I
nte
rna
t
io
na
l J
o
urna
l o
f
Ro
bo
t
ics a
nd
Aut
o
m
a
t
io
n
(
I
J
RA
)
Vo
l.
4
,
No
.
4
,
Dec
em
b
er
2
0
1
5
,
p
p
.
3
16
~3
25
I
SS
N:
2089
-
4856
316
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
J
RA
A Nonlinea
r Mo
d
el t
o
S
tudy Sele
cti
v
ely
Def
o
r
m
a
ble
Wing
of an
Aircraft
Deiv
a
G
a
nes
h A
De
p
a
rtme
n
t
o
f
M
e
c
h
a
n
ica
l
En
g
in
e
e
rin
g
,
RM
K Co
ll
e
g
e
o
f
En
g
in
e
e
rin
g
a
n
d
T
e
c
h
n
o
lo
g
y
Ch
e
n
n
a
i,
T
a
m
il
Na
d
u
,
In
d
i
a
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
u
l
23
,
2
0
1
5
R
ev
i
s
ed
Oct
2
8
,
2
0
1
5
A
cc
ep
ted
No
v
1
9
,
2
0
1
5
A
e
ro
e
la
sticit
y
o
f
a
n
a
ircra
f
t
in
c
lu
d
e
s
th
e
stu
d
y
o
f
d
y
n
a
m
i
c
s
o
f
p
ri
m
e
m
o
v
e
rs,
stru
c
tu
ra
l
d
y
n
a
m
ics
,
a
n
d
a
e
ro
d
y
n
a
m
ics
.
Re
s
e
a
rc
h
e
ff
o
rts
a
re
o
n
in
e
v
e
r
y
a
re
a
to
im
p
ro
v
e
th
e
o
v
e
ra
ll
p
e
r
f
o
r
m
a
n
c
e
o
f
a
n
a
ir
c
ra
f
t.
In
th
is
p
a
p
e
r
p
re
li
m
in
a
r
y
stu
d
ies
c
o
n
d
u
c
ted
o
n
th
e
d
y
n
a
m
ics
o
f
s
e
lec
ti
v
e
l
y
d
e
f
o
r
m
a
b
le
w
in
g
u
sin
g
a
n
u
n
d
e
r
a
c
tu
a
ted
n
o
n
li
n
e
a
r
m
o
d
e
l
i
s
re
p
o
rted
.
F
irst
,
t
h
e
li
tera
tu
re
re
l
a
ted
to
th
e
d
e
sig
n
a
n
d
a
n
a
ly
sis
o
f
s
e
lec
ti
v
e
l
y
d
e
f
o
r
m
a
b
le
stru
c
tu
re
(S
DS)
w
in
g
is
re
v
ie
w
e
d
.
S
e
c
o
n
d
,
a
sin
g
le
d
e
g
re
e
o
f
f
re
e
d
o
m
(D
OF)
m
o
d
e
l
to
re
p
re
se
n
t
a
f
ix
e
d
w
in
g
a
n
d
a
tw
o
DO
F
u
n
d
e
r
-
a
c
tu
a
ted
m
o
d
e
l
to
re
p
re
se
n
t
S
DS
a
re
d
isc
u
ss
e
d
a
n
d
th
e
ir
m
a
th
e
m
a
ti
c
a
l
m
o
d
e
ls
a
r
e
d
e
riv
e
d
.
T
h
ird
,
th
e
e
ff
e
c
t
o
f
d
e
f
o
r
m
a
b
le
w
in
g
p
o
rti
o
n
o
n
t
h
e
w
in
g
d
y
n
a
m
ics
is
stu
d
ied
b
y
v
a
r
y
in
g
th
e
e
x
c
it
a
ti
o
n
f
re
q
u
e
n
c
y
a
n
d
stiff
n
e
ss
o
f
th
e
m
o
d
e
l.
F
o
u
rt
h
,
a
n
e
x
p
e
rim
e
n
tal
se
tu
p
c
o
n
sistin
g
o
f
tw
o
ri
g
id
li
n
k
s
c
o
n
n
e
c
ted
b
y
sp
rin
g
a
n
d
su
b
jec
ted
to
sin
u
so
i
d
a
l
d
isp
lac
e
m
e
n
t
is
in
v
e
stig
a
ted
.
F
in
a
l
se
c
ti
o
n
s
u
m
m
a
rize
s
th
e
re
se
a
rc
h
a
n
d
p
ro
v
i
d
e
s d
irec
ti
o
n
s f
o
r
f
u
tu
re
w
o
rk
.
K
ey
w
o
r
d
:
A
ir
cr
a
f
t
Deg
r
ee
Of
Fre
ed
o
m
(
DO
F)
No
n
li
n
ea
r
Mo
d
el
Selectiv
e
l
y
De
f
o
r
m
ab
le
Stru
ct
u
r
e
(
SDS)
Stu
d
y
Selecti
v
el
y
Co
p
y
rig
h
t
©
201
5
In
s
t
it
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Deiv
a
Ga
n
es
h
A
,
Dep
ar
t
m
en
t o
f
Me
ch
a
n
ical
E
n
g
in
ee
r
i
n
g
,
R
MK
C
o
lle
g
e
o
f
E
n
g
i
n
ee
r
i
n
g
an
d
T
ec
h
n
o
lo
g
y
,
C
h
e
n
n
ai
,
T
am
il
Nad
u
,
I
n
d
ia.
E
m
ail:
a
m
d
g
a
n
es
h
@
y
a
h
o
o
.
co
.
in
1.
I
NT
RO
D
UCT
I
O
N
I
n
th
e
last
h
u
n
d
r
ed
y
ea
r
s
air
p
lan
e
tech
n
o
lo
g
y
h
as
g
r
o
w
n
f
r
o
m
s
tr
u
t
a
n
d
w
ir
e
b
ip
la
n
es
p
r
o
p
eller
d
r
iv
en
to
j
et
p
r
o
p
elled
air
p
lan
e,
An
d
er
s
o
n
[
1
]
.
W
ith
t
h
e
i
n
t
en
s
e
s
tu
d
y
o
n
ae
r
o
d
y
n
a
m
ics,
t
h
e
ad
v
a
n
ce
m
en
t
o
f
co
m
p
o
s
i
te
m
ater
ials
,
co
n
tr
o
l,
s
en
s
in
g
,
a
n
d
co
m
m
u
n
ica
ti
o
n
t
ec
h
n
o
lo
g
ies
s
u
p
er
s
o
n
ic
a
n
d
h
y
p
er
s
o
n
ic
air
p
la
n
e
s
ar
e
r
ea
lized
.
T
h
e
av
ailab
ilit
y
o
f
an
al
y
s
is
to
o
ls
li
k
e
FE
A
an
d
C
FD
h
as
h
elp
ed
in
ca
r
r
y
in
g
o
u
t
s
tr
u
ct
u
r
al,
ae
r
o
elasticit
y
a
n
al
y
s
is
o
f
air
cr
af
t
s
tr
u
ctu
r
e
s
r
esu
lt
in
g
i
n
i
m
p
r
o
v
ed
lif
t/d
r
ag
r
atio
,
h
i
g
h
asp
e
ct
r
atio
w
in
g
d
esi
g
n
an
d
li
g
h
t
w
ei
g
h
t
h
i
g
h
-
s
p
ee
d
air
p
lan
es.
P
r
ese
n
tl
y
,
r
esear
c
h
e
f
f
o
r
ts
ar
e
u
n
d
er
g
o
i
n
g
to
r
ea
lize
th
e
d
esire
d
ae
r
o
elastic d
ef
o
r
m
a
tio
n
th
r
o
u
g
h
s
u
r
f
ac
e
m
o
r
p
h
in
g
,
al
l
m
o
v
a
b
le
co
n
tr
o
l s
u
r
f
ac
e
s
w
it
h
v
ar
ia
b
le
s
ti
f
f
n
e
s
s
ef
f
ec
t
s
an
d
w
ith
s
elec
ti
v
el
y
d
e
f
o
r
m
ab
le
s
tr
u
ct
u
r
es.T
h
e
f
o
llo
w
i
n
g
d
e
s
cr
ib
es th
e
liter
at
u
r
e
r
elate
d
to
ae
r
o
elasticit
y
.
Am
ir
y
a
n
t
s
et
a
l.
[
2
]
in
v
esti
g
ates
t
h
e
m
o
r
p
h
in
g
o
f
air
f
r
a
m
e
s
tr
u
ct
u
r
es
u
s
i
n
g
s
elec
ti
v
el
y
d
ef
o
r
m
ab
le
s
tr
u
ct
u
r
es (
SD
S).
T
h
e
m
ai
n
o
b
j
ec
tiv
e
o
f
SD
S r
esear
ch
i
s
to
d
ev
elo
p
a
s
tr
u
ct
u
r
e
w
h
ic
h
h
a
s
a
m
i
n
i
m
al
P
o
is
s
o
n
's
ef
f
ec
t:
r
es
u
lt
s
i
n
a
d
e
f
lectio
n
alo
n
g
th
e
d
ir
ec
tio
n
o
f
t
h
e
ac
ti
n
g
lo
ad
.
Si
m
p
s
o
n
et
al.
[
3
]
p
r
o
v
id
e
a
r
ev
ie
w
o
f
r
esear
ch
p
r
o
j
ec
t
o
n
“
ac
ti
v
e
ae
r
o
elastic a
ir
cr
af
t str
u
ct
u
r
es”
(
3
AS)
.
T
h
e
aim
s
o
f
t
h
e
p
r
o
j
ec
t a
r
e
as f
o
llo
w
s
:
a.
A
er
o
d
y
n
a
m
ic
d
r
ag
r
ed
u
ctio
n
.
b.
Stru
ct
u
r
al
w
eig
h
t r
ed
u
ct
io
n
.
c.
A
d
v
an
ce
d
s
izi
n
g
d
esig
n
a
n
d
ex
p
lo
itatio
n
.
d.
T
o
o
l r
ed
u
ctio
n
.
e.
R
ed
u
ce
d
m
ai
n
te
n
a
n
ce
.
f.
Hig
h
ae
r
o
elastic e
f
f
icie
n
c
y
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
A
N
o
n
lin
ea
r
Mo
d
el
to
S
t
u
d
y
S
elec
tively
Defo
r
ma
b
le
W
in
g
o
f a
n
A
ir
cra
ft
(
Deiv
a
Ga
n
esh
A
)
317
g.
I
m
p
r
o
v
ed
ae
r
o
elastic stab
ilit
y
an
d
d
y
n
a
m
ic
lo
ad
s
s
u
p
p
r
ess
io
n
.
B
r
aid
r
u
s
k
i
et
al.
[
4
]
ex
p
er
i
m
e
n
ts
t
h
e
u
s
e
f
u
ln
e
s
s
o
f
SM
A
ac
t
u
ato
r
s
f
o
r
m
o
r
p
h
in
g
w
i
n
g
to
r
ed
u
ce
f
u
el
co
n
s
u
m
p
tio
n
a
n
d
to
i
m
p
r
o
v
e
ae
r
o
d
y
n
a
m
ic
p
er
f
o
r
m
a
n
ce
.
T
h
e
y
h
av
e
u
s
ed
a
m
o
r
p
h
e
d
w
i
n
g
p
r
o
to
-
t
y
p
e
co
m
b
i
n
ed
w
ith
t
h
r
ee
s
u
b
-
s
y
s
te
m
s
n
a
m
e
l
y
f
le
x
ib
le
ex
tr
u
d
e
s
,
r
ig
id
in
tr
u
d
e
an
d
an
ac
tu
ato
r
g
r
o
u
p
co
n
tr
o
l
in
s
id
e
th
e
w
i
n
g
b
o
x
.
Ku
z
m
i
n
a
et
al
.
[
5
]
p
r
esen
ts
a
n
o
v
er
v
ie
w
o
f
t
h
e
ae
r
o
elast
ic
d
ef
o
r
m
atio
n
u
s
in
g
a
n
ad
ap
ti
v
e
s
tiff
n
es
s
attac
h
e
m
e
n
ts
o
f
all
m
o
v
ea
b
le
ae
r
o
d
y
n
a
m
ic
s
u
r
f
ac
es.
Am
ir
y
an
t
s
et
al.
[
6
]
p
r
esen
ts
th
e
i
n
v
e
s
ti
g
atio
n
s
o
n
ae
r
o
d
y
n
a
m
ic
c
o
n
tr
o
l
u
s
in
g
d
if
f
er
en
t
ial
lead
i
n
g
ed
g
e,
f
o
r
w
ar
d
ailer
o
n
,
s
p
ec
ial
co
m
b
i
n
a
tio
n
o
f
s
p
o
iler
a
n
d
ailer
o
n
Nag
e
l
et
al.
[
7
]
p
r
esen
ts
t
h
e
r
es
u
lts
o
f
u
s
in
g
ac
ti
v
e
co
m
p
o
s
i
tes
to
e
n
ab
le
s
h
ap
e
c
o
n
tr
o
l
o
f
t
h
e
w
i
n
g
w
h
ile
r
etai
n
in
g
t
h
e
s
ti
f
f
n
e
s
s
an
d
s
tr
en
g
t
h
r
eq
u
ir
e
m
e
n
ts
.
Am
ir
y
a
n
t
s
[
8
]
p
r
esen
ts
a
co
m
p
ar
is
o
n
o
f
co
n
tr
o
l
ef
f
ec
tiv
e
n
e
s
s
o
f
h
i
n
g
e
-
le
s
s
c
o
n
n
ec
tio
n
o
f
ailer
o
n
u
s
in
g
s
elec
tiv
el
y
d
e
f
o
r
m
ab
le
s
tr
u
ct
u
r
e
w
i
th
tr
ad
itio
n
al
co
n
tr
o
l
d
ev
ices.
I
t
is
s
h
o
w
n
S
DS
is
h
ig
h
l
y
e
f
f
ec
ti
v
e
f
o
r
w
id
e
r
an
g
e
o
f
m
ac
h
n
u
m
b
er
s
an
d
d
y
n
a
m
ic
p
r
ess
u
r
e.
Ah
n
et
al.
[
9
]
p
r
esen
ts
t
h
e
tilt
-
r
o
to
r
tech
n
o
lo
g
y
d
e
v
elo
p
ed
f
o
r
s
m
ar
t
U
A
V.
T
h
eir
o
b
j
ec
tiv
e
is
to
d
ev
elo
p
h
i
g
h
s
p
ee
d
VT
OL
air
cr
af
t
an
d
to
tailo
r
th
e
tech
n
o
lo
g
y
f
o
r
th
e
d
o
m
e
s
tic
ae
r
o
s
p
ac
e
in
d
u
s
tr
y
.
Ma
u
ch
ar
et
al.
[
1
0
]
in
v
e
s
ti
g
ates
u
s
e
o
f
ac
ti
v
e
tr
ail
in
g
e
d
g
e
o
f
r
o
to
r
b
lad
e
co
n
tr
o
l
to
m
i
n
i
m
ize
n
o
i
s
e
an
d
v
ib
r
atio
n
,
also
to
r
ed
u
ce
f
u
e
l
co
n
s
u
m
p
tio
n
.
L
iv
n
e
[
1
1
]
p
r
esen
ts
a
n
ex
te
n
s
iv
e
r
ev
ie
w
o
n
ae
r
o
elasticit
y
.
He
h
as
d
is
c
u
s
s
ed
co
m
p
r
e
h
en
s
iv
e
l
y
t
h
e
v
ar
io
u
s
is
s
u
es
an
d
r
e
m
ed
ies,
n
u
m
er
ic
al
s
i
m
u
latio
n
,
m
o
d
eli
n
g
f
o
r
c
ap
tu
r
in
g
lo
ca
l
an
d
g
lo
b
al
b
eh
av
io
r
,
o
r
d
er
r
ed
u
ct
io
n
o
f
lar
g
e
FE
an
d
C
FD
m
o
d
els,
s
en
s
it
iv
i
t
y
a
n
al
y
s
i
s
o
f
co
u
p
led
s
tr
u
ctu
r
e
,
ae
r
o
d
y
n
a
m
ic
o
p
ti
m
izat
io
n
with
FE/C
FD
m
o
d
els,
ae
r
o
s
er
v
o
elastici
t
y
a
n
d
ae
r
o
s
er
v
o
el
asti
c
o
p
ti
m
izatio
n
,
m
o
r
p
h
in
g
,
s
m
ar
t
air
p
lan
es,
ac
co
u
n
ti
n
g
f
o
r
u
n
ce
r
tain
t
y
in
a
er
o
elastic
an
al
y
s
is
a
n
d
d
esi
g
n
,
m
u
ltid
is
cip
li
n
ar
y
d
esig
n
o
p
ti
m
izatio
n
,
ae
r
o
ela
s
ticit
y
o
f
s
elec
ted
n
o
n
-
co
n
v
en
tio
n
al
co
n
f
i
g
u
r
atio
n
s
,
ae
r
o
elastic
c
h
alle
n
g
es
ass
o
ciate
d
w
ith
s
u
p
er
s
o
n
ic
an
d
h
y
p
er
s
o
n
ic
f
li
g
h
t,
f
lo
p
p
in
g
f
lig
h
t a
n
d
U
A
V
s
.
Fro
m
t
h
e
li
ter
atu
r
e
i
t
i
s
cl
ea
r
th
at
m
a
s
s
i
v
e
w
o
r
k
h
a
v
e
b
ee
n
d
o
n
e
to
i
m
p
r
o
v
e
ae
r
o
elasiti
cit
y
.
R
ec
en
t
l
y
,
r
e
s
ea
r
ch
e
f
f
o
r
ts
a
r
e
o
n
i
n
t
h
e
ar
ea
s
o
f
s
u
r
f
ac
e
m
o
r
p
h
i
n
g
to
i
m
p
r
o
v
e
ae
r
o
d
y
n
a
m
ic
s
,
a
n
d
m
i
n
i
m
izatio
n
o
f
co
n
tr
o
l
ef
f
o
r
t
r
eq
u
ir
ed
to
ef
f
ec
t
ch
a
n
g
es
i
n
th
e
w
i
n
g
g
eo
m
e
tr
y
u
s
i
n
g
s
ele
ctiv
el
y
d
ef
o
r
m
ab
le
s
tr
u
ct
u
r
e
(
SDS).
T
h
er
ef
o
r
e,
av
ailab
ilit
y
o
f
a
n
ef
f
ec
ti
v
e
m
o
d
el
to
s
tu
d
y
SD
S
d
y
n
a
m
ics
wo
u
ld
g
r
ea
tl
y
h
elp
i
n
ev
o
lv
i
n
g
b
etter
d
esig
n
f
o
r
th
e
SDS
b
ased
w
i
n
g
.
I
n
th
i
s
w
o
r
k
a
p
r
eli
m
i
n
ar
y
s
t
u
d
y
h
a
s
b
ee
n
co
n
d
u
cted
to
u
n
d
er
s
ta
n
d
th
e
u
s
e
f
u
ln
e
s
s
o
f
d
u
f
f
i
n
g
’
s
eq
u
atio
n
to
s
tu
d
y
SD
S d
y
n
a
m
ic
s
.
T
h
e
o
r
g
an
izatio
n
o
f
th
e
p
ap
er
is
f
o
llo
w
s
.
I
n
s
ec
t
io
n
o
n
e,
liter
atu
r
e
r
elate
d
to
ae
r
o
elastic
it
y
h
av
e
b
ee
n
r
ev
ie
w
ed
.
Sectio
n
t
w
o
p
r
esen
t
s
th
e
d
y
n
a
m
ic
s
o
f
SDS
u
s
i
n
g
an
u
n
d
er
-
ac
t
u
ated
b
ea
m
li
k
e
m
o
d
el.
Sectio
n
th
r
ee
r
ep
o
r
ts
th
e
s
i
m
u
latio
n
co
n
d
u
c
ted
o
n
th
e
f
i
x
ed
w
i
n
g
an
d
SD
S
m
o
d
els.
Sectio
n
f
o
u
r
p
r
esen
ts
t
h
e
ex
p
er
i
m
en
tal
r
esu
lt
s
co
n
d
u
c
ted
o
n
s
i
m
p
le
b
ea
m
a
n
d
s
elec
ti
v
el
y
d
e
f
o
r
m
ab
le
b
ea
m
s
.
Fi
n
al
s
ec
t
io
n
s
u
m
m
ar
izes
th
e
r
esear
ch
w
o
r
k
a
n
d
o
u
tli
n
es t
h
e
p
lan
f
o
r
f
u
tu
r
e
w
o
r
k
.
2.
T
H
E
M
O
DE
L
A
d
ef
e
n
s
e
air
cr
a
f
t
n
ee
d
to
b
e
ac
ce
ler
ated
an
d
d
ec
eler
ated
f
a
s
t
an
d
at
th
e
s
a
m
e
ti
m
e
w
i
n
g
g
eo
m
etr
y
n
ee
d
to
b
e
m
o
d
if
ied
to
i
m
p
r
o
v
e
ae
r
o
d
y
n
a
m
ic
ef
f
ec
ti
v
e
n
es
s
.
C
o
m
p
lia
n
ce
in
t
h
e
w
i
n
g
w
o
u
ld
h
elp
in
r
ed
u
cin
g
th
e
co
n
tr
o
l
ef
f
o
r
t
r
eq
u
ir
ed
to
ch
an
g
e
th
e
w
i
n
g
g
eo
m
etr
y
.
Ho
w
e
v
er
,
th
e
e
f
f
ec
t
s
o
f
c
o
m
p
lia
n
ce
o
n
w
i
n
g
d
y
n
a
m
ics
n
ee
d
to
b
e
u
n
d
er
s
to
o
d
,
an
d
f
o
r
th
is
p
u
r
p
o
s
e
s
o
m
e
s
i
m
p
le
m
o
d
el
s
o
f
w
i
n
g
s
ar
e
as
s
u
m
ed
a
n
d
s
tu
d
ie
s
ar
e
ca
r
r
ied
o
u
t.
Fig
u
r
e
1
an
d
2
s
h
o
w
s
th
e
m
o
d
els
o
f
f
ix
ed
w
i
n
g
a
n
d
s
el
ec
tiv
e
l
y
d
e
f
o
r
m
ab
le
w
i
n
g
r
esp
ec
ti
v
el
y
.
Fix
ed
w
i
n
g
is
r
ep
r
ese
n
ted
b
y
a
s
i
m
p
le
ca
n
tile
v
er
b
ea
m
a
n
d
SDS
w
i
n
g
is
r
ep
r
ese
n
ted
b
y
a
t
w
o
DO
F
u
n
d
er
-
ac
tu
ate
b
ea
m
a
n
d
b
o
th
ar
e
s
u
b
j
ec
ted
to
ex
citatio
n
.
T
h
e
f
o
llo
w
i
n
g
d
escr
ib
es th
e
t
w
o
m
o
d
el
s
.
2
.
1
.
M
o
del
-
1
Fig
u
r
e
1
s
h
o
w
s
t
h
e
m
o
d
el
r
ep
r
esen
tin
g
t
h
e
f
i
x
ed
w
in
g
.
I
t
co
n
s
is
ts
o
f
a
s
i
n
g
le
b
ea
m
w
it
h
o
n
e
en
d
f
i
x
ed
an
d
a
s
in
u
s
o
id
al
b
ase
ex
citatio
n
.
Fig
u
r
e
1
.
C
an
tile
v
er
b
ea
m
m
o
d
el
to
r
ep
r
esen
t f
i
x
ed
w
i
n
g
Fig
u
r
e
1
a.
E
q
u
iv
ale
n
t
m
o
d
el
t
o
r
ep
r
esen
t th
e
f
i
x
ed
w
i
n
g
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
4
,
No
.
4
,
Dec
em
b
er
2
0
1
5
:
3
16
–
3
25
318
T
h
e
eq
u
atio
n
o
f
m
o
tio
n
f
o
r
th
e
ab
o
v
e
m
o
d
el
is
g
i
v
en
b
y
,
̈
(
̇
̇
)
(
)
(
1
)
No
w
let
(
2
)
W
o
u
ld
r
esu
lts
i
n
̈
̇
̈
̈
̇
(
3
)
W
h
er
e
th
e
p
ar
am
eter
s
o
f
t
h
e
s
y
s
te
m
ar
e,
m
,
c,
k
,
E
,
l,
I
–
m
a
s
s
,
d
a
m
p
i
n
g
co
ef
f
icie
n
t,
eq
u
iv
ale
n
t
s
tiff
n
es
s
,
y
o
u
n
g
’
s
m
o
d
u
l
u
s
,
l
en
g
t
h
,
ar
ea
m
o
m
e
n
t
o
f
i
n
er
ti
a
o
f
cr
o
s
s
s
ec
tio
n
o
f
t
h
e
b
ea
m
r
esp
ec
ti
v
el
y
.
[
k
=3
E
I
/l
3
]
x
,
y
,
z
–
d
is
p
lace
m
e
n
t
at
th
e
tip
,
ex
citatio
n
a
m
p
lit
u
d
e,
r
elativ
e
d
is
p
lac
e
m
e
n
t
b
etw
ee
n
th
e
m
ass
a
n
d
s
u
p
p
o
r
t r
esp
ec
tiv
el
y
.
T
h
e
ab
o
v
e
eq
u
atio
n
ca
n
b
e
co
n
v
er
ted
i
n
to
t
w
o
f
ir
s
t o
r
d
er
d
if
f
er
en
tia
l e
q
u
atio
n
s
,
̇
(
4
)
̇
[
]
(
5
)
2
.
2
.
M
o
del
-
2
Fig
u
r
e
2
s
h
o
w
s
th
e
u
n
d
er
-
ac
tu
ated
m
o
d
el
r
ep
r
esen
tin
g
t
h
e
SDS
w
i
n
g
.
I
t
co
n
s
is
t
s
o
f
t
w
o
b
ea
m
s
co
n
n
ec
ted
b
y
co
m
p
lia
n
t a
r
r
an
g
e
m
e
n
t a
n
d
its
f
ix
ed
e
n
d
ac
tu
a
ted
b
y
a
s
i
n
u
s
o
id
al
ex
cita
tio
n
.
Fig
u
r
e
2
.
An
u
n
d
er
-
ac
t
u
ated
m
o
d
el
to
r
ep
r
esen
t S
DS
w
i
n
g
Fig
u
r
e
2a
.
T
h
e
eq
u
iv
alen
t
m
o
d
el
f
o
r
r
ep
r
esen
tin
g
SDS
w
i
n
g
T
h
e
eq
u
atio
n
o
f
m
o
tio
n
f
o
r
th
e
ab
o
v
e
m
o
d
el
is
g
i
v
en
b
y
,
̈
(
̇
̇
)
(
)
(
̇
̇
)
(
)
(
6
)
̈
(
̇
̇
)
(
)
(
7
)
W
h
er
e,
m
1,
m
2
-
m
a
s
s
o
f
t
h
e
b
ea
m
1
an
d
2
k
1
, k
2
-
s
t
if
f
n
es
s
o
f
th
e
b
ea
m
1
a
n
d
th
e
co
m
p
lia
n
t a
r
r
an
g
e
m
en
t
c
1
, c
2
-
d
a
m
p
in
g
co
ef
f
icie
n
t o
f
b
ea
m
1
a
n
d
th
e
co
m
p
lia
n
t a
r
r
an
g
e
m
e
n
t
y
0
-
e
x
citatio
n
a
m
p
li
tu
d
e
x
1
, x
2
-
d
is
p
lace
m
e
n
t o
f
m
1
,
m
2
̇
1
,
̇
2
-
v
elo
cit
y
o
f
m
1
an
d
m
2
̈
,
̈
-
ac
ce
ler
atio
n
o
f
m
1
an
d
m
2
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
A
N
o
n
lin
ea
r
Mo
d
el
to
S
t
u
d
y
S
elec
tively
Defo
r
ma
b
le
W
in
g
o
f a
n
A
ir
cra
ft
(
Deiv
a
Ga
n
esh
A
)
319
No
w
letti
n
g
,
(
8
)
̇
̇
̇
(
9
)
(
1
0
)
̈
̈
̈
(
1
1
)
̈
̈
̈
(
1
2
)
W
h
er
e,
z,
̇
̈
-
r
elativ
e
d
is
p
lace
m
en
t,
v
elo
cit
y
an
d
ac
ce
ler
atio
n
b
et
w
ee
n
th
e
b
ea
m
an
d
t
h
e
m
a
s
s
1
an
d
2
w
,
̇
̈
-
r
elativ
e
d
is
p
lace
m
e
n
t,
v
el
o
cit
y
an
d
ac
ce
ler
atio
n
b
et
w
ee
n
th
e
b
ea
m
a
n
d
th
e
m
as
s
1
an
d
2
W
o
u
ld
r
esu
lt in
t
h
e
f
o
llo
w
in
g
t
w
o
2
nd
o
r
d
er
eq
u
atio
n
s
,
̈
̇
̇
̈
(
1
3
)
̈
̇
̈
(
1
4
)
Ag
ai
n
letti
n
g
,
̇
=
(
1
5
)
̇
=
(
1
6
)
W
ill r
esu
lt i
n
f
o
u
r
f
ir
s
t o
r
d
er
e
q
u
atio
n
s
,
̇
=
(
1
7
)
̇
[
]
(
1
8
)
̇
=
(
1
9
)
̇
[
{
[
-
-
-
-
]
}
-
-
-
]
(
2
0
)
E
x
ten
s
i
v
e
w
o
r
k
h
as
b
ee
n
o
n
s
o
lv
i
n
g
d
u
f
f
i
n
g
’
s
eq
u
atio
n
a
n
d
its
d
y
n
a
m
ics.
Har
m
o
n
ic
b
alan
ce
in
co
n
j
u
n
ctio
n
w
it
h
Me
ln
i
k
o
v
m
eth
o
d
[
1
2
]
,
n
o
n
li
n
ea
r
d
a
m
p
er
s
f
o
r
i
m
p
r
o
v
i
n
g
s
tr
u
ct
u
r
al
d
y
n
a
m
ics
[
1
3
-
1
5
]
an
d
n
o
n
li
n
ea
r
co
n
tr
o
l
d
esig
n
f
o
r
v
ib
r
atio
n
r
ed
u
ctio
n
[
1
6
]
.
T
h
is
w
o
r
k
m
a
k
e
s
an
atte
m
p
t
to
a
s
s
ess
t
h
e
u
s
e
f
u
l
n
es
s
o
f
d
u
f
f
i
n
g
’
s
eq
u
atio
n
to
s
t
u
d
y
t
h
e
d
y
n
a
m
ics o
f
SDS
w
i
n
g
.
S
l
.
no
Ex
c
i
t
a
t
i
o
n
f
r
e
q
u
e
n
c
y
,
ω rad
s
/
se
c
T
i
p
D
i
sp
l
a
c
e
me
n
t
Y
1
i
n
m
T
i
p
V
e
l
o
c
i
t
y
Y
2
i
n
m/
se
c
1
1
0
0
0
.
5
8
4
1
2
0
.
0
7
6
6
2
2
0
0
0
.
5
9
1
3
4
0
.
0
5
1
9
3
3
0
0
0
.
5
9
5
7
6
0
.
0
8
5
7
4
4
0
0
0
.
5
9
6
7
8
0
.
0
8
6
2
5
5
0
0
0
.
5
9
5
1
1
0
0
.
0
8
5
0
6
6
0
0
0
.
5
9
7
8
1
2
0
.
0
8
2
7
7
7
0
0
0
.
5
9
7
2
1
4
0
.
1
0
5
9
8
8
0
0
0
.
5
9
5
7
1
6
0
.
1
2
5
0
9
9
0
0
0
.
5
9
5
4
1
8
0
.
1
3
7
2
10
1
0
0
0
0
.
5
9
6
5
2
0
0
.
1
3
6
1
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
4
,
No
.
4
,
Dec
em
b
er
2
0
1
5
:
3
16
–
3
25
320
3.
SI
M
UL
AT
I
O
N
T
ab
le
1
.
Sim
u
latio
n
r
esu
lts
f
o
r
f
ix
ed
w
i
n
g
(
m
=5
k
g
,
k
=2
0
0
N/
m
,
c=
1
0
N/
m
/s
ec
,
I
n
itial c
o
n
d
i
tio
n
s
x
o
=0
.
2
m
,
̇
=0
,
E
x
citatio
n
a
m
p
li
tu
d
e,
y
o
=
0
.
2
m
,
s
i
m
u
latio
n
d
u
r
atio
n
=
1
0
s
ec
s
)
S
l
.
No
Ex
c
i
t
a
t
i
o
n
f
r
e
q
u
e
n
c
y
,
ω
r
a
d
s/
se
c
D
i
sp
l
a
c
e
me
n
t
Y
1
m
V
e
l
o
c
i
t
y
Y2
m/
se
c
D
i
sp
l
a
c
e
me
n
t
Y
3
m
T
i
p
V
e
l
o
c
i
t
y
Y4
m/
se
c
T
i
p
D
i
sp
l
a
c
e
me
n
t
Y
1
+
y
3
m
1
1
0
0
0
.
5
5
5
4
1
9
.
9
5
8
6
0
.
4
6
1
8
1
5
.
9
5
1
8
1
.
0
1
7
2
2
2
0
0
0
.
5
7
5
4
4
0
.
0
0
1
5
0
.
4
8
7
2
3
1
.
9
9
6
9
1
.
0
6
2
6
3
3
0
0
0
.
5
8
5
1
6
0
.
0
1
8
7
0
.
4
9
8
5
4
8
.
0
1
2
9
1
.
0
8
3
6
4
4
0
0
0
.
5
8
8
8
8
0
.
0
2
7
1
0
.
5
0
3
9
6
4
.
0
2
0
7
1
.
0
9
2
7
5
5
0
0
0
.
5
8
8
4
1
0
0
.
0
3
4
7
0
.
5
0
4
5
8
0
.
0
2
7
1
1
.
0
9
2
9
6
6
0
0
0
.
5
9
2
5
1
2
0
.
0
4
0
7
0
.
5
0
9
2
9
6
.
0
3
1
7
1
.
1
0
1
7
7
7
0
0
0
.
5
9
2
7
1
4
0
.
0
4
5
6
0
.
5
1
0
3
1
1
2
.
0
3
5
6
1
.
1
0
3
0
8
8
0
0
0
.
5
9
1
9
1
6
0
.
0
4
6
4
0
.
5
1
0
3
1
2
8
.
0
3
2
9
1
.
1
0
2
2
9
9
0
0
0
.
5
9
1
7
1
8
0
.
0
6
0
4
0
.
5
0
9
9
1
4
4
.
0
4
3
7
1
.
1
0
1
6
10
1
0
0
0
0
.
5
9
3
2
2
0
0
.
0
6
9
8
0
.
5
1
1
4
1
6
0
.
0
5
1
1
1
.
1
0
4
6
Si
m
u
latio
n
s
ar
e
co
n
d
u
cted
to
u
n
d
er
s
ta
n
d
th
e
ef
f
ec
t
o
f
co
m
p
lian
ce
o
n
w
i
n
g
d
y
n
a
m
ics.
I
n
o
r
d
er
t
o
m
ak
e
co
m
p
ar
is
o
n
b
et
w
ee
n
f
i
x
ed
w
i
n
g
a
n
d
s
elec
ti
v
el
y
d
e
f
o
r
m
ab
le
w
in
g
b
o
th
t
h
e
m
o
d
e
l
len
g
t
h
s
ar
e
k
ep
t
eq
u
al.
Fo
r
f
ix
ed
w
i
n
g
t
h
er
e
w
il
l
b
e
s
in
g
le
s
t
if
f
n
es
s
an
d
f
o
r
S
DS
th
er
e
w
ill
b
e
t
w
o
s
ti
f
f
n
e
s
s
es
n
a
m
el
y
th
e
s
tiff
n
es
s
o
f
th
e
lin
k
1
a
n
d
s
ti
f
f
n
es
s
o
f
t
h
e
co
m
p
lian
t
ar
r
an
g
e
m
en
t.
I
n
t
h
e
SDS
m
o
d
el,
th
e
l
in
k
2
is
j
o
in
ed
w
it
h
lin
k
1
th
r
o
u
g
h
a
co
m
p
lia
n
t
ar
r
an
g
e
m
e
n
t
a
n
d
t
h
e
li
n
k
2
i
s
as
s
u
m
ed
to
b
e
r
i
g
id
.
T
h
e
ex
cita
tio
n
a
m
p
lit
u
d
e
f
o
r
b
o
th
th
e
m
o
d
els
ar
e
k
ep
t
co
n
s
tan
t
a
n
d
f
r
eq
u
e
n
c
y
is
v
ar
ied
an
d
th
e
m
ax
i
m
u
m
v
elo
cit
y
a
n
d
d
is
p
lace
m
e
n
t
f
o
r
ea
ch
f
r
eq
u
e
n
c
y
ar
e
o
b
s
er
v
ed
an
d
tab
u
lated
.
T
h
e
tab
le
1
an
d
2
s
h
o
w
th
e
m
ax
i
m
u
m
t
i
p
d
is
p
lace
m
e
n
t
an
d
v
elo
cit
y
v
al
u
es
f
o
r
f
i
x
ed
w
i
n
g
an
d
SDS
w
i
n
g
f
o
r
v
ar
io
u
s
f
r
eq
u
en
cie
s
.
T
ab
le
2
.
Sim
u
latio
n
r
esu
lts
f
o
r
SDS
w
i
n
g
(
m
1
=2
.
5
k
g
,
m
2
=2
.
5
Kg
,
k
1
=2
5
0
N/
m
,
k
2
=1
5
0
N/
m
,
c
1
=1
0
N/m
/s
ec
,
c
2
=1
0
N/m
/s
ec
I
n
i
tial c
o
n
d
itio
n
s
x
1o
=0
.
2
m
,
̇
10
=0
,
x
2o
=0
.
2
m
,
̇
2o
=0
,
ex
citatio
n
a
m
p
lit
u
d
e
y
o
=0
.
2
m
s
i
m
u
latio
n
d
u
r
atio
n
=
1
0
s
ec
s
)
Fig
u
r
e
3
.
E
x
citatio
n
f
r
eq
u
e
n
c
y
Vs Dis
p
lace
m
en
t
f
o
r
f
i
x
ed
an
d
SDS
w
in
g
s
Fig
u
r
e
4
.
E
x
citatio
n
f
r
eq
u
e
n
c
y
Vs T
ip
Velo
city
f
o
r
f
ix
ed
an
d
SDS
w
i
n
g
s
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
A
N
o
n
lin
ea
r
Mo
d
el
to
S
t
u
d
y
S
elec
tively
Defo
r
ma
b
le
W
in
g
o
f a
n
A
ir
cra
ft
(
Deiv
a
Ga
n
esh
A
)
321
Fig
u
r
e
3
an
d
4
s
h
o
w
t
h
e
g
r
ap
h
s
d
r
a
w
n
b
et
w
ee
n
f
r
eq
u
e
n
c
y
Vs
d
is
p
lace
m
en
t
an
d
f
r
eq
u
en
c
y
Vs
v
elo
cit
y
f
o
r
b
o
th
t
y
p
e
o
f
w
i
n
g
s
.
Fro
m
th
e
g
r
ap
h
w
e
ca
n
o
b
s
e
r
v
e
th
at,
a.
C
o
m
p
lia
n
ce
in
t
h
e
li
n
k
r
ed
u
ce
s
th
e
s
p
ee
d
in
g
ca
p
ac
it
y
b.
Fo
r
th
e
p
ar
ticu
lar
f
r
eq
u
e
n
c
y
s
p
ee
d
in
g
ca
p
ac
it
y
i
s
b
etter
c.
C
o
m
p
lia
n
ce
in
t
h
e
w
i
n
g
in
cr
ea
s
es d
is
p
lace
m
en
t a
g
ai
n
it is
m
o
r
e
at
ce
r
tain
f
r
eq
u
en
c
y
T
ab
le
3
.
Dis
p
lace
m
e
n
t a
n
d
T
i
p
Velo
city
o
f
SDS
w
i
n
g
u
n
d
er
s
tiff
n
es
s
v
ar
iatio
n
w
h
i
le
th
e
e
x
citatio
n
f
r
eq
u
e
n
c
y
is
k
ep
t c
o
n
s
tan
t (
m
1
=2
.
5
k
g
,
m
2
=2
.
5
Kg
,
k
1
=2
5
0
N/
m
,
k
2
=
v
ar
i
ab
le,
c1
=1
0
N/m
/s
ec
,
c2
=1
0
N/
m
/
s
ec
I
n
itial
co
n
d
itio
n
s
x
1o
=0
.
2
m
,
̇
1o
=0
,
x
2o
=0
.
2
m
,
̇
2o
=0
,
ex
citatio
n
a
m
p
li
t
u
d
e=
0
.
2
m
s
i
m
u
la
tio
n
d
u
r
atio
n
=
1
0
s
ec
s
)
Fig
u
r
e
5
.
Sti
f
f
n
ess
V
s
T
ip
Dis
p
lace
m
en
t
f
o
r
SDS
w
i
n
g
s
Fig
u
r
e
6
.
Sti
f
f
n
ess
V
s
T
ip
Velo
cit
y
f
o
r
f
i
x
ed
an
d
SD
S
w
in
g
s
S
t
i
f
f
n
e
ss
K2
D
i
sp
l
a
c
e
me
n
t
Y1
m
V
e
l
o
c
i
t
y
Y2
m/
se
c
D
i
sp
l
a
c
e
me
n
t
Y
3
m
T
i
p
V
e
l
o
c
i
t
y
Y4
m/
se
c
T
i
p
D
i
sp
l
a
c
e
me
n
t
Y
1
+
Y
3
m
1
0
0
0
.
5
5
5
6
1
9
.
9
5
9
3
0
.
4
6
2
2
1
5
.
9
6
0
3
1
.
0
1
7
8
1
1
0
0
.
5
5
5
6
1
9
.
9
5
9
3
0
.
4
6
2
1
1
5
.
9
5
5
9
1
.
0
1
7
7
1
2
0
0
.
5
5
5
5
1
9
.
9
5
8
5
0
.
4
6
2
0
1
5
.
9
5
9
9
1
.
0
1
7
5
1
3
0
0
.
5
5
5
5
1
9
.
9
5
6
1
0
.
4
6
2
0
1
5
.
9
5
9
7
1
.
0
1
7
5
1
4
0
0
.
5
5
5
4
1
9
.
9
5
3
1
0
.
4
6
1
9
1
5
.
9
5
2
2
1
.
0
1
7
3
1
5
0
0
.
5
5
5
4
1
9
.
9
5
8
6
0
.
4
6
1
8
1
5
.
9
5
1
8
1
.
0
1
7
2
1
6
0
0
.
5
5
5
3
1
9
.
9
5
5
7
0
.
4
6
1
7
1
5
.
9
5
2
2
1
.
0
1
7
0
1
7
0
0
.
5
5
5
3
1
9
.
9
5
7
1
0
.
4
6
1
7
1
5
.
9
5
9
7
1
.
0
1
7
0
1
8
0
0
.
5
5
5
3
1
9
.
9
5
8
1
0
.
4
6
1
6
1
5
.
9
5
9
9
1
.
0
1
6
9
1
9
0
0
.
5
5
5
2
1
9
.
9
5
8
6
0
.
4
6
1
5
1
5
.
9
5
5
9
1
.
0
1
6
7
2
0
0
0
.
5
5
5
2
1
9
.
9
5
8
6
0
.
4
6
1
4
1
5
.
9
6
0
3
1
.
0
1
6
6
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
4
,
No
.
4
,
Dec
em
b
er
2
0
1
5
:
3
16
–
3
25
322
Fro
m
th
e
Fi
g
u
r
e
5
,
it
is
clea
r
th
at
t
h
e
in
cr
ea
s
e
i
n
s
ti
f
f
n
e
s
s
r
ed
u
ce
s
d
ef
o
r
m
atio
n
.
Fig
u
r
e
6
,
s
h
o
w
s
t
h
at
th
e
tip
v
elo
cit
y
f
lu
ct
u
ate
s
w
i
th
s
ti
f
f
n
es
s
v
ar
iatio
n
h
i
n
ti
n
g
at
w
i
n
g
p
ar
a
m
eter
tu
n
i
n
g
m
ig
h
t
i
m
p
r
o
v
e
ae
r
o
d
y
n
a
m
i
c
p
er
f
o
r
m
a
n
ce
.
4.
E
XP
E
R
I
M
E
NT
A
T
I
O
N
Her
e,
th
e
ef
f
ec
ts
o
f
co
m
p
lia
n
ce
o
n
th
e
w
in
g
d
y
n
a
m
ics
a
r
e
s
tu
d
ied
ex
p
er
i
m
e
n
tall
y
.
Fi
g
u
r
e
7
an
d
8
s
h
o
w
t
h
e
e
x
p
er
i
m
e
n
tal
s
et
u
p
s
f
o
r
f
i
x
ed
a
n
d
SDS
w
i
n
g
s
r
esp
e
ctiv
el
y
.
I
t c
o
n
s
is
ts
o
f
a
D
C
m
o
to
r
,
v
ar
iab
le
s
p
ee
d
co
n
tr
o
ller
,
v
er
tical
s
tan
d
w
it
h
h
o
ld
er
,
an
ec
ce
n
tr
ic
ca
m
,
f
i
x
ed
b
ea
m
,
s
elec
tiv
e
l
y
co
m
p
li
an
t
b
ea
m
,
an
d
th
e
ac
ce
ler
o
m
eter
w
it
h
n
ec
es
s
ar
y
in
s
tr
u
m
e
n
ts
.
E
x
p
er
i
m
e
n
t
s
ar
e
co
n
d
u
cted
o
n
f
i
x
ed
w
i
n
g
an
d
co
m
p
lian
t
w
i
n
g
s
.
T
h
e
m
o
to
r
s
p
ee
d
is
v
ar
ied
f
r
o
m
1
0
0
r
p
m
to
1
0
0
0
r
p
m
a
n
d
th
e
d
is
p
lace
m
e
n
t,
v
elo
cit
y
a
n
d
ac
ce
ler
atio
n
v
al
u
e
s
ar
e
n
o
ted
an
d
tab
u
lated
.
C
o
m
p
lian
ce
in
t
h
e
b
ea
m
is
v
ar
ied
b
y
v
ar
y
i
n
g
t
h
e
g
ap
b
et
w
ee
n
t
w
o
b
ea
m
s
an
d
th
e
s
en
s
o
r
p
o
s
itio
n
is
also
v
ar
ied
a
n
d
th
e
v
a
lu
e
s
ar
e
tab
u
lated
in
t
ab
les 4
,
5
an
d
6
.
Fig
u
r
e
7
.
E
x
p
er
i
m
en
tal
s
et
u
p
to
s
tu
d
y
f
i
x
ed
w
i
n
g
d
y
n
a
m
ic
s
Fig
u
r
e
8
.
E
x
p
er
i
m
en
tal
s
et
u
p
to
s
tu
d
y
SD
S
w
i
n
g
T
ab
le
4
.
E
x
p
er
im
e
n
tal
r
esu
lts
f
o
r
f
i
x
ed
w
i
n
g
(
6
0
cm
s
ta
n
d
ar
d
s
teel
r
u
le
is
u
s
ed
as b
ea
m
)
S
l
.
No
S
p
e
e
d
(
r
p
m)
A
c
c
e
l
e
r
a
t
i
o
n
(
m/
s
2
)
V
e
l
o
c
i
t
y
(
c
m/
s)
D
i
sp
l
a
c
e
me
n
t
(
m
m)
F
r
e
q
u
e
n
c
y
(
h
z
)
1
1
0
0
0
.
0
0
.
9
5
0
.
4
2
3
41
2
2
0
0
1
.
2
0
.
6
4
0
.
4
3
0
41
3
3
0
0
3
.
2
1
.
7
0
0
.
8
9
1
41
4
4
0
0
5
.
9
2
.
0
7
1
.
0
0
0
41
5
5
0
0
1
3
.
1
4
.
3
0
1
.
7
4
5
41
6
6
0
0
3
8
.
7
7
.
8
9
2
.
2
9
5
41
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
A
N
o
n
lin
ea
r
Mo
d
el
to
S
t
u
d
y
S
elec
tively
Defo
r
ma
b
le
W
in
g
o
f a
n
A
ir
cra
ft
(
Deiv
a
Ga
n
esh
A
)
323
T
ab
le
5
.
E
x
p
er
im
e
n
tal
r
esu
lts
f
o
r
SDS
w
i
n
g
(
3
0
+1
+
3
0
cm
,
s
ta
n
d
ar
d
3
0
cm
s
teels a
r
e
co
n
n
ec
ted
b
y
b
elt
an
d
u
s
ed
as SDS b
ea
m
)
T
ab
le
6
.
E
x
p
er
im
en
tal
r
esu
l
ts
f
o
r
SDS
w
i
n
g
(
3
0
+2
+
3
0
cm
,
s
ta
n
d
ar
d
3
0
cm
s
teels a
r
e
co
n
n
ec
ted
b
y
b
elt
an
d
u
s
ed
as SDS b
ea
m
)
Fig
u
r
e
9
.
C
o
m
p
ar
is
o
n
o
f
Sp
ee
d
Vs Dis
p
lace
m
e
n
t
Fig
u
r
e
1
0
.
C
o
m
p
ar
is
o
n
o
f
Sp
e
ed
Vs Ve
lo
cit
y
S
l
.
N
o
.
S
p
e
e
d
(
r
p
m)
A
c
c
e
l
e
r
a
t
i
o
n
(
m/
s
2
)
V
e
l
o
c
i
t
y
(
c
m/
s)
D
i
sp
l
a
c
e
me
n
t
(
mm
)
F
r
e
q
u
e
n
c
y
(
h
z
)
1
1
0
0
0
.
2
0
.
1
2
0
.
1
3
6
41
2
2
0
0
0
.
0
1
.
2
9
0
.
8
2
0
41
3
3
0
0
6
.
0
1
4
.
4
0
6
.
7
4
7
41
4
4
0
0
2
.
5
5
.
7
6
2
.
5
8
8
41
5
5
0
0
3
.
2
4
.
5
3
1
.
8
7
9
41
6
6
0
0
3
.
7
3
.
8
3
1
.
4
7
8
41
7
7
0
0
4
.
8
3
.
4
7
1
.
2
3
0
41
8
8
0
0
6
.
1
3
.
4
8
1
.
1
3
4
41
9
9
0
0
9
.
3
3
.
7
5
1
.
0
7
7
41
10
1
0
0
0
9
.
2
4
.
0
7
1
.
1
3
9
41
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
9
-
4856
IJ
RA
Vo
l.
4
,
No
.
4
,
Dec
em
b
er
2
0
1
5
:
3
16
–
3
25
324
Fig
u
r
e
1
1
.
C
o
m
p
ar
is
o
n
o
f
Sp
e
ed
Vs A
cc
eler
atio
n
T
h
e
ex
p
er
i
m
e
n
tal
d
ata
ar
e
s
e
g
r
eg
ated
o
n
t
h
e
b
asi
s
o
f
d
is
p
lace
m
e
n
t,
v
elo
cit
y
an
d
ac
ce
le
r
atio
n
an
d
g
r
ap
h
s
ar
e
d
r
a
w
n
as
s
h
o
w
n
i
n
f
i
g
s
9
-
1
1
,
b
etw
ee
n
s
p
ee
d
Vs
d
is
p
lace
m
e
n
t,
s
p
ee
d
Vs
v
el
o
cit
y
an
d
s
p
ee
d
Vs
ac
ce
ler
atio
n
r
esp
e
cti
v
el
y
.
Fro
m
t
h
e
g
r
ap
h
s
it
is
c
lear
th
a
t
f
i
x
ed
w
i
n
g
s
ca
n
b
e
ac
ce
ler
ated
f
a
s
ter
th
a
n
co
m
p
lia
n
t
w
i
n
g
s
.
Fo
r
th
e
co
m
p
lia
n
t
w
in
g
t
h
e
d
i
s
p
lace
m
e
n
t
is
m
o
r
e
t
h
an
t
h
e
f
i
x
ed
w
i
n
g
.
I
n
ter
e
s
ti
n
g
l
y
,
t
h
e
d
is
p
lace
m
e
n
t
s
an
d
v
elo
cit
y
o
f
w
i
n
g
s
ar
e
m
o
r
e
at
ce
r
tain
s
p
ee
d
h
in
t
in
g
at
p
r
o
p
er
s
elec
tio
n
o
f
p
ar
am
eter
s
f
o
r
th
e
w
i
n
g
co
u
ld
i
m
p
r
o
v
e
p
er
f
o
r
m
a
n
ce
(
s
p
ee
d
in
g
ca
p
ab
ilit
y
)
an
d
also
t
h
e
ef
f
o
r
t r
eq
u
ir
ed
to
ef
f
ec
t d
ef
o
r
m
at
io
n
ca
n
b
e
r
ed
u
ce
d
.
5.
CO
NCLUS
I
O
N
I
n
th
i
s
p
ap
er
th
e
s
u
i
tab
ilit
y
o
f
a
n
o
n
li
n
ea
r
m
o
d
el
to
s
tu
d
y
t
h
e
d
y
n
a
m
ic
s
o
f
a
s
elec
tiv
e
l
y
d
ef
o
r
m
ab
le
w
i
n
g
h
a
s
b
ee
n
in
v
est
ig
ated
.
Fo
r
th
is
p
u
r
p
o
s
e
a
s
in
g
le
ca
n
tile
v
er
b
ea
m
an
d
a
b
ea
m
w
it
h
s
elec
ti
v
el
y
co
m
p
lia
n
ce
r
ep
r
esen
ti
n
g
th
e
air
cr
af
t
w
i
n
g
s
ar
e
m
o
d
eled
an
d
s
tu
d
ied
b
y
s
u
b
j
ec
tin
g
th
e
m
to
s
i
n
u
s
o
id
al
ex
citatio
n
.
T
h
e
ef
f
ec
t
o
f
s
ti
f
f
n
es
s
o
n
ac
ce
ler
atio
n
a
n
d
d
is
p
lace
m
e
n
t
ca
p
ab
ilit
y
ar
e
s
t
u
d
i
ed
.
I
t
is
f
o
u
n
d
t
h
at
s
tiff
er
b
ea
m
s
(
w
in
g
s
)
ca
n
b
e
ac
ce
ler
ated
o
r
d
ec
eler
ated
f
ast
er
an
d
u
n
d
er
g
o
le
s
s
d
ef
o
r
m
a
ti
o
n
.
I
t
is
d
if
f
ic
u
lt
to
ac
ce
ler
ate
th
e
w
in
g
w
it
h
m
o
r
e
co
m
p
lian
ce
.
E
x
p
er
i
m
e
n
t
s
c
o
n
d
u
cted
o
n
(
s
ti
f
f
)
b
ea
m
s
an
d
co
m
p
lia
n
t
b
ea
m
s
co
n
f
o
r
m
s
t
h
e
th
eo
r
etica
l
f
i
n
d
in
g
s
.
Fu
r
t
h
er
,
th
is
p
r
eli
m
in
ar
y
s
t
u
d
y
d
e
m
o
n
s
tr
ate
s
t
h
at
th
e
d
y
n
a
m
ics
o
f
d
ef
o
r
m
ab
le
w
i
n
g
ca
n
b
e
s
tu
d
i
ed
u
s
i
n
g
a
n
o
n
li
n
ea
r
m
o
d
el
a
s
b
o
th
(
t
h
eo
r
etica
l
a
n
d
ex
p
er
i
m
en
tal)
r
es
u
lt
s
s
h
o
w
co
m
p
ar
ab
le
d
y
n
a
m
ic
ch
ar
ac
te
r
is
tics
.
I
n
f
u
t
u
r
e,
th
e
m
o
d
el
w
il
l
b
e
r
e
f
i
n
ed
f
u
r
t
h
er
a
n
d
i
n
v
esti
g
atio
n
s
w
ill
b
e
m
ad
e
to
ar
r
iv
e
at
a
s
u
itab
le
s
e
l
ec
tiv
el
y
d
ef
o
r
m
ab
le
w
i
n
g
f
o
r
t
h
e
air
cr
af
ts
.
RE
F
E
R
E
NC
E
S
[1
]
Jo
h
n
D.
A
n
d
e
rso
n
,
Jr,
“
A
ircra
ft
P
e
rf
o
rm
a
n
c
e
a
n
d
De
sig
n
”
,
M
c
G
ra
w
-
Hill
In
tern
a
ti
o
n
a
l
Ed
i
ti
o
n
s,
A
e
ro
sp
a
c
e
S
c
ien
c
e
/T
e
c
h
n
o
lo
g
y
S
e
ries
1
9
9
9
.
[2
]
G
e
n
n
a
d
y
Am
ir
y
a
n
ts,
F
a
n
il
Ish
m
u
ra
to
v
,
V
icto
r
M
a
ly
u
ti
n
,
V
icto
r
T
i
m
o
k
h
in
,
“
S
e
lec
ti
v
e
ly
D
e
fo
rm
a
b
le
S
tru
c
tu
re
s
Fo
r
De
sig
n
Of
A
d
a
p
ti
v
e
W
in
g
S
ma
rt
El
e
me
n
ts
"
ICA
S
2
0
1
0
2
7
t
h
In
tern
a
ti
o
n
a
l
C
o
n
g
re
ss
Of
T
h
e
Ae
ro
n
a
u
ti
c
a
l
S
c
ien
c
e
s.
[3
]
Jo
h
n
S
im
p
so
n
,
L
u
is
A
n
g
u
it
a
,
Bo
Nilsso
n
,
V
in
c
e
n
z
o
-
V
a
c
c
a
ro
,
G
re
g
o
rio
k
a
w
iec
k
i
,
“
Rev
iew
Of
T
h
e
Eu
ro
p
e
a
n
Res
e
a
rc
h
Pro
jec
t
“
Active
Aer
o
e
la
stic
Ai
rc
ra
ft
S
tru
c
tu
re
s
”
(3
A
S
)
Eu
ro
p
e
a
n
Co
n
f
e
re
n
c
e
F
o
r
Ae
r
o
sp
a
c
e
S
c
ien
c
e
s
(EUCA
S
S
)
[4
]
V
.
Bra
il
o
v
sk
i
,
P
.
T
e
rriau
lt
,
T
.
G
e
o
rg
e
s,
D.
Co
u
t
u
,
“
S
M
A
Act
u
a
to
rs
f
o
r
M
o
rp
h
in
g
W
in
g
s”
3
rd
In
ter
n
a
ti
o
n
a
l
S
y
mp
o
si
u
m o
n
S
h
a
p
e
M
e
mo
ry
M
a
ter
ia
ls
f
o
r S
m
a
rt S
y
ste
ms
,
P
h
y
sic
s P
ro
c
e
d
ia
0
0
(
2
0
1
0
)
.
[5
]
S
v
e
tl
a
n
a
Ku
z
m
in
a
,
Ge
n
n
a
d
i
Am
i
ry
a
n
ts,
Jo
h
a
n
n
e
s
S
c
h
w
e
ig
e
r,
Jo
n
a
th
a
n
Co
o
p
e
r,
M
ich
a
e
l
Am
p
rik
id
is,
Otto
S
e
n
s
b
e
rg
,
“
Rev
iew
An
d
Ou
tl
o
o
k
On
Activ
e
An
d
Pa
ss
ive
Aer
o
e
la
stic
De
sig
n
Co
n
c
e
p
ts
Fo
r
Fu
t
u
re
Ai
rc
ra
ft
”
IC
A
S
2
0
0
2
CON
G
RES
S
p
p
.
4
3
2
.
1
–
4
3
2
.
1
0
.
[6
]
G
e
n
n
a
d
y
Am
ir
y
a
n
ts
,
“
Active
Ae
ro
e
la
sticity
Co
n
c
e
p
t:
No
v
e
l
Vi
e
w,
M
e
th
o
d
o
l
o
g
y
A
n
d
Res
u
lt
s
”
ICA
S
2
0
0
8
,
2
6
t
h
In
tern
a
ti
o
n
a
l
C
o
n
g
re
ss
Of
T
h
e
Ae
ro
n
a
u
t
ica
l
S
c
ien
c
e
s.
[7
]
B.
Na
g
e
l,
H.
P
.
M
o
n
n
e
r,
E.
Bre
it
b
a
c
h
,
“
I
n
teg
ra
te
d
De
sig
n
Of
S
ma
rt
Co
m
p
o
sites
,
Ap
p
li
e
d
T
o
S
ma
rt
W
in
g
lets
”
ICA
S
2
0
0
8
2
5
th
I
n
tern
a
ti
o
n
a
l
C
o
n
g
re
ss
O
f
T
h
e
Ae
ro
n
a
u
ti
c
a
l
S
c
ien
c
e
s.
[8
]
G
.
A
.
Am
ir
y
a
n
ts,
F
.
Z.
Ish
m
u
ra
to
v
,
S
.
I.
Ku
z
m
in
a
,
“
U
se
Of
Aer
o
e
la
sticity;
M
u
lt
id
isc
ip
l
in
a
ry
In
v
e
stig
a
ti
o
n
s”
ICA
S
2
0
0
4
2
4
th
I
n
tern
a
ti
o
n
a
l
C
o
n
g
re
ss
O
f
T
h
e
Ae
ro
n
a
u
ti
c
a
l
S
c
ien
c
e
s.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
RA
I
SS
N:
2089
-
4856
A
N
o
n
lin
ea
r
Mo
d
el
to
S
t
u
d
y
S
elec
tively
Defo
r
ma
b
le
W
in
g
o
f a
n
A
ir
cra
ft
(
Deiv
a
Ga
n
esh
A
)
325
[9
]
Oh
su
n
g
A
h
n
,
J.M
.
Kim
,
C.
H.
Li
m
,
“
S
ma
rt
Ua
v
Res
e
a
rc
h
Pro
g
ra
m
S
ta
t
u
s
Up
d
a
te
:
Ach
iev
e
me
n
t
Of
T
il
t
-
Ro
t
o
r
T
e
c
h
n
o
l
o
g
y
,
De
v
e
lo
p
me
n
t
A
n
d
Vi
sio
n
A
h
e
a
d
”
ICA
S
2
0
1
0
2
7
t
h
In
ter
n
a
ti
o
n
a
l
Co
n
g
re
ss
Of
T
h
e
A
e
ro
n
a
u
ti
c
a
l
S
c
ien
c
e
s.
[1
0
]
Ch
risto
p
h
K.
M
a
u
c
h
e
r,
Bo
ris
A
.
G
ro
h
m
a
n
n
,
P
e
ter Jä
n
k
e
r,
A
n
d
re
e
A
lt
m
i
k
u
s,
[1
1
]
F
lem
m
in
g
J
e
n
se
n
,
Ho
rst
Ba
ier,
“
A
c
tu
a
to
r
De
sig
n
F
o
r
T
h
e
A
c
ti
v
e
T
ra
il
in
g
Ed
g
e
Of
A
He
li
c
o
p
ter Ro
to
r
B
lad
e
”
[1
2
]
El
i
L
iv
n
e
s,
“
F
u
tu
re
o
f
A
irp
lan
e
Ae
ro
e
las
ti
c
it
y
”
J
o
u
rn
a
l
o
f
A
irc
ra
ft
,
V
o
l
.
4
0
,
N
o
.
6
,
N
o
v
e
m
b
e
r
–
De
c
e
m
b
e
r
2
0
0
3
.
[1
3
]
M
ich
e
le Bo
n
n
i
n
,
“
Ha
rm
o
n
ic Ba
lan
c
e
,
M
e
ln
ik
o
v
m
e
th
o
d
a
n
d
N
o
n
li
n
e
a
r
Os
c
il
lato
rs Un
d
e
r
re
so
n
a
n
t
P
e
rtu
b
e
ra
ti
o
n
”
[1
4
]
1
3
.
C
h
io
n
-
F
o
n
g
Ch
u
n
g
,
C
h
ian
g
-
Na
n
Ch
a
n
g
,
”
Dy
n
a
m
ics
o
f
A
s
y
m
m
e
tri
c
No
n
li
n
e
a
r
v
ib
ra
ti
o
n
A
b
so
r
b
e
r”
J
o
u
rn
a
l
o
f
M
a
rin
e
S
c
ien
c
e
a
n
d
T
e
c
h
n
o
lo
g
y
,
V
o
l
.
1
,
No
.
1
,
p
p
.
8
-
1
9
(2
0
0
3
).
[1
5
]
1
5
.
S
.
J.
Z
h
u
,
Y.F
.
Zh
e
n
g
,
Y
.
M
.
F
u
,
“
A
n
a
l
y
sis
o
f
n
o
n
-
li
n
e
a
r
d
y
n
a
m
ics
o
f
a
tw
o
-
d
e
g
re
e
-
of
-
f
re
e
d
o
m
v
ib
ra
ti
o
n
s
y
ste
m
w
it
h
n
o
n
-
li
n
e
a
r
d
a
m
p
in
g
a
n
d
n
o
n
-
li
n
e
a
r
sp
ri
n
g
”
,
J
o
u
rn
a
l
o
f
so
u
n
d
a
n
d
v
ib
ra
ti
o
n
2
7
1
(2
0
0
4
)
1
5
-
24.
[1
6
]
Zh
u
W
e
iq
iu
,
W
u
Qitai,
“
Ju
m
p
a
n
d
b
if
u
c
ti
o
n
o
f
d
u
f
f
in
g
o
s
c
il
lato
r
u
n
d
e
r
n
a
rro
w
-
b
a
n
d
e
x
c
it
a
ti
o
n
”
A
CTA
M
ECHA
NIC
A
S
INIC
A
,
V
o
l.
1
0
,
No
.
1
,
F
e
b
r
u
a
ry
1
9
9
4
,
sc
ien
c
e
p
re
ss
,
Be
ij
in
g
,
c
h
in
a
,
A
ll
e
rto
n
P
r
e
ss
,
INC.,
Ne
w
Yo
rk
,
U.S
.
A
.
[1
7
]
Ye
b
in
W
a
n
g
,
Ke
n
ji
Uts
u
n
o
m
i
y
a
,
S
c
o
o
t
A
.
Bo
rto
f
f
,
“
No
n
li
n
e
a
r
Co
n
tr
o
l
De
sig
n
f
o
r
a
S
e
mi
-
Active
Vi
b
ra
ti
o
n
Red
u
c
ti
o
n
S
y
ste
m
”
P
r
o
c
e
e
d
in
g
s o
f
th
e
3
0
t
h
Ch
i
n
e
e
se
Co
n
tr
o
l
C
o
n
f
e
re
n
c
e
,
Ju
ly
2
2
-
2
4
,
2
0
1
1
,
Ya
n
tai,
Ch
in
a
.
Evaluation Warning : The document was created with Spire.PDF for Python.