ex
p
er
im
e
n
t.
T
h
en
t
h
e
9
ex
p
er
i
m
en
ts
,
as
s
h
o
w
n
in
T
ab
le
3
w
er
e
p
r
o
ce
ed
ed
w
ith
i
n
ac
co
r
d
an
ce
w
ith
t
h
e
o
r
th
o
g
o
n
al
ar
r
ay
to
f
in
d
o
u
t
b
o
th
s
ettli
n
g
ti
m
e
an
d
p
er
ce
n
tag
e
o
v
er
s
h
o
o
t
.
T
o
o
b
tain
th
e
v
alu
e
s
o
f
s
ettli
n
g
ti
m
es
a
n
d
o
v
er
s
h
o
o
t
p
er
ce
n
tag
es
,
t
h
e
M
AT
L
A
B
-
Si
m
u
l
in
k
m
o
d
el
o
f
th
e
DC
m
o
to
r
s
y
s
te
m
w
it
h
t
h
e
P
I
D
co
n
tr
o
ller
is
u
s
ed
u
s
i
n
g
m
o
to
r
p
ar
am
e
ter
s
lis
ted
in
T
ab
le
I
,
as sh
o
w
n
i
n
Fi
g
u
r
e
3
.
Fig
u
r
e
3
.
DC
Mo
to
r
s
ch
e
m
a
tic
in
M
A
T
L
A
B
-
S
i
m
u
li
n
k
T
ab
le
3
.
Sim
u
latio
n
R
e
s
u
l
ts
T
r
i
a
l
K
p
K
i
K
d
S
e
t
t
l
i
n
g
t
i
me
(
s)
O
v
e
r
h
o
o
t
(
%)
S
/
N
R
a
t
i
o
o
f
S
e
t
t
l
i
n
g
t
i
me
(
d
B
)
S
/
N
R
a
t
i
o
o
f
O
v
e
r
sh
o
o
t
P
e
r
c
e
n
t
a
g
e
(
d
B
)
1
1
0
.
8
0
.
2
1
0
.
8
5
0
6
8
.
4
9
7
9
-
2
0
.
7
0
9
1
-
1
8
.
5
8
6
2
2
1
1
0
.
6
2
1
.
5
9
2
3
1
4
.
3
3
4
6
-
2
6
.
6
8
6
0
-
2
3
.
1
2
7
7
3
1
1
.
2
1
2
1
.
7
5
9
3
1
9
.
6
3
8
6
-
2
6
.
7
5
2
9
-
2
5
.
8
6
2
2
4
1
.
5
0
.
8
0
.
6
1
1
.
6
6
2
2
5
.
1
0
4
2
-
2
1
.
3
3
5
6
-
1
4
.
1
5
8
6
5
1
.
5
1
1
1
1
.
2
3
3
2
1
0
.
1
6
4
6
-
2
1
.
0
1
0
1
-
2
0
.
1
4
1
8
6
1
.
5
1
.
2
0
.
2
9
.
3
0
5
7
1
0
.
0
4
4
5
-
1
9
.
3
7
5
0
-
2
0
.
0
3
8
6
7
2
0
.
8
1
1
0
.
8
0
2
6
2
.
9
6
5
4
-
2
0
.
6
7
0
6
-
9
.
4
4
1
7
8
2
1
0
.
2
9
.
0
1
8
3
3
.
3
6
6
1
-
1
9
.
1
0
2
5
-
1
0
.
5
4
2
5
9
2
1
.
2
0
.
6
9
.
5
6
3
6
7
.
4
8
7
9
-
1
9
.
6
1
2
4
-
1
7
.
4
8
7
2
S/N
r
atio
s
w
er
e
co
m
p
u
ted
in
ea
ch
o
f
th
e
tr
ial
co
m
b
in
a
tio
n
an
d
th
e
v
al
u
es
w
er
e
d
is
p
la
y
ed
in
th
e
last
t
w
o
co
lu
m
n
s
o
f
T
ab
le
3
.
Sin
c
e
th
e
ex
p
er
i
m
en
ta
l
d
esig
n
i
s
o
r
th
o
g
o
n
al,
t
h
e
e
f
f
ec
t
o
f
ea
ch
f
ac
to
r
is
s
ep
ar
ab
le
.
T
h
er
ef
o
r
e
th
e
a
v
er
ag
e
S/N
R
atio
o
f
ea
c
h
lev
el
(
1
,
2
,
3
)
o
f
t
h
r
ee
co
n
tr
o
l
f
ac
to
r
s
(
K
P
,
K
I
a
n
d
K
D
)
ca
n
b
e
o
b
tain
ed
u
s
i
n
g
E
q
u
a
tio
n
7
.
T
h
e
A
N
OV
A
tab
le
w
as
ca
lc
u
l
ated
o
u
t
o
f
t
h
e
SN
r
atio
s
i
n
T
ab
le
3
,
as
s
h
o
w
n
i
n
T
ab
le
4
a
n
d
5
.
Fro
m
th
e
A
NOV
A
tab
le
t
h
at
w
it
h
r
eg
ar
d
to
th
e
s
ettlin
g
ti
m
e,
co
n
tr
o
l
f
ac
to
r
s
B
h
av
e
a
s
m
a
l
ler
ef
f
ec
t
a
n
d
ar
e
th
er
ef
o
r
e
ca
te
g
o
r
ized
as
p
o
o
led
er
r
o
r
s
;
o
n
th
e
o
th
er
h
an
d
,
co
n
tr
o
l
f
ac
to
r
s
A
a
n
d
C
h
a
v
e
a
p
r
o
f
o
u
n
d
F
-
r
atio
,
m
ea
n
in
g
t
h
at
th
e
e
f
f
ec
ts
o
f
t
h
ese
f
ac
to
r
s
ar
e
all
s
i
g
n
i
f
ica
n
t
.
W
h
er
ea
s
,
t
h
e
s
i
g
n
i
f
ican
t
f
ac
to
r
s
f
o
r
th
e
o
v
er
s
h
o
o
t
p
er
ce
n
tag
e
is
f
ac
to
r
s
A
an
d
B.
T
ab
le
4
.
A
NOV
A
An
al
y
s
is
f
o
r
Settli
n
g
T
i
m
e
S
o
u
r
c
e
SS
d
.
f
MS
F
-
r
a
t
i
o
SS'
%P
A
4
1
.
9
8
0
1
2
2
0
.
9
9
0
0
5
8
.
3
3
6
0
3
9
3
6
.
9
4
4
1
3
5
3
.
1
1
6
7
5
B*
2
.
9
9
3
7
8
8
2
1
.
4
9
6
8
9
4
C
1
7
.
5
0
0
6
3
2
8
.
7
5
0
3
1
3
3
.
4
7
5
1
2
1
2
.
4
6
4
6
5
1
7
.
9
2
1
1
6
e
r
r
o
r
7
.
0
7
8
1
6
7
2
3
.
5
3
9
0
8
4
p
o
o
l
e
d
e
r
r
o
r
1
0
.
0
7
1
9
6
4
2
.
5
1
7
9
8
9
2
8
.
9
6
2
0
9
t
o
t
a
l
6
9
.
5
5
2
6
9
8
1
0
0
*
=
p
o
o
l
e
d
t
e
r
ms
1
O
u
t
1
2
.
4
5
Ra
L
o
a
d
D
i
s
t
u
r
b
a
n
ce
0
.
0
1
5
KT
1
.
2
KB
1
s
I
n
t
e
g
r
a
t
o
r
1
1
s
I
n
t
e
g
r
a
t
o
r
0
.
0
0
0
5
B
1
/
0
.
0
3
5
1
/
L
a
1
/
0
.
0
2
2
1
/
J
1
I
n
1
ia
w
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
Mu
lti
-
o
b
jective
Op
timiz
a
tio
n
S
ch
eme
fo
r
P
I
D
-
C
o
n
tr
o
lled
D
C
Mo
to
r
(
Gu
n
a
w
a
n
Dewa
n
to
r
o
)
739
T
ab
le
5
.
A
NOV
A
An
al
y
s
is
f
o
r
Ov
er
s
h
o
o
t P
er
ce
n
tag
e
S
o
u
r
c
e
SS
d
.
f
MS
F
-
r
a
t
i
o
SS'
%P
A
1
5
1
.
7
8
1
5
2
7
5
.
8
9
0
7
4
2
2
.
6
8
4
8
7
1
4
5
.
0
9
0
6
6
0
.
3
7
5
4
1
B
7
5
.
1
5
0
8
5
2
3
7
.
5
7
5
4
3
1
1
.
2
3
1
8
5
6
8
.
4
5
9
9
8
2
8
.
4
8
7
7
1
C*
7
.
9
2
2
0
1
4
2
3
.
9
6
1
0
0
7
e
r
r
o
r
5
.
4
5
9
7
2
1
2
2
.
7
2
9
8
6
1
p
o
o
l
e
d
e
r
r
o
r
1
3
.
3
8
1
7
3
4
3
.
3
4
5
4
3
4
1
1
.
1
3
6
8
7
t
o
t
a
l
2
4
0
.
3
1
4
1
8
1
0
0
*
=
p
o
o
l
e
d
t
e
r
ms
w
h
er
e
SS
=
Su
m
o
f
Sq
u
ar
e
d
.
f
=
d
eg
r
ee
o
f
f
r
ee
d
o
m
MS
=
Me
an
Sq
u
ar
e
F
-
R
atio
=
MS/MSE
SS
’
=
P
u
r
e
S
u
m
o
f
Sq
u
ar
e
%P
=
P
er
ce
n
tag
e
o
f
C
o
n
tr
ib
u
t
io
n
T
ab
le
6
.
T
h
e
D
ev
iatio
n
S
eq
u
e
n
ce
s,
G
re
y
R
elatio
n
al
co
ef
f
ici
en
ts
,
a
n
d
G
r
e
y
R
elat
io
n
al
g
r
ad
e
s
No
0,
i
(
1
)
0,
i
(
2
)
0,
i
(
1
)
0,
i
(
2
)
0,
i
R
a
n
k
1
0
0
.
7
8
3
1
7
3
1
0
.
5
0
8
2
7
9
0
.
7
5
4
1
3
9
6
2
0
0
.
6
6
3
8
7
6
1
0
.
5
4
9
4
3
2
0
.
7
7
4
7
1
6
4
3
0
0
.
9
0
2
5
3
8
1
0
.
4
7
2
8
4
2
0
.
7
3
6
4
2
1
7
4
0
0
.
4
3
7
6
7
1
0
.
6
4
9
0
8
2
0
.
8
2
4
5
4
1
3
5
0
0
.
9
0
4
8
7
1
1
0
.
4
7
2
1
9
8
0
.
7
3
6
0
9
9
8
6
0
1
.
0
7
9
3
9
2
1
0
.
4
2
8
5
7
1
0
.
7
1
4
2
8
6
9
7
0
0
.
2
7
4
5
0
8
1
0
.
7
4
6
7
7
6
0
.
8
7
3
3
8
8
1
8
0
0
.
3
7
3
2
5
2
1
0
.
6
8
4
4
3
2
0
.
8
4
2
2
1
6
2
9
0
0
.
7
8
2
9
5
8
1
0
.
5
0
8
3
4
7
0
.
7
5
4
1
7
4
5
T
ab
le
7
.
T
h
e
R
esp
o
n
s
e
T
ab
le
f
o
r
T
h
e
GR
A
A
B
C
L
e
v
e
l
1
0
.
7
5
5
0
9
2
0
.
8
1
7
3
5
6
0
.
7
7
0
2
1
4
L
e
v
e
l
2
0
.
7
5
8
3
0
9
0
.
7
8
4
3
4
4
0
.
7
8
4
4
7
7
L
e
v
e
l
3
0
.
8
2
3
2
5
9
0
.
7
3
4
9
6
0
.
7
8
1
9
6
9
M
a
i
n
e
f
f
e
c
t
0
.
0
6
8
1
6
7
0
.
0
8
2
3
9
6
0
.
0
1
1
7
5
6
R
a
n
k
2
1
3
Fig
u
r
e
4
.
T
h
e
R
esp
o
n
s
e
Gr
ap
h
f
o
r
t
h
e
GR
A
T
h
en
,
GR
A
w
as
u
tili
ze
d
to
ca
r
r
y
o
u
t
o
p
ti
m
u
m
P
I
D
p
ar
a
m
eter
co
m
b
in
a
tio
n
a
n
al
y
s
is
.
T
h
e
tar
g
et
v
alu
e
s
f
o
r
s
ettli
n
g
ti
m
e
a
n
d
o
v
er
s
h
o
o
t
p
er
ce
n
tag
e
w
er
e
X
0
=
(
2
,
0
)
.
T
h
e
d
ev
iatio
n
s
eq
u
e
n
ce
f
o
r
th
e
r
e
f
er
en
ce
s
eq
u
en
ce
an
d
t
h
e
s
eq
u
e
n
ce
s
in
th
e
o
r
t
h
o
g
o
n
al
ar
r
a
y
,
t
h
e
g
r
e
y
r
elatio
n
al
co
e
f
f
icien
ts
,
a
n
d
g
r
e
y
r
elatio
n
al
g
r
ad
e
ca
lcu
latio
n
r
es
u
lts
ar
e
s
h
o
w
n
i
n
T
ab
le
6
.
Nex
t
,
th
e
G
R
A
r
es
p
o
n
s
e
tab
le
an
d
r
esp
o
n
s
e
g
r
ap
h
co
u
ld
b
e
o
b
tain
ed
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8
694
IJ
PEDS
Vo
l.
7
,
No
.
3
,
Sep
tem
b
er
2
0
1
6
:
734
-
742
740
u
s
i
n
g
m
ai
n
e
f
f
ec
t
a
n
al
y
s
i
s
,
as
s
h
o
w
n
in
T
ab
le
7
an
d
Fi
g
u
r
e
4
.
Fro
m
th
e
r
esp
o
n
s
e
tab
le
a
n
d
r
esp
o
n
s
e
g
r
ap
h
,
th
e
o
p
ti
m
u
m
P
I
D
co
m
b
in
at
i
o
n
f
o
r
D
C
m
o
to
r
’
s
s
p
ee
d
w
as
d
eter
m
i
n
ed
,
w
h
ic
h
i
s
A
3
,
B
1
,
C
2
.
I
n
o
t
h
er
w
o
r
d
s
,
th
e
K
P
o
f
2
,
K
I
o
f
0
.
8
,
an
d
K
D
o
f
0
.
6
.
Th
is
P
I
D
co
m
b
in
at
io
n
w
a
s
o
b
tai
n
ed
b
e
y
o
n
d
t
h
e
s
ea
r
c
h
s
p
ac
e
w
it
h
i
n
t
h
e
L
9
o
r
t
h
o
g
o
n
al
ar
r
ay
.
Af
ter
t
h
e
o
p
ti
m
u
m
P
I
D
p
ar
a
m
eter
co
m
b
i
n
atio
n
w
as
o
b
tain
ed
th
r
o
u
g
h
G
R
A
,
th
e
v
er
if
ica
tio
n
e
x
p
er
i
m
e
n
ts
w
er
e
co
n
d
u
cted
.
First,
t
h
e
t
h
eo
r
etica
l
p
r
ed
icted
v
alu
es
co
u
ld
b
e
f
i
g
u
r
ed
o
u
t
th
r
o
u
g
h
t
h
e
s
i
g
n
i
f
ican
t f
ac
to
r
s
in
th
e
ANOV
A
tab
le.
Af
ter
t
h
e
o
p
ti
m
u
m
P
I
D
co
n
tr
o
l
p
ar
a
m
eter
s
w
er
e
o
b
tai
n
ed
t
h
r
o
u
g
h
GR
A
,
t
h
e
co
n
f
ir
m
a
tio
n
s
i
m
u
lat
io
n
s
w
er
e
co
n
d
u
cted
.
First,
th
e
t
h
eo
r
etica
l
p
r
ed
icted
v
al
u
es
co
u
ld
b
e
f
i
g
u
r
ed
o
u
t
t
h
r
o
u
g
h
t
h
e
s
ig
n
i
f
ica
n
t f
ac
to
r
s
in
t
h
e
A
NO
VA
tab
le
u
s
i
n
g
th
e
f
o
llo
w
in
g
f
o
r
m
u
la:
n
i
i
T
F
T
SN
1
^
(
1
3
)
w
h
er
e
T
is
th
e
av
er
ag
e
o
f
all
t
h
e
SN
r
atio
s
an
d
F
i
is
th
e
SN
r
a
tio
o
f
s
ig
n
if
ican
t
f
ac
to
r
lev
el
v
alu
es.
I
n
o
r
d
er
to
ef
f
ec
tiv
e
l
y
e
v
alu
a
te
th
e
v
ar
i
o
u
s
o
b
s
er
v
ed
v
alu
e
s
,
th
eir
C
o
n
f
id
e
n
ce
I
n
ter
v
al
(
C
I
)
m
u
s
t
b
e
ca
lcu
lated
.
I
ts
ca
lcu
latio
n
is
s
h
o
w
n
b
elo
w
:
e
f
f
v
n
M
S
E
F
CI
1
2
,
1
,
1
(
1
4
)
w
h
il
s
t,
T
h
e
C
I
o
f
th
e
c
alc
u
late
d
e
x
p
er
i
m
en
t
v
al
u
e
is
:
r
n
M
S
E
F
CI
e
f
f
v
1
1
2
,
1
,
2
(
1
5
)
w
h
er
e
F
α
,
1,
v2
is
th
e
F
-
r
atio
o
f
s
ig
n
if
ican
ce
le
v
el
α
;
α
is
t
h
e
s
i
g
n
i
f
ica
n
ce
le
v
el,
th
e
co
n
f
id
en
ce
lev
el
is
1
-
α
;
v
2
i
s
th
e
D
F
o
f
t
h
e
m
ea
n
s
q
u
ar
e
o
f
th
e
p
o
o
led
er
r
o
r
;
MSE
is
th
e
m
ea
n
s
q
u
ar
e
o
f
t
h
e
p
o
o
led
er
r
o
r
;
n
eff
is
th
e
ef
f
ec
tiv
e
o
b
s
er
v
ed
v
alu
e
,
a
n
d
r
is
t
h
e
n
u
m
b
er
o
f
v
er
if
ica
tio
n
ex
p
er
i
m
e
n
ts
.
A
cc
o
r
d
in
g
to
(
13
)
,
th
e
p
r
ed
icted
v
al
u
e
f
o
r
t
h
e
s
e
ttli
n
g
ti
m
e
a
n
d
o
v
er
s
h
o
o
t
p
er
ce
n
tag
e
w
er
e
is
-
2
0
.
6
4
4
9
dB
an
d
-
8
.
8
4
3
d
B
,
r
esp
ec
tiv
el
y
;
w
h
er
ea
s
ac
co
r
d
in
g
to
(
1
4
)
,
th
e
ex
p
ec
ted
a
v
er
a
g
e
v
alu
e
o
f
9
5
%
C
I
o
f
th
e
s
ettli
n
g
ti
m
e
a
n
d
o
v
er
s
h
o
o
t
p
er
ce
n
tag
e
w
er
e
3
.
2
8
3
8
an
d
3
.
7
8
5
1
dB
,
r
esp
ec
tiv
ely
.
T
h
en
,
th
e
s
e
ttli
n
g
ti
m
e
a
n
d
o
v
er
s
h
o
o
t
p
er
ce
n
tag
e
u
n
d
er
o
p
ti
m
u
m
P
I
D
p
ar
am
eter
(
K
P
=2
,
K
I
=0
.
8
,
K
D
=0
.
6
)
w
er
e
ca
lcu
lated
.
T
h
e
s
i
m
u
latio
n
s
h
o
w
ed
th
a
t
t
h
e
ca
lcu
la
ted
s
ettli
n
g
t
i
m
e
a
n
d
p
er
c
en
tag
e
o
v
er
s
h
o
o
t
w
er
e
-
1
4
.
3
2
2
an
d
-
5
.
4
2
6
6
dB
,
r
esp
ec
tiv
el
y
;
w
h
er
ea
s
ac
co
r
d
in
g
to
(
1
5
)
,
th
e
ex
p
ec
ted
av
er
ag
e
v
al
u
e
o
f
9
5
%
C
I
o
f
th
e
s
ettl
in
g
ti
m
e
an
d
o
v
er
s
h
o
o
t
p
er
ce
n
tag
e
w
er
e
5
.
4
9
4
8
an
d
6
.
3
3
7
1
dB
,
r
esp
ec
tiv
el
y
.
T
h
e
d
iag
r
a
m
f
o
r
th
e
C
I
o
f
th
e
s
ett
lin
g
ti
m
e
a
n
d
o
v
er
s
h
o
o
t
p
er
ce
n
tag
e
v
er
if
icatio
n
e
x
p
er
i
m
e
n
t
v
al
u
es
an
d
t
h
eo
r
etica
l
p
r
ed
icted
v
alu
es
ar
e
s
h
o
w
n
i
n
Fig
u
r
e
5
.
Fro
m
th
e
d
iag
r
a
m
s
,
th
e
C
I
f
r
o
m
t
h
e
v
er
i
f
icatio
n
e
x
p
er
i
m
e
n
t
a
n
d
t
h
e
t
h
eo
r
etica
l
p
r
ed
ictio
n
s
d
id
in
d
ee
d
co
in
cid
e;
th
er
e
f
o
r
e
th
e
r
esu
lt
s
f
r
o
m
o
u
r
e
x
p
er
i
m
e
n
t a
r
e
in
d
ee
d
r
eliab
le
h
ad
b
ee
n
p
r
o
v
en
.
Fig
u
r
e
5
.
Diag
r
a
m
f
o
r
th
e
C
I
o
f
th
e
v
er
i
f
icatio
n
e
x
p
er
i
m
e
n
tal
v
alu
e
a
n
d
th
eo
r
etica
l p
r
ed
icted
v
alu
e
f
o
r
(
a)
s
ettlin
g
ti
m
e
an
d
(
b
)
o
v
er
s
h
o
o
t p
er
ce
n
tag
e
-
2
4
-
21
-
18
-
27
-
15
-
12
-
6
(
dB
)
-
9
t
h
e
o
r
e
t
i
c
a
l
p
r
e
d
i
c
t
e
d
v
a
l
u
e
v
e
r
i
f
i
c
a
t
i
o
n
v
a
l
u
e
-
15
-
12
-
9
-
18
-
6
3
0
(
dB
)
3
v
e
r
i
f
i
c
a
t
i
o
n
v
a
l
u
e
t
h
e
o
r
e
t
i
c
a
l
p
r
e
d
i
c
t
e
d
v
a
l
u
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PEDS
I
SS
N:
2
0
8
8
-
8
694
Mu
lti
-
o
b
jective
Op
timiz
a
tio
n
S
ch
eme
fo
r
P
I
D
-
C
o
n
tr
o
lled
D
C
Mo
to
r
(
Gu
n
a
w
a
n
Dewa
n
to
r
o
)
741
4
.
2
.
T
i
m
e
Re
s
po
ns
e
P
er
f
o
r
m
a
nce
Fig
u
r
e
6
(
a)
an
d
(
b
)
d
em
o
n
s
tr
ates
th
e
d
i
s
tu
r
b
ed
s
tep
r
esp
o
n
s
e
s
o
f
t
h
e
DC
m
o
to
r
s
p
ee
d
w
it
h
P
I
D
p
ar
am
eter
o
b
tai
n
ed
f
r
o
m
t
h
e
tr
ad
itio
n
al
Z
ie
g
ler
-
N
ich
o
ls
m
eth
o
d
,
an
d
T
ag
u
c
h
i
-
G
R
A
,
r
es
p
ec
tiv
el
y
.
T
h
e
lo
ad
d
is
tu
r
b
an
ce
i
s
0
.
0
0
5
Nm
at
t=
1
5
s
.
(
a)
(
b
)
Fig
u
r
e
6
.
Un
it st
ep
r
esp
o
n
s
e
s
w
it
h
d
is
t
u
r
b
an
ce
u
s
i
n
g
(
a)
Z
ie
g
ler
-
Nich
o
l
s
an
d
(
b
)
T
ag
u
ch
i
-
GR
A
m
eth
o
d
I
t
is
s
h
o
w
n
t
h
at
t
h
e
P
I
D
p
ar
a
m
eter
o
p
ti
m
izat
io
n
u
s
i
n
g
T
a
g
u
c
h
i
-
G
R
A
m
eth
o
d
i
m
p
r
o
v
es
t
h
e
ti
m
e
r
esp
o
n
s
e
ch
ar
ac
ter
i
s
tic
a
n
d
s
y
s
te
m
r
o
b
u
s
tn
e
s
s
a
g
ai
n
s
t
d
i
s
t
u
r
b
an
ce
co
m
p
ar
ed
to
th
a
t
u
s
i
n
g
Z
ieg
ler
-
Nic
h
o
ls
co
n
v
e
n
tio
n
al
t
u
n
i
n
g
.
5.
CO
NCLU
SI
O
N
A
T
ag
u
c
h
i
m
et
h
o
d
co
m
b
i
n
ed
w
it
h
th
e
GR
A
w
a
s
s
u
cc
e
s
s
f
u
ll
y
e
m
p
lo
y
ed
to
s
ee
k
th
e
o
p
ti
m
u
m
P
I
D
p
ar
am
eter
s
b
e
y
o
n
d
t
h
e
s
ea
r
ch
s
p
ac
e
in
t
h
e
o
r
th
o
g
o
n
a
l
ar
r
a
y
.
T
h
e
p
r
o
p
o
r
tio
n
al
g
ain
,
th
e
in
t
eg
r
al
g
ai
n
,
an
d
t
h
e
d
er
iv
ativ
e
g
ai
n
w
er
e
ch
o
s
e
n
t
o
d
ef
in
e
t
h
e
s
ea
r
c
h
s
p
ac
e
f
o
r
th
e
m
u
l
ti
-
o
b
j
ec
tiv
e
o
p
tim
izati
o
n
p
r
o
b
lem
,
w
h
ile
th
e
o
b
j
ec
tiv
e
is
to
m
i
n
i
m
ize
th
e
s
et
tli
n
g
t
i
m
e
a
n
d
o
v
er
s
h
o
o
t
p
er
ce
n
tag
e
o
f
D
C
m
o
to
r
’
s
s
p
ee
d
.
Fro
m
th
e
r
esp
o
n
s
e
tab
le
an
d
r
esp
o
n
s
e
g
r
ap
h
,
th
e
o
p
ti
m
u
m
P
I
D
p
ar
a
m
e
ter
co
m
b
i
n
atio
n
w
a
s
co
n
cl
u
d
ed
as:
K
P
o
f
2
,
K
I
o
f
0
.
8
,
an
d
K
D
o
f
0
.
6
.
Fro
m
t
h
e
A
N
OV
A
a
n
al
y
s
i
s
,
th
e
f
ac
to
r
t
h
at
m
o
r
e
s
i
g
n
i
f
ica
n
tl
y
a
f
f
ec
ted
th
e
s
ettli
n
g
ti
m
e
ar
e
K
P
an
d
K
D
,
m
ea
n
w
h
i
le
th
e
f
a
cto
r
th
at
m
o
r
e
s
ig
n
i
f
ica
n
tl
y
a
f
f
ec
ted
th
e
o
v
er
s
h
o
o
t
p
er
ce
n
tag
e
ar
e
K
P
a
n
d
K
I
.
Af
ter
ca
r
r
y
i
n
g
o
u
t
v
er
i
f
y
i
n
g
s
i
m
u
latio
n
s
,
t
h
e
9
5
%
C
I
d
iag
r
a
m
s
f
o
r
t
h
e
v
er
if
icatio
n
v
al
u
es
co
in
cid
es
w
it
h
th
at
o
f
t
h
e
t
h
eo
r
etica
l
p
r
ed
icted
v
a
lu
e
s
.
I
t
m
ea
n
s
t
h
at
t
h
e
r
esu
lts
o
f
t
h
is
m
e
th
o
d
p
o
s
s
e
s
s
r
ep
r
o
d
u
cib
ilit
y
.
T
h
e
u
n
i
t
r
esp
o
n
s
e
u
s
i
n
g
t
h
is
m
et
h
o
d
d
e
m
o
n
s
tr
ated
th
e
s
u
p
er
io
r
it
y
o
v
er
t
h
e
tr
ad
iti
o
n
al
Z
ieg
ler
-
Nic
h
o
ls
P
I
D
t
u
n
i
n
g
,
i
n
ter
m
s
o
f
b
o
th
t
h
e
tr
an
s
ie
n
t r
es
p
o
n
s
e
an
d
r
o
b
u
s
tn
e
s
s
.
RE
F
E
R
E
NC
E
S
[1
]
P
.
M
.
M
e
sh
ra
m
a
n
d
R.
G
.
Ka
n
o
ji
y
a
,
“
T
u
n
in
g
o
f
P
ID
C
o
n
tro
ll
e
r
u
si
n
g
Zi
e
g
ler
-
Nic
h
o
ls
M
e
th
o
d
f
o
r
S
p
e
e
d
C
o
n
tr
o
l
o
f
DC
M
o
t
o
r
”
,
In
ter
n
a
ti
o
n
a
l
C
o
n
fer
e
n
c
e
o
n
A
d
v
a
n
c
e
s i
n
E
n
g
i
n
e
e
rin
g
,
S
c
ien
c
e
a
n
d
M
a
n
a
g
e
me
n
t,
2
0
1
2
,
p
p
.
1
1
7
-
122
.
[2
]
H.B.
S
h
i
n
a
n
d
J.G
.
P
a
rk
,
“
A
n
ti
-
W
in
d
u
p
P
ID
Co
n
tr
o
ll
e
r
W
it
h
In
t
e
g
ra
l
S
tate
P
re
d
icto
r
f
o
r
V
a
riab
l
e
-
S
p
e
e
d
M
o
t
o
r
Driv
e
s
”
,
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
In
d
u
stria
l
El
e
c
tro
n
ics
,
v
o
l.
5
9
(3
),
p
p
.
1
5
0
9
-
1
5
1
6
,
A
u
g
2
0
1
1
.
[3
]
G
.
De
w
a
n
to
ro
,
“
Ro
b
u
st
F
in
e
-
T
u
n
e
d
P
ID
C
o
n
tro
ll
e
r
u
si
n
g
T
a
g
u
c
h
i
M
e
th
o
d
f
o
r
R
e
g
u
latin
g
DC
M
o
to
r
S
p
e
e
d
”
,
In
ter
n
a
t
io
n
a
l
C
o
n
fer
e
n
c
e
o
n
I
n
fo
r
ma
ti
o
n
T
e
c
h
n
o
l
o
g
y
a
n
d
El
e
c
trica
l
En
g
in
e
e
rin
g
,
2
0
1
5
,
p
p
.
1
7
3
-
1
7
8
.
[4
]
P
.
Ku
m
a
r,
e
t
a
l
.,
“
De
sig
n
o
f
P
ID
Co
n
tro
ll
e
rs
u
sin
g
M
u
lt
io
b
jec
t
iv
e
Op
ti
m
iza
ti
o
n
w
it
h
GA
a
n
d
W
e
ig
h
te
d
S
u
m
Ob
jec
ti
v
e
F
u
n
c
ti
o
n
M
e
th
o
d
”
,
I
n
te
rn
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
T
e
c
h
n
ica
l
Res
e
a
rc
h
,
v
o
l.
2
(2
)
,
p
p
.
5
2
–
5
6
,
J
u
l
2
0
1
3
.
[5
]
D.
S
in
g
h
,
e
t
a
l
, “
P
e
rf
o
rm
a
n
c
e
In
d
ice
s Ba
se
d
Op
ti
m
a
l
T
u
n
in
g
Crit
e
rio
n
f
o
r
S
p
e
e
d
Co
n
tr
o
l
o
f
DC Dri
v
e
s Us
in
g
GA
”
,
In
ter
n
a
t
io
n
a
l
J
o
u
rn
a
l
o
f
P
o
we
r E
lec
tro
n
ics
a
n
d
Dr
ive
S
y
ste
m
,
v
o
l.
4
(4
)
,
p
p
.
4
6
1
-
4
7
3
,
De
c
2
0
1
4
.
[6
]
H
.
M
.
Ha
sa
n
ien
,
“
De
sig
n
Op
ti
m
i
z
a
ti
o
n
o
f
P
ID
Co
n
tro
l
ler
in
A
u
to
m
a
ti
c
V
o
lt
a
g
e
Re
g
u
lato
r
S
y
ste
m
Us
in
g
Tag
u
c
h
i
Co
m
b
in
e
d
G
e
n
e
ti
c
A
l
g
o
rit
h
m
M
e
th
o
d
”
,
IEE
E
S
y
ste
ms
J
o
u
rn
a
l
,
v
o
l
.
7
(
4
),
p
p
.
8
2
5
-
8
3
1
,
De
c
2
0
1
3
.
[7
]
A
.
R.
F
ird
a
u
s
a
n
d
A
.
S
.
Ra
h
m
a
n
,
“
G
e
n
e
ti
c
A
l
g
o
rit
h
m
o
f
S
li
d
in
g
M
o
d
e
Co
n
tro
l
De
sig
n
f
o
r
M
a
n
ip
u
lat
o
r
Ro
b
o
t
”
,
T
e
lko
mn
ika
,
v
o
l.
1
0
(
4
),
p
p
.
6
4
5
-
6
5
4
,
De
c
2
0
1
2
.
[8
]
I.
Ch
i
h
a
,
e
t
al
.
,
“
T
u
n
i
n
g
P
ID
C
o
n
tro
ll
e
r
u
si
n
g
M
u
lt
io
b
jec
ti
v
e
A
n
t
C
o
l
o
n
y
O
p
ti
m
iza
ti
o
n
”
,
Ap
p
li
e
d
Co
mp
u
t
a
ti
o
n
a
l
In
telli
g
e
n
c
e
a
n
d
S
o
ft
Co
mp
u
ti
n
g
,
v
o
l.
2
0
1
2
,
p
p
.
1
-
7
,
Ja
n
2
0
1
2
.
[9
]
M
.
Yu
,
G
.
L
ich
e
n
,
“
F
u
z
z
y
I
m
m
u
n
e
P
ID
C
o
n
tr
o
l
o
f
Hy
d
ra
u
li
c
S
y
st
e
m
Ba
se
d
o
n
P
S
O
A
lg
o
rit
h
m
”
,
T
e
lko
mn
ika
,
v
o
l.
1
1
(
2
),
p
p
.
8
9
0
-
8
9
5
,
F
e
b
.
2
0
1
3
.
0
5
10
15
20
25
30
0
0
.
2
0
.
4
0
.
6
0
.
8
1
1
.
2
1
.
4
t
i
m
e
(
s)
m
a
g
n
i
t
u
d
e
0
5
10
15
20
25
30
0
0
.
2
0
.
4
0
.
6
0
.
8
1
1
.
2
1
.
4
t
i
m
e
(
s
)
m
a
g
n
i
t
u
d
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8
694
IJ
PEDS
Vo
l.
7
,
No
.
3
,
Sep
tem
b
er
2
0
1
6
:
734
-
742
742
[1
0
]
C.
F
.
J.
Ku
o
,
e
t
a
l
,
“
Op
ti
m
iza
ti
o
n
o
f
I
n
jec
ti
o
n
-
M
o
l
d
e
d
L
ig
h
t
G
u
id
e
P
late
w
it
h
M
icro
stru
c
tu
re
s
b
y
U
sin
g
R
e
c
ip
ro
c
a
l
C
o
m
p
a
riso
n
s
”
,
J
o
u
rn
a
l
o
f
I
n
telli
g
e
n
t
M
a
n
u
fa
c
t
u
rin
g
,
v
o
l
.
2
6
(
4
),
p
p
.
6
7
7
-
6
9
0
,
A
u
g
2
0
1
5
.
[1
1
]
M
.
S
a
rsh
e
n
a
s
a
n
d
Z.
H.
F
iro
u
z
e
h
,
“
A
Ro
b
u
st
Hy
b
rid
T
a
g
u
c
h
i
-
G
ra
d
ien
t
Op
ti
m
iza
ti
o
n
M
e
t
h
o
d
f
o
r
th
e
Ca
lcu
latio
n
o
f
A
n
a
l
y
ti
c
a
l
G
re
e
n
’s
F
u
n
c
ti
o
n
s
o
f
M
icro
strip
S
tru
c
tu
re
s
”
,
IEE
E
A
n
t
e
n
n
a
s
a
n
d
W
ire
les
s
Pro
p
a
g
a
ti
o
n
L
e
tt
e
rs
,
v
o
l.
1
4
,
p
p
.
1
3
6
6
-
1
3
6
8
,
2
0
1
5
.
[1
2
]
G
.
Ha
u
n
g
a
n
d
S
.
L
e
e
,
“
P
C
b
a
se
d
P
ID
S
p
e
e
d
C
o
n
tr
o
l
o
f
DC
m
o
to
r
”
,
In
ter
n
a
ti
o
n
a
l
Co
n
fer
e
n
c
e
o
n
Au
d
io
,
L
a
n
g
u
a
g
e
a
n
d
Ima
g
e
Pro
c
e
ss
in
g
,
2
0
0
8
,
p
p
.
4
0
0
-
4
0
7
.
[1
3
]
N.
T
h
o
m
a
s
a
n
d
P
.
P
o
o
n
g
o
d
i,
“
P
o
siti
o
n
C
o
n
tro
l
o
f
DC
M
o
t
o
r
u
sin
g
G
e
n
e
ti
c
A
l
g
o
rit
h
m
B
a
se
d
P
ID
c
o
n
tro
ll
e
r”
,
T
h
e
W
o
rld
Co
n
g
re
ss
o
n
E
n
g
i
n
e
e
rin
g
,
v
o
l.
1
1
,
2
0
0
9
.
[1
4
]
R.
K.
Ro
y
,
De
sig
n
o
f
Ex
p
e
ri
m
e
n
ts
Us
in
g
th
e
T
a
g
u
c
h
i
A
p
p
ro
a
c
h
.
Ne
w
Yo
rk
:
W
il
e
y
-
In
ters
c
ien
c
e
,
2
0
0
1
.
[1
5
]
C.
F
.
J.
Ku
o
,
a
n
d
T
.
L
.
S
u
,
“
Op
ti
m
iza
ti
o
n
o
f
In
jec
ti
o
n
M
o
l
d
in
g
P
r
o
c
e
ss
in
g
P
a
ra
m
e
ters
f
o
r
L
C
D
L
i
g
h
t
-
G
u
id
e
P
late
s
”
,
Jo
u
rn
a
l
o
f
M
a
teria
ls
En
g
in
e
e
rin
g
a
n
d
P
e
rf
o
rm
a
n
c
e
,
v
o
l.
1
6
(
5
),
p
p
.
5
3
9
-
5
4
8
,
Oc
t
2
0
0
7
.
B
I
O
G
RAP
H
Y
O
F
AUTHO
RS
G
u
n
a
w
a
n
De
w
a
n
to
r
o
re
c
e
iv
e
d
h
is
Ba
c
h
e
lo
r
De
g
re
e
in
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
,
G
a
d
jah
M
a
d
a
Un
iv
e
rsit
y
in
2
0
0
8
a
n
d
M.
S
c
.
E
n
g
in
A
u
to
m
a
ti
o
n
a
n
d
Co
n
tr
o
l,
N
a
ti
o
n
a
l
T
a
i
w
a
n
Un
iv
e
rsit
y
o
f
S
c
ien
c
e
a
n
d
T
e
c
h
n
o
lo
g
y
in
2
0
1
1
.
He
h
a
s
b
e
e
n
w
it
h
S
a
ty
a
Wac
a
n
a
Ch
risti
a
n
Un
iv
e
rsity
sin
c
e
2
0
1
2
.
His
r
e
se
a
rc
h
a
re
a
s in
c
lu
d
e
c
o
n
tro
l
sy
ste
m
s,
in
telli
g
e
n
t
sy
ste
m
s,
a
n
d
o
p
ti
m
iza
ti
o
n
s.
Evaluation Warning : The document was created with Spire.PDF for Python.