I
nte
rna
t
io
na
l J
o
urna
l o
f
Ro
bo
t
ics a
nd
Aut
o
m
a
t
io
n
(
I
J
RA
)
Vo
l.
6
,
No
.
2
,
J
u
n
e
201
7
,
p
p
.
1
4
1
~1
5
0
I
SS
N:
2089
-
4
8
5
6
,
DOI
: 1
0
.
1
1
5
9
1
/i
j
r
a.
v
6
i2
.
p
p
1
4
1
-
15
0
141
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
RA
A
M
ethod o
f
Ex
te
nded Ja
co
bia
n and
F
ire
fly Alg
o
r
ith
m
for t
he
K
ine
m
a
tic
Analy
s
is
o
f
Plana
r
Ro
bo
ts
T
.
Ra
j
a
P
ra
t
ha
b
1
,
R.
Su
j
a
M
a
ni M
a
la
r
2
,
T
.
Ahila
n
3
1
El
e
c
tro
n
ics
a
n
d
Co
m
m
u
n
ica
ti
o
n
En
g
in
e
e
rin
g
De
p
a
rtm
e
n
t,
S
a
ty
a
m
Co
ll
e
g
e
o
f
En
g
in
e
e
rin
g
a
n
d
T
e
c
h
n
o
l
o
g
y
,
In
d
ia
2
Na
ra
y
a
n
a
g
u
ru
S
id
h
a
a
rth
a
Co
ll
e
g
e
o
f
En
g
in
e
e
rin
g
,
In
d
ia
3
Im
m
a
n
u
e
l
A
ra
s
a
r
JJ
Co
ll
e
g
e
o
f
E
n
g
in
e
e
rin
g
,
In
d
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Dec
2
2
,
2
0
1
6
R
ev
i
s
ed
Feb
22
,
2
0
1
7
A
cc
ep
ted
Mar
6
,
2
0
1
7
P
la
n
a
r
ro
b
o
ts
a
re
o
n
e
o
f
th
e
o
p
ti
m
a
l
ro
b
o
t
f
o
rm
i
m
p
a
c
ted
in
t
y
p
ic
a
l
Ca
rtes
ian
p
lan
e
.
It
c
o
n
sists
o
f
f
ix
e
d
d
iv
isio
n
s
a
n
d
c
o
n
n
e
c
to
rs
p
o
siti
o
n
e
d
i
n
se
ries
w
h
ich
o
f
fe
rs
li
k
e
w
o
rk
in
g
o
f
h
u
m
a
n
a
r
m
.
T
h
e
o
n
e
e
n
d
o
f
ro
b
o
t
a
rm
p
o
siti
o
n
is
f
ix
e
d
a
n
d
t
h
e
o
t
h
e
r
a
rm
o
f
th
e
ro
b
o
t
m
o
v
e
th
ro
u
g
h
th
e
Ca
rtes
ian
p
lan
e
b
y
m
o
d
ify
in
g
th
e
f
ra
m
e
w
o
rk
o
f
a
r
m
jo
in
ts.
T
h
e
k
in
e
m
a
ti
c
a
n
a
l
y
si
s
o
n
p
lan
a
r
ro
b
o
t
in
c
l
u
d
e
s
p
o
siti
o
n
,
v
e
lo
c
it
y
a
n
d
a
c
c
e
lera
ti
o
n
a
re
v
a
li
d
a
te
d
n
o
t
b
y
c
o
n
sid
e
ri
n
g
th
e
f
o
rc
e
w
h
ich
c
a
u
se
m
o
ti
o
n
to
ro
b
o
t.
T
h
e
m
a
n
ip
u
lato
r
w
it
h
lac
k
o
f
d
e
sig
n
a
n
d
f
a
u
lt
t
o
lera
n
t
o
p
e
ra
ti
o
n
is
a
n
a
ly
ti
c
a
l
f
o
r
a
p
p
li
c
a
ti
o
n
in
re
m
o
te
a
n
d
th
re
a
t
e
n
v
iro
n
m
e
n
t
w
h
e
re
p
e
rio
d
ic
m
a
in
ten
a
n
c
e
a
n
d
im
p
ro
v
e
m
e
n
ts
a
re
n
o
t
a
v
a
il
a
b
l
e
.
T
h
e
m
o
st
a
d
v
a
n
c
e
d
a
rc
h
it
e
c
tu
re
a
n
d
o
p
e
ra
ti
o
n
a
l
f
lex
ib
il
it
y
o
f
ro
b
o
ts
o
ff
e
r
n
e
w
p
ro
b
a
b
il
i
ty
a
n
d
a
d
v
a
n
c
e
m
e
n
t
in
a
larg
e
sc
a
l
e
o
f
f
a
b
rica
ti
o
n
p
r
o
c
e
ss
.
T
h
is
p
a
p
e
r
p
r
o
p
o
se
s
in
v
e
rse
k
in
e
m
a
ti
c
a
n
a
ly
sis
o
f
P
UMA
5
6
0
r
o
b
o
ti
c
a
r
m
to
c
o
n
c
lu
d
e
l
o
n
g
ra
n
g
e
o
f
f
a
u
lt
to
lera
n
c
e
.
T
h
e
p
ro
p
o
se
d
w
o
rk
in
c
o
rp
o
ra
tes
Ja
c
o
b
ian
a
n
d
F
iref
ly
a
lg
o
rit
h
m
a
r
e
g
e
n
e
ra
ll
y
u
se
f
u
l
f
o
r
d
e
ter
m
in
in
g
in
v
e
rse
k
in
e
m
a
ti
c
s
f
o
r
re
d
u
n
d
a
n
t
r
o
b
o
ts.
K
ey
w
o
r
d
:
Fau
lt to
ler
a
n
ce
F
ir
ef
l
y
alg
o
r
it
h
m
K
in
e
m
atic
a
n
al
y
s
is
P
UM
A
5
6
0
r
o
b
o
t m
a
n
ip
u
la
to
r
R
ed
u
n
d
an
t r
o
b
o
ts
Co
p
y
rig
h
t
©
2
0
1
7
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
T
.
R
a
j
a
P
r
ath
ab
,
Hea
d
o
f
Dep
ar
tm
e
n
t,
E
lectr
o
n
ics an
d
C
o
m
m
u
n
icatio
n
E
n
g
i
n
ee
r
in
g
Dep
ar
t
m
en
t
,
Sat
y
a
m
C
o
lle
g
e
o
f
E
n
g
in
ee
r
i
n
g
an
d
T
ec
h
n
o
lo
g
y
,
I
n
d
ia
.
E
m
ail:
r
aj
ap
r
ath
ab
t@
g
m
ai
l.c
o
m
1.
I
NT
RO
D
UCT
I
O
N
R
o
b
o
ts
is
a
m
ec
h
a
n
ical
s
y
s
te
m
h
a
s
t
h
e
ca
p
ac
it
y
f
o
r
ca
r
r
y
i
n
g
v
ar
io
u
s
k
i
n
d
o
f
ta
s
k
s
i
n
co
n
tr
o
lled
au
to
m
at
ic
m
a
n
n
er
.
Gen
er
all
y
r
o
b
o
ts
ar
e
c
o
m
p
u
ter
ized
p
r
o
g
r
a
m
m
ed
s
y
s
te
m
a
s
s
i
g
n
ed
f
o
r
co
m
p
le
x
o
p
er
atio
n
s
w
h
er
e
h
u
m
an
o
p
er
ato
r
s
u
n
ab
l
e
to
p
er
f
o
r
m
.
T
h
e
r
o
b
o
ts
ar
e
u
tili
ze
d
in
f
ield
s
s
u
ch
a
s
m
i
n
u
t
e
m
an
u
f
ac
tu
r
i
n
g
o
f
p
r
o
d
u
cts,
an
d
it
in
co
r
p
o
r
a
tes
t
ask
s
in
c
lu
d
es
r
ad
io
ac
ti
v
e
w
h
e
r
e
h
u
m
a
n
n
o
t
ab
le
to
ca
r
r
ied
o
u
t.
B
y
co
n
s
id
er
in
g
th
e
f
o
llo
w
i
n
g
f
ac
to
r
s
r
o
b
o
ts
tak
e
a
s
tep
f
o
r
w
ar
d
an
d
r
eg
ar
d
s
as ser
v
er
s
to
t
h
e
u
s
er
s
.
T
h
e
ter
m
k
i
n
e
m
atics
r
e
f
er
s
to
th
e
f
ield
o
f
s
tu
d
y
r
elate
d
to
th
e
m
o
tio
n
o
f
o
b
j
ec
ts
.
T
h
e
k
in
e
m
atic
o
f
r
o
b
o
ts
is
d
ef
in
ed
as
th
e
s
tu
d
y
ca
r
r
ied
o
u
t
in
th
e
m
ec
h
a
n
ical
m
o
tio
n
o
f
r
o
b
o
ts
.
T
h
e
an
al
y
s
i
s
o
f
r
o
b
o
ts
in
clu
d
es
th
e
p
o
s
itio
n
,
v
elo
cit
y
a
n
d
ac
c
eler
atio
n
o
f
m
ec
h
an
ical
li
n
k
s
an
d
j
o
in
ts
o
f
r
o
b
o
ts
.
T
h
e
k
in
e
m
a
tic
a
n
al
y
s
is
is
ca
r
r
ied
o
u
t
b
y
u
ti
lizi
n
g
t
h
e
a
b
o
v
e
f
ac
to
r
s
w
h
ich
te
n
d
s
to
ca
u
s
e
m
o
tio
n
.
T
h
e
r
elati
v
it
y
b
et
w
ee
n
t
h
e
r
o
b
o
tic
m
o
tio
n
,
f
o
r
ce
an
d
to
r
q
u
e
is
an
al
y
s
ed
d
u
r
in
g
t
h
e
k
i
n
e
m
atic
a
n
al
y
s
i
s
.
T
h
e
r
o
b
o
tic
d
esig
n
a
n
d
f
au
lt
to
ler
an
ce
f
o
r
ce
r
tain
r
e
m
o
te
a
n
d
t
h
r
ea
ted
en
v
ir
o
n
m
en
ts
w
h
er
e
p
er
io
d
ic
m
ain
te
n
an
ce
an
d
i
m
p
r
o
v
e
m
e
n
ts
ar
e
n
o
t
ac
h
ie
v
ab
le.
T
h
e
f
au
lt r
ates i
n
p
r
o
d
u
cts co
n
s
id
er
in
g
t
h
r
ea
ted
en
v
ir
o
n
m
e
n
t
s
ar
e
co
m
p
ar
ati
v
el
y
h
i
g
h
[
1
]
.
T
h
e
r
o
b
o
tic
s
y
s
te
m
s
g
e
n
er
all
y
co
n
s
i
s
ts
o
f
a
m
ec
h
a
n
ical
m
an
ip
u
lato
r
,
en
d
-
ef
f
ec
to
r
,
m
icr
o
p
r
o
ce
s
s
o
r
an
d
co
n
tr
o
ller
b
ased
u
s
er
in
ter
f
ac
e
co
m
p
u
ter
.
A
m
ec
h
a
n
ical
m
an
ip
u
lato
r
co
n
s
ti
tu
te
n
u
m
b
e
r
o
f
lin
k
s
an
d
j
o
in
ts
to
f
o
r
m
a
k
in
e
m
at
ic
ch
ai
n
.
T
h
e
j
o
in
ts
in
th
e
m
an
ip
u
lato
r
ca
n
b
e
ac
tu
ated
w
h
i
le
s
o
m
e
o
f
t
h
e
m
ar
e
n
o
t
p
o
s
s
ib
le.
T
h
e
ac
tu
ated
j
o
in
ts
in
a
t
y
p
ica
l
r
o
b
o
t
eq
u
als
to
th
e
d
eg
r
ee
o
f
f
r
ee
d
o
m
[
2
]
.
I
n
r
ec
en
t
ti
m
es
s
o
m
e
atte
m
p
ts
h
a
s
u
n
d
er
g
o
n
e
to
w
ar
d
s
t
h
e
r
esear
ch
i
n
alter
n
a
tiv
e
d
esi
g
n
o
f
m
an
ip
u
lato
r
b
ased
o
n
th
e
p
er
ce
p
tio
n
o
f
k
i
n
e
m
at
ic
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
6
,
No
.
2
,
J
u
n
e
201
7
:
1
4
1
–
15
0
142
ch
ain
,
b
ec
au
s
e
o
f
t
h
e
f
o
llo
w
i
n
g
ad
v
an
tag
e
s
w
h
ic
h
is
c
o
m
p
ar
ed
w
ith
tr
ad
itio
n
al
o
p
en
k
i
n
e
m
atic
ch
a
in
m
an
ip
u
lato
r
s
w
h
ic
h
o
f
f
er
s
m
o
r
e
r
ig
id
it
y
an
d
ac
c
u
r
ac
y
[
3
]
.
T
h
e
r
esear
ch
o
n
k
i
n
e
m
atic
s
o
f
m
ec
h
a
n
ical
s
y
s
te
m
ad
v
a
n
ce
i
m
m
in
e
n
t
to
t
h
e
co
n
f
i
g
u
r
at
io
n
r
eg
ar
d
s
to
s
in
g
u
lar
p
r
o
b
lem
s
.
T
h
e
co
n
f
i
g
u
r
atio
n
ar
e
d
ef
in
ed
as
th
e
J
ac
o
b
ian
m
a
tr
ix
,
T
h
eses
m
atr
ice
s
r
elate
d
w
it
h
in
p
u
t
an
d
o
u
tp
u
t
s
p
ee
d
s
b
ec
a
m
e
i
n
s
u
f
f
icie
n
t
[
4
]
.
T
h
e
m
a
n
ip
u
lato
r
co
n
f
i
g
u
r
atio
n
ca
n
b
e
an
al
y
s
e
d
u
s
in
g
n
u
m
er
ical
tech
n
iq
u
es
t
h
at
w
i
ll
p
o
s
itio
n
an
d
ad
ap
t
th
e
en
d
ef
f
ec
to
r
in
an
ap
p
etite
m
an
n
er
in
t
h
e
r
esear
ch
f
o
r
t
y
p
ical
g
eo
m
etr
y
ar
m
s
s
i
m
u
lta
n
eo
u
s
l
y
(
Go
ld
en
-
b
er
g
,
B
en
h
ab
ib
,
an
d
Fen
to
n
1
9
8
5
;
Go
ld
en
b
er
g
an
d
L
a
w
r
e
n
ce
1
9
8
5
;
An
g
eles 1
9
8
5
,
1
9
8
6
)
.
T
h
e
an
al
y
s
i
s
o
f
n
u
m
er
ical
m
e
th
o
d
u
s
es
m
u
lt
id
i
m
e
n
s
io
n
al
N
e
w
to
n
-
R
ap
h
s
o
n
o
r
th
e
s
a
m
e
t
ec
h
n
iq
u
es
in
d
u
ce
d
f
o
r
f
i
n
d
in
g
s
o
l
u
tio
n
s
.
T
h
e
co
m
p
u
tat
io
n
al
e
f
f
ic
ien
c
y
is
v
alid
ated
b
y
ev
al
u
ati
n
g
th
e
in
v
er
s
e
J
ac
o
b
ian
o
f
m
an
ip
u
lato
r
at
d
i
f
f
er
en
t
p
er
io
d
s
[
5
]
.
T
h
e
h
y
b
r
id
m
a
n
ip
u
lat
i
o
n
is
a
co
m
b
i
n
ed
m
o
d
el
o
f
o
p
en
a
n
d
clo
s
ed
ch
ai
n
m
ec
h
a
n
i
s
m
o
r
a
f
lo
w
o
f
p
ar
allel
m
ec
h
an
is
m
.
T
h
ese
t
y
p
e
m
an
ip
u
lato
r
g
i
v
es
l
i
m
ited
ef
f
i
cien
c
y
to
s
er
ial
a
n
d
p
ar
allel
m
a
n
ip
u
la
to
r
s
an
d
o
f
f
er
s
ap
p
licatio
n
s
f
r
o
m
f
lex
ib
ili
t
y
o
f
w
o
r
k
s
p
ac
e
e
f
f
icien
c
y
[
6
]
.
P
r
ec
is
ely
,
m
o
r
e
r
esear
ch
es o
n
t
h
e
d
ex
ter
it
y
o
p
ti
m
izatio
n
o
r
f
lex
ib
ilit
y
r
atio
ar
e
r
elev
an
t to
t
h
e
k
i
n
e
m
atic
ac
c
u
r
ac
y
[
7
]
.
T
h
e
r
est
o
f
th
e
p
ap
er
is
o
r
g
an
ized
as
f
o
llo
w
s
:
t
h
e
r
elate
d
r
esear
ch
w
o
r
k
o
n
t
h
e
i
n
d
u
s
tr
ial
r
o
b
o
t
f
au
lt
to
ler
an
ce
is
g
iv
e
n
i
n
s
ec
tio
n
2
.
T
h
e
p
r
o
b
lem
f
o
r
t
h
e
p
r
o
p
o
s
ed
w
o
r
k
is
d
er
iv
ed
i
n
t
h
e
s
ec
ti
o
n
3
.
T
h
e
p
r
o
p
o
s
ed
s
y
s
te
m
f
o
r
th
e
er
r
o
r
m
i
n
i
m
iza
tio
n
i
s
d
escr
ib
ed
i
n
t
h
e
s
ec
tio
n
4
.
T
h
e
i
m
p
le
m
en
tatio
n
r
es
u
l
ts
a
n
d
d
is
c
u
s
s
io
n
is
g
iv
e
n
i
n
s
ec
tio
n
5
an
d
in
t
h
e
s
u
b
s
eq
u
e
n
t sectio
n
th
e
co
n
clu
s
i
o
n
an
d
r
ef
er
en
ce
to
t
h
e
p
ap
er
i
s
g
i
v
en
.
2.
RE
L
AT
E
D
WO
RK
So
m
e
o
f
t
h
e
r
ec
en
t
r
esear
ch
r
elate
d
to
th
e
f
a
u
lt
lo
ca
tio
n
in
d
is
tr
ib
u
tio
n
s
y
s
te
m
is
l
is
ted
b
elo
w
:
B
en
-
Gh
ar
b
ia,
K.
M.
et
al
[
8
]
h
ad
p
r
o
p
o
s
ed
a
s
tr
ateg
y
f
o
r
d
is
tin
g
u
is
h
i
n
g
all
th
e
k
i
n
e
m
ati
c
p
lan
s
o
f
s
p
atial
p
o
s
itio
n
in
g
m
a
n
ip
u
lato
r
s
th
at
ar
e
id
ea
ll
y
f
au
lt
to
ler
an
t
i
n
a
n
ea
r
b
y
s
e
n
s
e.
B
y
u
tili
zi
n
g
a
t
y
p
ica
l
m
ea
n
i
n
g
o
f
ad
ap
tatio
n
to
in
ter
n
al
f
ail
u
r
e,
i.e
.
,
th
e
p
o
s
t
-
f
ail
u
r
e
J
ac
o
b
ian
h
as
th
e
b
ig
g
e
s
t
co
n
ce
iv
ab
le
le
ast
s
o
litar
y
estee
m
o
v
er
all
co
n
ce
iv
ab
le
s
i
n
g
le
b
o
lted
j
o
in
t
d
is
ap
p
o
in
t
m
e
n
t
s
.
T
h
e
s
u
b
s
ta
n
tia
l
g
r
o
u
p
o
f
p
h
y
s
ical
co
n
tr
o
ller
s
t
h
at
co
u
ld
ac
co
m
p
li
s
h
th
i
s
id
ea
ll
y
d
is
ap
p
o
in
t
m
e
n
t
to
ler
an
t
ar
r
an
g
e
m
e
n
t
w
as
t
h
e
n
p
ar
a
m
eter
i
ze
d
an
d
s
o
r
ted
.
I
n
wh
ic
h
a
g
e
n
er
al
co
m
p
u
tatio
n
al
m
et
h
o
d
to
ass
es
s
t
h
e
s
u
b
s
eq
u
en
t
m
a
n
ip
u
lato
r
s
a
s
f
ar
as
th
eir
w
o
r
ld
w
id
e
k
in
e
m
at
ic
p
r
o
p
er
ties
,
w
it
h
a
n
ac
ce
n
tu
a
tio
n
o
n
d
is
ap
p
o
in
t
m
e
n
t
r
esi
s
tan
ce
w
as
p
r
o
d
u
ce
d
.
A
f
e
w
m
a
n
ip
u
lato
r
s
w
it
h
a
s
co
p
e
o
f
al
lu
r
i
n
g
k
in
e
m
atic
p
r
o
p
er
ties
ar
e
ex
h
ib
ited
an
d
ex
a
m
i
n
ed
,
w
i
th
a
p
ar
tic
u
l
ar
ca
s
e
o
f
ad
v
a
n
ci
n
g
o
v
er
a
g
iv
e
n
clas
s
o
f
co
n
tr
o
lle
r
s
th
at
h
a
v
e
a
p
r
ed
ef
in
ed
k
in
e
m
atic
li
m
ita
tio
n
.
R
ep
p
a,
V.
et
al
[
9
]
in
tr
o
d
u
ce
d
th
e
d
es
ig
n
a
n
d
i
n
v
esti
g
at
io
n
o
f
a
s
tr
ateg
y
f
o
r
r
ec
o
g
n
izin
g
a
n
d
s
eg
r
e
g
atin
g
n
u
m
er
o
u
s
s
e
n
s
o
r
f
ail
u
r
es
i
n
v
a
s
t
s
ca
le
i
n
ter
co
n
n
ec
ted
n
o
n
lin
ea
r
f
r
a
m
e
w
o
r
k
s
.
T
h
e
f
o
u
n
d
atio
n
o
f
th
e
p
r
o
p
o
s
ed
d
ec
en
tr
alize
d
a
p
p
r
o
ac
h
w
as
t
h
e
d
esi
g
n
o
f
a
n
ea
r
b
y
s
e
n
s
o
r
f
ai
lu
r
es
d
et
er
m
in
a
tio
n
o
p
er
ato
r
d
ev
o
ted
to
ea
ch
in
ter
co
n
n
ec
te
d
s
u
b
s
y
s
te
m
,
w
it
h
o
u
t
th
e
n
ee
d
to
s
p
ea
k
w
ith
n
eig
h
b
o
u
r
i
n
g
a
g
en
t
s
.
E
v
er
y
n
ea
r
b
y
s
en
s
o
r
f
ail
u
r
es
d
eter
m
i
n
atio
n
o
p
er
ato
r
w
as
i
n
ch
ar
g
e
o
f
r
ec
o
g
n
izi
n
g
an
d
d
is
co
n
n
ec
ti
n
g
v
ar
io
u
s
f
ai
lu
r
es
i
n
t
h
e
n
ea
r
b
y
s
e
t
o
f
s
e
n
s
o
r
s
.
T
h
e
n
ea
r
b
y
s
en
s
o
r
f
ai
lu
r
e
a
n
al
y
s
i
s
o
p
er
ato
r
co
m
p
r
is
es
o
f
a
b
an
k
o
f
m
o
d
u
les
th
a
t
s
cr
ee
n
li
ttler
g
a
th
er
i
n
g
s
o
f
s
e
n
s
o
r
s
i
n
t
h
e
co
m
p
ar
i
n
g
n
ea
r
b
y
s
e
n
s
o
r
s
et.
T
h
e
d
is
co
v
er
y
o
f
f
ail
u
r
es
i
n
ea
c
h
o
f
th
e
s
en
s
o
r
g
ath
er
i
n
g
s
is
led
u
tili
zi
n
g
lo
g
ical
ex
ce
s
s
r
elatio
n
s
,
d
ef
i
n
ed
b
y
o
r
g
an
ized
r
esid
u
als
an
d
v
er
s
atile
ed
g
es
.
T
h
e
d
if
f
er
en
t
s
e
n
s
o
r
f
ail
u
r
es
co
n
f
i
n
e
m
e
n
t
i
n
e
v
er
y
n
ea
r
b
y
s
e
n
s
o
r
f
ail
u
r
e
an
al
y
s
is
w
a
s
ac
k
n
o
w
led
g
ed
b
y
co
llectin
g
th
e
d
ec
is
io
n
o
f
t
h
e
m
o
d
u
les
an
d
ap
p
l
y
in
g
d
e
m
o
n
s
tr
ati
v
e
th
in
k
i
n
g
b
ased
d
ec
is
io
n
in
f
er
en
ce
.
T
h
e
ex
ec
u
t
io
n
o
f
t
h
e
p
r
o
p
o
s
ed
an
al
y
tic
p
lan
w
as
b
r
o
k
e
d
o
w
n
as
f
o
r
s
en
s
o
r
f
a
ilu
r
e
p
er
ce
p
tib
i
lit
y
a
n
d
d
i
f
f
er
e
n
t
s
en
s
o
r
f
ailu
r
e
r
ec
lu
s
io
n
.
A
s
i
m
u
latio
n
ca
s
e
o
f
t
w
o
i
n
ter
co
n
n
ec
ted
r
o
b
o
t
m
an
ip
u
lato
r
s
w
as
u
tili
ze
d
to
r
ep
r
esen
t
th
e
u
s
e
o
f
t
h
e
v
ar
io
u
s
s
e
n
s
o
r
f
ailu
r
e
d
is
co
v
er
y
a
n
d
co
n
f
in
e
m
en
t stra
te
g
y
.
B
en
-
G
h
ar
b
ia
et
al
[
1
0
]
p
r
o
p
o
s
ed
a
s
tr
ate
g
y
to
p
r
o
d
u
c
e
p
h
y
s
ical
l
y
f
ea
s
ib
le
J
ac
o
b
ian
s
t
h
at
ar
e
n
ea
r
b
ein
g
id
ea
l.
I
t
w
as
f
u
r
t
h
er
d
em
o
n
s
tr
ated
th
at
th
er
e
ex
is
t
7
u
n
iq
u
e
m
an
ip
u
lato
r
s
,
f
r
o
m
a
s
o
litar
y
J
ac
o
b
ian
,
th
at
h
av
e
a
s
i
m
ilar
n
ea
r
b
y
ad
ap
tati
o
n
to
n
o
n
-
cr
itical
f
ail
u
r
e
p
r
o
p
e
r
ties
.
T
o
ass
ess
th
e
w
o
r
ld
w
id
e
p
r
o
p
e
r
ties
o
f
th
ese
d
is
tin
ct
iv
e
m
an
ip
u
lato
r
s
,
a
s
y
s
te
m
f
o
r
f
i
g
u
r
i
n
g
s
ix
-
d
i
m
e
n
s
i
o
n
al
f
ail
u
r
e
to
ler
an
t
w
o
r
k
s
p
a
ce
s
w
a
s
ex
h
ib
ited
.
T
h
e
s
p
an
o
f
th
e
s
e
w
o
r
k
s
p
ac
es
ch
an
g
e
es
s
en
t
iall
y
a
m
o
n
g
t
h
es
e
7
m
a
n
ip
u
la
to
r
s
.
T
o
clar
if
y
n
o
n
d
r
ea
r
y
is
s
u
es,
Xiao
,
L
et
al
[
1
1
]
p
r
o
p
o
s
ed
a
n
d
r
esear
ch
ed
a
n
o
v
el
R
ep
etit
iv
e
Mo
tio
n
P
lan
n
i
n
g
(
R
MP
)
p
lo
t
(
n
a
m
ed
s
p
ee
d
in
g
u
p
lev
el
R
MP
co
n
s
p
ir
e)
,
w
h
ic
h
w
as
s
ett
led
at
th
e
j
o
in
t
-
q
u
ic
k
e
n
in
g
lev
el
i
n
s
tead
o
f
at
t
h
e
j
o
in
t
-
s
p
ee
d
lev
el.
T
h
e
p
lan
w
a
s
th
e
n
r
ef
o
r
m
u
lated
as
a
q
u
ad
r
atic
p
r
o
g
r
a
m
(
QP
)
s
u
b
j
ec
t
to
b
alan
ce
an
d
b
o
u
n
d
r
eq
u
ir
e
m
en
ts
.
Fo
r
t
h
e
r
ea
s
o
n
s
f
o
r
ex
p
er
i
m
e
n
tatio
n
,
a
d
is
cr
ete
-
ti
m
e
QP
s
o
lv
er
w
a
s
cr
ea
ted
f
o
r
th
e
ar
r
an
g
e
m
e
n
t
o
f
th
e
r
es
u
lta
n
t
QP
.
B
y
ex
te
n
s
i
o
n
,
th
e
w
o
r
ld
w
id
e
j
o
in
in
g
o
f
s
u
c
h
a
d
is
cr
ete
-
ti
m
e
QP
s
o
lv
er
is
d
is
p
la
y
ed
an
d
r
es
ea
r
ch
ed
.
C
o
m
p
ar
is
i
o
n
b
et
w
ee
n
t
h
e
n
o
n
-
r
ep
etiti
v
e
m
o
tio
n
a
n
d
R
E
P
ap
p
r
o
v
e
th
e
ad
eq
u
ac
y
an
d
p
r
ed
o
m
in
a
n
ce
o
f
t
h
e
p
r
o
p
o
s
ed
p
l
o
t.
A
ll
t
h
e
m
o
r
e
v
itall
y
,
t
h
e
p
r
o
p
o
s
ed
p
lo
t
an
d
th
e
co
m
p
ar
i
n
g
d
is
cr
ete
-
ti
m
e
QP
s
o
lv
er
ar
e
ac
tu
alize
d
o
n
a
s
ix
-
co
n
n
ec
t
p
lan
ar
r
o
b
o
t
co
n
tr
o
ller
.
T
h
e
tr
ial
c
o
m
e
s
ab
o
u
t
f
u
r
th
er
s
u
b
s
ta
n
tiate
t
h
eir
p
h
y
s
ica
l u
n
w
a
v
er
in
g
q
u
al
it
y
,
p
r
o
d
u
ctiv
it
y
,
an
d
p
r
ec
is
io
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
A
M
eth
o
d
o
f E
xten
d
ed
J
a
co
b
i
a
n
a
n
d
F
ir
efly
A
lg
o
r
ith
m
fo
r
th
e
K
in
ema
tic
A
n
a
lysi
s
o
f
...
(
T.
R
a
ja
P
r
a
th
a
b
)
143
P
en
g
Qi
et
al
[
1
2
]
ex
h
ib
ited
a
n
ex
p
er
i
m
en
t
o
n
k
in
e
m
atic
co
n
tr
o
l
o
f
co
n
ti
n
u
u
m
co
n
tr
o
ller
s
u
tili
zi
n
g
a
f
l
u
f
f
y
m
o
d
el
-
b
ased
ap
p
r
o
ac
h
.
A
f
u
zz
y
m
a
n
ip
u
la
to
r
w
a
s
p
r
o
p
o
s
e
d
f
o
r
s
elf
-
s
u
f
f
icie
n
t
e
x
ec
u
t
i
o
n
o
f
e
n
d
-
e
f
f
ec
to
r
d
ir
ec
tio
n
tr
ac
in
g
f
u
n
ctio
n
f
o
r
a
co
n
tin
u
u
m
m
a
n
ip
u
lato
r
.
E
s
p
ec
iall
y
,
p
ar
ticip
atio
n
ca
p
ac
iti
es
w
er
e
u
til
ized
to
co
n
s
o
lid
ate
t
h
e
li
n
ea
r
ized
s
tat
e
-
s
p
ac
e
m
o
d
els,
to
ac
co
m
p
li
s
h
,
g
e
n
er
all
y
s
p
ea
k
i
n
g
,
a
f
u
zz
y
m
o
d
el.
T
h
e
f
u
zz
y
m
o
d
el
ca
n
o
u
tl
in
e
t
h
e
f
u
zz
y
co
n
tr
o
ller
;
in
t
h
is
ap
p
r
o
ac
h
p
r
o
ce
d
u
r
e
is
u
p
h
eld
b
y
an
ex
h
a
u
s
tiv
e
s
ec
u
r
it
y
in
v
e
s
ti
g
atio
n
.
T
h
is
co
n
tr
o
l
s
y
s
te
m
e
m
p
o
w
er
s
an
a
n
s
w
er
w
i
th
lo
w
co
m
p
u
tat
io
n
al
p
r
er
eq
u
is
ites
to
th
i
s
m
o
v
e
m
e
n
t
co
n
tr
o
l
i
s
s
u
e
-
t
h
er
e
w
as
n
o
co
m
p
ell
in
g
r
ea
s
o
n
to
ce
aseles
s
l
y
o
v
er
h
a
u
l
t
h
e
J
ac
o
b
ian
o
f
t
h
e
co
n
tin
u
u
m
co
n
tr
o
ller
.
T
h
e
ex
ce
p
tio
n
al
ex
ec
u
tio
n
o
f
t
h
is
co
n
tr
o
ller
w
a
s
ap
p
r
o
v
ed
in
MA
T
L
A
B
s
i
m
u
latio
n
s
an
d
co
n
tr
asted
w
i
th
t
h
o
s
e
o
f
estab
lis
h
ed
co
n
tr
o
ller
s
f
o
u
n
d
in
t
h
e
r
esear
c
h
.
T
h
e
v
alid
atio
n
s
o
n
a
q
u
ic
k
p
r
o
to
ty
p
ed
co
n
tin
u
u
m
co
n
tr
o
ller
ad
d
itio
n
all
y
co
n
f
ir
m
t
h
e
p
r
ac
ticalit
y
a
n
d
th
e
b
en
e
f
it
s
o
f
t
h
is
f
u
zz
y
co
n
tr
o
ller
w
it
h
i
n
t
h
e
s
i
g
h
t o
f
d
is
p
la
y
in
g
d
is
p
ar
ities
an
d
eq
u
ip
m
en
t e
r
r
o
r
s
.
3.
M
O
DE
L
L
I
N
G
O
F
E
X
T
E
N
DE
D
J
ACO
B
I
AN
O
P
T
I
M
I
Z
AT
I
O
N
P
RO
B
L
E
M
T
h
e
m
ai
n
cr
iter
ia
d
i
s
cu
s
s
ed
th
r
o
u
g
h
o
u
t
th
is
p
ap
er
is
to
d
esig
n
an
d
f
ab
r
icate
th
e
r
o
b
o
t
m
a
n
i
p
u
lato
r
o
f
r
o
b
o
t
w
it
h
h
i
g
h
g
r
ad
e
o
f
f
a
u
lt
to
ler
an
ce
.
T
h
e
k
in
e
m
atic
a
n
a
l
y
s
i
s
o
f
r
o
b
o
t
is
u
n
d
er
g
o
n
e
u
s
in
g
a
p
r
o
to
t
y
p
e
o
f
P
u
m
a
5
6
0
r
o
b
o
t
w
ith
s
i
x
d
eg
r
ee
o
f
f
r
ee
d
o
m
.
T
h
e
m
a
n
ip
u
la
t
o
r
is
ta
k
e
n
f
o
r
th
e
k
in
e
m
atic
a
n
al
y
s
i
s
i
n
co
r
p
o
r
ates
r
o
b
o
tic
ar
m
.
T
h
e
an
al
y
s
i
s
is
ca
r
r
ied
o
u
t
b
y
u
s
i
n
g
E
x
ten
d
ed
J
ac
o
b
ian
an
d
f
ir
e
f
l
y
a
lg
o
r
ith
m
.
T
h
e
in
v
er
s
e
k
in
e
m
at
ics
o
f
r
o
b
o
t
ar
m
i
s
u
til
ized
f
o
r
o
b
tain
h
i
g
h
g
r
ad
e
o
f
f
au
lt
to
ler
a
n
ce
i
s
an
a
l
y
s
ed
b
y
f
i
r
ef
l
y
alg
o
r
it
h
m
.
I
n
th
e
in
v
er
s
e
a
n
al
y
s
i
s
th
e
o
u
tp
u
t
o
f
th
e
r
o
b
o
t jo
in
t a
n
g
les is
t
h
e
co
o
r
d
in
ates o
f
en
d
ef
f
ec
to
r
.
3
.
1
.
I
nv
er
s
e
K
ine
m
a
t
ics o
f
P
UM
A
5
6
0
r
o
bo
t
ic
a
rm
T
h
e
P
UM
A
(
P
r
o
g
r
am
m
ab
le
Un
i
v
er
s
al
Ma
ch
i
n
e
f
o
r
A
s
s
e
m
b
l
y
)
5
6
0
m
ac
h
in
e
i
s
d
esig
n
ed
w
it
h
6
d
eg
r
ee
o
f
f
r
ee
d
o
m
w
it
h
6
j
o
i
n
ts
a
n
d
lin
k
s
.
An
ap
p
r
o
p
r
iate
ex
a
m
p
le
f
o
r
s
er
ial
ch
ain
m
ac
h
in
e
i
s
P
UM
A
5
6
0
r
o
b
o
t
w
h
ic
h
i
s
d
esi
g
n
ed
f
o
r
u
s
in
g
i
n
in
d
u
s
tr
ie
s
m
an
u
f
ac
t
u
r
ed
b
y
U
n
i
m
atio
n
.
I
n
c.
,
d
escr
ib
e
d
in
f
i
g
1
[
1
3
]
.
T
h
e
tr
u
ck
o
f
t
h
e
r
o
b
o
t
is
s
tatio
n
ar
y
an
d
f
i
x
ed
o
n
a
tab
le
o
r
f
lo
o
r
.
T
h
e
s
h
o
u
ld
er
p
o
r
tio
n
o
f
t
h
e
r
o
b
o
t
r
o
tates
ab
o
u
t
a
v
er
tical
ax
is
w
it
h
r
esp
ec
t
to
t
h
e
tr
u
n
k
o
f
t
h
e
r
o
b
o
t.
T
h
e
r
o
b
o
t
u
p
p
er
ar
m
r
o
tates
ar
o
u
n
d
h
o
r
izo
n
tal
ax
is
w
it
h
r
esp
ec
t
to
th
e
s
h
o
u
ld
er
an
d
t
h
ese
k
i
n
d
o
f
r
o
tatio
n
is
ter
m
ed
as
s
h
o
u
ld
er
j
o
in
t
r
o
tatio
n
.
T
h
e
f
o
r
e
ar
m
o
f
r
o
b
o
t
r
ev
o
lv
es
ar
o
u
n
d
h
o
r
izo
n
tal
d
ir
ec
tio
n
w
it
h
r
esp
ec
t
to
u
p
p
er
ar
m
.
T
h
e
r
o
b
o
t
w
r
is
t
co
n
s
tit
u
tes
o
f
t
h
r
ee
f
i
x
ed
b
o
d
ies
w
it
h
t
h
r
ee
o
th
er
r
o
tatio
n
s
.
T
h
u
s
t
h
e
r
o
b
o
t
ar
m
co
n
s
is
t
s
o
f
s
e
v
e
n
f
ix
ed
b
o
d
ies
an
d
s
i
x
j
o
in
ts
co
n
n
ec
ti
n
g
th
e
f
ix
ed
b
o
d
ies.
T
h
e
s
ix
d
eg
r
ee
-
of
-
f
r
e
ed
o
m
P
UM
A
5
6
0
r
o
b
o
t m
a
n
ip
u
lato
r
as s
h
o
w
n
i
n
Fi
g
u
r
e
1
.
Fig
u
r
e
1
.
T
h
e
s
ix
d
eg
r
ee
-
of
-
f
r
e
ed
o
m
P
UM
A
5
6
0
r
o
b
o
t m
a
n
i
p
u
lato
r
T
h
e
esti
m
atio
n
o
f
co
o
r
d
in
ates
in
r
o
b
o
t
k
in
e
m
atics
o
f
a
s
tati
c
r
ed
u
n
d
an
c
y
m
an
ip
u
lato
r
is
d
ef
in
ed
i
n
eq
u
atio
n
(
1
)
r
x
z
F
F
x
t
d
,
:
(
1
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
6
,
No
.
2
,
J
u
n
e
201
7
:
1
4
1
–
15
0
144
W
h
er
e;
„
d
‟
is
t
h
e
d
eg
r
ee
s
o
f
f
r
e
ed
o
m
i
n
m
a
n
ip
u
lato
r
an
d
„
t
‟
is
th
e
s
p
atial
ta
s
k
f
ield
.
I
n
t
h
e
s
ta
tic
r
ed
u
n
d
an
c
y
m
a
n
ip
u
lato
r
s
t
d
an
d
th
e
n
u
m
b
er
„
n
‟
(
t
d
n
)
is
d
ef
in
ed
as
th
e
r
ed
u
n
d
a
n
c
y
d
e
g
r
ee
o
f
th
e
k
in
e
m
at
ics.
L
et
r
r
x
r
J
b
e
th
e
J
ac
o
b
ian
an
al
y
s
i
s
o
f
m
a
n
ip
u
lato
r
s
.
T
h
e
eq
u
atio
n
(
1
)
d
e
r
iv
es
th
e
k
in
e
m
atic
s
o
f
m
a
n
ip
u
lato
r
an
d
th
e
p
o
in
t
o
f
in
cl
in
at
io
n
b
e
s
z
in
task
f
ield
.
T
h
u
s
th
e
i
n
v
er
s
e
k
i
n
e
m
atic
p
r
o
b
lem
i
s
d
ef
i
n
ed
as:
d
eter
m
i
n
e
t
h
e
p
o
in
t
o
f
j
o
in
ts
s
r
th
at
w
ill
b
e
s
s
z
r
x
.
T
h
e
J
ac
o
b
ian
I
n
v
er
s
e
Ki
n
e
m
a
tics
(
J
I
K)
alg
o
r
ith
m
is
in
d
u
ce
d
to
o
b
tain
a
r
em
ed
y
f
o
r
th
e
p
r
o
b
lem
s
r
e
g
ar
d
in
g
in
v
er
s
e
k
in
e
m
atic
s
.
A
co
n
ti
n
u
at
io
n
m
e
th
o
d
is
u
tili
ze
d
f
o
r
d
er
iv
in
g
J
I
K
alg
o
r
ith
m
[
5
]
.
T
h
e
f
u
n
d
a
m
en
tal
co
m
p
o
s
itio
n
b
e
0
r
,
b
y
d
ef
in
i
n
g
a
cu
r
v
e
u
r
in
j
o
in
t
f
ield
s
w
h
ic
h
p
ass
th
r
o
u
g
h
a
m
ed
iu
m
as
0
r
an
d
th
e
co
r
r
e
lativ
e
er
r
o
r
o
f
task
f
ield
alo
n
g
t
h
is
c
u
r
v
e
s
z
u
r
x
u
w
d
ec
r
ea
s
es a
g
g
r
es
s
i
v
el
y
w
ith
e
x
ti
n
ctio
n
r
ate
0
,
th
en
(
2
)
u
w
u
u
w
d
d
(
2
)
T
h
u
s
th
e
W
az
e
w
s
k
i
–
Da
v
id
en
k
o
eq
u
atio
n
is
i
n
d
u
ce
d
in
t
h
e
b
elo
w
eq
u
atio
n
to
ev
al
u
ate
t
h
e
er
r
o
r
r
ate
(
3
)
.
s
z
u
u
w
u
r
J
u
r
x
d
d
(
3
)
I
f
th
e
r
i
g
h
t i
n
v
er
s
e
o
f
t
h
e
J
ac
o
b
ian
b
e
r
J
an
d
t
g
u
J
r
J
th
en
it o
f
f
er
s
a
d
y
n
a
m
ic
s
y
s
te
m
(
4
)
u
w
r
J
u
r
(
4
)
W
h
er
e,
th
e
r
esu
l
t o
f
th
e
i
n
v
er
s
e
k
in
e
m
atic
p
r
o
b
le
m
ar
is
e
w
it
h
a
li
m
it r
an
g
e
b
e
(
5
)
u
r
z
u
s
l
i
m
(
5
)
Fre
q
u
en
tl
y
,
t
h
e
J
I
K
alg
o
r
ith
m
s
u
til
ize
J
I
p
s
eu
d
o
at
r
o
u
tin
e
m
an
ip
u
lato
r
j
o
in
t
p
o
in
ts
,
w
h
i
ch
is
d
ef
i
n
ed
in
t
h
e
b
elo
w
eq
u
atio
n
(
6
)
.
1
r
J
r
J
r
J
r
J
I
I
q
(
6
)
T
h
e
E
x
te
n
d
ed
J
ac
o
b
ian
I
n
v
er
s
e
(
E
J
I
)
o
f
f
er
s
in
t
h
e
f
o
llo
w
i
n
g
w
a
y
.
T
h
u
s
b
y
i
m
p
le
m
e
n
ti
n
g
th
e
k
i
n
e
m
a
tic
m
ap
in
th
e
f
o
llo
w
i
n
g
eq
u
atio
n
(
7
)
.
h
d
n
r
p
k
F
F
y
h
d
,
~
,
:
(
7
)
B
y
t
h
e
i
m
p
le
m
e
n
tatio
n
o
f
m
ap
in
eq
u
atio
n
(
2
)
th
e
e
x
ten
d
ed
k
in
e
m
atics i
s
d
ef
i
n
ed
as b
elo
w
(
8
)
.
r
M
z
F
F
k
z
M
d
d
,
:
,
(
8
)
W
h
er
e,
ex
ten
d
ed
J
ac
o
b
ian
r
r
M
r
J
an
d
m
u
tate
t
h
e
j
o
in
t f
ield
s
w
h
ic
h
g
iv
e
s
s
tr
u
ctu
r
e
to
th
e
E
J
K
(
9
)
.
c
o
l
u
m
n
s
f
i
r
s
t
1
v
o
r
J
r
J
(
9
)
B
y
o
u
tli
n
e,
t
h
e
E
J
K
i
s
a
co
r
r
ec
t
co
n
v
er
s
e
o
f
th
e
J
ac
o
b
ian
an
d
h
as
t
h
e
d
e
s
tr
u
ctio
n
p
r
o
p
er
ty
.
I
n
s
tr
u
ct
u
r
e
s
a
v
v
y
,
th
e
ex
te
n
d
ed
J
ac
o
b
ian
is
an
o
p
p
o
s
ite
o
f
J
ac
o
b
ian
w
it
h
a
p
r
o
p
er
t
y
o
f
ex
t
in
ct
io
n
(
1
0
-
11
)
.
t
o
G
r
J
r
J
(
1
0
)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
A
M
eth
o
d
o
f E
xten
d
ed
J
a
co
b
i
a
n
a
n
d
F
ir
efly
A
lg
o
r
ith
m
fo
r
th
e
K
in
ema
tic
A
n
a
lysi
s
o
f
...
(
T.
R
a
ja
P
r
a
th
a
b
)
145
0
0
r
J
r
r
k
(
1
1
)
I
t
is
s
tr
o
n
g
l
y
e
x
p
lain
ed
t
h
at
t
h
e
ex
te
n
d
ed
J
I
K
alg
o
r
ith
m
is
r
e
p
ea
tab
le.
A
s
u
b
s
ti
tu
te
to
th
e
J
ac
o
b
ian
in
v
er
s
e
b
e
ch
an
g
ed
lo
g
icall
y
J
ac
o
b
ian
in
v
er
s
e
i
s
d
ef
in
ed
b
y
O
u
s
s
a
m
a
Kh
atib
i
n
[
1
4
]
.
T
h
e
f
o
llo
w
in
g
eq
u
atio
n
d
ef
i
n
e
t
h
e
j
o
in
t f
ield
d
ir
ec
tio
n
(
1
2
)
.
r
X
r
r
r
B
r
r
N
ˆ
ˆ
,
(
1
2
)
W
h
er
e
r
N
r
N
o
is
th
e
i
n
er
tia
m
atr
i
x
w
i
t
h
v
ec
to
r
b
e
r
r
r
B
ˆ
ˆ
,
d
ef
in
es
t
h
e
i
m
p
a
ct
o
f
th
e
ce
n
tr
i
f
u
g
al
a
n
d
C
o
r
io
lis
f
o
r
ce
s
,
r
X
b
e
th
e
g
r
av
it
y
f
o
r
ce
v
ec
to
r
an
d
is
th
e
v
ec
to
r
o
f
g
en
er
ic
j
o
in
t
ex
ac
tio
n
.
C
o
n
d
itio
n
s
u
c
h
as
n
o
n
-
r
ed
u
n
d
an
t
m
a
n
ip
u
lato
r
s
t
h
e
b
asic
r
elatio
n
s
h
ip
b
et
w
ee
n
e
n
d
-
e
f
f
ec
to
r
ex
ac
tio
n
S
an
d
j
o
in
t
to
r
q
u
es
is
d
ef
in
ed
i
n
th
e
f
o
llo
w
i
n
g
eq
u
atio
n
b
elo
w
(
1
3
)
.
S
r
J
o
(
1
3
)
T
h
e
r
elativ
e
id
en
tit
y
b
et
w
ee
n
th
e
es
s
en
tial
tas
k
s
co
lla
b
o
r
ate
w
i
th
j
o
in
t
a
n
d
tas
k
f
ield
.
T
h
e
q
u
alit
y
b
ec
o
m
e
f
r
ag
m
e
n
ted
f
o
r
th
e
d
y
n
a
m
ic
r
ed
u
n
d
a
n
t
m
an
ip
u
lato
r
s
.
Gen
er
all
y
t
h
e
r
ed
u
n
d
an
t
m
an
ip
u
lato
r
ar
e
n
o
t
s
tatic
a
n
d
attai
n
s
an
e
ter
n
it
y
o
f
j
o
in
t
to
r
q
u
e
v
ec
to
r
w
h
ic
h
e
m
p
lo
y
w
i
th
o
u
t
t
h
e
r
es
u
lti
n
g
f
o
r
ce
at
th
e
e
n
d
ef
f
ec
to
r
.
B
y
co
n
s
id
er
i
n
g
th
e
ab
o
v
e
f
ea
t
u
r
es
t
h
e
e
n
d
ef
f
ec
t
o
r
an
d
j
o
in
t
to
r
q
u
es
d
ef
i
n
es
as
in
th
e
f
o
llo
w
i
n
g
eq
u
atio
n
s
(
1
4
)
.
0
r
J
r
J
G
S
r
J
o
o
d
o
(
1
4
)
W
h
er
e,
0
is
th
e
n
o
r
m
a
l
ar
b
itra
r
y
j
o
in
t
to
r
q
u
e
v
ec
to
r
an
d
o
J
b
e
t
h
e
n
o
r
m
a
l
in
v
er
s
e
o
f
o
J
.
Fr
o
m
t
h
e
eq
u
atio
n
(
1
4
)
it
clea
r
ly
s
h
o
ws
it
d
ep
en
d
s
o
n
o
J
.
T
h
e
b
elo
w
e
q
u
atio
n
(
1
5
)
d
ef
in
es
t
h
e
j
o
in
t
to
r
q
u
e
to
th
e
m
o
v
e
m
e
n
t o
f
m
an
ip
u
lato
r
.
0
,
r
J
r
J
G
S
r
J
r
X
r
r
r
B
r
r
N
o
O
d
o
(
1
5
)
Fo
r
th
e
ev
al
u
atio
n
o
f
ac
ce
l
er
atio
n
o
f
p
r
o
ce
s
s
a
n
d
f
o
r
ce
,
th
e
eq
u
atio
n
(
1
5
)
m
u
lt
ip
lied
b
y
t
h
e
m
atr
i
x
r
N
r
J
1
.
B
y
u
til
izin
g
th
e
d
i
f
f
er
e
n
tial
r
r
J
r
r
J
z
)
(
an
d
th
e
co
m
p
u
tat
io
n
al
eq
u
atio
n
is
d
er
iv
ed
as
b
elo
w
(
1
6
)
.
0
1
1
1
1
1
,
r
J
r
J
r
N
r
J
S
r
J
r
N
r
J
r
X
r
N
r
J
r
r
J
r
r
r
B
r
N
r
J
z
o
o
o
(
1
6
)
Fro
m
eq
u
atio
n
(
1
6
)
w
h
ic
h
co
m
m
u
n
icate
s
th
e
r
elatio
n
b
et
wee
n
th
e
o
p
er
atio
n
al
in
cr
ea
s
i
n
g
v
elo
cities
z
an
d
th
e
f
o
r
ce
S
.
I
t
ca
n
b
e
s
ee
n
th
at
t
h
e
len
g
t
h
o
f
th
e
ter
m
0
1
r
J
r
J
G
r
N
r
J
o
o
is
n
o
n
–
ze
r
o
th
e
o
p
er
atio
n
al
p
o
in
t
is
in
f
l
u
en
ce
d
b
y
0
.
A
ll
to
g
et
h
er
f
o
r
th
e
j
o
in
t
to
r
q
u
es
co
n
n
ec
ted
w
it
h
th
e
i
n
v
al
id
s
p
ac
e
in
(
1
4
)
to
n
o
t d
eliv
er
an
y
s
p
ee
d
i
n
g
u
p
at
en
d
-
ef
f
ec
to
r
,
it is
i
m
p
o
r
tan
t th
a
t
(
1
7
-
20
)
0
0
1
r
J
r
J
G
r
N
r
J
o
o
(
1
7
)
r
J
r
E
r
N
r
J
r
N
r
J
o
o
1
1
(
1
8
)
o
o
o
r
J
r
N
r
J
r
J
r
J
r
N
1
1
(
1
9
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
6
,
No
.
2
,
J
u
n
e
201
7
:
1
4
1
–
15
0
146
1
1
1
r
J
r
N
r
J
r
J
r
N
r
J
o
o
(
2
0
)
Fro
m
th
e
ab
o
v
e
eq
u
atio
n
(
1
7
)
it
d
ef
in
e
s
th
e
r
eg
u
lar
J
ac
o
b
ian
in
v
er
s
e
a
n
d
it
is
s
aid
to
b
e
p
r
o
g
r
ess
iv
e
s
tead
y
J
ac
o
b
ian
in
v
er
s
e
(
2
1
)
.
1
1
1
r
J
r
N
r
J
r
J
r
N
r
J
o
o
BX
(
2
1
)
Fo
r
o
b
tain
a
n
o
v
el
ex
ten
d
ed
J
ac
o
b
ian
w
h
ic
h
i
s
s
i
m
i
lar
to
th
e
p
r
o
g
r
ess
iv
e
s
tead
y
J
ac
o
b
ian
.
T
h
e
m
ain
f
ac
to
r
is
to
d
eter
m
i
n
e
r
elati
v
e
is
s
u
e
s
a
n
d
to
f
i
n
d
an
E
J
K
r
J
Q
th
at
r
elate
s
in
an
id
ea
l
p
at
h
to
th
e
p
r
o
g
r
es
s
iv
e
s
tead
y
in
v
er
s
e
r
J
XC
.
So
licit th
e
ap
p
r
o
ac
h
co
m
m
e
n
ce
d
in
[
1
7
]
,
o
f
f
e
r
a
co
u
p
le
o
f
m
atr
ices
(
2
2
-
23)
.
r
P
r
J
r
Xk
r
J
r
Q
Q
1
1
(
2
2
)
r
L
r
N
r
J
r
L
r
J
r
Q
BX
o
1
1
2
(
2
3
)
W
h
er
e
r
k
is
d
ef
in
ed
as
th
e
en
h
a
n
ce
d
k
in
e
m
atic
s
m
ap
,
r
r
k
r
Xk
an
d
m
at
r
ix
r
L
h
as
t
h
e
s
u
b
s
eq
u
en
t
p
r
o
p
er
ties
s
u
ch
a
s
(
2
4
-
25)
0
1
r
L
r
N
r
J
(
2
4
)
n
o
G
r
L
r
N
r
L
1
(
2
5
)
W
h
er
e,
d
F
P
in
f
er
r
ed
as
th
e
ar
r
an
g
e
m
en
t
o
f
r
o
u
ti
n
e
d
esig
n
s
,
f
r
o
m
th
e
co
n
d
itio
n
s
(
2
2
)
an
d
(
2
3
)
th
e
er
r
o
r
r
ate
is
ch
ar
ac
ter
ized
as
(
2
6
)
th
e
Fro
b
en
iu
s
s
tan
d
ar
d
o
f
r
elativ
e
m
ea
s
u
r
e
b
et
w
ee
n
r
J
BX
an
d
r
J
Qr
.
,
d
2
2
1
1
L
S
d
r
r
t
G
r
Q
r
Q
k
Q
(
2
6
)
W
h
er
e,
r
r
t
d
in
f
er
s
th
e
v
o
lu
m
e
s
h
a
p
e
w
i
th
r
J
r
N
r
J
r
t
o
1
d
et
[
1
7
]
.
Su
b
s
tit
u
ti
n
g
t
h
e
co
n
d
itio
n
(
2
2
)
an
d
(
2
3
)
in
to
(
2
6
)
th
e
er
r
o
r
r
ate
f
u
n
ctio
n
is
c
h
ar
ac
ter
ized
as
(
2
7
)
L
n
o
BX
r
r
t
G
r
L
r
N
r
Xk
r
Xk
r
T
r
Xk
k
Q
d
2
tr
1
(
2
7
)
W
h
er
e;
.
1
1
r
N
r
L
r
L
r
N
r
J
r
J
r
T
o
o
BX
BX
BX
T
h
e
en
h
a
n
ce
d
k
i
n
e
m
a
tics
o
f
f
er
r
ed
u
ctio
n
o
f
er
r
o
r
f
u
n
ctio
n
(
2
7
)
an
d
allo
w
u
s
to
p
r
o
p
o
s
e
n
e
w
ex
ten
d
ed
J
ac
o
b
ian
.
4.
P
RO
P
O
SE
D
F
I
R
E
F
L
Y
O
P
T
I
M
I
Z
AT
I
O
N
F
O
R
T
H
E
A
P
P
RO
XIM
AT
I
O
N
E
R
RO
R
M
I
NI
M
I
Z
AT
I
O
N
T
h
e
f
ir
ef
l
y
i
s
a
m
etah
e
u
r
is
tic
alg
o
r
ith
m
w
a
s
i
m
p
le
m
e
n
ted
b
y
Xi
n
S
h
e
Ya
n
g
[
1
5
]
ap
p
r
ec
ia
ted
b
y
th
e
lig
h
tn
in
g
p
r
o
p
er
ty
o
f
f
ir
ef
lie
s
.
T
h
e
f
ir
ef
l
y
al
g
o
r
ith
m
ca
lc
u
lat
io
n
is
d
ev
e
lo
p
ed
w
it
h
t
h
e
th
r
e
e
o
p
tim
a
l
q
u
alit
ies
o
f
u
n
iq
u
e
f
ir
ef
l
ies.
T
h
ese
s
p
ec
if
ic
attr
ib
u
tes ar
e,
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
A
M
eth
o
d
o
f E
xten
d
ed
J
a
co
b
i
a
n
a
n
d
F
ir
efly
A
lg
o
r
ith
m
fo
r
th
e
K
in
ema
tic
A
n
a
lysi
s
o
f
...
(
T.
R
a
ja
P
r
a
th
a
b
)
147
a)
T
h
e
en
tire
q
u
an
titi
es
o
f
f
ir
e
-
f
l
ies
ar
e
co
n
s
id
er
ed
w
it
h
s
a
m
e
s
o
r
t
o
f
s
ex
.
A
t
t
h
at
p
o
in
t
j
u
s
t
th
e
y
p
u
lled
in
to
w
ar
d
s
t
h
e
f
ir
e
f
l
y
w
h
ic
h
h
as
m
o
r
e
n
o
te
w
o
r
t
h
y
lu
s
tr
e.
b)
I
f
t
h
e
s
ep
ar
atio
n
b
et
w
ee
n
t
h
e
f
ir
e
-
f
lie
s
b
u
ild
s
it
n
at
u
r
all
y
d
i
m
i
n
is
h
e
s
t
h
e
l
u
s
tr
e
o
f
th
e
f
ir
ef
lies
.
T
h
er
e
is
n
o
f
ir
e
-
f
l
y
h
av
i
n
g
m
o
r
e
n
o
te
wo
r
th
y
l
u
s
tr
e
t
h
an
t
h
e
s
p
ec
i
f
ic
o
n
e
th
e
n
it
m
o
v
e
s
in
a
n
ir
r
eg
u
la
r
w
a
y
.
c)
T
h
e
f
ir
ef
l
y
l
u
s
tr
e
is
r
ec
o
g
n
ize
d
b
y
th
e
tar
g
et
ca
p
ac
it
y
o
f
t
h
e
p
r
o
p
o
s
ed
w
o
r
k
.
I
n
t
h
e
e
v
en
t
t
h
at
t
h
e
g
o
al
is
th
e
au
g
m
en
tatio
n
w
o
r
k
t
h
e
n
lu
s
tr
e
is
r
elativ
e
to
t
h
e
en
d
p
o
in
t
f
u
n
ctio
n
.
T
h
e
lig
h
ti
n
g
o
f
f
ir
ef
l
y
is
d
ir
ec
tl
y
p
r
o
p
o
r
tio
n
al
to
t
h
e
f
ir
e
-
f
lies
attr
ac
ti
v
e
n
ess
.
T
h
e
g
iv
e
n
eq
u
a
tio
n
d
escr
ib
es th
e
lu
s
tr
e
o
f
f
ir
ef
l
ies
(
2
8
)
.
2
0
us
l
(
2
8
)
T
h
e
r
elatio
n
0
d
escr
ib
ed
as
th
e
f
ir
ef
l
y
a
ttra
ctiv
e
n
e
s
s
,
s
is
th
e
d
i
s
tan
ce
b
et
w
ee
n
ea
ch
f
ir
ef
lies
.
T
h
e
C
ar
tesi
a
n
f
o
r
m
is
u
tili
ze
d
f
o
r
d
ef
in
i
n
g
th
e
d
is
tan
ce
(
2
9
)
,
m
r
rm
s
s
s
(
2
9
)
W
h
er
e,
rm
s
b
e
th
e
r
elativ
e
d
is
t
an
ce
o
f
f
ir
ef
lie
s
r
an
d
m
.
T
h
u
s
th
e
f
ir
e
f
l
y
m
o
v
e
m
en
t
w
it
h
r
esp
ec
t
to
b
r
ig
h
t
n
es
s
o
f
ce
r
tain
f
ir
e
f
l
y
ca
n
b
e
esti
m
ated
f
r
o
m
t
h
e
f
o
llo
w
i
n
g
eq
u
atio
n
(
3
0
)
.
i
i
r
i
m
us
i
r
i
r
f
f
l
f
f
rm
2
0
1
(
3
0
)
T
h
e
eq
u
atio
n
d
escr
ib
es
th
e
cu
r
r
en
t p
o
s
itio
n
o
f
f
ir
ef
l
y
.
5.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
T
h
is
p
ap
er
p
r
o
p
o
s
es
f
ir
e
f
l
y
b
ased
ex
te
n
d
ed
J
ac
o
b
ian
f
o
r
th
e
p
u
m
a
5
6
0
r
o
b
o
t.
I
n
th
is
p
ap
er
th
e
r
o
b
o
tic
t
o
o
lb
o
x
d
ev
elo
p
ed
b
y
P
eter
I
.
C
o
r
k
e
[
1
6
]
.
T
h
u
s
th
e
p
er
f
o
r
m
a
n
ce
is
v
al
id
ated
as
b
e
lo
w
.
T
h
e
jo
in
t
f
ield
d
ir
ec
tio
n
is
in
d
u
ce
d
f
o
r
an
g
le
an
d
ac
ce
ler
atio
n
o
f
th
e
p
r
o
p
o
s
ed
P
UM
A
5
6
0
m
a
n
ip
u
lato
r
d
ef
in
ed
in
f
i
g
u
r
e
2
an
d
3
.
T
h
e
tr
aj
ec
to
r
y
o
f
r
o
b
o
t
is
d
ef
i
n
ed
as
th
e
m
o
v
e
m
e
n
t
o
f
r
o
b
o
t
a
r
m
f
r
o
m
t
h
e
p
o
in
t
A
to
B
b
y
d
ef
lect
cr
as
h
at
an
en
d
ti
m
e.
T
h
is
ca
n
b
e
ev
alu
a
ted
in
ter
m
s
o
f
d
is
cr
ete
an
d
co
n
tin
u
o
u
s
m
eth
o
d
s
.
T
r
a
j
ec
to
r
y
p
lan
n
i
n
g
i
s
o
n
e
o
f
t
h
e
d
o
m
i
n
an
t
f
ield
i
n
r
o
b
o
tics
.
T
h
e
tr
aj
ec
to
r
y
p
la
n
n
in
g
is
u
tili
ze
d
i
n
r
o
b
o
ts
to
p
la
n
t
h
e
m
o
tio
n
s
u
ch
a
s
v
elo
cit
y
,
k
in
e
m
atic
s
an
d
ti
m
e.
T
h
e
f
ig
u
r
e
2
an
d
3
p
lo
tte
d
b
elo
w
d
ef
i
n
es
th
e
tr
aj
ec
to
r
y
o
f
th
e
p
r
o
p
o
s
ed
m
an
ip
u
lato
r
is
o
p
ti
m
a
l.
Fig
u
r
e
2
.
Gen
er
ated
J
o
in
t sp
ac
e
tr
aj
ec
to
r
y
o
f
An
g
les
Fig
u
r
e
3
.
Gen
er
ated
J
o
in
t sp
ac
e
tr
aj
ec
to
r
y
o
f
ac
ce
ler
atio
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
6
,
No
.
2
,
J
u
n
e
201
7
:
1
4
1
–
15
0
148
T
h
e
h
o
m
o
g
e
n
o
u
s
tr
an
s
f
o
r
m
is
u
tili
ze
d
to
p
er
f
o
r
m
th
e
at
tit
u
d
e,
lo
ca
tio
n
an
d
co
o
r
d
in
atio
n
o
f
r
o
b
o
t
in
C
ar
tesi
a
n
zo
n
e.
T
h
e
r
o
b
o
ts
g
e
n
er
all
y
h
o
u
s
es
w
it
h
tr
aj
ec
to
r
ies
w
h
ich
i
s
co
n
tin
u
it
y
o
f
C
ar
te
s
ian
s
tr
u
ct
u
r
e
o
r
th
e
co
n
n
ec
ted
a
n
g
le
s
.
Fo
r
s
o
l
v
i
n
g
th
e
tr
aj
ec
to
r
y
,
th
e
co
o
r
d
in
ates
o
f
i
n
d
iv
id
u
al
i
n
v
er
s
e
k
in
e
m
at
ics
is
s
h
ar
ed
as
t
h
e
so
lu
tio
n
o
f
t
h
e
p
r
ev
io
u
s
o
n
e.
T
h
e
g
iv
e
n
ch
ar
t
s
h
o
w
s
t
h
e
tr
aj
ec
to
r
y
o
f
j
o
in
t
s
p
ac
e
i
s
co
m
p
ar
ed
w
it
h
ti
m
e
a
n
d
s
h
o
w
s
th
e
p
r
o
p
o
s
ed
ap
p
r
o
ac
h
is
g
r
ad
u
al
a
n
d
n
o
t
r
ele
v
an
t
f
o
r
th
e
ap
p
licatio
n
in
r
ea
l
r
o
b
o
t
co
n
tr
o
ller
b
y
w
h
ich
in
v
er
s
e
k
i
n
e
m
atics
r
es
u
lts
n
e
ed
ed
in
f
e
w
m
illi
s
ec
o
n
d
s
.
T
h
e
f
o
llo
w
i
n
g
f
i
g
u
r
e
s
4
d
eter
m
i
n
es
th
e
tr
aj
ec
to
r
ies
r
elate
d
to
C
ar
tesi
an
co
o
r
d
in
ates a
n
d
th
e
f
i
g
u
r
e
5
d
ef
i
n
es t
h
e
p
r
o
p
o
s
ed
P
UM
A
5
6
0
r
o
b
o
t
p
l
o
tted
in
3
D
f
o
r
m
.
Fig
u
r
e
4
.
C
ar
tesi
an
co
o
r
d
in
ate
s
o
f
w
r
is
t
f
o
r
th
e
tr
aj
ec
to
r
y
Fig
u
r
e
5
.
P
r
o
p
o
s
ed
P
UM
A
5
6
0
Ma
n
ip
u
lato
r
T
h
e
k
in
e
m
atics
o
f
r
o
b
o
ts
r
elate
d
to
th
e
g
eo
m
e
tr
ic
s
t
u
d
y
o
f
r
o
b
o
t
m
o
v
e
m
e
n
t
w
it
h
m
u
lti
-
DOF
k
in
e
m
at
ic
ch
a
in
s
t
h
at
o
f
f
er
t
h
e
r
o
b
o
t
s
y
s
te
m
to
s
tr
u
ct
u
r
e.
T
h
e
r
o
b
o
t
g
eo
m
etr
y
is
d
e
f
i
n
ed
as
t
h
e
r
o
b
o
t
lin
k
s
d
esig
n
ed
as
f
i
x
ed
b
o
d
ies
an
d
t
h
e
j
o
in
ts
ar
e
esti
m
ated
to
co
n
tr
ib
u
te
co
m
p
lete
r
ev
o
l
u
tio
n
.
T
h
e
k
in
e
m
a
tics
o
f
r
o
b
o
t
d
ea
ls
w
it
h
t
h
e
s
t
u
d
y
o
f
r
elatio
n
b
et
w
ee
n
t
h
e
p
r
o
p
o
r
tio
n
a
n
d
k
i
n
e
m
atic
c
h
ai
n
s
i
n
ter
c
o
n
n
ec
tio
n
,
lo
ca
tio
n
,
v
elo
cit
y
o
f
ea
ch
in
d
i
v
id
u
a
l
li
n
k
s
o
f
r
o
b
o
t
f
o
r
p
lan
n
in
g
an
d
co
n
tr
o
lli
n
g
an
d
it
is
al
s
o
esti
m
ates
t
h
e
r
o
b
o
t
ac
tu
ato
r
f
o
r
ce
an
d
to
r
q
u
e.
T
h
e
r
o
b
o
t
d
y
n
a
m
ics
d
ea
ls
w
it
h
t
h
e
r
elatio
n
b
et
w
ee
n
p
r
o
p
er
ties
s
u
ch
a
s
m
a
s
s
a
n
d
in
er
tia.
I
n
F
i
g
u
r
e
6
to
9
it
d
eter
m
i
n
es
th
e
t
i
m
e
co
g
n
a
te
o
f
eq
u
a
tio
n
s
o
f
k
i
n
e
m
atic
s
p
r
o
d
u
ce
th
e
r
o
b
o
t
J
ac
o
b
ian
w
h
ic
h
i
n
cl
u
d
es
t
h
e
en
d
e
f
f
ec
to
r
li
n
ea
r
an
d
a
n
g
u
lar
v
elo
cit
y
i
n
ter
m
s
o
f
j
o
in
t
r
ate
s
.
T
h
e
r
es
u
lt
o
b
tain
ed
f
r
o
m
t
h
e
v
ir
t
u
al
w
o
r
k
d
ef
i
n
es
th
e
r
elatio
n
b
et
w
ee
n
th
e
to
r
q
u
e
a
n
d
f
o
r
ce
i
n
d
u
ce
d
in
t
h
e
e
n
d
ef
f
ec
to
r
.
T
h
u
s
th
e
to
r
q
u
e,
g
r
a
v
it
y
an
d
i
n
er
tia
ar
e
an
al
y
s
ed
a
n
d
p
lo
tted
in
th
e
f
i
g
u
r
e
s
b
elo
w
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
A
M
eth
o
d
o
f E
xten
d
ed
J
a
co
b
i
a
n
a
n
d
F
ir
efly
A
lg
o
r
ith
m
fo
r
th
e
K
in
ema
tic
A
n
a
lysi
s
o
f
...
(
T.
R
a
ja
P
r
a
th
a
b
)
149
Fig
u
r
e
6
.
J
o
in
t to
r
q
u
es
Fig
u
r
e
7
.
Gr
av
it
y
to
r
q
u
e
s
Fig
u
r
e
8
.
C
o
m
p
ar
is
o
n
o
f
g
r
av
i
t
y
to
r
q
u
e
Fig
u
r
e
9
.
I
n
er
tia
P
lo
t
T
h
e
r
o
b
o
t
m
a
n
ip
u
lat
io
n
is
a
n
ess
e
n
tial
tas
k
i
n
ca
s
e
o
f
i
n
d
u
s
tr
ial
r
o
b
o
t
w
h
ile
d
esi
g
n
in
g
a
n
o
b
tain
ed
f
au
lt
to
ler
an
ce
lev
e
l.
So
th
at
t
h
e
co
m
p
licated
o
p
er
atio
n
o
f
r
o
b
o
t
b
ein
g
r
ed
u
ce
d
.
T
h
is
p
ap
er
p
r
o
p
o
s
es
f
ir
ef
l
y
o
p
tim
izatio
n
al
g
o
r
ith
m
w
h
ic
h
is
ex
te
n
d
ed
b
y
J
ac
o
b
ian
f
o
r
th
e
r
ed
u
ctio
n
o
f
er
r
o
r
r
ate.
T
h
e
p
r
o
p
o
s
ed
w
o
r
k
i
s
ca
r
r
ied
o
u
t
in
th
e
Ma
t
L
ab
p
l
atf
o
r
m
i
n
ter
m
s
o
f
p
er
f
o
r
m
a
n
ce
.
T
h
u
s
th
e
r
es
u
lt
s
h
o
w
s
t
h
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
h
as b
etter
o
p
ti
m
al
v
alu
e
i
n
ter
m
s
o
f
p
er
f
o
r
m
an
ce
.
6.
CO
NCLU
SI
O
N
T
h
e
f
au
lt
to
ler
an
ce
i
n
in
d
u
s
tr
ial
r
o
b
o
t
m
an
ip
u
latio
n
i
s
th
e
m
ai
n
cr
iter
ia
s
o
lv
ed
th
r
o
u
g
h
th
is
p
ap
er
.
T
h
e
P
UM
A
5
6
0
r
o
b
o
t
is
tak
en
f
o
r
th
e
f
a
u
lt
to
ler
an
t
e
v
al
u
atio
n
.
T
h
e
p
r
o
p
o
s
ed
p
r
o
to
c
o
l
co
n
s
is
ts
o
f
f
ir
e
f
l
y
alg
o
r
ith
m
w
h
ich
i
s
d
er
iv
ed
f
r
o
m
t
h
e
J
ac
o
b
ian
is
u
s
ed
f
o
r
co
n
tr
o
llin
g
f
a
u
lt
to
ler
an
ce
.
T
h
e
f
ir
e
f
l
y
a
lg
o
r
it
h
m
co
u
p
led
w
i
th
in
v
er
s
e
J
ac
o
b
ian
is
i
n
d
u
ce
d
f
o
r
th
e
o
p
ti
m
iz
at
io
n
p
r
o
ce
s
s
f
o
r
er
r
o
r
r
ate
m
i
n
i
m
izatio
n
.
T
h
e
p
r
o
p
o
s
ed
f
ir
ef
l
y
alg
o
r
it
h
m
is
t
ested
an
d
p
er
f
o
r
m
an
ce
cr
iter
ia
s
u
c
h
as tr
aj
ec
to
r
y
,
to
r
q
u
e
an
d
in
er
tia
is
e
v
al
u
ated
in
t
h
e
Ma
t
L
ab
r
o
b
o
tic
to
o
lb
o
x
.
T
h
e
r
esu
lt
s
h
o
w
s
th
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
h
as
b
etter
p
er
f
o
r
m
an
ce
i
n
ter
m
s
o
f
tr
aj
ec
to
r
y
,
to
r
q
u
e
an
d
in
er
tia.
RE
F
E
R
E
NC
E
S
[1
]
K.
M
.
Be
n
-
G
h
a
rb
ia,
e
t
a
l.
,
“
A
k
i
n
e
m
a
ti
c
a
n
a
l
y
sis
a
n
d
e
v
a
lu
a
ti
o
n
o
f
p
lan
a
r
ro
b
o
ts
d
e
sig
n
e
d
f
ro
m
o
p
ti
m
a
ll
y
f
a
u
lt
-
to
lera
n
t
Ja
c
o
b
ian
s”
,
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
R
o
b
o
ti
c
s,
V
o
l.
3
0
,
n
o
.
2
,
p
p
.
5
1
6
-
5
2
4
,
2
0
1
4
.
[2
]
H.
S
ima
s
,
e
t
a
l.
,
“
Ex
ten
d
e
d
jac
o
b
ian
f
o
r
re
d
u
n
d
a
n
t
ro
b
o
ts
o
b
tai
n
e
d
f
ro
m
th
e
k
in
e
m
a
ti
c
s
c
o
n
stra
in
t”,
In
A
BCM
S
y
m
p
o
siu
m
S
e
ries
in
M
e
c
h
a
tro
n
i
c
s,
V
o
l.
5
,
p
p
.
1
0
0
5
-
1
0
1
4
,
2
0
1
2
.
[3
]
K.
M
.
L
e
e
a
n
d
D.
K.
S
h
a
h
,
“
Kin
e
m
a
ti
c
a
n
a
l
y
sis
o
f
a
th
re
e
-
d
e
g
r
e
e
s
-
of
-
f
re
e
d
o
m
in
-
p
a
ra
ll
e
l
a
c
tu
a
te
d
m
a
n
ip
u
lato
r”
,
IEE
E
Jo
u
rn
a
l
o
f
Ro
b
o
ti
c
s an
d
A
u
to
m
a
ti
o
n
,
V
o
l
.
4
,
n
o
.
3
,
p
p
.
3
5
4
-
3
6
0
,
1
9
8
8
.
[4
]
C.
G
o
ss
e
li
n
a
n
d
J.
A
n
g
e
l
e
s,
“
S
in
g
u
larity
a
n
a
l
y
sis
o
f
c
lo
se
d
-
lo
o
p
k
in
e
m
a
ti
c
c
h
a
in
s”
,
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
R
o
b
o
ti
c
s
a
n
d
A
u
to
m
a
ti
o
n
,
V
o
l.
6
,
n
o
.
3
,
p
p
.
2
8
1
-
2
9
0
,
1
9
9
0
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
6
,
No
.
2
,
J
u
n
e
201
7
:
1
4
1
–
15
0
150
[5
]
R.
M
a
n
se
u
r
a
n
d
K.
L
.
Do
t
y
,
“
A
fa
st
a
l
g
o
rit
h
m
f
o
r
in
v
e
rse
k
i
n
e
m
a
ti
c
a
n
a
l
y
sis
o
f
ro
b
o
t
m
a
n
ip
u
lat
o
rs”
,
T
h
e
In
tern
a
ti
o
n
a
l
Jo
u
rn
a
l
o
f
Ro
b
o
ti
c
s
Re
se
a
rc
h
,
V
o
l.
7
,
n
o
.
3
,
p
p
.
5
2
-
6
3
,
1
9
8
8
.
[6
]
T
a
n
e
v
a
n
d
K.
T
a
n
io
,
"
Kin
e
m
a
t
ics
o
f
a
h
y
b
rid
(p
a
ra
ll
e
l
–
se
rial)
ro
b
o
t
m
a
n
ip
u
lato
r"
,
M
e
c
h
a
n
is
m
a
n
d
M
a
c
h
in
e
T
h
e
o
r
y
,
V
o
l
.
3
5
,
n
o
.
9
,
p
p
.
1
1
8
3
-
1
1
9
6
,
2
0
0
0
.
[7
]
S
e
f
rio
u
i,
e
t
a
l.
,
"
S
in
g
u
larity
a
n
a
l
y
sis
a
n
d
re
p
re
se
n
tatio
n
o
f
p
lan
a
r
p
a
ra
ll
e
l
m
a
n
ip
u
lato
rs"
,
Ro
b
o
ti
c
s
a
n
d
A
u
to
n
o
m
o
u
s
S
y
st
e
m
s,
V
o
l.
1
0
,
n
o
.
4
,
p
p
.
2
0
9
-
2
2
4
,
1
9
9
2
.
[8
]
K.
M
.
Be
n
-
G
h
a
rb
i
a
,
e
t
a
l.
,
“
Kin
e
m
a
ti
c
d
e
si
g
n
o
f
r
e
d
u
n
d
a
n
t
ro
b
o
ti
c
m
a
n
ip
u
lato
rs
f
o
r
sp
a
ti
a
l
p
o
sit
io
n
i
n
g
th
a
t
a
re
o
p
ti
m
a
ll
y
fa
u
lt
to
lera
n
t”,
IEE
E
T
r
a
n
sa
c
ti
o
n
s o
n
R
o
b
o
ti
c
s,
V
o
l
.
2
9
,
n
o
.
5
,
p
p
.
1
3
0
0
-
1
3
0
7
,
2
0
1
3
.
[9
]
V
.
Re
p
p
a
,
e
t
a
l.
,
“
De
c
e
n
tralize
d
i
so
latio
n
o
f
m
u
lt
ip
le
se
n
so
r
f
a
u
l
ts
in
larg
e
-
sc
a
le
in
terc
o
n
n
e
c
ted
n
o
n
l
in
e
a
r
s
y
ste
m
s
”
,
IEE
E
T
ra
n
sa
c
ti
o
n
s o
n
A
u
to
m
a
ti
c
Co
n
tr
o
l,
Vo
l.
6
0
,
n
o
.
6
,
p
p
.
1
5
8
2
-
1
5
9
6
,
2
0
1
5
.
[1
0
]
K.
M
.
Be
n
-
G
h
a
rb
ia,
e
t
a
l.
,
“
Ki
n
e
m
a
ti
c
De
si
g
n
o
f
M
a
n
ip
u
lat
o
rs
w
it
h
S
e
v
e
n
Re
v
o
lu
te
Jo
in
ts
Op
ti
m
iz
e
d
f
o
r
F
a
u
lt
T
o
lera
n
c
e
”
,
IEE
E
T
ra
n
sa
c
ti
o
n
s o
n
S
y
ste
m
s,
M
a
n
,
a
n
d
Cy
b
e
rn
e
ti
c
s: S
y
ste
m
s,
p
p
.
1
-
1
0
,
2
0
1
5
.
[1
1
]
L
.
X
iao
a
n
d
Y.
Z
h
a
n
g
,
“
A
c
c
e
lera
t
io
n
-
lev
e
l
re
p
e
ti
ti
v
e
m
o
ti
o
n
p
lan
n
i
n
g
a
n
d
it
s ex
p
e
rim
e
n
tal
v
e
ri
f
ica
ti
o
n
o
n
a
six
-
li
n
k
p
lan
a
r
ro
b
o
t
m
a
n
ip
u
lato
r”
,
IEE
E
T
ra
n
sa
c
ti
o
n
s o
n
C
o
n
tr
o
l
S
y
ste
m
s
T
e
c
h
n
o
lo
g
y
,
V
o
l.
2
1
,
n
o
.
3
,
p
p
.
9
0
6
-
9
1
4
,
2
0
1
3
.
[1
2
]
P
.
Qi,
e
t
a
l.
,
“
Kin
e
m
a
ti
c
Co
n
tro
l
o
f
Co
n
ti
n
u
u
m
M
a
n
ip
u
lato
rs
Us
in
g
a
F
u
z
z
y
-
M
o
d
e
l
-
Ba
se
d
Ap
p
r
o
a
c
h
”
,
IEE
E
T
ra
n
sa
c
ti
o
n
s o
n
I
n
d
u
strial
El
e
c
tro
n
ics
,
p
p
.
1
-
1
,
2
0
1
6
.
[1
3
]
I.
P
e
ter
Co
rk
e
a
n
d
M
.
Brian
A
r
m
stro
n
g
-
He
lo
u
v
ry
,
"
A
se
a
rc
h
f
o
r
c
o
n
se
n
su
s
a
m
o
n
g
m
o
d
e
l
p
a
ra
m
e
ters
re
p
o
rted
f
o
r
th
e
P
U
M
A
5
6
0
ro
b
o
t
.
"
In
Ro
b
o
ti
c
s
a
n
d
A
u
to
m
a
ti
o
n
,
1
9
9
4
.
P
r
o
c
e
e
d
in
g
s,
1
9
9
4
IEE
E
In
ter
n
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
,
IEE
E,
p
p
.
1
6
0
8
-
1
6
1
3
,
1
9
9
4
.
[1
4
]
O.
KH
AT
IB,
”
In
e
rti
a
l
p
ro
p
e
rti
e
s
in
ro
b
o
ti
c
m
a
n
ip
u
latio
n
:
A
n
o
b
jec
t
-
l
e
v
e
l
f
ra
m
e
w
o
rk
.
In
t.
J.
o
f
Ro
b
o
ti
c
s Re
se
a
rc
h
”
,
V
o
l
.
1
4
,
p
p
.
1
9
-
3
6
,
1
9
9
5
.
[1
5
]
X
in
-
S
h
e
a
n
d
Ya
n
g
,
"
F
iref
l
y
a
lg
o
rit
h
m
s
f
o
r
m
u
lt
i
m
o
d
a
l
o
p
ti
m
iza
ti
o
n
.
"
In
In
tern
a
ti
o
n
a
l
S
y
m
p
o
siu
m
o
n
S
to
c
h
a
sti
c
A
l
g
o
rit
h
m
s,
S
p
rin
g
e
r
Be
rli
n
He
id
e
lb
e
rg
,
p
p
.
1
6
9
-
1
7
8
,
2
0
0
9
.
[1
6
]
I.
P
e
ter
Co
rk
e
,
"
A
c
o
m
p
u
ter
to
o
l
f
o
r
sim
u
latio
n
a
n
d
a
n
a
ly
sis:
th
e
Ro
b
o
ti
c
s
T
o
o
l
b
o
x
f
o
r
M
A
TL
A
B.
"
In
P
ro
c
.
Na
ti
o
n
a
l
Co
n
f
.
A
u
stra
li
a
n
Ro
b
o
t
A
s
so
c
iatio
n
,
p
p
.
3
1
9
-
3
3
0
,
1
9
9
5
.
[1
7
]
K.
T
c
h
o
n
,
"
Op
ti
m
a
l
e
x
ten
d
e
d
Ja
c
o
b
ian
i
n
v
e
rse
k
in
e
m
a
ti
c
s
a
lg
o
rit
h
m
s
f
o
r
ro
b
o
ti
c
m
a
n
ip
u
lato
rs"
.
I
EE
E
T
ra
n
s
.
o
n
Ro
b
o
ti
c
s,
V
o
l
.
2
4
,
n
o
.
6
,
p
p
.
1
4
4
0
-
1
4
4
5
,
2
0
0
8
.
Evaluation Warning : The document was created with Spire.PDF for Python.